序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 一种基于血浆microRNA分析的卵巢癌肿瘤诊断方法 CN201310698673.4 2013-12-10 CN103952465A 2014-07-30 易银沙; 张万明; 曹蓬荣; 邹义洲; 李娜; 刘彩云; 袁炳秋; 吴小宁; 冯志明
一种基于血浆microRNA分析的卵巢癌肿瘤诊断方法,包括以下步骤:建立血浆microRNAs抽提、qRT-PCR定量检测的技术平台;分析卵巢癌患者和正常志愿者血浆microRNAs表达芯片,寻找差异表达的microRNAs;筛选血浆样本中肿瘤特异性高表达的miRNAs作为候选血浆miRNAs标志物;在卵巢癌患者的血浆中,通过检测血浆中特异高表达的miRNAs含量的变化,结合医学统计学,初步评价与确定了候选血浆miRNAs诊断卵巢癌的能。本发明提供血浆提取miRNA诊断卵巢癌的新型方法、利用基因重组技术制备特异性miRNA的方法,本方法更方便,更灵敏,成本更低。
2 使用Ⅲ型限制酶分离包括超过25个核苷酸的鉴定标志 CN03826762.4 2003-05-09 CN100584957C 2010-01-27 彼得·温特; 冈特·卡尔; 德特列夫·克鲁格; 斯蒂芬尼·赖克; 松村英生; 寺内良平
用III型限制酶EcoP15I从被表达基因的cDNA中分离包括超过25个核苷酸并能鉴定所表达基因的标志,其中标志的3’末端通过III型限制酶的切割位点确定,标志的5’末端通过最接近被表达基因的cDNA 3’末端的另一种限制酶的切割位点确定。本发明的标志允许进行准确定量基因表达分析以及在没有可利用的被表达序列标志(EST)数据库的任何生物体中进行快速的基因表达谱分析。
3 通过插入部分摇摆寡核苷酸检测基因突变耐受能的方法 CN201410768055.7 2014-12-12 CN104450919A 2015-03-25 周翠兰; 徐惠芬; 张安迪; 李文; 张佳; 李凯
发明公开了一种通过插入部分摇摆寡核苷酸检测基因突变耐受能的方法,包括如下步骤:采用合成的NNT和/或NNC串联核酸片段,在其末端加上限制性内切酶位点,直接连接经酶切处理后的载体片段,将载体导入宿主细胞,宿主细胞经表达产生一系可以长度不等和序列不同的突变核酸,通过检验突变核酸的表达活性,来评估检测基因突变耐受能力。本发明具有的优点包括可以测试待测基因是否出现基使用的偏向性;另外还可以测试待测基因对插入长度是否有严格限制。
4 使用Ⅲ型限制酶分离包括超过25个核苷酸的鉴定标志 CN03826762.4 2003-05-09 CN1802439A 2006-07-12 彼得·温特; 冈特·卡尔; 德特列夫·克鲁格; 斯蒂芬尼·赖克; 松村英生; 寺内良平
用III型限制酶EcoP15I从被表达基因的cDNA中分离包括超过25个核苷酸并能鉴定所表达基因的标志,其中标志的3’末端通过III型限制酶的切割位点确定,标志的5’末端通过最接近被表达基因的cDNA 3’末端的另一种限制酶的切割位点确定。本发明的标志允许进行准确定量基因表达分析以及在没有可利用的被表达序列标志(EST)数据库的任何生物体中进行快速的基因表达谱分析。
5 Nucleic acid constructs and methods of use US15224253 2016-07-29 US10000800B2 2018-06-19 Mark S. Chee
The present invention provides oligonucleotide constructs, sets of such oligonucleotide constructs, and methods of using such oligonucleotide constructs to provide validated sequences or sets of validated sequences corresponding to desired ROIs. Such validated ROIs and constructs containing these have a wide variety of uses, including in synthetic biology, quantitative nucleic acid analysis, polymorphism and/or mutation screening, and the like.
6 NUCLEIC ACID CONSTRUCTS AND METHODS OF USE US15349927 2016-11-11 US20170058345A1 2017-03-02 Mark S. CHEE
The present invention provides oligonucleotide constructs, sets of such oligonucleotide constructs, and methods of using such oligonucleotide constructs to provide validated sequences or sets of validated sequences corresponding to desired ROIs. Such validated ROIs and constructs containing these have a wide variety of uses, including in synthetic biology, quantitative nucleic acid analysis, polymorphism and/or mutation screening, and the like.
7 In situ cloning from pathological tissue specimens US13848416 2013-03-21 US08945883B2 2015-02-03 James H. Eberwine; Max B. Kelz
The present invention pertains to methods related to cloning nucleic acids from biological samples, particularly pathological tissue samples. This method includes hybridizing a population of oligonucleotide sequence probes comprising degenerate sequence tags to a fixed tissue, isolating the hybridized oligonucleotide sequence probes and amplifying the sequence tags in the hybridized oligonucleotide sequence probes. This method can be utilized to identify genes associated with disease and to quantitate the expression of disease-related transcripts. The method can also be used to identify truncated mRNAs.
8 Paired end sequencing US12322119 2009-01-28 US20090233291A1 2009-09-17 Zhoutao Chen; Brian Christopher Godwin; Gianni Calogero Ferreri; David Roderick Riches
An embodiment of a method for obtaining a DNA construct comprising two end regions of a target nucleic acid in an in vitro reaction is described that comprises the steps of: fragmenting a large nucleic acid molecule to produce a target nucleic acid molecule; ligating a recombination adaptor element to each end of the target nucleic acid molecule to produce an adapted target nucleic acid molecule; exposing the adapted target nucleic acid to a site specific recombinase to produce a circular nucleic acid product and a linear nucleic acid product from the adapted target nucleic acid, wherein the circular nucleic acid product comprises the target nucleic acid molecule; and fragmenting the circular nucleic acid product to produce a template nucleic acid molecule comprising a sequence region from each end of the target nucleic acid molecule.
9 In situ cloning from pathological tissue specimens US11784677 2007-04-09 US20090023593A1 2009-01-22 James H. Eberwine; Max B. Kelz
The present invention pertains to methods related to cloning nucleic acids from biological samples, particularly pathological tissue samples. This method includes hybridizing a population of oligonucleotide sequence probes comprising degenerate sequence tags to a fixed tissue, isolating the hybridized oligonucleotide sequence probes and amplifying the sequence tags in the hybridized oligonucleotide sequence probes. This method can be utilized to identify genes associated with disease and to quantitate the expression of disease-related transcripts. The method can also be used to identify truncated mRNAs.
10 Nucleic acid representations utilizing type IIB restriction endonuclease cleavage products US11058729 2005-02-15 US20060228714A1 2006-10-12 Matthew Meyerson; Torstein Tengs
This invention encompasses nucleic acid libraries comprising Type IIB restriction endonuclease cleavage products, or tags, including concatenated tags, and using concatenated and single Type IIB restriction endonuclease cleavage tags in diverse methods including karyotyping, pathogen discovery, identification of novel genes, subtraction techniques and transcript profiling.
11 Cellular arrays and methods of detecting and using genetic disorder markers US09971742 2001-10-04 US06905823B2 2005-06-14 Olli-P Kallioniemi; Uwe Richard Müller; Guido Sauter; Juha Kononen; Maarit Barlund
A method is disclosed for rapid molecular profiling of tissue or other cellular specimens by placing a donor specimen in an assigned location in a recipient array, providing copies of the array, and performing a different biological analysis of each copy. The results of the different biological analyses are compared to determine if there are correlations between the results of the different biological analyses at each assigned location. In some embodiments, the specimens may be tissue specimens from different tumors, which are subjected to multiple parallel molecular (including genetic and immunological) analyses. The results of the parallel analyses are then used to detect common molecular characteristics of the genetic disorder type, which can subsequently be used in the diagnosis or treatment of the disease. The biological characteristics of the tissue can be correlated with clinical or other information, to detect characteristics associated with the tissue, such as susceptibility or resistance to particular types of drug treatment. Other examples of suitable tissues which can be placed in the matrix include tissue from transgenic or model organisms, or cellular suspensions (such as cytological preparations or specimens of liquid malignancies or cell lines).
12 Method of obtaining a library of tags capable of defining a specific state of a biological sample US09301721 1999-04-29 US06506561B1 2003-01-14 Lydie Cheval; Jean-Marc Elalouf; Bérangère Virlon
A method of obtaining a library of tags able to define a specific state of a biological sample, such as a tissue or a cell culture. The present method provides an important advantage over other methods used to analyze gene expression in that libraries may be generated from tiny amounts of cells, e.g., from 30,000-100,000 cells.
13 P53-induced apoptosis US09154750 1998-09-17 US06432640B1 2002-08-13 Kornelia Polyak; Bert Vogelstein; Kenneth W. Kinzler
The most well-documented biochemical property of p53 is its ability to transcriptionally activate genes. Many of the genes which are activated by p53 expression prior to the onset of apoptosis are predicted to encode proteins which could generate or respond to oxidative stress, including one that is implicated in apoptosis within plant meristems. p53 may result in apoptosis through a three-step process: (I) the transcriptional induction of specific redox-related genes; (ii) the formation of reactive oxygen species (ROS); and (iii) the oxidative degradation of mitochondrial components, rapidly leading to cell death. Transcription of other genes is decreased by p53. Examination of the level of transcription of p53-induced or repressed genes can be used to determine p53 status, to diagnose cancer, and to evaluate cytotoxicity or carcinogenicity of a test agent.
14 P53-INDUCED APOPTOSIS US09154750 1998-09-17 US20020055097A1 2002-05-09 KORNELIA POLYAK; BERT VOGELSTEIN; KENNETH W. KINZLER
The most well-documented biochemical property of p53 is its ability to transcriptionally activate genes. Many of the genes which are activated by p53 expression prior to the onset of apoptosis are predicted to encode proteins which could generate or respond to oxidative stress, including one that is implicated in apoptosis within plant meristems. p53 may result in apoptosis through a three-step process: (I) the transcriptional induction of specific redox-related genes; (ii) the formation of reactive oxygen species (ROS); and (iii) the oxidative degradation of mitochondrial components, rapidly leading to cell death. Transcription of other genes is decreased by p53. Examination of the level of transcription of p53-induced or, -repressed genes can be used to determine p53 status, to diagnose cancer, and to evaluate cytotoxicity or carcinogenicity of a test agent.
15 Method for serial analysis of gene expression US09107228 1998-06-30 US06383743B1 2002-05-07 Kenneth W. Kinzler; Bert Vogelstein; Victor E. Velculescu; Lin Zhang
Serial analysis of gene expression, SAGE, a method for the rapid quantitative and qualitative analysis of transcripts is provided. Short defined sequence tags corresponding to expressed genes are isolated and analyzed. Sequencing of over 1,000 defined tags in a short period of time (e.g., hours) reveals a gene expression pattern characteristic of the function of a cell or tissue. Moreover, SAGE is useful as a gene discovery tool for the identification and isolation of novel sequence tags corresponding to novel transcripts and genes.
16 細胞アレイならびに遺伝障害マーカーの検出および使用方法 JP2017199639 2017-10-13 JP2018064554A 2018-04-26 オリ−ピー・カリオニーミ; ウエ・リチャード・ムラー; ガイド・サウター; ジュハ・コノネン; マーリット・バーランド
【課題】癌およびトリソミーのようなさまざまな遺伝障害のマーカーとなり得る遺伝子の増幅または欠失のような、ゲノムコピー数の変化を、高い解像度で迅速かつ正確に検出する方法の提供。
【解決手段】ドナー検体をレシピエントアレイ中の割り当てられた位置に設置し、アレイのコピーを提供し、バイオマーカーを用いて各コピーで異なる生物学的分析を行うことにより、組織または他の細胞検体の迅速な分子プロファイリングを行う。異なる生物学的分析の結果を比較して、各割り当て位置において、異なる生物学的分析の結果の間に相関があるかどうかが決定される。複数の平行した分子分析(遺伝分析および免疫学的分析を含む)による遺伝障害タイプの共通な分子的特徴が検出され、組織の生物学的特徴は、臨床または他の情報と相関させて、疾病の診断または治療に使用される。
【選択図】なし
17 Rna method of analysis JP2002568780 2002-02-27 JP2004526443A 2004-09-02 ピーター, アール. クック,; 宏 木村
本発明はRNA転写物の検出および解析に関し、特に、所与の細胞または組織中で産生される一次RNA転写物の数およびタイプを特徴づける方法に関する。
18 Detection and use of the cell array as well as the genetic disorder marker JP2000578492 1999-10-28 JP2002528097A 2002-09-03 オリ−ピー カリオニーミ; ジュハ コノネン; ガイド サウター; マーリット バーランド; ウエ リチャード ムラー
(57)【要約】 ドナー検体をレシピエントアレイ中の割り当てられた位置に設置し、アレイのコピーを提供し、各コピーで異なる生物学的分析を行うことにより、組織または他の細胞検体の迅速な分子プロファイリングを行う方法が開示される。 異なる生物学的分析の結果を比較して、各割り当て位置において、異なる生物学的分析の結果の間に相関があるかどうかが決定される。 いくつかの態様では、検体は異なる腫瘍由来の組織検体の場合があり、複数の平行した分子分析(遺伝分析および免疫学的分析を含む)が行われる。 その後、平行した分析の結果を用いて、遺伝障害タイプの共通な分子的特徴が検出され、これはその後、疾病の診断または治療に使用され得る。 組織の生物学的特徴は、臨床または他の情報と相関させて、特定の種類の薬物療法への感受性または抵抗性のような、組織に伴う特徴を検出することができる。 マトリックスに設置できる他の適当な組織の例には、トランスジェニックもしくはモデル生物体の組織、または細胞懸濁液(細胞学的標品または液性の悪性腫瘍もしくは細胞株の検体など)が含まれる。
19 Sequential analytic method for gene appearance JP2000305156 2000-10-04 JP2001155035A 2001-06-08 KINZLER KENNETH W; VOGELSTEIN BERT; VELVULESCU VICTOR E; ZHANG LIN
PROBLEM TO BE SOLVED: To provide a method capable of being matched with a nucleotide sequence in a database and/or selecting a cDNA clone in a library by using a short nucleotide sequence from a limited position in an mRNA or cDNA. SOLUTION: In the method for identifying the first nucleotide sequence with the second nucleotide sequence, the first nucleotide sequence having the limited position in a messenger RNA is selected in advance, the first nucleotide sequence is compared with the database of nucleotide sequences, the second nucleotide sequence in this database coincident with the first nucleotide sequence is selected and it is confirmed the second nucleotide sequence exists at the limited position in that messenger RNA. Thus, the method is provided with respective steps for identifying the first nucleotide sequence with the second nucleotide sequence, which shares the limited position and a common nucleotide sequence.
20 Analysis of gene expression JP12514496 1996-05-20 JPH08308598A 1996-11-26 FISCHER ACHIM
PROBLEM TO BE SOLVED: To provide a method which is a method for analysis of gene expression by which reproducible results are obtained and a sufficient sensitivity is provided for detecting a dilute transcription product and an amplification product can be identified without an additional cloning stage. SOLUTION: This differential method for analyzing the gene expression of a member of a gene family is characterized by the following stages: (a) isolation of an mRNA molecule from a tissue sample to be analyzed, (b) synthesis of a cDNA first chain molecule from the mRNA molecule, (c) selective amplification which is the one of the cDNA first chain molecule of the member of the gene family using at least one primer specific for the gene family that is an ligonucleotide having a sequence hybridizable with a preserved domain in the gene family and labeling of the amplification product, (d) transcription product-specific shortening of the amplification product by cleavage with a restriction endonuclease, (g) separation of the amplification product according to the length thereof and (h) analysis of the separated amplification by-product. COPYRIGHT: (C)1996,JPO
QQ群二维码
意见反馈