首页 / 专利分类库 / 有机化学 / 有机化学的一般方法;所用的装置 / 含氮官能团的形成或引入 / 一种可见光催化氧化胺类化合物合成亚胺类化合物的方法

一种可见光催化化胺类化合物合成亚胺类化合物的方法

申请号 CN201810136237.0 申请日 2018-02-09 公开(公告)号 CN108299138B 公开(公告)日 2020-11-13
申请人 中南民族大学; 发明人 杨昌军; 邓克俭; 金娟娟; 张丙广;
摘要 本 发明 公开了一种可见光催化 氧 化胺类化合物合成亚胺类化合物的方法,所述方法以四羟甲基四(1,4‑二噻英)四氮杂钴卟啉为催化剂,以分子氧为 氧化剂 ,在λ≥420 nm的可见光照射下实现胺类化合物氧化为相应的亚胺类化合物;本发明与现有的亚胺类化合物合成方法不同,在以含硫氮杂钴卟啉作为光催化剂的催化体系中,可以在以太阳光为 能源 、分子氧为氧化剂的条件下实施胺类化合物的光催化选择性氧化,高效、节能地生产亚胺类化合物。
权利要求

1.一种可见光催化化胺类化合物合成亚胺类化合物的方法,其特征在于,所述方法以四羟甲基四(1,4-二噻英)四氮杂钴卟啉为催化剂,以分子氧为氧化剂,在λ≥420nm的可见光照射下实现胺类化合物氧化为相应的亚胺类化合物;
所述四羟甲基四(1,4-二噻英)四氮杂钴卟啉的分子结构式为:
所述方法的具体步骤为:在石英夹套光反应瓶中加入一定量的四羟甲基四(1,4-二噻英)四氮杂钴卟啉和溶剂,在搅拌的作用下使四羟甲基四(1,4-二噻英)四氮杂钴卟啉在溶剂中完全溶解,再向体系中加入胺类化合物,并在无光照的条件下继续搅拌2-4h;然后在1-
4atm氧气和λ≥420nm的可见光照射的条件下反应一定时间即可;
所述溶剂为乙腈或二甲亚砜;
所述胺类化合物为

说明书全文

一种可见光催化化胺类化合物合成亚胺类化合物的方法

技术领域

[0001] 本发明属于化工和制药技术领域,具体涉及一种可见光催化氧化胺类化合物合成亚胺类化合物的方法。

背景技术

[0002] 亚胺类化合物是一种非常重要的有机合成中间体,已广泛应用于精细化工、农药合成和医药合成等领域。开发高效、节能的亚胺类化合物合成方法具有重要意义和应用价值。
[0003] 光催化技术可以将可再生的太阳能引入到有机化合物的合成领域,以环境友好和廉价的氧气作为氧化剂,在温和的条件下实现有机化合物的选择性氧化,获得目标产物,该技术具有绿色和节能的优势,作为一种绿色有机合成途径受到了广泛的关注。太阳光中大部分为可见光,为提高太阳能的利用率,需要开发高效的可见光响应型光催化剂。含硫氮杂金属卟啉在可见光区具有强的摩尔吸光系数,可以作为可见光催化剂有效地利用太阳能。利用含硫氮杂金属卟啉在温和的条件下可见光活化分子氧氧化有机物,通过优化反应条件获得高产率的目标产物,可以为绿色有机合成提供一种新的途径。

发明内容

[0004] 本发明的目的在于克服现有技术的不足,提供一种可见光催化氧化胺类化合物合成亚胺类化合物的方法,该方法利用可见光催化剂四羟甲基四(1,4-二噻英)四氮杂钴卟啉对分子氧进行活化,能够高选择性地氧化胺类化合物合成亚胺类化合物。
[0005] 为解决上述问题,本发明采用的技术方案为:
[0006] 一种可见光催化氧化胺类化合物合成亚胺类化合物的方法,所述方法以四羟甲基四(1,4-二噻英)四氮杂金属卟啉为可见光催化剂,以分子氧为氧化剂,在λ≥420nm的可见光照射下实现胺类化合物氧化为相应的亚胺类化合物。
[0007] 优选的,以四羟甲基四(1,4-二噻英)四氮杂钴卟啉(简写为CoPz(hmdtn)4)为可见光催化剂。
[0008] 其中,所述CoPz(hmdtn)4的分子结构式为:
[0009]
[0010] 所述方法的具体步骤为:在石英夹套光反应瓶中加入一定量的CoPz(hmdtn)4和溶剂,在搅拌的作用下使CoPz(hmdtn)4在溶剂中完全溶解,再向体系中加入胺类化合物,并在无光照的条件下继续搅拌2-4h;然后在1-4atm氧气和λ≥420nm的可见光光照的条件下反应一定时间即可。
[0011] 优选的,所述溶剂为乙腈或二甲基亚砜。
[0012] 优选的,所述胺类化合物包括伯胺或仲胺。
[0013] 另外,本发明还要求保护CoPz(hmdtn)4在催化氧化胺类化合物合成亚胺类化合物中的应用,其中,所述催化氧化反应是以分子氧为氧化剂,在λ≥420nm的可见光照射下进行。
[0014] 与现有技术相比,本发明的优点和有益技术效果为:
[0015] (1)本发明以CoPz(hmdtn)4为可见光催化剂,可以直接高效催化氧化胺类化合物为亚胺类化合物,且产物亚胺类化合物具有高的选择性;
[0016] (2)本发明在可见光的作用下,通过CoPz(hmdtn)4活化O2产生活性氧物种1O2和O2·-,这两种活性氧物种能够氧化胺生成关键的中间产物NH-亚胺,然后NH-亚胺与胺可以很容易通过缩合反应生成目标产物亚胺,从而在可见光和分子氧的条件下可以高效率、高选择性氧化胺类化合物为亚胺类化合物,即本发明是在CoPz(hmdtn)4、可见光和O2三者综合作用下实现胺类化合物的高选择性氧化生成亚胺类化合物;
[0017] (3)本发明与现有的亚胺类化合物合成方法不同,在以CoPz(hmdtn)4作为可见光催化剂的催化体系中,可以在以太阳光为能源、分子氧为氧化剂的条件下实现胺类化合物的光催化选择性氧化,高效、节能地生产亚胺类化合物。附图说明
[0018] 图1为本发明实施例2中TMP-1O2的ESR信号图;
[0019] 图2为本发明实施例2中DMPO-O2·-的ESR信号图;
[0020] 图3为本发明实施例2中中间产物NH-亚胺的GC谱图;
[0021] 图4为本发明实施例2中中间产物NH-亚胺的MS谱图;
[0022] 图5为本发明实施例2中光谱DPD法测定光催化氧化苄胺过程中生成H2O2的紫外-可见吸收光谱图;
[0023] 图6为本发明原料四羟甲基四(1,4-二噻英)四氮杂钴卟啉在DMF溶剂中的紫外-可见吸收光谱图;
[0024] 图7为本发明原料四羟甲基四(1,4-二噻英)四氮杂钴卟啉的MALDI-TOF MS谱图;
[0025] 图8为本发明原料四羟甲基四(1,4-二噻英)四氮杂镁卟啉在DMF溶剂中的紫外-可见吸收光谱图;
[0026] 图9为本发明原料四羟甲基四(1,4-二噻英)四氮杂镁卟啉的MALDI-TOF MS谱图;
[0027] 图10为本发明原料四羟甲基四(1,4-二噻英)四氮杂锌卟啉在DMF溶剂中的紫外-可见吸收光谱图;
[0028] 图11为本发明原料四羟甲基四(1,4-二噻英)四氮杂锌卟啉的MALDI-TOF MS谱图。

具体实施方式

[0029] 下面结合实施例对本发明的技术方案做进一步的阐述:
[0030] 原料:
[0031] (1)CoPz(hmdtn)4的合成参考文献Journal of Molecular Catalysis A:Chemical(2013,372:114-120),将文献中的原料醋酸替换为等摩尔量的四合乙酸钴。利用紫外-可见吸收光谱和MALDI-TOF MS对CoPz(hmdtn)4进行了结构表征,其紫外-可见吸收光谱和MALDI-TOF MS谱图分别如图6和图7所示。
[0032] (2)四羟甲基四(1,4-二噻英)四氮杂镁卟啉(简写为MgPz(hmdtn)4)的合成参考文献Journal of Molecular Catalysis A:Chemical(2013,372:114-120)。利用紫外-可见吸收光谱和MALDI-TOF MS对MgPz(hmdtn)4进行结构表征,其紫外-可见吸收光谱和MALDI-TOF MS谱图分别如图8和图9所示。
[0033] (3)四羟甲基四(1,4-二噻英)四氮杂锌卟啉(简写为ZnPz(hmdtn)4)的合成参考文献Journal of Molecular Catalysis A:Chemical(2013,372:114-120),将文献中的原料醋酸亚铁替换为等摩尔量的醋酸锌。利用紫外-可见吸收光谱和MALDI-TOF MS对ZnPz(hmdtn)4进行结构表征,其紫外-可见吸收光谱和MALDI-TOF MS谱图分别如图10和图11所示。
[0034] 实施例1:
[0035] 四羟甲基四(1,4-二噻英)四氮杂钴卟啉可见光催化氧化苄胺的活性测定[0036] 其步骤如下:在石英夹套光反应瓶中加入3mg CoPz(hmdtn)4和25mL乙腈(简写为CH3CN),在搅拌的作用下使CoPz(hmdtn)4在乙腈中完全溶解,再向体系中加入1mmol苄胺,并在无光照的条件下继续搅拌2h。然后在1atm氧气和λ≥420nm的可见光(采用氙灯作为光源,并用420nm滤光片滤掉波长小于420nm的光,以下实施例同)光照的条件下反应3h,可见光的光强为0.747W·cm-2。利用GC-MS对反应产物进行定性分析,并通过GC对反应产物进行定量分析,本组为可见光光照条件下的实验,记为Entry 1;取消λ≥420nm的可见光光照,则为无光照条件下的实验,本组记为Entry 2。
[0037] 按照同样的操作步骤,还进行了其他四组实验作为对照:在1atm氩气气氛和可见光光照的条件下,考察CoPz(hmdtn)4的光催化活性,本组记为Entry 3;不加CoPz(hmdtn)4,仅在可见光光照和氧气存在的条件下,考察苄胺的氧化,本组记为Entry 4;在1atm氧气和可见光光照的条件下,考察常见的四苯基钴卟啉(简写为CoTPP,其用量和CoPz(hmdtn)4相同)可见光催化氧化苄胺的活性,本组记为Entry 5;在1atm氧气和可见光光照的条件下,考察常见的间-四羟乙基(4-甲氧苯基)钴卟啉(简写为CoTPPOMe,其用量和CoPz(hmdtn)4相同)可见光催化氧化苄胺的活性,本组记为Entry 6。
[0038] 表1.苄胺在不同条件下的氧化.
[0039]
[0040]
[0041] 实验结果如表1所示,对比实验表明,在无催化剂CoPz(hmdtn)4存在(Entry 4),无可见光光照(Entry 2)以及氩气气氛(Entry 3)的条件下,苄胺都基本不发生转化;而苄胺在催化剂CoPz(hmdtn)4存在、可见光光照以及氧气存在的条件下,可以发生有效转化,光反应3h,苄胺的转化率达到90%,而其氧化产物N-苄烯丁胺的选择性达到99%以上(Entry 1)。表明在可见光的条件下CoPz(hmdtn)4可以高效地活化分子氧直接催化氧化苄胺为相应的亚胺,该反应是一个光催化氧化反应。同时,常见的CoTPP和CoTPPOMe催化剂也可以光催化氧化苄胺为N-苄烯丁胺,光反应3h苄胺的转化率分别为11%(Entry 5)和43%(Entry 
6),通过比较可知,苄胺在CoPz(hmdtn)4催化体系中的转化率是CoTPP催化体系中的8.2倍、CoTPPOMe催化体系中的2.1倍,表明与常见的金属卟啉相比,含硫氮杂钴卟啉具有高的光催化活性。
[0042] 实施例2:
[0043] 四羟甲基四(1,4-二噻英)四氮杂钴卟啉可见光催化氧化苄胺的机理研究[0044] (一)活性氧物种的检测
[0045] 其步骤如下:在石英试管中加入3mg CoPz(hmdtn)4和1mL CH3CN,在搅拌的作用下使CoPz(hmdtn)4在CH3CN中完全溶解。然后加入10μL 2,2,6,6-四甲基哌啶(简写为TMP)或20μL二甲基吡啶N-氧化物(简写为DMPO)。在λ≥420nm的可见光光照的条件下,持续鼓入氧气4min,然后取少量反应液进行电子自旋共振(简写为ESR)检测。TMP为单线态氧(简写为1O2)的捕获剂,DMPO为超氧阴离子自由基(简写为O2·-)的捕获剂。
[0046] 实验结果如图1和图2所示。实验结果表明,在可见光的照射下,CoPz(hmdtn)4可以活化O2通过能量转移产生活性氧物种1O2(图1)和电子转移产生活性氧物种O2·-(图2)。
[0047] (二)淬灭实验
[0048] 进一步实施了淬灭实验,考察活性氧物种对光催化氧化苄胺的影响。其步骤如下:
[0049] 在石英夹套光反应瓶中加入3mg CoPz(hmdtn)4和25mL CH3CN,在搅拌的作用下使CoPz(hmdtn)4在CH3CN中完全溶解,再向体系中加入1mmol苄胺,并在无光照的条件下继续搅拌2h。然后加入1mmolβ-胡萝卜素(简写为β-Carotene)或1mmol 2,2,6,6-四甲基哌啶氮氧化物(简写为TEMPO),在1atm氧气和λ≥420nm的可见光光照的条件下反应3h,可见光的光强为0.747W·cm-2。并通过GC对反应产物进行定量分析,加入淬灭剂β-Carotene为检测活性氧物种1O2对光催化氧化苄胺的影响,本组记为Entry 1;加入淬灭剂TEMPO为检测活性氧物种O2·-对光催化氧化苄胺的影响,本组记为Entry 2;不加入淬灭剂的组记为Entry 3。
[0050] 实验结果如表2所示。对比实验表明,加入1O2的淬灭剂β-Carotene时,苄胺的转化率从90%降低到了1%;当加入O2·-的淬灭剂TEMPO时,苄胺的转化率从90%降低到了7%,表明1O2和O2·-是此光催化过程中的活性氧物种,与ESR测试的结果相一致。
[0051] 表2.淬灭剂对光催化氧化苄胺的影响.
[0052]
[0053] (三)中间产物分析
[0054] 其步骤如下:在石英夹套光反应瓶中加入3mg CoPz(hmdtn)4和25mL CH3CN,在搅拌的作用下使CoPz(hmdtn)4在CH3CN中完全溶解,再向体系中加入1mmol苄胺,并在无光照的条件下继续搅拌2h。然后在1atm氧气和λ≥420nm的可见光光照的条件下反应2h,可见光的光强为0.747W·cm-2。利用GC-MS对中间产物NH-亚胺进行检测。
[0055] 实验结果如图3和图4所示。实验结果表明,在光催化氧化苄胺为N-苄烯丁胺的过程中有中间产物NH-亚胺的生成。
[0056] 进一步通过光谱DPD法测定了苄胺转化为N-苄烯丁胺的过程中的中间产物H2O2。其步骤如下:在石英夹套光反应瓶中加入3mg CoPz(hmdtn)4和25mL CH3CN,在搅拌的作用下使CoPz(hmdtn)4在CH3CN中完全溶解,再向体系中加入1mmol苄胺,并在无光照的条件下继续搅拌2h。然后在1atm氧气和λ≥420nm可见光光照的条件下反应,可见光的光强为0.747W·cm-2。然后每隔一定时间用光谱DPD法测定此光催化氧化过程中生成的H2O2。
[0057] 实验结果如图5所示。实验结果表明,在光催化氧化苄胺过程中有H2O2的生成,而且随着光照时间的延长,H2O2的生成量逐渐增大。
[0058] 通过ESR检测和淬灭实验,1O2和O2·-是苄胺的光催化氧化过程中的活性氧物种。同时,通过中间产物的检测分析,此光催化过程中有中间产物NH-亚胺的生成,而NH-亚胺是关键中间产物,因为NH-亚胺与苄胺可以很容易通过缩合反应生成目标产物N-苄烯丁胺。CoPz(hmdtn)4在可见光的作用下,活化O2产生活性氧物种1O2和O2·-,这两种活性氧物种能够氧化苄胺生成关键的中间产物NH-亚胺,中间产物H2O2的生成进一步证实了这步反应的发生;然后NH-亚胺与苄胺可以很容易通过缩合反应生成目标产物N-苄烯丁胺,这可能就是CoPz(hmdtn)4在可见光和分子氧条件下可以高效率、高选择性氧化胺类化合物为亚胺类化合物的原因。
[0059] 实施例3:
[0060] 考察中心金属对催化活性的影响
[0061] 按照实施例1的操作步骤,分别在催化剂为CoPz(hmdtn)4、MgPz(hmdtn)4和ZnPz(hmdtn)4的条件下进行苄胺的光催化氧化实验,考察中心金属对含硫氮杂金属卟啉的催化活性的影响。催化剂为CoPz(hmdtn)4记为Entry 1;催化剂为MgPz(hmdtn)4记为Entry 2;催化剂为ZnPz(hmdtn)4记为Entry 3。
[0062] 实验结果如表3示。对比实验表明,在相同的条件下,苄胺在ZnPz(hmdtn)4光催化体系中光反应3h,其转化率为45%,氧化产物N-苄烯丁胺的选择性为86%;苄胺在MgPz(hmdtn)4光催化体系中光反应3h,其转化率为59%,氧化产物N-苄烯丁胺的选择性为89%;而苄胺在CoPz(hmdtn)4光催化体系中的转化率达到了90%,显著高于在MgPz(hmdtn)4和ZnPz(hmdtn)4光催化体系中的转化率,同时,与MgPz(hmdtn)4和ZnPz(hmdtn)4光催化体系相比,氧化产物N-苄烯丁胺在CoPz(hmdtn)4光催化体系中的选择性也提高了10%左右。
[0063] 表3.中心金属对催化活性的影响.
[0064]
[0065] 实施例4:胺类化合物的拓展
[0066] 按照实施例1的操作步骤,改变反应底物,将底物拓展到其它的伯胺和仲胺。Entry 1至Entry 9为伯胺;Entry 10和Entry 11为仲胺。
[0067] 实验结果如表4所示。对比实验表明,在苄胺的苯环上引入给电子基团(CH3、C(CH3)3和OCH3)和吸电子基团(F和Cl),这类胺都具有高的转化率,且相应氧化产物亚胺也具有高的选择性(Entry 2至Entry 6)。同时,取代基的性质显著影响底物胺的转化率,实验结果表明苯环上具有给电子基团的胺具有较高的转化率(Entry 2至Entry 4),而苯环上具有吸电子基团的胺具有较低的转化率(Entry 5和Entry 6),说明在反应中存在电子效应。当苯环上的取代基在邻位和对位时,底物胺也具有不同的转化率,当取代基在对位时,胺具有高的转化率(Entry 6和Entry 7);与双取代的苄胺相比,单取代的苄胺具有高的转化率,表明在反应中存在位阻效应(Entry 6至Entry 8)。除此之外,杂环胺糠胺也可以发生有效转化,具有高的转化率,但是相应氧化产物亚胺的选择性比较低(Entry 9)。
[0068] 具有对称结构的仲胺也可以发生有效转化,不仅胺具有高的转化率,而且相应氧化产物亚胺也具有高的选择性(Entry 10和Entry 11)。
[0069] 表4.CoPz(hmdtn)4可见光催化氧化各种胺类化合物.
[0070]
[0071] 最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
QQ群二维码
意见反馈