首页 / 国际专利分类库 / 化学;冶金 / 晶体生长 / 单晶生长 / 单晶或具有一定结构的均匀多晶材料之扩散或掺杂工艺;其所用装置
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 中红外微芯片激光器:带有可饱和吸收材料的ZnS:Cr2+激光器 CN02822948.7 2002-09-19 CN1589513A 2005-03-02 瑟奇·B·麦伦夫; 弗拉蒂迈尔·V·费德罗夫
一种激光增益材料的制备方法以及这种介质的使用包括步骤:通过脉冲激光沉积或等离子溅射生长晶体后,引入一过渡金属,优选在ZnS晶体面上具有可控制厚度的Cr2+薄膜;在能提供晶体体积中最高的掺杂物浓度而不使激光器的性能由于散射和浓度猝熄而降低的一定的温度和作用时间内将晶体热退火,以使掺杂物有效地热扩散进入晶体体积中;通过在Cr:ZnS晶片的扁平和平行面上直接沉积反射镜,或通过依靠这些面的内部反射而形成微芯片激光器。增益材料对微芯片激光器使用直流二极管或光纤激光器激是很敏感的,该种泵激具有能形成正透镜、相应的空腔谐振器稳定状态和在激光材料中临界粒子数反转的功率密度平。激光器材料的多种应用在本发明中被构思。
2 用于从晶片吸除杂质的化物介质 CN201380067927.0 2013-12-18 CN104884684A 2015-09-02 I·科勒; O·多尔; S·巴斯
发明涉及制备可印刷的低至高粘度化物介质的新方法,以及该氧化物介质在制造太阳能电池中的用途。
3 单晶及其制造方法 CN201110220363.2 2011-07-29 CN102400224B 2015-04-01 广濑富佐雄; 小岛淳; 儿岛一聪; 加藤智久; 安达步; 西川恒一
一种单晶(3),包括作为掺杂剂的氮和作为掺杂剂的。氮浓度为2×1019cm-3或更高,并且铝浓度与所述氮浓度的比率在5%至40%的范围内。
4 单晶及其制造方法 CN201110220363.2 2011-07-29 CN102400224A 2012-04-04 广濑富佐雄; 小岛淳; 儿岛一聪; 加藤智久; 安达步; 西川恒一
一种单晶(3),包括作为掺杂剂的氮和作为掺杂剂的。氮浓度为2×1019cm-3或更高,并且铝浓度与所述氮浓度的比率在5%至40%的范围内。
5 用于晶片的局部掺杂的液体掺杂介质 CN201380067919.6 2013-12-18 CN104870699A 2015-08-26 I·科勒; O·多尔; S·巴斯
发明涉及制备可印刷、低粘度化物介质的新方法,并涉及其在制造太阳能电池中的用途。
6 制造结构构造体的方法 CN201280050345.7 2012-08-13 CN103889897A 2014-06-25 罗伊·E·麦卡利斯特
结构构造体是一种合成材料,其包括被以工程方法设计成呈现某些特性的不同晶体的矩阵特征。可通过涉及层的沉积、形成、剥落和间隔的方法制造结构构造体。一方面,可施加热量穿过基质对甲烷脱氢至基质上。沉积通过自组织形成多个结晶碳的矩阵特征层。使用选定的前驱物和施加热量或压或两者对层剥落和间隔,以在所需间隔和厚度上构造平行取向。所需的结构构造体可进一步被稳定或掺杂以呈现所需的特性。
7 拥有多个实施方式的结构构造体 CN201280050344.2 2012-08-13 CN103874655A 2014-06-18 罗伊·E·麦卡利斯特
结构构造体是包括不同晶体矩阵特征的合成材料。结构构造体可被构造成固体或者以纳米、微米、宏观规模的平行层构成。它的构造可确定在多种条件下它的行为和功能。结构构造体的实施方式可包括将它用作基质、牺牲性结构体、载体、过滤器传感器、添加剂和作为其他分子、化合物和物质的催化剂,或者也可包括一种存储能量和产生能量的方法。
8 Vertical diffusion furnace JP12432896 1996-05-20 JP3971810B2 2007-09-05 相 國 崔; 相 雲 金
9 Middle infrared microchip laser: ZnS with a saturable absorber material: Cr2 + laser JP2003529589 2002-09-19 JP2005504437A 2005-02-10 フェデロフ,ブラディミアー・ヴィ; マイロフ,セルゲイ・ビー
レーザ利得材料の製造およびそのような媒体の利用の方法は、パルスレーザ堆積またはプラズマスパッタリングによって、制御可能な厚さの遷移金属好ましくはCr 2+薄膜を結晶成長後のZnS結晶ファセットに導入するステップと、散乱および濃度発光抑制でレーザ性能を劣化させることなくドーパントの最高濃度を体積中に実現する温度および暴露時間で、ドーパントを結晶体積中に有効に熱拡散するために結晶を熱アニールするステップと、薄いCr:ZnSウェーハの平らで平行な研磨ファセットにミラーを直接堆積するかまたはそのようなファセットの内部反射率に依拠するかどちらかでマイクロチップレーザを形成するステップとを含む。 利得材料は、レーザ材料中の閾値反転分布はもちろんのこと正レンズの形成および対応するキャビティ安定化を実現するパワー密度のレベルの直接ダイオードレーザポンピングまたはファイバレーザポンピングの使用を受けやすい。 レーザ材料の多数適用が本発明で企図される。
10 Method of manufacturing a low resistivity n-type or p-type silicon metal JP22330497 1997-08-20 JP3525141B2 2004-05-10 博 吉田
11 Vertical diffusion over and cap therefor JP12432896 1996-05-20 JPH09162135A 1997-06-20 SAI SOUKOKU; KIN SOUUN
PROBLEM TO BE SOLVED: To minimize the nonuniformity in the process in a reaction tube with a reaction gas exhaust hole to improve the equipment efficiency by forming this hole through a cap extending down through a flange. SOLUTION: A reaction tube 2 is vertically disposed in a vertical diffusion oven, a boat 23 loaded with a wafer 25 in the tube 2 is supported by a cap 27 located below the boat, and the boat and cap are installed in the tube 21 with a flange 29 located at the bottom of the cap 27. At a diffusion step, a reaction gas fed into the tube 21 through a reaction gas entrance 31 is diffused to react on the surface of the wafer 25 in the tube 21 and discharged through a reaction gas exhaust 33 hole which is located below the flange 29 and formed at a lower part of the cap 27. COPYRIGHT: (C)1997,JPO
12 Preparation of a silicon single crystal self-supporting thin film JP7448794 1994-03-18 JP2560251B2 1996-12-04 SAITO KAZUO; NIWA HIROAKI; NAKAO SETSUO; MYAGAWA SOJI
A self-supporting thin film of silicon single crystal is produced essentially by the steps of implanting boron ions in a silicon single crystal substrate from one major surface thereof to form a high impurity concentration layer having a high boron concentration in the substrate; heating the silicon single crystal substrate formed with the high impurity concentration layer in an atmosphere containing oxygen to form an oxide film on the surface of the single crystal substrate and make the high impurity concentration layer resistant to etching; masking all of the oxide film surface other than that at the center region on the surface opposite from that implanted with boron ions and then exposing the high impurity concentration layer by high-speed mask etching followed by selective etching; and removing the oxide film.
13 JPS4812671B1 - JP8765969 1969-11-04 JPS4812671B1 1973-04-21
1287797 Minature furnace carriers INTERNATIONAL BUSINESS MACHINES CORP 5 Nov 1969 [8 Nov 1968] 54162/69 Heading F4B [Also in Division H1] A carrier of suscepter material, e.g. graphite, supporting a substrate 25 during heat treatment in a reaction chamber 10 comprises a boat 20 formed with circular pockets 30 each having a peripheral shoulder 34 supporting said substrate and spaced from the floor 36 by a distance “T where T is the thickness of a semi-conductor wafer before treatment, Additional support for the wafer may be provided by a central core (38, Fig. 6). The reaction chamber comprises a quartz tube 12 surrounded by a high frequency heating coil 14 and having a conduit 18 introducing reactants fron gaseous sources 20a, 20b, and 20c. Heat is induced in both the boat and the substrate and radiation and conduction from the former equalizes the heating effect on the substrate.
14 IIIA-VA group semiconductor single crystal substrate and method for preparing same US14388236 2012-03-26 US09691617B2 2017-06-27 Morris Young; Davis Zhang; Vincent Wensen Liu; Yuanli Wang
A IIIA-VA group semi-conductor single crystal substrate (2) has one of or both of the following two properties: an oxygen content of 1.6×1016-5.6×1017 atoms/cm3 in a range from the surface to a depth of 10 μm of the wafer, and an electron mobility of 4,800 cm2/V·s-5,850 cm2/V·s. Further, a method for preparing the semi-conductor single crystal substrate (2) comprises: placing a single crystal substrate (2) to be processed in a container (4); sealing said container (4), and keeping said single crystal substrate (2) to be processed at a temperature in the range of from the crystalline melting point −240° C. to the crystalline melting point −30° C. for 5 hours to 20 hours; preferably, keeping a gallium arsenide single crystal at a temperature of 1,000° C. to 1,200° C. for 5 hours to 20 hours.
15 Biocompatible copper-based single-crystal shape memory alloys US14053744 2013-10-15 US09539372B2 2017-01-10 Alfred David Johnson
We describe herein biocompatible single crystal Cu-based shape memory alloys (SMAs). In particular, we show biocompatibility based on MEM elution cell cytotoxicity, ISO intramuscular implant, and hemo-compatibility tests producing negative cytotoxic results. This biocompatibility may be attributed to the formation of a durable oxide surface layer analogous to the titanium oxide layer that inhibits body fluid reaction to titanium nickel alloys, and/or the non-existence of crystal domain boundaries may inhibit corrosive chemical attack. Methods for controlling the formation of the protective aluminum oxide layer are also described, as are devices including such biocompatible single crystal copper-based SMAs.
16 LIQUID DOPING MEDIA FOR THE LOCAL DOPING OF SILICON WAFERS US14655441 2013-12-18 US20160218185A1 2016-07-28 Ingo KOEHLER; Oliver DOLL; Sebastian BARTH
The present invention relates to a novel process for the preparation of printable, low-viscosity oxide media, and to the use thereof in the production of solar cells.
17 Silicon carbide single crystal and manufacturing method of the same US13194621 2011-07-29 US09053834B2 2015-06-09 Fusao Hirose; Jun Kojima; Kazutoshi Kojima; Tomohisa Kato; Ayumu Adachi; Koichi Nishikawa
A silicon carbide single crystal includes nitrogen as a dopant and aluminum as a dopant. A nitrogen concentration is 2×1019 cm−3 or higher and a ratio of an aluminum concentration to the nitrogen concentration is within a range of 5% to 40%.
18 METHODS FOR MANUFACTURING ARCHITECTURAL CONSTRUCTS US13584644 2012-08-13 US20130064979A1 2013-03-14 Roy Edward McAlister
An architectural construct is a synthetic material that includes a matrix characterization of different crystals engineered to exhibit certain properties. An architectural construct can be fabricated by a process involving layer deposition, formation, exfoliation and spacing. In one aspect, purified methane can be dehydrogenated onto a substrate by applying heat through the substrate. Deposited carbon can form a plurality of layers of a matrix characterization of crystallized carbon through self-organization. The layers can be exfoliated and spaced to configure parallel orientation at a desired spacing and thickness using selected precursors and applying heat, pressure, or both. The desired architectural construct can further be stabilized and doped to exhibit desired properties.
19 Mid-IR Laser Instrument for Analyzing a Gaseous Sample and Method for Using the Same US12582667 2009-10-20 US20100246610A1 2010-09-30 Sergey B. Mirov; Vladimir V. Fedorov; Igor Moskalev
An optical nose for detecting the presence of molecular contaminants in gaseous samples utilizes a tunable seed laser output in conjunction with a pulsed reference laser output to generate a mid-range IR laser output in the 2 to 20 micrometer range for use as a discriminating light source in a photo-acoustic gas analyzer.
20 Mid-IR microchip laser: ZnS:Cr2+ laser with saturable absorber material US11140271 2005-05-27 US07548571B2 2009-06-16 Sergey B. Mirov; Vladimir V. Federov
A method of fabrication of laser gain material and utilization of such media includes the steps of introducing a transitional metal, preferably Cr2+ thin film of controllable thickness on the ZnS crystal facets after crystal growth by means of pulse laser deposition or plasma sputtering, thermal annealing of the crystals for effective thermal diffusion of the dopant into the crystal volume with a temperature and exposition time providing the highest concentration of the dopant in the volume without degrading laser performance due to scattering and concentration quenching, and formation of a microchip laser either by means of direct deposition of mirrors on flat and parallel polished facets of a thin Cr:ZnS wafer or by relying on the internal reflectance of such facets. The gain material is susceptible to utilization of direct diode or fiber laser pumping of a microchip laser with a level of power density providing formation of positive lens and corresponding cavity stabilization as well as threshold population inversion in the laser material. Multiple applications of the laser material are contemplated in the invention.
QQ群二维码
意见反馈