压缩机润滑滑片及压缩机

申请号 CN202211142924.6 申请日 2022-09-20 公开(公告)号 CN115537730B 公开(公告)日 2024-03-22
申请人 珠海格力电器股份有限公司; 发明人 郑慧芸; 史正良; 贾波; 李业林;
摘要 本 发明 提供一种 压缩机 润滑滑片,包括滑片本体、渗氮层、Ni‑P层、纳米油脂微胶囊;渗氮层渗入滑片本体内部及表面,Ni‑P层沉积于渗氮层表面;纳米油脂微胶囊分布于滑片本体、渗氮层、Ni‑P层之间,纳米油脂微胶囊内部填充有 纳米级 固体油脂;滑片本体为D型 铸 铁 , 铸铁 中珠光体含量小于15%、铁素体呈网状的枝晶状分布、 石墨 形态为点状分布,所述D型铸铁经淬火、低温回火后硬度大于60HRC,强度大于650MPa;压缩机包括上述润滑滑片。本发明的优势在于:Ni‑P 镀 层与滑片本体结合强度高、抗磨性优良、制作成本低,滑片冲击噪声较小;纳米油脂微胶囊在滑片受到压 力 发生 挤压 摩擦时,油脂微胶囊发生破裂,油脂流出 覆盖 滑片表面,进一步降低滑片与滚子的 摩擦系数 。
权利要求

1.一种压缩机润滑滑片,其特征在于:包括滑片本体、渗氮层、Ni‑P层、纳米油脂微胶囊;渗氮层渗入滑片本体内部及表面,Ni‑P层沉积于渗氮层表面;纳米油脂微胶囊分布于滑片本体、渗氮层、Ni‑P层之间,纳米油脂微胶囊内部填充有纳米级固体润滑剂,包括磷酸钼、石墨烯;滑片本体为D型铸铁中珠光体含量小于15%、铁素体呈网状的枝晶状分布、石墨形态为点状分布,所述D型铸铁经淬火、低温回火后硬度大于60HRC,强度大于650MPa。
2.根据权利要求1所述的压缩机润滑滑片,其特征在于:滑片本体渗氮后表面硬度为
600 HV~800 HV,表面粗糙度Ra0.3~Ra0.6,渗氮层深度为10~15μm。
3.根据权利要求1所述的压缩机润滑滑片,其特征在于:Ni‑P层中P含量为8%~10%,Ni‑P层厚度为5~10 μm,硬度大于1000HV。
4.根据权利要求1所述的压缩机润滑滑片,其特征在于:最外层Ni‑P层中纳米油脂微胶囊设置在距离滑片本体表面15~20μm处,渗氮层中微胶囊设置在距离滑片本体表面10~15μm处,滑片本体层内微胶囊设置在距离滑片本体表面5~10μm处。
5.根据权利要求1所述的压缩机润滑滑片,其特征在于:纳米油脂微胶囊在Ni‑P层、渗
2
氮层、滑片本体内的数量呈比例排布,Ni‑P层中微胶囊数量Q1为9~12个/sm,渗氮层内微胶囊数量为1.5 2倍Q1,滑片本体内微胶囊数量为3~5倍Q1。
~
6.根据权利要求1所述的压缩机润滑滑片,其特征在于:D型铸铁淬火温度为850℃、低温回火温度为200℃。
7.根据权利要求1至6任一所述的压缩机润滑滑片,其特征在于:铸铁材料中珠光体含量为5%、D型点状石墨尺寸3~5μm,铸铁硬度265HB,所述铸铁经淬火、低温回火后硬度
63HRC,渗氮后表面硬度750HV,渗氮层厚度10μm,渗氮后表面粗糙度Ra0.4;Ni‑P层厚度10μ
2 2
m,硬度1085HV;Ni‑P层内纳米油脂微胶囊数量为11/sm,渗氮层内微胶囊数量为16/sm,滑
2
片本体层内微胶囊数量为35/sm。
8.根据权利要求3至6任一所述的压缩机润滑滑片,其特征在于:铁材料中珠光体含量为10%、D型点状石墨尺寸3~5μm,铸铁硬度245HB,所述铸铁经淬火、低温回火后硬度60HRC,渗氮后表面硬度710HV,渗氮层厚度8μm,渗氮后表面粗糙度Ra0.8;Ni‑P层厚度10μm,硬度
2 2
1023HV;Ni‑P层内纳米油脂微胶囊数量为6个/sm,渗氮层内微胶囊数量为11个/sm ,滑片本
2
体层内微胶囊数量为20个/sm。
9.一种压缩机,其特征在于,包括如权利要求1至8任一所述压缩机润滑滑片。

说明书全文

压缩机润滑滑片及压缩机

技术领域

[0001] 本发明属于压缩机润滑领域,尤其涉及一种压缩机润滑滑片及压缩机。

背景技术

[0002] 润滑状态有三种形式:流体润滑、边界润滑和混合润滑。流体润滑时,两个零件表面完全由润滑油润滑,油膜厚,摩擦系数小,磨耗少、磨损小;边界润滑形式下,两个零件表面间有部分直接接触,油膜薄,摩擦系数高,磨耗大、磨损严重;混合润滑介于流体润滑和边界润滑之间。转子式压缩机运动副中多数处于流体润滑状态,但滑片R面和转子外表面处于边界润滑或混合润滑状态。
[0003] 滑片作为旋转压缩机的重要元件之一,在气缸的滑片槽内做往复惯性运动,其头部R面始终与压缩机的偏心滚子紧密贴合形成摩擦副,该摩擦副为线接触,且滑片长年在冷媒介质的高温、高压和高速冲击负荷的条件下工作,处于缺油或者少油的临界润滑状态,滑片头部R面与滚子的接触部分极易磨损;长此以往,滑片磨损严重,其头部R面甚至磨平,导致表面形位公差发生变化。
[0004] 另一方面,滑片的大端面与气缸的滑片槽两侧面形成摩擦副,滑片高度面与上下法兰形成摩擦副,体安装时,滑片高度小于气缸高度,与上、下法兰之间存在端面间隙,滑片厚度小于气缸槽宽度,与气缸槽之间存在端面轴向间隙,而这一间隙是压缩机制冷剂的主要泄漏通道之一。此时,如果间隙过大,气体冷量泄露大,会导致压缩机冷量降低,而间隙过小,由于滑片对应的摩擦副较多,高压条件下,滑片磨损加剧,功耗增加,表面磨损体积加剧,影响原本的表面尺寸与形位公差使得泄露进一步加大,造成恶性循环,严重甚至引发卡死现象进而影响压缩机的长期可靠性,最终影响压缩机的使用寿命。
[0005] 随着旧国标机型的逐渐淘汰,以及新国标变频压缩机及节能技术的推广,对压缩机的能效要求大幅度提高,压缩机工作压力的大幅度提高,特对目前十年保修期的提高,对滑片的强度、耐磨性、耐疲劳性和使用寿命有进一步较高要求。传统的滑片材料已经无法满足目前压缩机的使用要求。
[0006] 目前,解决滑片头部R面及滚子外表面磨损问题主要通过物理气相沉积(PVD)、原子沉积(CVD)、等离子体化学气相沉积(PCVD)等层方法对滑片进行镀涂层来提高滑片的表面硬度,以此来降低滑片的摩损,但采用这些方法成本高,且滑片涂层与金属基体结合力小,长期处于边界润滑状态下,涂层脱落或磨损掉后仍然无法保证滑片的长期可靠性,同时涂层脱落或磨损会加剧滑片尺寸发生变化,使得制冷剂泄露增大、降低压缩机的能效。
[0007] 针对这一问题,专利申请CN114623080A公开了一种具有C形槽的滑片,与传统圆弧滑片相比,该发明额结构可以将压缩机的吸气腔内的润滑液带到C形槽内,提高润滑效果,降低摩擦系数和磨损、提高压缩机的使用寿命,但是C形槽结构与原有弧形槽滑片相比,泄露较大,会引起压缩机冷量降低。
[0008] 专利CN202483877U、CN2931862Y公开了一滑片头部带有滚针的滑片,该结构将传统的滑片头部与滚子的线接触形式转变为滑动摩擦,可以降低摩擦系数,进而降低压缩机的功耗。但上述结构中圆孔及楔形槽均无法大规模生产加工。圆孔加工时成型砂轮头部R难以制造,精度无法满足要求,若采用嵌入式砂轮则无法返修,砂轮寿命短、制造成本高。
[0009] 专利申请CN110848138A公开了一种滑片两侧面具有微凹坑结构+减摩涂层的滑片,减摩涂层覆盖摩擦侧面及微坑结构内壁,微坑结构中可以存储润滑剂,在摩擦副发生相对运动时,由于挤压作用微坑结构中的润滑剂可以作为二次补给源,润滑剂进入摩擦副间,增加了润滑剂的含量,起到减小摩擦的作用。但是,微凹坑的结构需要压缩机内滑片位置处具有润滑油才能进行储存,因此,该发明结构中,微凹坑结构只能设计于两侧面中。但是,对于滑片R面头部,由于该位置与滚子处于线接触,长期处于缺油或者少油的临界润滑状态,因此微凹坑不能在R面进行储油,使得其对于解决滑片与滚子的磨损问题效果并不大。

发明内容

[0010] 针对现有技术中滑片头部R面与滚子的接触部分极易磨损、镀润滑层易脱落或改变滑槽结构制造成本高等问题,本发明提供一种压缩机润滑滑片。
[0011] 本发明的技术方案如下:一种压缩机润滑滑片,包括滑片本体、渗氮层、Ni‑P层、纳米油脂微胶囊;渗氮层渗入滑片本体内部及表面,Ni‑P层沉积于渗氮层表面;纳米油脂微胶囊分布于滑片本体、渗氮层、Ni‑P层之间,纳米油脂微胶囊内部填充有纳米级固体油脂;滑片本体为D型铸铁中珠光体含量小于15%、铁素体呈网状的枝晶状分布、石墨形态为点状分布,所述D型铸铁经淬火、低温回火后硬度大于60HRC,强度大于650MPa。
[0012] 进一步地,滑片本体渗氮后表面硬度为600HV~800HV,表面粗糙度Ra0.3~Ra0.6,渗氮层深度为10~15μm。
[0013] 进一步地,Ni‑P层中P含量为8%~10%,Ni‑P层厚度为5~10μm,硬度大于1000HV。
[0014] 进一步地,最外层Ni‑P层中纳米油脂微胶囊设置在距离滑片本体表面15~20μm处,渗氮层中微胶囊设置在距离滑片本体表面10~15μm处,滑片本体层内微胶囊设置在距离滑片本体表面5~10μm处。
[0015] 进一步地,纳米油脂微胶囊在Ni‑P层、渗氮层、滑片本体内的数量呈比例排布,Ni‑2
P层中微胶囊数量Q1为9~12个/sm,渗氮层内微胶囊数量为1.5~2倍Q1,滑片本体内微胶囊数量为3~5倍Q1。
[0016] 进一步地,纳米级固体油脂包括磷酸钼、石墨烯中至少一种。
[0017] 进一步地,D型铸铁淬火温度为850℃、低温回火温度为200℃。
[0018] 优选的,铸铁材料中珠光体含量为5%、D型点状石墨尺寸3~5μm,铸铁硬度265HB,所述铸铁经淬火、低温回火后硬度63HRC,渗氮后表面硬度750HV,渗氮层厚度10μm,渗氮后表面粗糙度Ra0.4;Ni‑P层厚度10μm,硬度1085HV;Ni‑P层内纳米油脂微胶囊数量为11个/2 2 2
sm,渗氮层内微胶囊数量为16个/sm,滑片本体层内微胶囊数量为35个/sm。
[0019] 优选的,铸铁材料中珠光体含量为10%、D型点状石墨尺寸3~5μm,铸铁硬度245HB,所述铸铁经淬火、低温回火后硬度60HRC,渗氮后表面硬度710HV,渗氮层厚度8μm,渗氮后表面粗糙度Ra0.8;Ni‑P层厚度10μm,硬度1023HV;Ni‑P层内纳米油脂微胶囊数量为6
2 2 2
个/sm,渗氮层内微胶囊数量为11个/sm,滑片本体层内微胶囊数量为20个/sm。
[0020] 本发明还提供一种压缩机,采用上述压缩机润滑滑片。
[0021] 本发明的优势在于:采用的滑片本体为高强度D型铸铁材料,进行渗氮处理后、采用气相沉积的方式镀镍磷合金,得到的Ni‑P镀层与滑片本体的结合强度高、表面硬度高、抗磨性优良,镀层均匀、制作成本低,且铸铁滑片冲击噪声较小;滑片本体、渗氮层、Ni‑P镀层中各层面上填充的纳米油脂微胶囊在当滑片受到压力发生挤压摩擦时,不同位置上的油脂微胶囊发生破裂,油脂流出覆盖滑片表面,进一步降低滑片与滚子的摩擦系数,也可以降低滑片与气缸、法兰的摩擦系数。附图说明
[0022] 图1为滑片本体D型铸铁金相结构图;
[0023] 图2为本发明滑片金相结构示意图;
[0024] 图3为本发明滑片结构纳米油脂微胶囊分布示意图;
[0025] 图4为本发明滑片结构纳米油脂微胶囊标注图;
[0026] 图中1——滑片本体;2——渗氮层;3——Ni‑P层;4——纳米油脂微胶囊。

具体实施方式

[0027] 下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
[0028] 本发明提供的压缩机润滑滑片主要是从两个层面改进滑片(尤其是R面的润滑性),一是解决滑片基材与润滑镀层间结合强度的问题,防止镀层的脱落;二是提供一种可持续释放润滑油脂的微结构,能够根据磨损程度或者运行时间而进行自动补偿油脂,持续的为滑片与滚子之间提供润滑作用,使得滑片与滚子之间的边界润滑状态转变为流体润滑状态,降低滑片与滚子的摩擦系数。
[0029] 本发明的滑片结构能够根据磨损程度或者运行时间而进行自动补偿润滑,包括:滑片本体、渗氮层、Ni‑P层,纳米油脂微胶囊。其中滑片本体与渗氮层、Ni‑P层结合紧密;纳米油脂微胶囊分布于滑片本体、渗氮层、Ni‑P层之间。
[0030] 本发明采用的滑片本体为高强度D型铸铁材料,进行渗氮处理后、采用气相沉积的方式镀镍磷合金,得到的Ni‑P镀层与滑片本体的结合强度高、表面硬度高、抗磨性优良,镀层均匀;同时滑片本体、渗氮层、Ni‑P镀层中各层面上通过激光刻蚀在特定距离上填充有纳米油脂微胶囊,当滑片受到压力发生挤压摩擦时,根据摩擦程度(或者运行时间)的不同,使得不同位置上的油脂微胶囊发生破裂,油脂流出覆盖滑片表面,不仅可以降低滑片与滚子的摩擦系数,也可以降低滑片与气缸、法兰的摩擦系数。
[0031] 如图1所示,滑片本体的D型铸铁材料中珠光体含量<15%、铁素体呈网状的枝晶状分布构成连续的“骨架”,宛如复合材料中的强化相;其次,铸铁中石墨形态为点状,石墨长度为3~5μm,与传统的A型石墨灰铸铁相比(石墨长度>200μm),本发明采用的D型铸铁中石墨形态对基体的割裂作用小,能最大程度的发挥基体组织的强化作用,因此其强度远高于传统珠光体灰铸铁,强度提高30%以上;由于滑片承受的压力较大,本发明的D型铸铁材料需要进行热处理,要求经淬火+低温回火后,硬度>60HRC,强度>650MPa。
[0032] 之所以选用高强度的D型铸铁材料而非现有高速不锈钢滑片材料,是由于钢滑片材料虽然强度高、耐磨性好但减磨性差,且钢滑片长期受到高压高速气流冲击,导致滑片“哒哒”的噪音明显。为此本发明滑片材料采用铸铁材料,与高速钢或者不锈钢相比,铸铁具有优异的减磨性,其次还具有良好的防噪减震效果,同时成本便宜。
[0033] 本发明的铸铁基材表面进行渗氮强化,由于本发明采用的铸铁中无合金元素,渗氮后表面硬度Y2=600HV~800HV,渗氮层深度D2=10~15μm。相比于常规滑片技术方案为高速钢/不锈钢滑片+渗氮处理,由于钢滑片中含有Cr、Ni等合金元素,渗氮后可以生成高硬度的CrN等强化相,硬度能够达到1000HV,因此单独的铸铁+渗氮处理不能满足滑片的使用要求;本发明铸铁滑片经渗氮处理后需再经镀镍磷处理,气相沉积Ni‑P镀层适合任何形态复杂的零件,都能得到均匀的镀层,其镀层与基体结合强度高、表面硬度高,抗磨性能优良。
[0034] 一般的铸铁由于有石墨相,而石墨在的位置不能与外界元素反应,因此直接采用物理或者化学气相沉积金属镀层在铸铁上效果非常差,若铸铁直接镀镍,Ni‑P镀层与基体结合强度低,涂层很容易脱落,但在本发明中,如图2所示,将渗氮层作为打底层,铸铁渗氮后N原子向滑片本体扩散反应,表面会长出一层致密的Fe‑N化合物,此时再进行镀镍磷处理,可以有效避免Ni‑P镀层与铸铁结合强度低的问题,在兼具铸铁减磨性的同时,渗氮+镀镍磷处理又显著提高了铸铁基体的耐磨性。
[0035] 其中渗氮层表面粗糙度需要在Ra0.3~Ra0.6,粗糙度过低,镀镍有效接触面积小,结合强度低,粗糙度过高,镀镍层无法全部盖住渗氮层,同样导致结合强度低,Ni‑P镀层中P含量为8%~10%,厚度D1=5~10μm,硬度Y1>1000HV。
[0036] 纳米油脂微胶囊内填充有纳米固体润滑剂,包括磷酸钼、石墨烯等,纳米油脂微胶囊的在滑片本体、渗氮层、Ni‑P镀层各层的数量分布、填充位置与磨损状态有关,当磨损剧烈时,越靠近滑片本体,纳米油脂数量越多;根据一般压缩机售后时检查出的滑片磨损程度,本发明在设计纳米油脂微胶囊的分布方式中,纳米胶囊的均匀分布,呈比例排列;如图3所示,采用最外层镀镍层胶囊位置与滑片本体距离长度H1=15~20μm,中间层胶囊位置与滑片本体距离长度H2=10~15μm,本体层胶囊位置H3=5~10μm。
[0037] 本发明的滑片在压缩机运行前期处于边界润滑状态,滑片发生轻微磨损,当磨损深度大于>5μm时,最外层位置上的微胶囊受到摩擦挤压而破裂,内部油脂流出覆盖到滑片表面,固体油脂与液体油脂相比,润滑效果更佳,可以缓解滑片与对磨零件之间的摩擦磨损,降低压缩机的功耗,由于是轻微磨损,作为防护的第一层,Ni‑P层胶囊数量设计Q1=9~2
12个/sm (平方丝米),数量过少,润滑效果不明显;随着运行时间的延长磨损进一步加剧,磨损深度大于>10μm,此时最外层已经被完全磨掉,中间渗氮层上的微胶囊发生破裂,而由于磨损程度的加剧,因此中间渗氮层设计的微胶囊数量>最外层设计的微胶囊,渗氮层胶囊数量Q2=1.5~2Q1;对于长期在某些工况恶劣的环境下使用,当滑片滑磨损深度大于>
20μm,涂层失效,此时滑片本体直接与滚子、法兰等零件接触,由于滑片本体硬度低于涂层硬度,润滑需求远高于最外层和中间层,因而滑片本体层纳米胶囊数量Q3=3~5Q1。
[0038] 以下通过几组具体的实施方式来进一步说明本发明的效果。
[0039] 实施例1
[0040] 滑片本体采用的D型铸铁材料,热处理前珠光体含量5%,D型点状石墨尺寸3~5μm,铸铁硬度265HB,热处理(850℃淬火、200℃回火)后硬度为63HRC,渗氮处理后表面硬度750HV,渗氮层厚度10μm,渗氮后表面粗糙度Ra0.4;滑片本体渗氮后再镀镍磷合金,Ni‑P镀层厚度10μm,表面硬度达1085HV。
[0041] 最外层Ni‑P层激光刻蚀的纳米油脂微胶囊数量Q1=11个/sm2,中间层渗氮层胶囊2 2
数量Q2=16个/sm,本体层胶囊数量Q3=35个/sm。
[0042] 实施例2
[0043] 滑片本体采用的D型铸铁材料,热处理前珠光体含量10%,D型点状石墨尺寸3~5μm,铸铁硬度245HB,热处理(850℃淬火、200℃回火)后硬度为60HRC,渗氮处理后表面硬度710HV,渗氮层厚度10μm,渗氮后表面粗糙度Ra0.8;滑片本体渗氮后再镀镍磷合金,Ni‑P镀层厚度10μm,表面硬度达1023HV。
[0044] 最外层Ni‑P层激光刻蚀的纳米油脂微胶囊数量Q1=6个/sm2,中间层渗氮层胶囊2 2
数量Q2=11个/sm,本体层胶囊数量Q3=20个/sm。
[0045] 实施例3
[0046] 滑片本体采用的铸铁材料,热处理前珠光体含量20%,D型点状石墨尺寸3~5μm,铸铁硬度213HB,热处理(850℃淬火、200℃回火)后硬度为55HRC,渗氮处理后表面硬度680HV,渗氮层厚度10μm,渗氮后表面粗糙度Ra0.3;滑片本体渗氮后再镀镍磷合金,Ni‑P镀层厚度10μm,表面硬度达938HV。
[0047] 最外层Ni‑P层激光刻蚀的纳米油脂微胶囊数量Q1=11个/sm2,中间层渗氮层胶囊2 2
数量Q2=16个/sm,本体层胶囊数量Q3=35个/sm。
[0048] 对比例1
[0049] 滑片采用常规的不锈钢作为本体进行渗氮处理,渗氮层厚度10μm。
[0050] 采用划痕仪测试实施例1‑3、对比例的材料涂层强度、采用万能摩擦试验机MMW‑1,测试发明材料摩擦系数,测试条件:加载力400N、转速1200r,时间60min,缺油润滑(1~3滴油)。试验后摩擦系数由万能试验机直接得出算出平均值,采用白光干涉仪检测试验后样件的磨损深度。本发明的铸铁滑片和常规不锈钢渗氮滑片与对磨FC300材料在缺油状态下的摩擦系数、磨损量如下:
[0051] 表1本发明滑片与常规不锈钢渗氮滑片润滑磨损对比
[0052] 测量指标 实施例1 实施例2 实施例3 对比例1摩擦系数 0.08 0.11 0.14 0.12
磨损量(μm) 1.0 1.5 1.8 1.7
[0053] 表2本发明滑片渗氮+镀镍磷合金后结合强度增强对比
[0054]测量指标 实施例1 实施例2 实施例3 铸铁直接镀镍磷层
结合强度 51N 42N 46N 38N
[0055] 同时,对于最优实施例1发明材料滑片装机1.5P以下单缸压缩机进行噪音测试,测试数据如下所示:
[0056] 测量指标 发明铸铁材料滑片 不锈钢渗氮滑片声功率级db(A) 65 67
[0057] 通过以上测试可以看出,本发明的实施例1、2滑片材料摩擦系数相比于常规不锈钢渗氮滑片均要低,但实施例2中由于打底层渗氮的表面粗糙度较高,大于Ra0.6,使得Ni‑P层无法完全盖住渗氮层,因此结合强度反而略低,但其摩擦系数相比于常规不锈钢渗氮滑片仍然较低。实施例3作为参照,由于采用的铸铁中珠光体含量较高,铸铁硬度较低未达60HRC,结合渗氮层和Ni‑P层后,虽然强度有所提高,但表面硬度仅达938HV,因此摩擦系数和磨损量较常规不锈钢渗氮滑片反而略高。实施例1中滑片的材料参数达到摩擦系数最小,与渗氮层和Ni‑P层结合强度最强,综合测试表现最佳。同时采用本发明的滑片,使用时压缩机的滑片冲击噪声较小,使得整体噪声功率等级也有所下降;证明本发明能实现了降低滑片成本、增强润滑程度、降低噪音的综合优良效果。
[0058] 以上所述仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专利的技术人员在不脱离本发明技术方案范围内,当可利用上述提示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明方案的范围内。
QQ群二维码
意见反馈