首页 / 国际专利分类库 / 机械工程;照明;加热;武器;爆破;发动机或泵 / 一般机器或发动机 / 蒸汽机装置;贮汽器;不包含在其他类目中的发动机装置;应用特殊工作流体或循环的发动机 / 不包含在其他类目中的,以应用特殊工作流体为特点的装置或发动机;闭合回路循环中运行且不包含在其他类目中的装置
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
141 PROVIDING POWER TO A DATA CENTER US14286548 2014-05-23 US20150337691A1 2015-11-26 Ankit Somani; Christopher G. Malone
Techniques for providing power to a data center includes transferring heat from a computer data center to warm a fluid stored within an energy regeneration system; circulating the warmed fluid to a flow of compressed gas stored within the energy regeneration system during a discharging process that expands the compressed gas; generating energy with the energy generation system from the discharging process; and providing at least a portion of the generated energy to the computer data center as electrical power.
142 Heat Transfer Compositions US14797932 2015-07-13 US20150315447A1 2015-11-05 ROBERT E. LOW
The invention provides a heat transfer composition consisting essentially of from about 60 to about 85% by weight of trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)) and from about 15 to about 40% by weight of fluoroethane (R-161). The invention also provides a heat transfer composition comprising R-1234ze(E), R-161 and 1,1,1,2-tetrafluoroethane (R-134a).
143 Quintuple-Effect Generation Multi-Cycle Hybrid Renewable Energy System with Integrated Energy Provisioning, Storage Facilities and Amalgamated Control System Cross-Reference to Related Applications US14613994 2015-02-04 US20150143806A1 2015-05-28 Kevin Lee Friesth
Provided is a consumer to industrial scale renewable energy based quintuple-generation systems and energy storage facility. The present invention has both mobile and stationary embodiments. The present invention includes energy recovery, energy production, energy processing, pyrolysis, byproduct process utilization systems, separation process systems and handling and storage systems, as well as an open architecture for integration and development of additional processes, systems and applications. The system of the present invention primarily uses adaptive metrics, biometrics and thermal imaging sensory analysis (including additional input sensors for analysis) for monitoring and control with the utilization of an integrated artificial intelligence and automation control system, thus providing a balanced, environmentally-friendly ecosystem.
144 Stirling Cycle Machine US14211621 2014-03-14 US20150040751A1 2015-02-12 Christopher Charles Langenfeld; Prashant Bhat
A rod seal assembly. The rod seal assembly includes a housing between two spaces configured to receive a reciprocating rod, the reciprocating rod disposed within a first space and a second space, a floating bushing configured to move axially and radially within the housing and disposed coaxially around the reciprocating rod, a rod seal configured to seal the outside diameter of the reciprocating rod relative to an inside surface of the floating bushing, and at least one stationary bushing fixed within the housing that may form a seal with the floating bushing to the axial flow of fluid in the presence of a pressure difference between the two spaces.
145 REACTOR US14362320 2012-11-29 US20150040565A1 2015-02-12 Lien Chiow Tan
The present application provides a reactor for: converting feedstock material into gases; or disassociating or reforming a chemical compound; and/a a mixture to its constituent elements; and/to other chemical forms, and; finally a heating device. The reactor comprises a heating device for discharging an ionized gas into the reactor, a feedstock feeder for injecting the feedstock material into the reactor, and a shell forming a chamber that encloses a portion of the heating device and a portion of the feedstock feeder. The application also provides a method for converting hydrocarbon material into synthetic gases. The method comprises: providing the hydrocarbon material to a burner inserted into a reactor, a second step of supplying ionized gases into the reactor, and a third step of subjecting the burner to a flame of the ionized gases such that molecules of the hydrocarbon material are dissociated to forming synthetic gas.
146 Method for converting energy, increasing enthalpy and raising the coefficient of compressibility US13819016 2011-04-04 US08950185B2 2015-02-10 Igor A. Revenko
The invention relates to a method for converting thermal energy into mechanical work, which comprises imparting thermal energy to a working fluid in a tank. The working fluid in the vapor phase is fed into a device for converting energy into mechanical work. The vaporous working fluid is condensed and cyclically returned in the liquid phase to the tank. A catalytic additive in the form of a catalytic substance or a catalytic mixture of substances in an amount of 0.0000001 to 0.1 wt. % is introduced into the working fluid before or after starting the heating. The additive is a solid, its solution or suspension, or a liquid or its emulsion. The catalytic substance and the ratio of components of the mixture are chosen to prevent or promote decomposition of the substance or the mixture under the effect of high temperature and pressure according to current needs. The method enhances the efficiency of the process and expands its operational capabilities.
147 WORKING FLUID FOR RANKINE CYCLE US14111908 2011-04-21 US20140305125A1 2014-10-16 Jingtao Wang; Bo Pang; Christian Persson
An organic Rankine cycle working fluid comprising at least one compound having formula (I): RNQ, wherein R is fluorinated or non-fluorinated methyl, ethyl, vinyl or ethynyl, N is element nitrogen, the connection of R—N is a ring structure or a straight chain structure, and Q is a hydrogen and/or at least one fluorine atom. A process for converting thermal energy into mechanical energy, a method for power generation, an organic Rankine cycle system, and the use of the working fluid for heat transfer or in a mechanical power generation device are also provided. The organic Rankine cycle working fluid has a high energy conversion efficiency, low flammability, low toxicity and low corrosion on copper.
148 GENERATOR US14351322 2012-10-11 US20140238021A1 2014-08-28 Gershon Harif
A generator comprising: a heat differential module with a first, high temperature source configured for providing a work medium at high temperature, a second, low temperature source configured for providing a work medium at low temperature, and a heat mechanism in fluid communication with the first and second sources, configured for maintaining a temperature difference therebetween by at least one of: providing heat to the work medium at said first source, and removing heat from the work medium at said second source; a pressure module comprising a pressure medium which is in selective fluid communication with the work medium from the first, high temperature source and the work medium from the second, low temperature source, for alternately performing a heat exchange process with the high/low temperature work medium, to have its temperature fluctuate between a minimal operative temperature and a maximal operative temperature corresponding to the high and low temperature of the respective work medium; a conversion module in mechanical communication with the pressure medium, configured for utilizing temperature fluctuation of the pressure medium for the production of output energy; and a heat recovery arrangement in thermal communication with at least one of the heat differential module and the pressure module, configured for receiving at least a portion of the heat energy of the high and low temperature work medium which was not transferred to the pressure medium during said heat exchange process, and redirecting said heat energy back to one of the heat differential module and the pressure module; wherein provision of heat to the work medium is performed by way of a heat exchange process with an auxiliary high temperature fluid.
149 Stirling Cycle Machine US13836946 2013-03-15 US20140182282A1 2014-07-03 Dean Kamen; Christopher C. Langenfeld; Prashant Bhat; Michael G. Norris
A piston rod seal unit. The piston rod seal unit includes a housing, a cylinder gland, and at least one floating rod seal assembly mounted in the cylinder gland, the floating rod seal assembly comprising at least one rod seal mounted onto the floating rod seal assembly.
150 METHOD OF GENERATING A HIGH-SPEED AIRFLOW US14115827 2012-05-08 US20140174082A1 2014-06-26 Angfeng Liu
Disclosed in the present invention is a method of generating a high-speed gas flow, utilizing a device comprised of a gas pipe, a circulating pipe and a starting and controlling system. The starting and controlling system is comprised of one or a combination of any two or more of a refrigerator, a circulating pump and a heat exchanger. The method comprises the following operation steps: filling the device with a working medium; activating the starting and controlling system; after having been pressurized under liquid state, the working medium absorbing heat and being gasified, entering the gas pipe, and generating the high-speed gas flow. The method may utilize a low quality heat source to convert a low-speed gas flow into a high-speed or extremely high-speed gas flow with relatively high use value. Thus, thermal energy carried by the fluid in the nature may be converted into mechanical energy efficiently.
151 STIRLING CYCLE MACHINE US13447990 2012-04-16 US20140000235A1 2014-01-02 Dean Kamen; Christopher C. Langenfeld; Prashant Bhat; Michael G. Norris
An external combustion engine is disclosed. The external combustion engine containing a working fluid and including a burner element for heating the working fluid of the engine, at least one heater head defining a working space containing the working fluid, at least one piston cylinder containing a piston for compressing the working fluid, a cooler for cooling the working fluid, a crankcase. The crankcase includes a crankshaft for producing an engine output, a rocking beam rotating about a rocker pivot for driving the crankshaft, a piston rod connected to the piston, a rocking beam driven by the piston rod, and a connecting rod connected at a first end to the rocking beam and at a second end to a crankshaft to convert rotary motion of the rocking beam to rotary motion of the crankshaft. The external combustion engine also includes an airlock space separating the crankcase and the working space for maintaining a pressure differential between the crankcase housing and the working space housing and an airlock pressure regulator connected between the crankcase and one of the airlock space and working space.
152 POWER RECEIVING DEVICE, CONTROL METHOD OF POWER RECEIVING DEVICE, AND POWER FEEDING SYSTEM US13790492 2013-03-08 US20130263596A1 2013-10-10 Shigeru Arisawa
A power receiving device including: a power receiving coil configured to receive power when a power feeding device supplies the power via a magnetic field; an alternating-current power supply configured to apply an alternating voltage to the power receiving coil; and a foreign matter detecting section configured to generate an amount of change in impedance of the power receiving coil from a current induced in the power receiving coil to which the alternating voltage is applied and the alternating voltage, and detect foreign matter between the power receiving coil and the power feeding device on a basis of the amount of change.
153 INTEGRATED PROCESS FOR THE GASIFICATION OF WHOLE CRUDE OIL IN A MEMBRANE WALL GASIFIER AND POWER GENERATION US13801364 2013-03-13 US20130256601A1 2013-10-03 Omer Refa KOSEOGLU; Jean Pierre BALLAGUET
An integrated process for the partial oxidation of whole crude oil mixed with a low cost finely divided solid ash-producing material in a membrane wall gasification reactor produces a syngas and, optionally, a more hydrogen-rich product stream by subjecting the syngas to a water-gas shift reaction. Process steam and electricity are produced by recovering the sensible heat values from the hot syngas.
154 METHOD FOR CONVERTING ENERGY, INCREASING ENTHALPY AND RAISING THE COEFFICIENT OF COMPRESSIBILITY US13819016 2011-04-04 US20130239574A1 2013-09-19 Igor A. Revenko
The invention relates to a method for converting thermal energy into mechanical work, which comprises imparting thermal energy to a working fluid in a tank. The working fluid in the vapor phase is fed into a device for converting energy into mechanical work. The vaporous working fluid is condensed and cyclically returned in the liquid phase to the tank. A catalytic additive in the form of a catalytic substance or a catalytic mixture of substances in an amount of 0.0000001 to 0.1 wt. % is introduced into the working fluid before or after starting the heating. The additive is a solid, its solution or suspension, or a liquid or its emulsion. The catalytic substance and the ratio of components of the mixture are chosen to prevent or promote decomposition of the substance or the mixture under the effect of high temperature and pressure according to current needs. The method enhances the efficiency of the process and expands its operational capabilities.
155 HEAT MACHINES US13876585 2011-10-03 US20130192221A1 2013-08-01 Graham William Osborne
A heat machine having an external heat source and an external heat sink may be configured as a Stirling engine having a hot pair of cylinder-and-displacer combinations 15 and a cold pair of cylinder-and-displacer combinations 16 though advantageously two pairs of hot combinations 15 and two pairs of cold combinations 16 are provided, arranged mutually at right angles. Mechanisms 20 associated with the hot and cold displacers controls the movement thereof to be truly sinusoidal and are contained within casings 21. The pressure in the working fluid spaces remote from the mechanisms 20 and also the pressure in the casings 21 is monitored and compared, and then is controlled such that the casing pressure is slightly less than the minimum working fluid pressure in the working fluid spaces. The relative phase of the two mechanisms 20 associated respectively with the hot displacers and the cold displacers is adjustable (28,29,30,31; and FIG. 4).
156 Pendular engine US12808962 2009-01-08 US08408000B2 2013-04-02 Albert Cohen
Pendular and differential periodic heat engines with theoretical efficiencies of ONE, and industrial efficiencies close to ONE, exclusively subordinate to the physical constraints inherent in any material device under ordinary conditions of use, operating with recirculation of the gases in closed loops between a thermodynamic pendulum (2/2, 2/4) made up of a chamber (1/2, 1/4) fitted with a piston (2/2, 2/4) connected to a free flywheel (3/2), and a regulated supply of heat (10/4, 10/4, etc.) positioned some distance away from the chamber of the thermodynamic pendulum (FIG. 2), with extension to turbine engines (FIG. 5) thanks to phase changes.
157 Heat engine/ heat pump using centrifugal fans US12291148 2008-11-07 US08087247B2 2012-01-03 Ronald Edward Graf
An engine/heat pump is shown. Most of its parts rotate around the same central axis. It comprises two doubly connected chambers. Blades in each chamber substantially rotate with the chamber and may be firmly attached to the walls of the chamber, thus forming a modified centrifugal pump with axial input and discharge. An expandable fluid is rotated outward by one of the pumps and then heat is added for an engine or removed for a heat pump as the fluid is being sent to the outer part of the second pump. The fluid travels toward the center of the second pump, thus impelling the pump in the rotation direction. Then heat is removed for an engine or added for a heat pump as the fluid leaves the second pump and travels back to the first pump near the center of rotation. Rotation energy of the fluid is typically much larger than the circulation energy. A modified centrifugal pump with axial discharge having a casing rotating with the blades is also claimed.
158 BRAYTON CYCLE REGASIFICATION OF LIQUIEFIED NATURAL GAS US12790333 2010-05-28 US20110289941A1 2011-12-01 Miguel Angel Gonzalez Salazar; Matthias Finkenrath; Johannes Eckstein; Clarissa Sara Katharina Belloni
A power plant including an apparatus for regasification of liquefied natural gas (LNG) is provided. The apparatus includes a compressor configured to pressurize a working fluid and a heat recovery system configured to provide heat to a working fluid. A turbine is configured to generate work utilizing the heated working fluid. One or more heat exchangers are configured to transfer heat from the working fluid to a first stage liquefied natural gas at a first pressure and at least one of a second stage liquefied natural gas at a second pressure, and a compressed working fluid.
159 HEAT ENGINE US13117524 2011-05-27 US20110227347A1 2011-09-22 Soo-Joh Chae
Disclosed is a heat engine following an intermediate form between an ideal Carnot engine and a Stirling engine and having high thermal efficiency. The heat engine includes a cylinder in which operating gas is filled; a high temperature heater which heats a front end part of the cylinder and thermally expands the operating gas; a low temperature cooler which cools a rear end part of the cylinder and contracts the operating gas; and a piston which is accommodated inside the cylinder to rectilinearly reciprocate as the operating gas is thermally expanded and contracted, and includes a heat opening to make the operating gas directly contact the high temperature heater or the low temperature cooler.
160 Rotary steam engine US11989759 2006-07-27 US07971436B2 2011-07-05 Yasushi Yamamoto
A rotary steam engine of a simple constitution capable of efficiently obtaining mechanical energy not only from a heat source of a high temperature but also from various heat sources in a low-temperature state such as the exhaust heat of an internal combustion engine. The engine has a rotor 1 having a plurality of displacement chambers 11 provided in a sealed container 2 which is filled with a liquid. A steam-generating portion 4 is arranged under the rotor 1 and where the liquid vaporizes being heated by the exhaust heat of an internal combustion engine. The vaporized stem is jetted from a flow-out passage 42 toward the displacement chambers 11 of the rotor 1. The steam stays in the displacement chambers 11 and, therefore, buoyancy acts onto the displacement chambers 11 on one side of the rotor 1. The rotor 1 rotates to produce the rotational energy. The steam in the displacement chambers 11 is released in the sealed container 2 accompanying the rotation of the rotor 1, and is introduced into a condenser 3 where the steam is condensed and refluxes into the sealed container 2. The pressure in the sealed container 2 is maintained to be a saturated steam pressure by a vacuum pump 34. Therefore, the steam is formed despite the liquid has a low temperature to rotate the rotor 1.
QQ群二维码
意见反馈