具有良好的残余奥氏体分解耐受性的汽车用高强度冷轧带板

申请号 CN202280051141.9 申请日 2022-07-20 公开(公告)号 CN117957339A 公开(公告)日 2024-04-30
申请人 奥钢联钢铁有限责任公司; 发明人 K·施泰尼德; T·赫贝斯伯格; R·施奈德;
摘要 本 发明 涉及高强度 冷轧 钢 带或钢板,其钢组成包含(以重量%计)0.15‑0.25的C、0.3‑0.5的Si、2.0‑3.0的Mn、0.5‑1.0的Al、0.005‑0.5的Cr,热 稳定性 θ>0,其中θ=68‑500x C+4x Mn+60x Al‑22x Si,C、Mn、Si、Al的含量以重量%计,并且机械稳定性(kp)为5‑35,机械性质满足以下条件:拉伸强度(Rm)≥980Mpa,以及任选地以下条件中的至少一个: 屈服强度 (Rp0.2)≥400MPa,屈服比(Rp0.2/Rm)≤0.65,总伸长率(A25)≥10%;并且显微结构包含:残余奥氏体(RA)≥8%。本发明还涉及制造 钢带 或钢板的方法以及包含该钢板的 汽车 结构部件。
权利要求

1.高强度冷轧带或钢板,其具有:
a)由以下元素构成的组成(以重量%计):
余量由和杂质构成;
b)热稳定性θ>0,
其中θ=68‑500x C+4x Mn+60x Al‑22x Si,C、Mn、Si、Al的含量以重量%计:
机械稳定性(kp)5‑35;
c)机械性质,其满足以下条件:
拉伸强度(Rm)≥980MPa
以及任选地以下条件中的至少一个:
屈服强度(Rp0.2)≥400MPa
屈服比(Rp0.2/Rm)≤0.65
总伸长率(A25)≥10%,优选≥12%;以及
d)包含以下的显微结构:
残余奥氏体(RA)≥8%。
2.根据权利要求1所述的高强度冷轧钢带或钢板,其中所述显微结构满足以下要求中的至少一个(以体积%计),优选满足所有要求:
3.根据权利要求2所述的高强度冷轧钢带或钢板,其中所述显微结构包含:
4.根据前述权利要求中任一项所述的高强度冷轧钢带或钢板,其中所述屈服比小于
0.55。
5.根据前述权利要求中任一项所述的高强度冷轧钢带或钢板,其中Nb≤0.01。
6.根据前述权利要求中任一项所述的高强度冷轧钢带或钢板,其中Cr≥0.1。
7.制造根据权利要求1‑6中任一项所述的冷轧钢带或钢板的方法,其包括以下步骤:
a)提供具有根据前述权利要求中任一项所述的组成的钢坯
b)将所述坯在奥氏体范围内热轧以获得经热轧的钢带,其中热轧终止温度大于或等于
850℃;
c)将经热轧的带在400‑580℃范围内的卷绕温度下卷绕;
d)在500‑650℃范围内的温度下分批退火5‑30小时的持续时间;
e)任选地,在分批退火之前或之后使卷绕的带经受化皮去除工艺,例如酸洗
f)以50%或更大的压下率冷轧经退火的钢带;
任选地步骤g)‑步骤j)
g)将所述带加热至高于Ac1+(Ac3‑Ac1)/1.5但小于950℃的退火温度TA,并将所述带在‑
40℃至+10℃范围内的露点下退火超过30秒的时间;
h)将所述带淬火至淬火温度QT<350℃;
i)将淬火温度QT保持至少10秒;以及
j)将所述带冷却至室温。
k)将所述带加热至高于Ac1+(Ac3‑Ac1)/3但小于1000℃的退火温度TA,并将所述带在‑40℃至+10℃的露点下退火超过30秒的时间;
l)通过将所述带冷却至200℃至40℃之间的淬火温度QT来对所述带进行淬火;
m)将所述带加热至250℃至450℃之间的配分温度PT并将所述带在该温度下保持10s至
200s的配分时间PT,该步骤是配分步骤;以及
n)将所述带冷却至室温。
o)任选地由所述带制造板。
8.根据权利要求7所述的方法,其中步骤m)包括在配分结束时进行热浸涂覆或锌退火。
9.根据权利要求7‑9中任一项所述的方法,其中所述淬火温度QT在350‑400℃的范围内,并且步骤m)中的配分温度PT与步骤l)的淬火温度QT相同。
10.根据权利要求7‑10中任一项所述的方法,其中步骤k)中的退火温度TA小于950℃,优选小于900℃。
11.汽车结构部件,其包含根据权利要求1‑6中任一项所述的高强度冷轧钢材料。
12.根据权利要求11所述的汽车结构部件,其中所述结构部件是汽车的前柱、中柱或车框架加强件。

说明书全文

具有良好的残余奥氏体分解耐受性的汽车用高强度冷轧

带板

技术领域

[0001] 本发明涉及适用于汽车的高强度钢带或钢板(片材,sheet)。特别地,本发明涉及具有至少980MPa的拉伸强度和良好的残余奥氏体分解耐受性(withstandability)的冷轧钢带或钢板。

背景技术

[0002] 对于各种各样的应用,提高的强度平是轻质结构的先决条件,特别是在汽车工业中,因为车身质量减少导致燃料消耗减少。
[0003] 汽车车身部件通常由钢板冲压而成,形成薄板的复杂结构构件。然而,这种部件无法由常规的高强度钢生产,因为复杂结构部件的可成形性太低。因此,多相转变诱导塑性辅助钢(Transformation Induced Plasticity aided steel,TRIP钢)在过去几年中赢得了相当大的关注,特别是用于汽车车身结构部件。
[0004] TRIP钢具有多相显微结构(显微组织),其包括能够产生TRIP效应的亚稳态残余奥氏体相。当钢变形时,奥氏体转变成氏体,这导致显著的工作硬化。这种硬化效果用于抵抗材料中的颈缩并延缓板成形操作中的失效(破坏,failure)。TRIP钢的显微结构可以极大地改变其机械性质。
[0005] 问题在于,当在最终退火之后在350‑450℃下对钢进行配分(分配,partitioning)时,残余奥氏体可能分解。为了减轻这个问题,已经建议用Si、Al和P合金化来抑制渗体沉淀,并从而稳定奥氏体。
[0006] 然而,在配分之后,钢可能经受甚至更高的温度(>450℃)。例如,当在制造例如汽车期间将部件热浸锌、镀锌退火或焊接在一起时。
[0007] 因此,需要提供一种在升高的温度(>450℃)下对残余奥氏体分解具有更好耐受性的钢。

发明内容

[0008] 本发明涉及拉伸强度高于980MPa的高强度(TRIP)钢带或钢板。因此,本发明的钢被设计成在升高的温度(>450℃)下具有良好的残余奥氏体分解耐受性。本发明旨在提供这样的钢组合物:其可以加工成汽车工业中的结构部件,特别是涉及深拉操作,例如前柱和中柱、车框架加强件。还应当可以在连续退火线(CAL)或热浸镀锌线(HDG)或镀锌退火线中以工业规模生产所述钢带或钢板。附图说明
[0009] 图1示出了在最终连续退火线(CAL)、热浸镀锌线(HDG)或镀锌退火线之前的任选的连续退火线(CAL)的典型热循环。
[0010] 图2示出了最终连续退火线(CAL)的典型热循环。
[0011] 图3示出了热浸镀锌线(HDG)的典型热循环。
[0012] 图4示出了镀锌退火线的典型热循环。

具体实施方式

[0013] 本发明描述于权利要求中。
[0014] 在优选的实施方式中,冷轧钢带或钢板具有由以下合金元素构成的组成(以重量%计):
[0015] C 0.15‑0.25
[0016] Si 0.3‑0.5
[0017] Mn 2.0‑3.0
[0018] Al 0.5‑1.0
[0019] Cr 0.005‑0.5
[0020] Nb≤0.1
[0021] Ti≤0.1
[0022] N≤0.05
[0023] Mo≤0.5
[0024] B≤0.01
[0025] V≤0.2
[0026] P≤0.05
[0027] Ca≤0.05
[0028] Cu≤0.1
[0029] Ni≤0.2
[0030] O≤0.0003
[0031] H≤0.0020
[0032] 余量由和杂质构成。
[0033] 在下文中简要解释所要求保护的合金的单独元素及其彼此相互作用以及化学组成限制的重要性。在整个说明书中,钢的化学组成的所有百分比均以重量%(wt.%)给出。硬质相的量以体积%(vol.%)给出。各个元素的上限和下限可以在权利要求中阐述的限制内自由组合。对于本申请中给出的所有值,数值的算术精度可以增加一位或两位。因此,作为例如0.1%给出的值也可以表示为0.10或0.100%。
[0034] C:0.15‑0.25%
[0035] C稳定奥氏体并且对于在残余奥氏体相内获得足够的碳是重要的。C对于获得期望的强度水平也是重要的。通常,可以预期每0.1%C拉伸强度增加约100MPa。当C低于0.15%时,难以获得980MPa的拉伸强度。如果C超过0.25%,则焊接性受损。因此,上限可以是0.25%、0.24%、0.23%、0.22%、0.21%或0.20%。下限可以是0.15%、0.16%或0.17%。优选的范围是0.15‑0.25%。
[0036] Si:0.3‑0.5%
[0037] Si充当固溶体强化元素,并且对于确保薄钢板的强度是重要的。Si抑制渗碳体沉淀并且已经用于奥氏体稳定化。然而,如果含量太高,则在带表面上会形成太多的,这可能导致CAL或HDG中的辊上的包覆以及随后生产的钢板上的表面缺陷。在冷轧之后,这些氧化物还可能导致不期望的镀锌问题。此外,太高的Si含量可能在制造过程的后期阶段(例如热浸镀锌和镀锌退火)或在制造后操作(例如焊接)时降低升高的温度(>450℃)下的RA稳定性。此外,Si含量>0.5%可在焊接期间引起液态金属脆化(LME)。因此,上限为0.5%,并且可以限制为0.49%、0.48%或0.47%。下限为0.3%,并且可以限制为0.31、0.32、0.33、0.34或0.35。优选的范围是0.3‑0.5%。
[0038] Mn:2.0‑3.0%
[0039] 锰是固溶体强化元素,其通过降低Ms温度来稳定奥氏体并防止在冷却期间形成铁素体和珠光体。此外,Mn降低Ac3温度并且对于奥氏体稳定性是重要的,特别是在升高的温度(>450℃)下。在小于2.0%的含量下,可能难以获得所需量的残余奥氏体,980MPa的拉伸强度,并且奥氏体化温度对于常规工业退火线可能太高。此外,在较低含量下,可能难以避免形成多边形铁素体。然而,如果Mn的量高于5.0%,则可能发生偏析问题,因为Mn在液相中积聚并引起带状化(banding),导致可加工性潜在劣化。因此,上限可以是3.0%、2.9%、2.8%、2.7%、2.6%或2.5%。下限可以是2.0%、2.1%、2.2%或2.3%。优选的范围是2.0‑
3.0%。
[0040] Al:0.5‑1.0%
[0041] Al促进铁素体形成,并且还通常用作脱氧剂。Al抑制渗碳体沉淀并用于奥氏体稳定化。已经发现Al有益于在升高的温度(>450℃)下的RA稳定性。Al添加不负面地影响可涂覆性。Al较高的缺点是Ms温度和Ac3温度随着Al含量的增加而升高。因此,上限为1.0%,并且可以限制为0.9%、0.8%或0.75%。下限为0.5%,并且可以进一步限制为0.6%或0.7%。优选的范围是0.5‑1.0%。
[0042] Cr:0.005‑0.5%
[0043] Cr在提高钢板的强度方面是有效的。Cr是形成铁素体并延迟珠光体和贝氏体形成的元素。Ac3温度和Ms温度仅随着Cr含量的增加而略微降低。Cr导致稳定化的残余奥氏体的量增加。Cr的量限制在0.5%。上限可以限制为0.45%、0.40%、0.35%、0.30%或0.25%。下限为0.005并且可以进一步限制为0.01%、0.05%、0.1%、0.11%、0.12%、0.13%、0.14%或0.15%。
[0044] Nb:≤0.1%
[0045] Nb由于其对晶粒尺寸的影响而常用于低合金钢中以改善强度和韧性。Nb由于NbC沉淀而通过细化基体显微结构和残余奥氏体相来提高强度伸长率平衡。钢可以含有≤0.1%的量的Nb。根据本发明,有意添加Nb是不必要的。因此,上限可以限制为≤0.03%。上限可以进一步限制为0.01%或0.004%。
[0046] Mo≤0.5%
[0047] 可以添加钼以提高强度。它可以通过降低碳化物粗化动学来进一步增强NbC沉淀物的益处。钢可以含有≤0.5%的量的Mo。上限可以限制为0.4%、0.3%、0.2%、0.1%或0.05%。根据本发明,有意添加Mo是不必要的。因此,上限可以进一步限制为0.03%、0.02%或0.01%。
[0048] V:≤0.2%
[0049] V的功能类似于Nb的功能,因为它有助于沉淀硬化和晶粒细化。钢可以含有≤0.2%的量的V。上限可以限制为0.15%、0.10%、0.05%、0.03%或0.01%。根据本发明,有意添加V是不必要的。因此,上限可以限制为≤0.01%。
[0050] Ti:≤0.1%
[0051] Ti通常用于低合金钢中以改善强度和韧性,因为其通过形成碳化物、氮化物或碳氮化物而影响晶粒尺寸。特别地,Ti是强氮化物形成剂,并且可以用于结合钢中的氮。然而,效果倾向于在0.1%以上饱和。上限可以限制为0.09%、0.07%、0.05%、0.03%或0.01%。根据本发明,有意添加Ti是不必要的。因此,上限可以限制为≤0.005%。
[0052] Ca≤0.05
[0053] Ca可用于非金属夹杂物的改性。上限为0.05%,并且可以设定为0.04、0.03、0.01%。根据本发明,有意添加Ca是不必要的。因此,上限可以限制为≤0.004%。
[0054] Cu:≤0.1%
[0055] Cu是不期望的杂质元素,其通过仔细选择所使用的废料而被限制为≤0.1%。上限可以限制为≤0.06%。
[0056] Ni:≤0.2%
[0057] Ni是不期望的杂质元素,其通过仔细选择所使用的废料而被限制为≤0.2%。上限可以限制为≤0.08%。
[0058] B:≤0.01%
[0059] B增加硬度,但可能以降低可弯曲性为代价,且因此在本发明建议的钢中是不期望的。B可能进一步使废料再循环更加困难,并且添加B还可能使可加工性劣化。因此,根据本发明,有意添加B是不期望的。因此,上限可以限制为≤0.0006%。
[0060] 其它杂质元素可以以正常存在的量包含在钢中。
[0061] 还优选控制氮含量使得N:≤0.05%,优选≤0.01%。优选的范围是0.001‑0.008%。在该范围内,可以实现氮的稳定固定。
[0062] 氧和氢可以进一步限于
[0063] O:≤0.0003
[0064] H:≤0.0020
[0065] θ因子是钢的热稳定性的指示,并且组成应满足以下条件:
[0066] θ>0,
[0067] 其中θ=68‑500x%C+4x%Mn+60x%Al‑22x%Si。
[0068] 负的θ因子不利于残余奥氏体分解耐受性。
[0069] θ的下限可以是5、10、15、20或25。
[0070] 显微结构成分在下文中以体积%(vol.%)表示。
[0071] 钢包含回火马氏体(TM)和/或贝氏体铁素体(BF)基体。总量为TM+BF≥50%,残余奥氏体夹杂物嵌在基体中。TM+BF的上限可以是90%。多边形铁素体和新鲜(fresh)马氏体也可以存在于基体中。残余奥氏体(RA)是获得所需TRIP效应的先决条件。残余奥氏体的量对于本发明是重要的,并且应≥8%,优选10‑20%。上限可以是20%、19%、18%、17%、16%或15%。残余奥氏体优选主要是针状的。残余奥氏体的量通过在Proc.Int.Conf.on TRIP‑aided high strength ferrous alloys(2002),Ghent,Belgium,第61‑64页中详细描述的饱和磁化方法测量。
[0072] 多边形铁素体(PF)可以在0‑40%的范围内。上限可以是30%、20%、10%、5%或1%。钢可以不含多边形铁素体(PF)。
[0073] 新鲜马氏体(FM)可以在0‑10%的范围内。上限可以是7%、5%、3%或1%。钢可以不含新鲜马氏体(FM)。
[0074] 显微结构的比率可以通过从钢板上切下样品并抛光垂直于轧制方向的板的横截面来获得。将样品研磨至板厚度的1/4用于测量。蚀刻表面以使相更容易识别。可以使用采用2000倍放大的扫描电子显微镜(SEM)。
[0075] 所要求保护的钢的机械性质是重要的,并且应满足以下要求中的至少一个:
[0076] 屈服强度(Rp0.2)≥400MPa,优选400‑700MPa。
[0077] 拉伸强度(Rm)≥980MPa,优选980‑1300MPa。
[0078] 总伸长率(A25)≥10%,优选≥12%
[0079] 屈服比(Rp0.2/Rm)≤0.65
[0080] 优选地,同时满足所有这些要求。
[0081] 拉伸强度(Rm)的上限可以进一步限于1260、1240、1220、1200、1180、1160、1140、1120或1100MPa。
[0082] 屈服强度(Rp0.2)的上限可以进一步限于680、660、640、620、600、580、560、540或520MPa。优选的区间为400‑600MPa。
[0083] 较低的屈服比使得更容易冷成形材料,且因此屈服比至多为0.65。屈服比(Rp0.2/Rm)的上限可以进一步限于0.62、0.60、0.58、0.56、0.54、0.52或0.50。下限可以是0.30、0.32、0.34、0.36、0.38或0.40。
[0084] Rm、Rp0.2值以及总伸长率(A25)根据工业标准ISO 6892‑1得出,其中样品在带的纵向方向上取得。
[0085] 机械稳定性(kp)是描述残余奥氏体(RA)的机械稳定性的参数。影响kp值的因素包括奥氏体的化学组成(主要通过碳富集),晶粒尺寸(较小的晶粒尺寸导致更稳定的RA),RA的形态(球状RA不如板条状或针状RA稳定)。由于这些原因,钢的化学组成以及热处理参数是决定性的。
[0086] 钢的机械稳定性(kp)应在5‑35、优选10‑35的范围内。高于35的kp值表明残余奥氏体(RA)对机械负载的稳定性低,如果kp值太高,RA在弹性负载(应力辅助)期间或在非常低的塑性应变下已经转变,且因此不能充分增加钢的工作硬化行为和实现高伸长率。本发明旨在获得最佳稳定性。在建议范围内的kp值改善RA对机械负载的稳定性,并且有利于残余奥氏体分解耐受性。特别地,钢应具有3‑35的kp值和正θ因子(θ>0),以改善残余奥氏体的稳定性。
[0087] 机械稳定性(kp)通过中断拉伸测试来确定。将拉伸样品变形到一定的应变,该应变位于屈服和试样颈缩之前之间。随后测定未变形和变形状态下的残余奥氏体含量。
[0088] 应用由Ludwigson和Berger在J.Iron Steel Inst.1969年,第207卷,第63页中给出的以下关系式:
[0089]
[0090] Vγ0…初始残余奥氏体含量
[0091] Vγ…变形后的残余奥氏体含量
[0092] ε…真实应变
[0093] p…与自催化作用相关的常数
[0094] kp…残余奥氏体稳定性的指示
[0095] Matsumura等人在Scr.Metall.1987,第21卷,第1301页中建议,在TRIP辅助钢中,p可以假定为1。因此,kp值可以从组合的中断拉伸测试和残余奥氏体测量得出。真实应变是拉伸测试中瞬时标距长度与原始标距长度之比的自然对数。残余奥氏体含量可以通过饱和磁化测量来确定。初始残余奥氏体含量(Vγ0)可以在最终热处理产品中测量。对于变形后的残余奥氏体(Vγ),应从变形的拉伸试样的标距长度取样。
[0096] 本发明的钢带或钢板的机械性质可以通过合金化组成和显微结构在很大程度上调节。可以通过CAL中的热处理,特别是通过配分步骤中的等温处理温度来调节显微结构。
[0097] 所建议的钢可以通过以下步骤生产:
[0098] a)通过转炉熔炼和二次冶金制造具有以上建议的组成的常规冶金钢坯。
[0099] b)将所述坯在奥氏体范围内热轧成热轧带。优选通过将所述坯再加热至1000℃至1280℃的温度,完全在奥氏体范围内轧制所述坯,以获得经热轧的钢带,其中热轧终止温度大于或等于850℃。
[0100] c)然后将经热轧的带在400‑580℃范围内的卷绕温度下卷绕。
[0101] d)然后将卷绕的带在500‑650℃、优选550‑650℃范围内的温度下分批退火5‑30小时的持续时间。
[0102] e)任选地,在分批退火之前或之后使卷绕的带经受氧化皮去除工艺,例如酸洗
[0103] f)然后以50%或更大、优选约50‑70%的压下率冷轧经退火的钢带。经冷轧的带的厚度优选在0.9‑2.0mm的范围内。
[0104] 然后对经冷轧的带进行单或双退火工艺。
[0105] 在单退火工艺中,将经冷轧的带输送到最终连续退火线(CAL)或热浸镀锌线(HDG)。图2示出了最终连续退火线(CAL)的热循环,图3示出了热浸镀锌线(HDG)的热循环,且图4示出了镀锌退火线的热循环。
[0106] CAL工艺包括以下步骤:
[0107] k)将所述带加热至高于Ac1+(Ac3‑Ac1)/3但小于1000℃的退火温度TA,并将所述带在‑40℃至+10℃的露点下退火超过30秒的时间;
[0108] l)通过将所述带冷却至200℃至40℃之间的淬火温度QT来对所述带进行淬火。淬火速率可以在20‑60℃/s的范围内;
[0109] m)将所述带加热至250℃至450℃之间的配分温度PT并将所述带在该温度下保持10s至200s之间的配分时间PT,该步骤是配分步骤;
[0110] n)将所述带冷却至室温。冷却速率可以在5‑60℃/s的范围内;以及
[0111] o)任选地由所述带制造板。
[0112] 任选地,步骤p)使所述带或板经受锌电镀或经受物理气相沉积(PVD)。
[0113] 在步骤k)中,退火温度TA优选小于950℃,更优选小于900℃。
[0114] 在步骤m)中,配分温度PT可以进一步限制在350‑450℃的范围内。
[0115] 当淬火温度QT在350‑400℃的范围内时,在步骤m)中,配分温度PT可任选地与淬火温度QT相同。
[0116] 在步骤l)和/或步骤n)中,可以对所述带进行气体淬火。步骤n)中的冷却速率可以进一步限制为20‑60℃/s。
[0117] 热浸镀锌线(HDG)以与最终CAL工艺相同的方式加工,但包括在配分(步骤m)结束时的热浸涂覆。将所述带浸入约460℃的熔融锌(主要是锌)中。因此,在热浸涂覆期间,温度将变得高于450℃。热浸镀锌线(HDG)可以是与CAL相同的线且添加有热浸涂覆。
[0118] 镀锌退火线与热浸镀锌线(HDG)相同,且在热浸涂覆之后添加退火步骤,即以与CAL工艺相同的方式加工,但包括在配分(步骤m)结束时的镀锌退火。镀锌退火是镀锌和约480‑560℃退火的组合,以便促进ZnFe涂层中更高程度的Fe。HDG步骤之后的退火步骤在图4中被放大以使其更可见—实际上持续时间将在数秒的范围内。
[0119] 在双退火工艺中,将经冷轧的带首先输送到连续退火线(CAL),其包括以下步骤:
[0120] g)将所述带加热至高于Ac1+(Ac3‑Ac1)/1.5但小于950℃的退火温度TA,并将所述带在‑40℃至+10℃范围内的露点下退火超过30秒的时间;
[0121] h)淬火至QT<350℃。淬火速率可以在20‑60℃/s的范围内;
[0122] i)将QT保持至少10秒;以及
[0123] j)将所述带冷却至室温。冷却速率可以在5‑60℃/s的范围内。
[0124] 在步骤g)和/或步骤j)中,可以对所述带进行气体淬火。步骤j)中的冷却速率可以进一步限制为20‑60℃/s。
[0125] 然后使所述带经受与针对单退火所描述的相同工艺,即再次运行通过最终连续退火线(CAL)(或在第一CAL线之后的第二CAL线)或通过热浸镀锌线(HDG)或通过镀锌退火线。
[0126] 实施例
[0127] 通过转炉熔炼和二次冶金经由常规冶金法生产本发明的钢I1‑I3和参比钢R1‑R2。组成示于表1中,除Fe之外的其它元素仅作为杂质存在,并且低于本说明书中指明的最低水平。钢I1‑I3和R1都在优选实施方式的组成范围内,而钢R2具有低于优选范围的Al含量。钢I1‑I3和R1的热稳定性(θ因子)为正,但参比钢R2为负。
[0128] 表1.钢的组成和θ因子。
[0129] 钢 C Si Mn Cr Al θ因子I1 0.17 0.46 2.33 0.23 0.96 40
I2 0.17 0.38 2.35 0.23 0.74 31
I3 0.20 0.39 2.89 0.03 0.51 2
R1 0.20 0.40 2.90 0.02 0.70 13
R2 0.16 0.44 2.33 0.24 0.05 ‑7
[0130] 在连续铸造机中生产钢合金坯。将所述坯再加热并进行热轧至2.8mm的厚度。热轧终止温度为约900℃,且卷绕温度为约500℃。将经热轧的带酸洗并在620℃下分批退火15小时的时间,以降低经热轧的带的拉伸强度,从而降低冷轧力。然后将所述带在五机架轧机中冷轧至1.4mm的最终厚度。
[0131] 然后将经冷轧的带在连续退火线(CAL)中退火。退火循环包括加热至退火温度(表3)和完全奥氏体化150s。然后将经退火的带以50℃/s的冷却速率快速冷却至淬火温度(表
3)。在淬火之后,以20℃/s的加热速率将温度升高至配分温度(表3),并在此保持配分时间(表3),之后以50℃/s淬火至室温。
[0132] 表3.CAL中的处理参数。
[0133]钢 退火温度(℃) 淬火温度(℃) 配分温度(℃) 配分时间(s)
I1 850 380 420 40
I2 830 380 420 40
I3 810 370 420 40
R1 950 300 400 20
R2 830 380 400 40
[0134] 发现根据本发明生产的钢具有优异的机械性质,如表4中所示,而参比钢R1和R2较差。
[0135] 表4.机械性质和残余奥氏体水平。
[0136]
[0137] 所有钢的屈服强度均高于400MPa,拉伸强度高于980MPa。钢I1‑I3和R1的屈服比低于0.65,使得它们易于冷成形。参比钢R2不满足屈服比要求。本发明钢和参比钢R2的总伸长率(A25)大于10%,但参比钢R1的总伸长率(A25)仅为2%。
[0138] 本发明的钢和参比钢R2的机械稳定性(kp)在5‑35的范围内,而参比钢R1的机械稳定性(kp)为98,在所需范围之外。
[0139] 对于所有钢,显微结构包含大于8%的残余奥氏体(RA)。为了测试残余奥氏体的稳定性,将钢样品以20℃/s的加热速率加热至560℃。可以看出,本发明的钢损失至多20%的残余奥氏体(钢I3)并保持残余奥氏体量高于8%。因此,本发明的钢显示出良好的残余奥氏体分解耐受性。
[0140] 参比钢R1和R2分别损失约60%和40%的残余奥氏体,并且均变得远低于所需的最小量8%。因此,在残余奥氏体的稳定性方面,机械稳定性(kp)在所需范围之外的钢(R1)表现得比本发明的钢(I1‑I3)差,并且具有负θ因子的参比钢R2在残余奥氏体的稳定性方面也不足。
[0141] YS、TS、YR、TE、kp、RA值均根据上文公开的方法或标准得出。
[0142] 工业适用性
[0143] 本发明的材料可以广泛应用于汽车工业中的结构部件,特别是涉及深拉操作的结构部件,例如前柱和中柱、车门框架加强件。
QQ群二维码
意见反馈