首页 / 国际专利分类库 / 机械工程;照明;加热;武器;爆破;发动机或泵 / 一般机器或发动机 / 蒸汽机装置;贮汽器;不包含在其他类目中的发动机装置;应用特殊工作流体或循环的发动机 / 不包含在其他类目中的,以应用特殊工作流体为特点的装置或发动机;闭合回路循环中运行且不包含在其他类目中的装置
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
181 System for driving heat motor US3788064D 1972-01-26 US3788064A 1974-01-29 HAWKINS R
A heat engine having a shaft output is connected to a vortex separating means, such as a bank of Ranque tubes, for deriving first and second gas flows respectively having higher and lower temperatures than input gas to the vortex separating means. The heat engine and a high temperature heat exchanger are in a first feedback loop responsive to the first gas flow. A second feedback loop, responsive to the second flow from the bank of vortex tubes, includes a low temperature heat exchanger responsive to scavenged or rejected heat of the system. The first feedback loop may include a second bank of vortex tubes which feeds hot and cold gases to a heat exchanger and vapor generator, respectively. The gases fed to the heat exchanger and vapor generator, after passing through them, are condensed. The condensed gas is fed to the vapor generator and heat exchanger to the heat engine. The heat engine may be, e.g., a simple gas turbine or a compound turbine.
182 Closed cycle rotary engine system US3744245D 1971-06-21 US3744245A 1973-07-10 KELLY D
The closed cycle rotary engine system consists of a rotary expander stage and rotary pump stage, which are driven together at a 1 to 1.+ ratio. The fluid/vapor closed loop is formed to enter and leave the two rotary stages tangentially so that a minimum number of simplified rotary components are required. Multiple boiler coils are located above and around the two rotary stages to heat an organic fluid working medium which expands in a vapor state to drive the expander stage rotor. Multiple condenser coils are located below and in front of the two rotary stages which cools the vapor to a liquid state which is then drawn into the rotary pump stage for further cooling and transfer. Supplementary heating and cooling techniques are adopted to enable a reduction in the total size and volume of the rotary engine system.
183 SEAL ARRANGEMENT IN A TURBINE AND METHOD FOR CONFINING THE OPERATING FLUID EP16739559.9 2016-06-08 EP3314094B1 2018-10-03 GAIA, Mario; BINI, Roberto
A turbine of an organic Ranking cycle ORC is described, the turbine comprising a shaft supported by bearings and a plurality of seals arranged round the shaft for confining the operating fluid expanding in the turbine. The seals define at least four axially consecutive chambers. The operating fluid, with function of barrier fluid, is fed into one of the chambers adjacent to turbine stages; a gas, preferably inert, is fed into one of the chambers adjacent to the bearings, and the corresponding seals are gas seals. This configuration prevents the operating fluid from any kind of contamination by the lubricant used for the bearings, and avoids polluting the environment.
184 STROM-WÄRME-STROM-SPEICHERVORRICHTUNG UND VERFAHREN ZUR LASTREGELUNG DERSELBEN EP16805013.6 2016-11-10 EP3374603A1 2018-09-19 Ortmann, Peter; Graf, Werner
The invention relates to a pumped-heat electricity storage device (1) comprising a charging circuit (100) and a discharging circuit (200) for conveying a working gas (A), wherein the charging circuit (100) and the discharging circuit (200) comprise a common regenerator (120), which is switchably connected either to the charging circuit (100) or to the discharging circuit (200) in a fluid-conducting manner in order to form a closed circuit and in order to supply the working gas (A) to the regenerator (120), wherein the charging circuit (100) comprises a first turbocompressor (110) and a first turboexpander (140), wherein the first turbocompressor (110) is driven by the first turboexpander (140) and by an electric motor (170), wherein the discharging circuit (200) comprises a second turboexpander (250) and a second turbo compressor (210), wherein the second turboexpander (250) drives the second turbocompressor (210) and a generator (290), and comprising a control device (500) and a density-changing device (300), which make it possible to controllably change the pressure of the working gas (A) in the charging circuit (100) and/or in the discharging circuit (200) in order to control the power that can be taken in by the first turbocompressor (110) or the power that can be output by the second turboexpander (250).
185 BEHÄLTNIS FÜR EINEN ABWÄRMENUTZUNGSKREISLAUF EP16751229.2 2016-07-28 EP3332098A1 2018-06-13 BRÜMMER, Richard; PANTOW, Eberhard
The invention relates to a container (1) for a waste heat utilization circuit (50), comprising a housing (2) delimiting a housing interior (3) such that the housing interior (3) can be flown through by a working medium (6), a sheath (4) arranged in the housing interior (3), in which an auxiliary medium (7) can be or is accommodated. According to the invention, the sheath (4) is fluid-tight, volume-variable, is designed at least in sections in a heat-conductive manner and delimits a sheath interior (5).
186 SEAL ARRANGEMENT IN A TURBINE AND METHOD FOR CONFINING THE OPERATING FLUID EP16739559.9 2016-06-08 EP3314094A1 2018-05-02 GAIA, Mario; BINI, Roberto
A turbine of an organic Ranking cycle ORC is described, the turbine comprising a shaft supported by bearings and a plurality of seals arranged round the shaft for confining the operating fluid expanding in the turbine. The seals define at least four axially consecutive chambers. The operating fluid, with function of barrier fluid, is fed into one of the chambers adjacent to turbine stages; a gas, preferably inert, is fed into one of the chambers adjacent to the bearings, and the corresponding seals are gas seals. This configuration prevents the operating fluid from any kind of contamination by the lubricant used for the bearings, and avoids polluting the environment.
187 VERFAHREN UND METHODE ZUR SPEICHERUNG UND RÜCKGEWINNUNG VON ENERGIE EP16020325.3 2016-09-07 EP3293475A1 2018-03-14 Alekseev, Alexander

Die Erfindung betrifft ein Verfahren zum Speichern und Rückgewinnen von Energie, bei dem eine tiefkalte Speicherflüssigkeit bereitgestellt wird, die in einem ersten Betriebsmodus zumindest zum Teil unter Verwendung eines Druckluftstroms gebildet wird, der abgekühlt und zumindest teilweise verflüssigt wird, und bei dem unter Verwendung zumindest eines Teils der Speicherflüssigkeit in einem zweiten Betriebsmodus ein tiefkalter Flüssigstrom gebildet wird, der druckbeaufschlagt, erwärmt, in den gasförmigen oder überkritischen Zustand überführt und zur Gewinnung von Energie verwendet wird, wobei das Abkühlen des Druckluftstroms in dem ersten Betriebsmodus umfasst, Wärme mittels eines Wärmeaustauschfluids von dem Druckluftstrom in ein Festbettspeichersystem (9) zu übertragen, und wobei das Erwärmen des tiefkalten flüssigen Stroms in dem zweiten Betriebsmodus umfasst, Wärme mittels des Wärmeaustauschfluids aus dem Festbettspeichersystem (9) auf den Flüssigstrom zu übertragen. Es ist vorgesehen, dass das Wärmeaustauschfluid auf einem Druckniveau von 3 bis 30 bar verwendet wird, dass als das Festbettspeichersystem (9) ein Festbettspeichersystem (9) verwendet wird, das einen ersten und einen zweiten Festbettspeicher (12, 13) umfasst, die in unterschiedlichen Temperaturbereichen betrieben werden, und dass der Druckluftstrom zum Abkühlen und der Flüssigstrom zum Erwärmen jeweils einem Wärmetausch mit einem ersten Anteil des Wärmeaustauschfluids über eine erste Wärmeaustauschstrecke und einem Wärmetausch mit einem zweiten Anteil des Wärmeaustauschfluids über eine zweite Wärmeaustauschstrecke unterworfen werden, wobei der erste Anteil des Wärmeaustauschfluids vor dem Wärmetausch mit dem Druckluftstrom in dem ersten Festbettspeicher (12) abgekühlt und nach dem Wärmetausch mit dem Flüssigstrom in dem ersten Festbettspeicher (12) erwärmt wird und der zweite Anteil des Wärmeaustauschfluids vor dem Wärmetausch mit dem Druckluftstrom in dem zweiten Festbettspeicher (13) abgekühlt und nach dem Wärmetausch mit dem Flüssigstrom in dem zweiten Festbettspeicher (13) erwärmt wird. Eine entsprechende Anlage (100) ist ebenfalls Gegenstand der vorliegenden Erfindung.

188 WASTE HEAT RECOVERY AND CONVERSION SYSTEM AND RELATED HEAT EXCHANGER EP12820005.2 2012-07-31 EP2841748B1 2017-11-15 Filippone, Claudio
189 Anlage zur Nutzung von Wärmeenergie EP13157647.2 2013-03-04 EP2730755B1 2017-09-27 Bommer, Rolf
190 METHOD OF CONTROLLING TURBINE EQUIPMENT AND TURBINE EQUIPMENT EP09723967.7 2009-03-27 EP2334911B1 2016-08-10 ONO, Hitoi; SONODA, Takashi; TOCHITANI, Naoto; KATO, Makoto; UMAYA, Masahide; FUJII, Fuminori
191 STIRLING CYCLE MACHINE EP10760470.4 2010-07-01 EP2449244B1 2016-05-04 KAMEN, Dean; LANGENFELD, Christopher C.; BHAT, Prashant; NORRIS, Michael G.; SMITH, III, Stanley B.; WERNER, Christopher M.; PERETZ, David J.; YOO, Brian H.; WINKLER, Felix
A Stirling cycle machine. The machine includes at least one rocking drive mechanism including a rocking beam having a rocker pivot, at least one cylinder and at least one piston. The piston is housed within a respective cylinder and is capable of substantially linearly reciprocating within the respective cylinder. The drive mechanism includes at least one coupling assembly. Also, a crankcase housing the rocking beam and housing a first portion of the coupling assembly is included. The machine also includes a working space housing the at least one cylinder, the at least one piston and a second portion of the coupling assembly. An airlock is included between the workspace and the crankcase and a seal is included for sealing the workspace from the airlock and crankcase. A burner and burner control system is also included for heating the machine and controlling ignition and combustion in the burner.
192 Direct organic rankine cycle system, biomass combined cycle power generating system, and method for operating a direct organic rankine cycle EP11159901.5 2011-03-25 EP2503113B1 2016-03-23 REEH, Jens-Uwe
193 A THERMODYNAMIC MACHINE EP14744649.6 2014-04-29 EP2992188A2 2016-03-09 LYNN, Robert Gulliver
A thermodynamic machipne, comprising: a rotor, configured to rotate about a rotor axis, a working fluid circulation path and a coolant fluid path formed within the rotor, the coolant fluid path fluidically isolated from the working fluid circulation path, the working fluid circulation path spanning radially from the rotor axis to close to the periphery of the rotor; a working fluid circulation drive configured to drive the circulation of a working fluid about the working fluid circulation path; at least one working fluid cooler heat exchanger formed as part of the working fluid circulation path and the coolant fluid path, in use coolant fluid passing through the working fluid cooler heat exchanger to transfer heat from the working fluid to the coolant fluid, and; a working fluid heater in the working fluid circulation path configured to heat a working fluid circulating around the working fluid circulation path.
194 METHOD OF GENERATING HIGH SPEED AIRFLOW EP12782998 2012-05-08 EP2719871A4 2015-08-05 LIU ANGFENG
Disclosed in the present invention is a method of generating a high-speed airflow, utilizing a device comprised of an air pipe (1), a circulating pipe (2) and a starting and controlling system (3). The starting and controlling system (3) is comprised of one or a combination of any two or more of a refrigerator (4), a circulating pump (5) and a heat exchanger (6). The method comprises the following operation steps: filling the device with a working medium; activating the starting and controlling system (3); after having been pressurized under liquid state, the working medium absorbing heat and being gasified, entering the air pipe (1), and generating the high-speed airflow. The method provides a method of utilizing a low quality heat source to convert a low-speed airflow into a high-speed or extremely high-speed airflow with relatively high use value. Utilizing the method, the thermal energy carried by the fluid in the nature is converted into the mechanical energy efficiently.
195 WORKING FLUID FOR RANKINE CYCLE EP11863895 2011-04-21 EP2710086A4 2015-03-11 WANG JINGTAO; PANG BO; PERSSON CHRISTIAN
196 High performance energy storage system using carbon-dioxide EP14169470.3 2014-05-22 EP2806115A1 2014-11-26 Raisz, Ivan; Raisz, Dávid

Disclosed is a system suitable for both of the production of electricity, and the utilization of electricity, comprising: electricity transformator, rectifyer, an oxygen storage and drawer unit, a hydrogen gas transmission unit, a reactor for the production of methanol, to which a carbon dioxide container and a carbon dioxide compression and pre-heating unit is linked at the input side, and a methanol-water rectifying unit is linked at the output side, the water leaving said rectifying unit is transferred to the fresh water inlet, and the separated methanol is transferred to the methanol storage tank, which is optionally linked to an equipment suitable for the combustion of methanol, preferably gas turbine. A process for storing electricity using the system is also disclosed.

197 Anlage zur Nutzung von Wärmeenergie EP13157647.2 2013-03-04 EP2730755A3 2014-07-02 Bommer, Rolf

Die Erfindung betrifft eine Anlage zur Nutzung von Wärmeenergie, mit einem Druckbehälter (10), mit einem Rotationskolbenmotor (12), der zumindest eine Arbeitskammer (32) mit zwei Einlässen (13, 15) und zwei Auslässen (14, 16) aufweist, mit einer Überdruckleitung (11), die den Druckbehälter (10) mit den Einlässen (13, 15) verbindet, und mit einem an den Rotationskolbenmotor (12) angebundenen Generator (27) und/oder einer an den Rotationskolbenmotor (12) angebundene Kältemaschine (24), sowie einen Rotationskolbenmotor (12) für eine solche Anlage.

198 Integrated generator cooling system EP12165995.7 2012-04-27 EP2518283A3 2014-05-28 Ast, Gabor; Kopecek, Herbert; Freund, Sebastian Walter; Huck, Pierre Sebastien

An expansion system is presented. including a pump (106) configured to pressurize a condensed working fluid received from a condenser (108). The expansion system further includes a heat exchanger coupled to the pump and configured to vaporize the condensed working fluid received from the pump. The expansion system also includes an expander (112) coupled to the heat exchanger and configured to expand the vaporized working fluid flowing from an inlet side of the expander to an outlet side of the expander. In addition, the expansion system includes a generator (114) coupled to the expander (112) and configured to generate energy in response to the expansion of the vaporized working fluid. Further, the expansion system includes an integrated cooling unit (122) configured to convey at least a portion of the condensed working fluid from an inlet side of the generator (114) to an outlet side of the generator (114) to dissipate heat generated by the generator.

199 Anlage zur Nutzung von Wärmeenergie EP13157647.2 2013-03-04 EP2730755A2 2014-05-14 Bommer, Rolf

Die Erfindung betrifft eine Anlage zur Nutzung von Wärmeenergie, mit einem Druckbehälter (10), mit einem Rotationskolbenmotor (12), der zumindest eine Arbeitskammer (32) mit zwei Einlässen (13, 15) und zwei Auslässen (14, 16) aufweist, mit einer Überdruckleitung (11), die den Druckbehälter (10) mit den Einlässen (13, 15) verbindet, und mit einem an den Rotationskolbenmotor (12) angebundenen Generator (27) und/oder einer an den Rotationskolbenmotor (12) angebundene Kältemaschine (24), sowie einen Rotationskolbenmotor (12) für eine solche Anlage.

200 Process producing useful energy from thermal energy EP12178430.0 2012-07-30 EP2693000A1 2014-02-05 Cohen, Yoav

The invention relates to a process producing useful energy from thermal energy. An overall population of mobile particles confined to an unidirectional flow closed circuit of conducting channels (1-2-3-3'-4-1) is subjected to a conservative or effectively conservative force field. The circuit is thermally insulated with the exception of two non juxtaposed areas a first area (2-3) allowing thermal exchange for heating (Qin) from a warmer environment outside the circuit, a second area (4-1) allowing thermal exchange (Qout) for cooling, as necessary, by a colder environment outside the circuit. The closed circuit is provided with a load (3'-4;) designed to convert the energy it receives from the mobile particles flow to a useful output energy. In two portions of the unidirectional circuit located before (3-3') and after (1-2;) said load, flow velocity vector is parallel or has a component which is parallel to the conservative or effectively conservative force field one portion with a warm flow and the other portion with a cool flow of mobile particles and in that if the density of the chosen mobile particles decreases when the temperature increases, the direction of the conservative force field is the same as that of the cool flow velocity vector or of a cool flow velocity vector component in the said circuit portion and the inverse if the density of the chosen mobile particles increases when the temperature decreases.

QQ群二维码
意见反馈