序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
101 Boiler operation method and boiler JP2013031404 2013-02-20 JP2014159925A 2014-09-04 ANAI TOSHINAO
PROBLEM TO BE SOLVED: To easily reduce corrosion of a water supply system.SOLUTION: A boiler includes: a water supply system 11 in which boiler water flows; ammonia addition equipment 12 for adding an ammonia solution to the boiler water; a pH measuring device 14 for measuring pH in the boiler water; and a control device 15. The control device 15 controls the ammonia addition equipment 12 so that pH of the boiler water is included in a pH range for storage when the boiler water is heated, and controls the ammonia addition equipment 12 so that the pH of the boiler water is included in the pH range for storage before the boiler water is stopped flowing in the water supply system 11. At this time, arbitrary pH included in the pH range for storage is larger than arbitrary pH included in a pH range for operation. A boiler like this can prevent the water supply system 11 from corroding more easily than the one in which the water supply system 11 is filled with boiler water for storage including hydrazine.
102 Power generating apparatus, and power generating system JP2012271067 2012-12-12 JP2014114785A 2014-06-26 TSUBOI NOBORU; MATSUMURA MASAYOSHI
PROBLEM TO BE SOLVED: To provide a power generating apparatus and a power generating system capable of simplifying and downsizing construction and reducing manufacturing costs.SOLUTION: A power generating apparatus 2 comprises: a separation member 26 for separating lubricating oil from a fluid mixture flowing in an expander casing 30; an expander rotor 32 rotatively driven by receiving expansion force from steam of a working medium from which the lubricating oil has been separated; a power generator rotor 38 rotating with rotation of the expander rotor 32; a first bearing holding part 22 containing in the inside a first bearing 18 supporting a first rotating shaft 34a of the expander rotor 32; a second bearing holding part 24 containing in the inside a second bearing 20 supporting a second rotating shaft 34b of the expander rotor 32; and a lubricating oil supply passage 28 connecting a lubricating oil collecting part in the expander casing 30 to both internal spaces of the first bearing holding part 22 and the second bearing holding part 24, in which pressure is lower than pressure in the lubricating oil collecting part in the expander casing 30.
103 Apparatus and method for converting thermal energy into mechanical energy JP2013541955 2011-11-22 JP2013545023A 2013-12-19 ハル、オラ
An arrangement and a method for converting thermal energy to mechanical energy. The arrangement has a line circuit (3), circulation device (4) for circulating a zeotropic refrigerant mixture in the line circuit (3), an evaporator (6) in which the refrigerant mixture is vaporised by a heat source (7), a turbine (9) driven by the vaporised refrigerant mixture, and a condenser (12) which cools the refrigerant mixture so that it condenses. A control unit assesses whether the refrigerant mixture does not become fully vaporised in the evaporator (6) and, leads incompletely vaporised refrigerant mixture leaving the evaporator to a separating device (14) in which a liquid portion of the refrigerant mixture is separated from the gaseous portion, after which only the gaseous portion proceeds towards the turbine (9).
104 Converting the energy, increasing the enthalpy, method for increasing the compression factor JP2013525863 2011-04-04 JP2013538315A 2013-10-10 イゴール・アナトリエヴィッチ・レヴェンコ
The invention relates to a method for converting thermal energy into mechanical work, which comprises imparting thermal energy to a working fluid in a tank. The working fluid in the vapor phase is fed into a device for converting energy into mechanical work. The vaporous working fluid is condensed and cyclically returned in the liquid phase to the tank. A catalytic additive in the form of a catalytic substance or a catalytic mixture of substances in an amount of 0.0000001 to 0.1 wt. % is introduced into the working fluid before or after starting the heating. The additive is a solid, its solution or suspension, or a liquid or its emulsion. The catalytic substance and the ratio of components of the mixture are chosen to prevent or promote decomposition of the substance or the mixture under the effect of high temperature and pressure according to current needs. The method enhances the efficiency of the process and expands its operational capabilities.
105 Structure and method for Lng regasification and Integrated Power JP2007521632 2005-07-14 JP5202945B2 2013-06-05 マツク,ジヨン
106 pump JP2008515295 2006-06-09 JP4857335B2 2012-01-18 コバチェビッチ、アハメド; ストシック、ニコラ、ルディ; スミス、イアン、ケネス
107 How to obtain useful effect using thermodynamic cycle and it has a power unit and a venturi JP2011512537 2009-05-29 JP2011522209A 2011-07-28 ダーソー、トーマス
この開示は、パワーユニットとベンチュリ管とを有する改良された熱学サイクル、ベンチュリ管を使用して流体中に局所的に形成された大きな圧力勾配を使用して有用な効果を得る方法、より具体的には、熱力学サイクルの流体の第一部分をベンチュリ管の駆動力として使用すること、およびより大きな圧力勾配を形成するとともに熱力学サイクルの流体の第二部分を収集するために、ベンチュリ管のノズルをパワーユニットの排気エリアに配置することに関する。
108 Turbine generator system JP2009193694 2009-08-24 JP2010151119A 2010-07-08 YAMASHITA SEIJI; KARIYA DAISUKE; SHIMIZU HAJIME; MIYAKE NAOKI; OKUMURA YUJI
<P>PROBLEM TO BE SOLVED: To provide a turbine generator system capable of obtaining sufficient lubrication for a bearing without suppressing the heat-transmission property of an evaporator and a condenser. <P>SOLUTION: The turbine generator system is provided with a turbine power generation unit U having a generator 10 and a turbine 13 for driving this; the evaporator 16 for receiving heat from a heat source 15 and feeding an operation medium M of vapor phase containing a lubricant to the turbine power generation unit U; the condenser 17 for condensing the operation medium M passing through the turbine 13; a medium feeding pump 18 for pressure-raising the condensed operation medium M and feeding it to the evaporator 16; and a feeding passage 20 for feeding the operation medium M extracted from the evaporator 16 to the bearing 19 of the turbine power generation unit U. <P>COPYRIGHT: (C)2010,JPO&INPIT
109 Mixed vapor generation method JP2009533758 2007-10-26 JP2010508460A 2010-03-18 シェーファー・ベルンハルト
【課題】消費エネルギー、動作温度及び動作圧を低減する一方で、効率を向上させることが可能な混合蒸気発生方法を提供すること。
【解決手段】熱機関の駆動に用いる混合蒸気の発生方法であって、所定の温度で有極性流体及び無極性流体から混合蒸気を発生させるステップと、濃縮容器において、前記温度より高い温度で有極性流体により前記混合蒸気を濃縮するステップと、該濃縮混合蒸気を熱機関によって圧縮するステップと、前記有極性流体が凝縮するとともに、この際放出される熱が無極性流体に与えられ、前記濃縮混合蒸気を断熱的に減圧して湿り蒸気にするステップと、前記濃縮混合蒸気を断熱的に減圧する際に取り出される仕事を、電気エネルギーを発生させるための熱機関に与えるステップと、減圧された前記湿り蒸気を第1の圧力室へ戻すステップとを行う。
110 Engine, which is driven by liquefied gas JP2008509497 2006-04-28 JP2008540899A 2008-11-20 ディアマン,ピーター・トーマス
液化窒素または空気のような液化ガス駆動式エンジンにおいて、注入手段(31,33)は、駆動流体を膨張チャンバに導入する。 膨張チャンバは、2つの相対的に移動可能な部材(1,28)間の体積によって規定され、相対的に移動可能な部材は反復サイクルで移動するよう誘導手段(38,40)によって誘導される。 注入手段は、熱交換液もチャンバに導入させることができ、熱交換液は駆動流体と密接し、膨張しつつある駆動流体に熱エネルギを与える。 冷却された熱交換液はチャンバから排出され、加熱されてチャンバに再循環される。 サイクルの一部には、実質的に部材(1,28)間に相対的な移動がなく、チャンバの体積が最小体積かまたはその付近に維持される期間が含まれる。 この期間中に、熱交換液および駆動流体がチャンバに導入される。 これにより、エンジンによって発生されたシャフトの動を送り出す駆動ストロークの前に、駆動流体と熱交換液との間の密な接触および熱交換が促進される。
111 Structure and method for Lng regasification and Integrated Power JP2007521632 2005-07-14 JP2008506883A 2008-03-06 マツク,ジヨン
LNG冷熱は、パワー出を増加させるため複合発電プラントの複数のサイクルで使用される。 特に、好ましいプラント構造は、複合サイクル発電プラントを、第1のステージにおいてLNG冷熱がオープンパワーサイクル又はクローズパワーサイクルで冷却を行う再ガス化工程と統合する。 より好ましくは、LNGの大部分が第1のステージにおいて気化される。 第2のステージにおいて、LNG冷熱は、スチームパワータービンへの冷却を冷却するため使用される熱伝達媒体を冷却し、発電プラント内の燃焼タービンの吸気冷却器を冷却する。
112 Thermal conversion method and apparatus to the effective energy JP2698097 1997-02-10 JP3961058B2 2007-08-15 アレキサンダー,アイ.カリナ; ローレンス,ビー.ローズ
Converting heat in a primary fluid (e.g., steam) to useful energy by multistage expansion of the primary fluid, heating of a multicomponent working fluid in a separate closed loop using heat of the primary fluid, and expansion of the multicomponent working fluid. The primary fluid in a vapor state is expanded in a first stage expander to obtain useful energy and to produce a partially expanded primary fluid. The partially expanded primary fluid stream is then separated into liquid and vapor components and split into a vapor stream (which is expanded in a second stage expander) and a further primary stream (which used to heat the multicomponent working fluid).
113 Method and apparatus for converting heat from the geothermal fluid to power JP438190 1990-01-11 JP2962751B2 1999-10-12 AREKUSANDAA AI KARINA
A method and apparatus for implementing a thermodynamic cycle, which includes heating and preferably partially evaporating a multicomponent liquid working stream with heat released from the partial condensation of a returning spent stream. The preferably partially evaporated working stream is then completely evaporated with heat transferred from an external heat source, which is preferably a geothermal heat source. The evaporated stream is expanded to produce the spent stream, which, in turn, is condensed to produce the multicomponent liquid working stream.
114 Method and apparatus for improving efficiency and productivity in the power generation cycle JP50634394 1993-08-12 JPH08500171A 1996-01-09 カコヴィッチ,トーマス・エス
(57)【要約】 より高い効率で熱エネルギを機械エネルギへ変換するための方法及び装置である。 この方法においては、作動流体を蒸気に変換するのに十分な量の熱エネルギを貯蔵容器12内の作動流体へ加え、次に蒸気状態の作動流体を、その中のエネルギを機械的な仕事に変換するための発電機などの装置16へ通す。 そのあと、作動流体は貯蔵容器12へ循環される。 このプロセスの効率を向上させるために、作動流体のおおよその分子量よりも大きくない分子量を有する気体(He)を貯蔵容器12内の作動流体へ加え、貯蔵容器の下流において作動流体から分離する。
115 Evaporation device for heat recovery equipment JP20087884 1984-09-26 JPH0627485B2 1994-04-13 SUMITOMO HIROYUKI; HORIGUCHI AKIRA
116 JPH0429843B2 - JP20087984 1984-09-26 JPH0429843B2 1992-05-20
117 Method of and device for converting heat from geothermal fluid into electric power JP438190 1990-01-11 JPH02245405A 1990-10-01 AREKUSANDAA AI KARINA
PURPOSE: To enhance the availability of energy by expanding a gas action flow so as to carry out a work, by partly condensing a waste stream thereof so as to create a heated liquid action flow, and by heating and evaporating this liquid action flow with the use of an external heat source (geothermal fluid). CONSTITUTION: Geothermal fluid as an external heat source is led from a point 1, through a separator 112, heat-exchangers 101, 103, a flow mixer 114, a heat- exchanger (boiler) and a heat-exchanger 106 in the mentioned order, and then, is discharged from a point 4. Further, during this period, a gas action flow generated in the heat-exchanger 105 is expanded in a turbine 102 so as to carry out a work, and a waste flow discharged from the turbine 102 is reheated by the heat-exchanger 103 so as to carry out a work again in a turbine 104. Next, the waste flow discharged from the turbine 104 is introduced into a condenser 109 through a heat-exchanger 106 and a transmission type pre-heater 108, and is then cooled and condensed by means of water or air. Further, thus obtained liquid action flow is returned to the heat-exchanger 105 side by means of a pump 110. COPYRIGHT: (C)1990,JPO
118 JPH0148373B2 - JP2639784 1984-02-15 JPH0148373B2 1989-10-19 KONO SHUNJI
119 JPS626084B2 - JP3410182 1982-03-05 JPS626084B2 1987-02-09 CHAARUZU REO NYUUTON; DENISU ROORENSU FUINI
Power is recovered from the vaporization of liquefied natural gas by liquefying a multicomponent refrigerant. The liquefied multicomponent refrigerant is then pressurized, vaporized and expanded in two stages through two expanders which are coupled to a generator.
120 Waste heat recovering device JP20087984 1984-09-26 JPS6179811A 1986-04-23 SUMITOMO HIROYUKI; HORIGUCHI AKIRA
PURPOSE:To increase an amount of a power recovered, by a method wherein, in a device which recovers heat from hot water exhausted from a factory by a Rankine cycle utilizing a low temperature difference, high temperature oil is injected during a process in that working medium steam flows from the suction hole of an expander to an exhaust port. CONSTITUTION:Working medium steam, which is heated and vaporized in a vaporizer 13 by means of hot exhaust water serving as a heat source, is fed to an oil injection type screw expander 11 to serve therein so as to drive a load 12 such as generators. In which case, high temperature oil, heated by a heater 17, is injected through nozzles 19, mounted in a multistage, in a process in that the working medium steam flows within the expander 11 from a suction hole to an exhaust hole. This forces the working medium steam to overheat in addition to provision of lubricating and sealing action. Mixture of the working medium steam, flowing through the expander 11, and oil is separated by an oil separator 14, and after the working medium steam is cooled and condensed by a condenser 15, it is returned to the vaporizer 13.
QQ群二维码
意见反馈