基于环形光束激光超声增强的应消除方法

申请号 CN202211542577.6 申请日 2022-12-03 公开(公告)号 CN115786685A 公开(公告)日 2023-03-14
申请人 北京翔博科技股份有限公司; 发明人 张宏超; 张勇;
摘要 本 申请 的 实施例 提供了基于环形光束激光超声增强的应 力 消除方法、装置、设备和计算机可读存储介质。所述方法包括基于构件的数据信息,对所述构件内的 应力 进行检测,确定所述构件的应力集中 位置 ;基于所述构件的应力集中位置,确定扫描路径和激发距离;根据所述激发距离,调整 激光器 的参数,基于所述扫描路径,实时调整所述激光器与构件间的 角 度,向所述构件发射环形光束,在所述构件表面激发激光 超 声波 ,去除所述构件内的应力。以此方式,实现了对构件残余应力的高效消除。
权利要求

1.一种基于环形光束激光超声增强的应消除方法,其特征在于,包括:
基于构件的数据信息,对所述构件内的应力进行检测,确定所述构件的应力集中位置
基于所述构件的应力集中位置,确定扫描路径和激发距离;
根据所述激发距离,调整激光器的参数,基于所述扫描路径,实时调整所述激光器与构件间的度,向所述构件发射环形光束,在所述构件表面激发激光声波,去除所述构件内的应力。
2.根据权利要求1所述的方法,其特征在于,所述基于构件的数据信息,对所述构件内的应力进行检测,确定所述构件的应力集中位置包括:
基于构件的数据信息,通过X射线检测法、超声检测法和/或激光超声检测法,对所述构件内的应力进行检测,确定所述构件的应力集中位置。
3.根据权利要求2所述的方法,其特征在于,所述应力集中位置包括构件的焊缝、角和/或边。
4.根据权利要求3所述的方法,其特征在于,所述基于所述构件的应力集中位置,确定扫描路径和激发距离包括:
基于所述构件的应力集中位置,生成所述构件的三维形貌模型;
基于所述构件的三维形貌模型,确定扫描路径和激发距离。
5.根据权利要求4所述的方法,其特征在于,所述基于所述构件的三维形貌模型,确定扫描路径包括:
基于构件的三维形貌模型,确定该构件的三维形貌的关键点;
通过所述三维形貌的关键点,确定扫描区域;
基于所述扫描区域,生成扫描路径。
6.根据权利要求5所述的方法,其特征在于,所述基于所述扫描区域,生成扫描路径包括:
将所述扫描区域离散为扫描网格;
对所述扫描网格进行离散化处理,得到一系列的扫描点;
基于所述扫描点,生成扫描路径。
7.根据权利要求6所述的方法,其特征在于,所述根据所述激发距离,调整激光器的参数包括:
根据所述激发距离,调整激光器的激光器能量、激光频率和/或激发时间。
8.一种基于环形光束激光超声增强的应力消除装置,其特征在于,包括工控机、激光器、环形光束发生器和振镜:
其中,所述工控机,用于基于构件的数据信息,对所述构件内的应力进行检测,确定所述构件的应力集中位置;
基于所述构件的应力集中位置,确定扫描路径和激发距离;
根据所述激发距离,调整所述激光器的参数,基于所述扫描路径,实时调整所述激光器与构件间的角度,控制所述激光器向所述构件发射环形光束,在所述构件表面激发激光超声波,去除所述构件内的应力;
所述激光器,用于通过所述环形光束发生器和振镜向所述构件发射环形光束,在所述构件表面激发激光超声波;向所述构件发射激光,在所述构件表面生成多频窄带超声表面波。
9.一种电子设备,包括存储器和处理器,所述存储器上存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1~7中任一项所述的方法。
10.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1~7中任一项所述的方法。

说明书全文

基于环形光束激光超声增强的应消除方法

技术领域

[0001] 本申请实施例涉及应力消除领域,尤其涉及基于环形光束激光超声增强的应力消除方法、装置、设备和计算机可读存储介质。

背景技术

[0002] 金属构件经过焊接铸造锻造机械加工等工艺过程,引起内部晶格形变,必然会产生残余应力,极大地降低构件的极限强度和疲劳强度,甚至会产生裂纹和脆性断裂,而且在加工及使用中由于残余应力的松弛,使零件产生变形,大大地影响了构件的尺寸、位置精度和整机性能。
[0003] 当前,降低残余应力的方法主要包括退火、机械处理、喷丸、超声、爆炸法等,虽然上述方法均可进行残余应力的消除,但是仍有过多缺陷。例如,喷丸仅能处理表层残余应力,且费用消耗较高;超声受限于能量密度,只能对部分材料有效;爆炸法易引起裂纹的萌生和扩展。
[0004] 因此,如何有效、快捷的消除构件内部的残余应力,尤其是构件应力集中区域的残余应力,是目前亟需解决的问题。发明内容
[0005] 根据本申请的实施例,提供了一种基于环形光束激光超声增强的应力消除方案。
[0006] 在本申请的第一方面,提供了一种基于环形光束激光超声增强的应力消除方法。该方法包括:
[0007] 基于构件的数据信息,对所述构件内的应力进行检测,确定所述构件的应力集中位置;
[0008] 基于所述构件的应力集中位置,确定扫描路径和激发距离;
[0009] 根据所述激发距离,调整激光器的参数,基于所述扫描路径,实时调整所述激光器与构件间的度,向所述构件发射环形光束,在所述构件表面激发激光声波,去除所述构件内的应力。
[0010] 进一步地,所述基于构件的数据信息,对所述构件内的应力进行检测,确定所述构件的应力集中位置包括:
[0011] 基于构件的数据信息,通过X射线检测法、超声检测法和/或激光超声检测法,对所述构件内的应力进行检测,确定所述构件的应力集中位置。
[0012] 进一步地,所述应力集中位置包括构件的焊缝、角和/或边。
[0013] 进一步地,所述基于所述构件的应力集中位置,确定扫描路径和激发距离包括:
[0014] 基于所述构件的应力集中位置,生成所述构件的三维形貌模型;
[0015] 基于所述构件的三维形貌模型,确定扫描路径和激发距离。
[0016] 进一步地,所述基于所述构件的三维形貌模型,确定扫描路径包括:
[0017] 基于构件的三维形貌模型,确定该构件的三维形貌的关键点;
[0018] 通过所述三维形貌的关键点,确定扫描区域;
[0019] 基于所述扫描区域,生成扫描路径。
[0020] 进一步地,所述基于所述扫描区域,生成扫描路径包括:
[0021] 将所述扫描区域离散为扫描网格;
[0022] 对所述扫描网格进行离散化处理,得到一系列的扫描点;
[0023] 基于所述扫描点,生成扫描路径。
[0024] 进一步地,所述根据所述激发距离,调整激光器的参数包括:
[0025] 根据所述激发距离,调整激光器的激光器能量、激光频率和/或激发时间。
[0026] 在本申请的第二方面,提供了一种基于环形光束激光超声增强的应力消除装置。该装置包括工控机、激光器、环形光束发生器和振镜:
[0027] 其中,所述工控机,用于基于构件的数据信息,对所述构件内的应力进行检测,确定所述构件的应力集中位置;
[0028] 基于所述构件的应力集中位置,确定扫描路径和激发距离;
[0029] 根据所述激发距离,调整所述激光器的参数,基于所述扫描路径,实时调整所述激光器与构件间的角度,控制所述激光器向所述构件发射环形光束,在所述构件表面激发激光超声波,去除所述构件内的应力;
[0030] 所述激光器,用于通过所述环形光束发生器和振镜向所述构件发射环形光束,在所述构件表面激发激光超声波;向所述构件发射激光,在所述构件表面生成多频窄带超声表面波。
[0031] 在本申请的第三方面,提供了一种电子设备。该电子设备包括:存储器和处理器,所述存储器上存储有计算机程序,所述处理器执行所述程序时实现如以上所述的方法。
[0032] 在本申请的第四方面,提供了一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现如根据本申请的第一方面的方法。
[0033] 本申请实施例提供的基于环形光束激光超声增强的应力消除方法,通过基于构件的数据信息,对所述构件内的应力进行检测,确定所述构件的应力集中位置;基于所述构件的应力集中位置,确定扫描路径和激发距离;根据所述激发距离,调整激光器的参数,基于所述扫描路径,实时调整所述激光器与构件间的角度,向所述构件发射环形光束,在所述构件表面激发激光超声波,去除所述构件内的应力,实现了对构件残余应力的高效消除。
[0034] 应当理解,发明内容部分中所描述的内容并非旨在限定本申请的实施例的关键或重要特征,亦非用于限制本申请的范围。本申请的其它特征将通过以下的描述变得容易理解。附图说明
[0035] 结合附图并参考以下详细说明,本申请各实施例的上述和其他特征、优点及方面将变得更加明显。在附图中,相同或相似的附图标记表示相同或相似的元素,其中:
[0036] 图1为根据本申请的实施例的基于环形光束激光超声增强的应力消除方法的流程图
[0037] 图2为根据本申请的实施例的一种扫描路径规划方法示意图;
[0038] 图3为根据本申请的实施例的又一种扫描路径规划方法示意图;
[0039] 图4为根据本申请的实施例的环形光源激发出不同时刻超声波场的示意图;
[0040] 图5为根据本申请的实施例的圆环光斑示意图;
[0041] 图6为根据本申请的实施例的环形光束示意图;
[0042] 图7为根据本申请的实施例的基于环形光束激光超声增强的应力消除装置的方框图
[0043] 图8为根据本申请的实施例的环形光束发生器的结构示意图;
[0044] 图9为适于用来实现本申请实施例的终端设备或服务器的结构示意图。

具体实施方式

[0045] 为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的全部其他实施例,都属于本公开保护的范围。
[0046] 另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
[0047] 图1示出了根据本公开实施例的基于环形光束激光超声增强的应力消除方法的流程图。所述方法包括:
[0048] S110,基于构件的数据信息,对所述构件内的应力进行检测,确定所述构件的应力集中位置。
[0049] 在实际应用中,为了更精准的去除构件内的应力,构件的数据信息通常为三维的数据信息。
[0050] 在一些实施例中,可直接通过三维扫描、电脑接口导入和/或外形参数设置等方式获取构件的数据信息(三维模型数据);也可通过双目摄像头等设备获取构件的二维图像,将该二维图像转换为该构件的数据信息。即,利用双目相机拍摄构件,得到同步曝光图像。通过该图像的二维图像像素点,确定所述图像的第三维深度信息,然后根据图像再进行构件的三维形貌的融合与拼接,生成所述构件的三维的数据信息,即三维模型数据。
[0051] 在一些实施例中,所述三维模型数据包括构件的材质、形貌、位置、大小、受弯、受压、受剪、受拉、受扭和/或复合受力等。
[0052] 在一些实施例中,所述构件通常为合金合金、合金和/或高温合金等材质。
[0053] 在一些实施例中,基于所述三维模型数据,通过X射线检测法、超声检测法和/或激光超声检测法,对所述构件内的应力进行检测,确定所述构件的应力集中位置。
[0054] 其中,所述应力集中位置包括构件的焊缝、角和/或边等重点区域。
[0055] S120,基于所述构件的应力集中位置,确定扫描路径和激发距离。
[0056] 在一些实施例中,基于所述构件的应力集中位置,对步骤S110步骤得到的三维模型数据进行标识,生成所述构件的三维形貌模型,确定所述构件的应力集中区域在所述三维形貌模型中的位置,即,确定所述三维形貌模型中的关键点。
[0057] 其中,所述关键点包括应力集中位置、边缘点和/或几何中心等。
[0058] 进一步地,根据所述三维形貌的关键点,确定扫描区域,若扫描区域小于预设范围,则可采用如图2所示的由中间向边缘逼近的方式,规划扫描的路径,也可采用如图3所示的顺序扫描的方式,规划扫描的路径;
[0059] 若扫描区域大于预设范围,则先将所述扫描区域离散为多个小的扫描网格,然后将小的扫描网格进一步离散化为一系列扫描点,通过该扫描点规划扫描的路径。
[0060] 其中,预设范围可根据实际应用场景进行设定。
[0061] 在一些实施例中,离散的扫描网格可根据扫描区域的大小自动划分。若扫描区域为矩形区域,可直接划分为正方形或者矩形的区域;若扫描区域为非矩形区域,可将中心区域划分为正方形或者矩形的区域,边缘区域一般划分为三角形,即使用三角形区域补齐边缘区域。
[0062] 在一些实施例中,在进行多面构件的路径规划时,为了提高后续的扫描效率,可根据所述三维形貌模型的视图角度,确定该构件的三维形貌的关键点。即,根据视图角度的不同分别进行扫描路径规划,在完成同一视图角度的构件扫描后,再进行下一视图的构件扫描(一面扫描完成后,再进行下一面的扫描);
[0063] 其中,所述视图角度包括主视图、后视图、左视图、右视图、俯视图和/或仰视图等,参考专利外观6视图;每一面的路径规划可参考上述的路径规划方法,在此不再赘述。
[0064] 在一些实施例中,根据构件的三维形貌模型(材质、大小和/或厚度等),确定激发距离。
[0065] S130,根据所述激发距离,调整激光器的参数,基于所述扫描路径,实时调整所述激光器与构件间的角度,向所述构件发射环形光束,在所述构件表面激发激光超声波,去除所述构件内的应力。
[0066] 在一些实施例中,根据所述激发距离,调整激光器的激光器能量、激光频率和/或激发时间等参数。
[0067] 在一些实施例中,基于步骤S120确定扫描路径,实时调整所述激光器与构件间的角度,向所述构件发射环形光束,在所述构件表面激发激光超声波,去除所述构件内的应力。参考图4,图4为环形光源在铝板中激发出的超声波(模态丰富),包括横波(S),纵波(L),表面波(R)和头波(H),环形光源激发出不同时刻超声波场(a)0.6μs(b)1.0μs(c)1.5μs(d)2.0μs。
[0068] 其中,在所述构件表面形成的光斑如图5所示,序号1表示激光聚焦形成的环形光束,序号2表示激光超声的聚焦区域。
[0069] 进一步地,本公开所适用的环形激光,还包括如图6(a)所示的同心环激光(多次对中心区域进行处理)和图6(b)所示的相互交错的环形激光等。
[0070] 需要说明的是,激光与构件表面垂直时为最理想状态(环形激光的圆心与构件表面垂直),可以在最短时间内完成构件内部的应力消除。但是在实际应用中,对于相发动机内部等不易进行垂直扫描的构件,也可以根据实际应用场景调整激光照射到构件的角度,使得激光形成的光斑能够照射到构件表面,虽然效率会有一定的下降,但也可进行应力的消除。
[0071] 根据本公开的实施例,实现了以下技术效果:
[0072] 环形光束降低了激光作用区域的功率密度,利用环中心传播的激光超声达到了增强能量的目的,进而避免了太高功率密度造成样品的损伤。
[0073] 环形光源相较于点光源可有效提高超声的激发效率。环形光束激发的环形光束可以在圆中心形成汇聚,形成一个很强的强度中心。而纵波在样品内部也会汇聚,形成的强度的点逐步向深度传输。该强度比点激光激发的强度要强的多,而由于采用了环形光束,激光作用在样品表面的功率密度却又小的多。因而实现了对构件残余应力的高效消除,尤其是构件应力集中点的应力消除。
[0074] 需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模并不一定是本申请所必须的。
[0075] 以上是关于方法实施例的介绍,以下通过装置实施例,对本申请所述方案进行进一步说明。
[0076] 图7示出了根据本申请的实施例的基于环形光束激光超声增强的应力消除装置,如图7所示,包括:
[0077] 工控机、激光器、环形光束发生器和振镜:
[0078] 其中,所述工控机,用于基于构件的数据信息,对所述构件内的应力进行检测,确定所述构件的应力集中位置;
[0079] 基于所述构件的应力集中位置,确定扫描路径和激发距离;
[0080] 根据所述激发距离,调整所述激光器的参数,基于所述扫描路径,实时调整所述激光器与构件间的角度,控制所述激光器向所述构件发射环形光束,在所述构件表面激发激光超声波,去除所述构件内的应力;
[0081] 所述激光器,用于通过所述环形光束发生器和振镜向所述构件发射环形光束,在所述构件表面激发激光超声波;向所述构件发射激光,在所述构件表面生成多频窄带超声表面波。
[0082] 其中,所述环形光束发生器包括圆锥透镜或DOE等,参考图8。
[0083] 所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,所述描述的模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
[0084] 图9示出了适于用来实现本申请实施例的终端设备或服务器的结构示意图。
[0085] 如图9所示,终端设备或服务器包括中央处理单元(CPU)901,其可以根据存储在只读存储器(ROM)902中的程序或者从存储部分908加载到随机访问存储器(RAM)903中的程序而执行各种适当的动作和处理。在RAM 903中,还存储有终端设备或服务器操作所需的各种程序和数据。CPU 901、ROM 902以及RAM 903通过总线904彼此相连。输入/输出(I/O)接口905也连接至总线904。
[0086] 以下部件连接至I/O接口905:包括键盘鼠标等的输入部分906;包括诸如阴极射线管(CRT)、液晶显示器(LCD)等以及扬声器等的输出部分907;包括硬盘等的存储部分908;以及包括诸如LAN卡、调制解调器等的网络接口卡的通信部分909。通信部分909经由诸如因特网的网络执行通信处理。驱动器910也根据需要连接至I/O接口905。可拆卸介质911,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器910上,以便于从其上读出的计算机程序根据需要被安装入存储部分908。
[0087] 特别地,根据本申请的实施例,上文方法流程步骤可以被实现为计算机软件程序。例如,本申请的实施例包括一种计算机程序产品,其包括承载在机器可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分909从网络上被下载和安装,和/或从可拆卸介质911被安装。在该计算机程序被中央处理单元(CPU)901执行时,执行本申请的系统中限定的上述功能。
[0088] 需要说明的是,本申请所示的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD‑ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本申请中,计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、RF等等,或者上述的任意合适的组合。
[0089] 附图中的流程图和框图,图示了按照本申请各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,前述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
[0090] 描述于本申请实施例中所涉及到的单元或模块可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的单元或模块也可以设置在处理器中。其中,这些单元或模块的名称在某种情况下并不构成对该单元或模块本身的限定。
[0091] 作为另一方面,本申请还提供了一种计算机可读存储介质,该计算机可读存储介质可以是上述实施例中描述的电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中的。上述计算机可读存储介质存储有一个或者多个程序,当上述前述程序被一个或者一个以上的处理器用来执行描述于本申请的方法。
[0092] 以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的申请范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离前述申请构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中申请的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
QQ群二维码
意见反馈