首页 / 专利分类库 / 有机化学 / 无环或碳环化合物 / / 在低温炼油厂和天然气加工中使结垢、腐蚀和溶剂降解最小化的方法

在低温炼油厂和天然气加工中使结垢腐蚀溶剂降解最小化的方法

申请号 CN202080088753.6 申请日 2020-12-16 公开(公告)号 CN114787325A 公开(公告)日 2022-07-22
申请人 BL; 科技公司; 发明人 J·索里亚;
摘要 一种 氧 清除的方法,所述方法包括(i)提供氧清除剂组合物;和(ii)将所述氧清除剂组合物加入到 烃 加工系统的 水 性进料和/或烃进料中。
权利要求

1. 一种清除的方法,所述方法包括:
(i)提供氧清除剂组合物;和
(ii)将所述氧清除剂组合物加入到加工系统的性进料和/或烃进料中。
2.如权利要求1所述的方法,其中所述氧清除剂组合物包含羟烷基羟胺和催化剂。
3.如权利要求2所述的方法,其中所述羟烷基羟胺是N,N‑双(2‑羟丙基)羟胺。
4.如权利要求1所述的方法,其中所述氧清除剂组合物是共混物。
5.如权利要求2所述的方法,其中所述催化剂是醌催化剂。
6.如权利要求5所述的方法,其中所述醌催化剂是氢醌、苯醌或其共混物。
7.如权利要求2所述的方法,其中所述羟烷基羟胺是N,N‑双(2‑羟丙基)羟胺,并且所述催化剂是氢醌。
8.如权利要求1所述的方法,其中所述氧清除剂组合物进一步包含N,N‑双(2‑羟乙基)羟胺、N,N‑双(2‑羟丁基)‑羟胺和/或二乙基羟胺。
9.如权利要求7所述的方法,其中所述N,N‑双(2‑羟丙基)羟胺与氢醌的比率为约
0.0001:100至约100:0.0001。
10. 如权利要求1所述的方法,其中以0.0001 ppm至约50,000 ppm的量将所述氧清除剂组合物加入到所述水性和/或烃进料中。
11. 如权利要求1所述的方法,其中所述水性和/或烃进料包含在约0.0001 ppm至约
50,000 ppm范围内的溶解的氧。
12.如权利要求1所述的方法,其中所述水性进料包含烃、硫化氢、二氧化有机酸、酚、溶解的矿物质、链烷醇胺、二醇和/或氧。
13.如权利要求1所述的方法,其中所述烃进料是酸性气体或液体流或其共混物。
14.如权利要求1所述的方法,其中所述烃加工系统是炼油厂、天然气加工系统、气化设备或设备。
15.如权利要求1所述的方法,其中所述水性和/或烃加工系统包含酸性水汽提塔、二醇脱水单元或烃气体加工单元。
16.如权利要求1所述的方法,其中所述烃加工系统在约40°F至约500°F的温度范围下操作。
17.如权利要求16所述的方法,其中所述温度范围小于300°F。

说明书全文

在低温炼油厂和天然气加工中使结垢腐蚀溶剂降解最小

化的方法

[0001] 相关申请的交叉引用本申请要求2019年12月20日提交的美国临时专利申请序列号62/951,076的优先权益处,其全部内容通过引用并入本文。

技术领域

[0002] 所公开的技术总体上提供清除剂组合物和氧清除的方法,并且更具体地,提供氧清除剂组合物和氧清除的方法以使在炼油厂或天然气加工应用中的腐蚀、结垢和/或化学降解最小化。

背景技术

[0003] 众所周知,在炼油厂和天然气加工中存在溶解的氧会导致许多严重的不利影响,包括结垢和腐蚀。由溶解的氧引起的不利影响的实例是:(1)由不稳定的化合物的聚合引起的结垢,其中氧是引发或促成因素;(2)胺和二醇降解为有机酸,例如甲酸、乙酸、草酸乙醇酸和其它降解产物,例如和N‑二(羟乙基)甘酸;和/或(3)由金属表面上的直接氧攻击引起的腐蚀,或间接地由胺和二醇降解产生的有机酸和与这些过程的进料一起进入的其它腐蚀性化合物(例如硫氰化物、硫代硫酸盐、氯化物等)的作用引起的腐蚀。
[0004] 例如,酸性汽提是精炼方法,其中外部蒸汽或由再沸器产生的蒸汽用于从酸性水中去除氨和H2S。加热器、再沸器和酚式酸性水汽提塔的塔内部构件在短时间段内明显结垢,并且必须从管线中取出进行清洁。在这样的方法中,有机结垢的主要原因是由酸性水进料中的溶解的氧触发的酚的聚合,并且被腐蚀产物和较高的温度加速
[0005] 酸性烃液体和气体在胺加工设备中处理,根据具体应用,所述设备主要去除硫化氢、二氧化、硫化羰和二硫化碳。这样的应用包括但不限于炼油厂、天然气设备、天然气液体(NGL)设备、气化设备、氨设备和制氢。
[0006] 与酸性水汽提塔类似,当不稳定的烃类(例如烯烃)存在于气/液和液/液胺吸收器的进料中时,溶解的氧触发结垢机制。形成的聚合物在胺接触器的底部和塔盘中累积,污染贫/富交换器,并且找到它们到达胺再生器的路径。过度结垢降低处理能,可能导致由于夹带而导致的胺损失,并且可能迫使炼油厂或气体设备降低生产能力,最终导致昂贵且耗时的在线和离线清洁操作两者。
[0007] 此外,类似于胺气体处理设备,进入二醇脱水单元的溶解的氧倾向于分解循环的二醇基脱水剂(主要是三甘醇),这导致形成有机酸,例如甲酸、乙酸、草酸和乙醇酸。这些酸降低二醇的pH,因此加速腐蚀速率。溶解的氧还触发不稳定的气态组分的聚合,非常类似于酸性水汽提塔的情况。腐蚀产物和聚合物的组合最终导致生产率降低、由于夹带而导致的过量二醇损失以及相关的下游问题。二醇脱水单元与胺处理单元非常相似,因为二醇在接触器中吸收水,并通过在较低压力下施加热而在再生器中释放水。
[0008] 氧清除剂长期以来用于锅炉水和蒸汽系统中以抑制腐蚀。认识到氧清除剂在锅炉水系统中的有效使用,各种氧清除剂已经被应用于胺气体处理设备以抑制腐蚀。然而,氧清除剂很少用于酸性水汽提塔中,并且几乎从不用于二醇脱水单元中以降低腐蚀可能性。
[0009] 因此,本领域需要用于使由于炼油厂或天然气加工应用中的氧引起的腐蚀、结垢和/或化学降解最小化的方法。发明内容
[0010] 所公开的技术总体上提供氧清除剂组合物和氧清除的方法,并且更具体地,提供氧清除剂组合物和氧清除的方法以使在炼油厂或天然气加工应用中的腐蚀、结垢和/或化学降解最小化。
[0011] 在所公开的技术的一个方面中,一种氧清除的方法,所述方法包括:(i)提供氧清除剂组合物;和(ii)将所述氧清除剂组合物加入到烃加工系统的水性进料和/或烃进料中。
[0012] 在一些实施方案中,所述氧清除剂组合物包含羟烷基羟胺和催化剂。在一些实施方案中,所述羟烷基羟胺是N,N‑双(2‑羟丙基)羟胺(HPHA)。在一些实施方案中,所述氧清除剂组合物是共混物。
[0013] 在一些实施方案中,所述催化剂是醌催化剂。在一些实施方案中,所述醌催化剂是氢醌、苯醌或其共混物。在一些实施方案中,所述羟烷基羟胺是N,N‑双(2‑羟丙基)羟胺(HPHA),并且所述催化剂是氢醌。在一些实施方案中,所述氧清除剂组合物进一步包含N,N‑双(2‑羟乙基)羟胺(HEHA)、N,N‑双(2‑羟丁基)‑羟胺(HBHA)和/或二乙基羟胺(DEHA)。在一些实施方案中,所述N,N‑双(2‑羟丙基)羟胺(HPHA)与氢醌的比率为约0.0001:100至约100:0.0001。
[0014] 在一些实施方案中,以0.0001 ppm至约50,000 ppm的量将所述氧清除剂组合物加入到所述水性和/或烃进料中。在一些实施方案中,所述水性和/或烃进料包含在约0.0001 ppm至约50,000 ppm范围内的溶解的氧。
[0015] 在一些实施方案中,所述水性进料包含烃、硫化氢、二氧化碳、有机酸、酚、溶解的矿物质、链烷醇胺、二醇和/或氧。在一些实施方案中,所述烃进料是酸性气体或液体流或其共混物。
[0016] 在一些实施方案中,所述烃加工系统是炼油厂、天然气加工系统、煤气化设备或氨设备。在一些实施方案中,所述水性和/或烃加工系统包含酸性水汽提塔、二醇脱水单元或烃气体加工单元。
[0017] 在一些实施方案中,所述烃加工系统在约40°F至约500°F的温度范围下操作。在一些实施方案中,所述温度范围小于300°F。

具体实施方式

[0018] 所公开的技术总体上提供氧清除剂组合物和氧清除的方法,并且更具体地,提供氧清除剂组合物和氧清除的方法以使在炼油厂或天然气加工应用中的腐蚀、结垢和/或化学降解最小化。本技术可以用于以下应用,例如但不限于1)胺处理,在炼油厂和气体设备中在上游和下游应用两者中,或其它应用中例如煤气化、氨设备、制氢等;2)在上游和中游应用中的二醇脱水;3)酸性水汽提塔;和/或4)在脱盐器、加氢处理器中的进料/流出物交换器和其中怀疑氧单独或与其它化合物组合参与结垢机制的其它炼油厂应用中可能是有益的。
[0019] 本技术通过使用催化的羟烷基羟胺作为低温氧清除剂,使由进入酸性水汽提塔、使用链烷醇胺的气体脱硫过程和/或二醇脱水单元的溶解的氧所引起的严重不利影响最小化。与目前使用的其它类型的催化的羟烷基羟胺(例如DEHA/HQ)相比,所公开的清除剂组合物和方法表现出与氧的更快的反应速率(即改进的动力学)。由于这样的改进的动力学,溶解的氧在其在炼油厂或天然气加工应用中可能引起结垢、腐蚀和溶剂降解的有害影响之前将被消耗。此外,更快的反应速率将确保在设备上形成更均匀的磁矿保护层。
[0020] 另外,本技术提供了保护免于形成聚合物(或氧触发的聚合),这导致设备中和传热表面上的结垢沉积物。与其它常规技术相比,这样的保护将更完全,因为认为在该过程达到更高温度和结垢速率快速加速之前,氧气将完全消耗。因此,在炼油厂或天然气加工应用中的结垢倾向将显著降低,因为通过具有均匀地保护免于腐蚀的系统,腐蚀产物(其充当聚合催化剂)的流量将显著降低。
[0021] 在所公开技术的一个方面,提供了一种氧清除的方法。该方法包括(i)提供氧清除剂组合物;和(ii)将氧清除剂组合物加入到烃加工系统的水性进料和/或烃进料中。
[0022] 在一个实施方案中,氧清除剂组合物包含羟烷基羟胺和催化剂。氧清除剂组合物将形成防腐蚀的磁铁矿层,因为认为催化的羟烷基羟胺(例如HPHA)与氧产生更快的反应,并因此与存在于系统中的金属氧化物更快反应,将非保护性赤铁矿转变成磁铁矿。由于防腐蚀的磁铁矿层,腐蚀产物将被最小化。如本文公开的氧清除剂组合物提供存在于应用中的较少可用的溶解的氧和腐蚀产物,所述应用例如但不限于酸性水汽提、胺处理和/或二醇脱水应用。
[0023] 在一些实施方案中,氧清除剂组合物是共混物。在一些实施方案中,羟烷基羟胺是N,N‑双(2‑羟丙基)羟胺(HPHA)。认为由于HPHA是高度支化的分子(即,多于DEHA和其它),所公开的氧清除剂可能更快且更有效地与溶解的氧反应。
[0024] 在一些实施方案中,催化剂是醌催化剂。在一些实施方案中,其中醌催化剂是氢醌、苯醌或其共混物。在一些实施方案中,羟烷基羟胺是N,N‑双(2‑羟丙基)羟胺(HPHA),并且催化剂是氢醌。
[0025] 在一些实施方案中,氧清除剂组合物进一步包含N,N‑双(2‑羟乙基)羟胺(HEHA)、N,N‑双(2‑羟丁基)‑羟胺(HBHA)和/或二乙基羟胺(DEHA)。
[0026] 在一些实施方案中,N,N‑双(2‑羟丙基)羟胺(HPHA)与氢醌的比率为约0.0001:100至约100:0.0001,在其它实施方案中,约50:0.0001至约0.0001:100,并且在其它实施方案中,约20:3至约30:3。
[0027] 所述方法进一步提供将氧清除剂组合物加入到烃加工系统的水性进料和/或烃进料中。应当理解,烃加工系统包括但不限于炼油厂、天然气加工系统(包括上游和/或中游应用)、煤气化设备、氨设备等。
[0028] 在一些实施方案中,以0.0001 ppm至约50,000 ppm的量(在其它实施方案中以1 ppm至约10,000 ppm的量,并且在其它实施方案中以约1 ppm至约100 ppm的量)将氧清除剂组合物加入到水性和/或烃进料中。应当理解,氧清除剂组合物可以通过大多数任何常规的化学添加手段加入到一种或多种水和/或烃进料中。在一些实施方案中,化学添加和/或注入系统包含适合于特定应用的材料和设计的注入滚针(quill)。
[0029] 在一些实施方案中,水性和/或烃进料包含在约0.0001 ppm至约50,000 ppm范围内的溶解的氧。在一些实施方案中,水性进料包含烃、硫化氢、二氧化碳、有机酸、酚、溶解的矿物质、链烷醇胺、二醇和/或氧。在一些实施方案中,烃进料是酸性气体或液体流或其共混物。
[0030] 在一些实施方案中,水性和/或烃加工系统包含酸性水汽提塔、二醇脱水单元或烃气体加工单元。
[0031] 所公开的氧清除剂组合物和方法使在低温应用中的结垢、腐蚀和溶剂降解最小化。通过在低温环境中利用所公开的氧清除剂组合物,通过在这些过程的低温端有效去除溶解的氧,将大大降低胺和二醇的降解速率。这样的去除是由于与其它常规技术相比,所公开的氧清除剂组合物与氧的反应速率更快,这将防止氧在与胺和二醇彼此接触时与它们复合。
[0032] 在一些实施方案中,烃加工系统在约40°F至约500°F的温度范围下操作。在一些实施方案中,温度范围小于300°F。
[0033] 在前述说明书中,已经参考本发明的具体实施方案描述了本发明。虽然已经描述了所公开的技术的实施方案,应当理解,本公开不限于此,并且可以在不脱离所公开的技术的情况下进行修改。所公开的技术的范围由所附权利要求限定,并且在权利要求的含义内的所有装置、过程和方法,无论是字面上还是根据等效性,都旨在包含在其中。
QQ群二维码
意见反馈