一种MXene-Sn-Ag-Cu增强CSS-42L基自润滑复合材料及其制备方法

申请号 CN202210791550.4 申请日 2022-07-05 公开(公告)号 CN115110078B 公开(公告)日 2023-11-17
申请人 武汉理工大学深圳研究院; 发明人 史晓亮; 薛亚文; 黄奇鹏; 张凯鹏; 吴超华;
摘要 本 发明 公开了一种MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑 复合材料 及其制备方法。该自润滑复合材料是以表面具有沟槽织构的CSS‑42L 轴承 钢 为基体材料,然后在CSS‑42L表面的沟槽织构中填充MXene‑Sn‑Ag‑Cu复合 润滑剂 得到的。相比普通自润滑复合材料,本发明自润滑复合材料具有良好的减摩减振性能,而且 摩擦学 性能稳定,使用寿命长,可以被应用于矿山、 能源 、海洋及航空等高端装备领域。
权利要求

1.一种MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料,其特征在于以CSS‑42L轴承为基体材料,所述CSS‑42L轴承钢的表面具有沟槽织构,MXene‑Sn‑Ag‑Cu复合润滑剂填充在CSS‑42L轴承钢表面的沟槽织构中;
所述CSS‑42L轴承钢表面的沟槽织构的几何参数:沟槽的横截面和纵截面的形状均为矩形,沟槽的深度为0.3‑0.5mm,沟槽的宽度为0.3‑0.5mm,相邻沟槽的间距为0.6‑1.0mm;
所述MXene‑Sn‑Ag‑Cu复合润滑剂为球形MXene‑Sn‑Ag‑Cu粉末,球形粉末粒径尺寸为
15‑50μm,按重量百分数计包括:MXene 8‑10wt.%,Sn 80‑85wt.%,Ag 4‑6wt.%,Cu 2‑
4wt.%;其中,MXene是二维层状结构的Ti3C2材料。
2.权利要求1所述的MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料的制备方法,其特征在于首先,采用电火花加工设备在CSS‑42L轴承钢的表面制备沟槽织构,然后利用激光熔覆技术将MXene‑Sn‑Ag‑Cu复合润滑剂填充在CSS‑42L轴承钢的表面沟槽织构中,得到MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料;其中,激光熔覆技术的主要工艺参数为:
激光功率600‑1000W,层厚20‑25μm,线宽50‑60μm,扫描速度5‑8mm/s。
3.根据权利要求2所述的制备方法,其特征在于所述MXene‑Sn‑Ag‑Cu复合润滑剂的制备方法包括如下步骤:
(1)按重量百分数计准备以下原料:MXene材料8‑10wt.%,Sn粉80‑85wt.%,Ag粉4‑
6wt.%,Cu粉2‑4wt.%,然后将各原料放入真空球磨机中进行球磨,得到混合原料;
(2)将步骤(1)所得混合原料利用真空雾化技术制备球形MXene‑Sn‑Ag‑Cu粉末,即为MXene‑Sn‑Ag‑Cu复合润滑剂;其中,主要工艺参数为:熔炼温度为550‑600℃,雾化压为4‑
6MPa,球形粉末粒径尺寸为15‑50μm。
4.根据权利要求2所述的制备方法,其特征在于所述MXene材料是Ti3C2材料,由氢氟酸溶液对Ti3AlC2粉末进行刻蚀所得。

说明书全文

一种MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料及其制

备方法

技术领域

[0001] 本发明涉及金属基自润滑复合材料技术领域,具体涉及一种MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料及其制备方法。

背景技术

[0002] 在矿山、能源、海洋及航空等领域的高端机械装备中,许多金属基自润滑摩擦副作为承载零部件,对高端机械装备正常稳定运行起到重要作用。摩擦振动及噪声普遍存在于高端装备的轴承系统中,导致的界面磨损和系统振动会严重降低轴承的工作精度和服役寿命。摩擦振动及噪声的产生受载荷、速度、表面形貌和工作环境等因素的影响,是一个较为复杂的物理现象。目前,高端装备中自润滑摩擦副需要在重载、高温和腐蚀等恶劣工况下运行,要求自润滑材料具有更好的减振降噪性能,使用寿命长,摩擦学性能稳定。但是,现有自润滑摩擦副的正常服役范围及摩擦学性能,使其在苛刻工作环境中稳定可靠运行的能十分不足。因此,创新自润滑材料,拓宽其服役工况范围,提高其减摩减振性能具有重要的工程意义。

发明内容

[0003] 针对现有技术的不足,本发明提供一种MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料,在满足良好的综合机械性能要求下,具备突出的低摩擦、低振动和低噪声性能,摩擦学性能稳定,使用寿命长,可以解决现存金属基自润滑材料产品在恶劣工况下磨损率高和使用寿命短等问题。
[0004] 本发明为解决上述提出的问题所采用的技术方案为:
[0005] 一种MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料,其制备方法包括如下步骤:
[0006] (1)采用氢氟酸刻蚀法得到MXene材料;
[0007] (2)采用真空雾化技术制备MXene‑Sn‑Ag‑Cu复合润滑剂
[0008] (3)采用电火花加工设备在CSS‑42L轴承的表面制备沟槽织构;
[0009] (4)利用激光熔覆技术将MXene‑Sn‑Ag‑Cu复合润滑剂填充在CSS‑42L轴承钢表面的沟槽织构中,再经过打磨处理和清洗后,得到MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料;其中,主要工艺参数为:激光功率600‑1000W,层厚20‑25μm,线宽50‑60μm,扫描速度5‑8mm/s;
[0010] 按上述方案,所述CSS‑42L轴承钢的表面沟槽织构的几何参数为:沟槽织构的横截面和纵截面的形状优选均为矩形,沟槽的深度为0.3‑0.5mm,沟槽的宽度为0.3‑0.5mm,相邻沟槽的间距为0.6‑1.0mm。
[0011] 按上述方案,所述MXene‑Sn‑Ag‑Cu复合润滑剂的组成按重量百分数计为:MXene材料8‑10wt.%,Sn 80‑85wt.%,Ag 4‑6wt.%,Cu 2‑4wt.%。其中,MXene材料是金属化物或金属氮化物或金属碳氮化物材料,具有二维层状结构的材料。
[0012] 按上述方案,所述MXene‑Sn‑Ag‑Cu复合润滑剂为MXene‑Sn‑Ag‑Cu粉末,具体制备方法包括如下步骤:
[0013] 1)利用氢氟酸溶液对Ti3AlC2粉末进行刻蚀得到MXene(Ti3C2)材料。具体地,将Ti3AlC2粉末加入到溶度为40%氢氟酸溶液中,并在室温下利用电磁搅拌器搅拌6小时,搅拌转速为1000转/分钟;然后,对悬浮液进行离心分离20分钟,离心转速为6000转/分钟;再用去离子洗涤悬浮液,直至溶液的PH值接近7;最后,将沉积物过滤后,放在70℃真空下干燥24小时,得到MXene(Ti3C2)材料。
[0014] 2)根据MXene‑Sn‑Ag‑Cu复合润滑剂的组成和重量百分比准备以下原料:MXene(Ti3C2)材料,Sn粉,Ag粉和Cu粉;将上述原料放入真空球磨机中进行球磨,球料质量比为10:1,速度为:500转/分钟,球磨4小时后,得到混合原料;
[0015] 3)将步骤2)所得混合原料利用真空雾化技术制备球形MXene‑Sn‑Ag‑Cu粉末;其中,主要工艺参数为:熔炼温度为550‑600℃,雾化压力为4‑6MPa,球形粉末粒径尺寸为20‑50μm。
[0016] 本发明上述制备的MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料具有优异的减摩减振性能,在摩擦过程中可以保持较低的摩擦系数,且摩擦系数变化稳定。该自润滑复合材料在30N载荷和1Hz往复摩擦条件下,平均摩擦系数小于0.36;且平均摩擦系数的每次实验结果之间偏差均小于0.015。
[0017] 与现有技术相比,本发明有益效果
[0018] 1.本发明所述MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料使用沟槽织构化CSS‑42L基体,满足摩擦副对钢基体的承载能力要求,可以存储固体润滑剂和磨屑,有效降低表面摩擦系数,改善表面摩擦磨损,延长润滑剂的使用寿命。
[0019] 2.本发明所述MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料利用激光熔覆技术将MXene‑Sn‑Ag‑Cu填充在CSS‑42L基体沟槽,将复合润滑剂与轴承钢基体结合形成自润滑表面,提高了复合润滑剂与沟槽良好的结合强度,改善了复合润滑剂的力学性能,提升了自润滑复合材料表面的承载能力。
[0020] 3.本发明所述MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料利用沟槽织构化CSS‑42L基体与MXene‑Sn‑Ag‑Cu的协同作用,可以显著地改善界面接触状态,改善金属基体表面的完整性,缓冲摩擦过程中沟槽边缘的撞击振动,有效降低摩擦,并能削弱接触面“不连续”因素,优化表面沟槽减振降噪的功能;在摩擦过程中,复合润滑剂受力和热的作用,在磨损表面形成的润滑膜,缓解CSS‑42L基体沟槽边缘的高应力,降低金属表面的摩擦损伤,修复表面缺陷。而且,所述自润滑复合材料表面由硬度不同的CSS‑42L基体和MXene‑Sn‑Ag‑Cu固体润滑剂组成,可以优化摩擦力变化规律,显著降低摩擦系数;同时,MXene‑Sn‑Ag‑Cu在磨损表面发生摩擦化学反应,生成多种金属间化合物及化物,改善自润滑复合材料表面的摩擦学性能。
[0021] 4.本发明所述MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料使用MXene‑Sn‑Ag‑Cu复合润滑剂,可以在摩擦过程中形成固体润滑膜,在磨损表面铺展,有效修复摩擦损伤。尤其是,MXene‑Sn‑Ag‑Cu复合润滑剂具有优异的减摩性能,可以获得较小的摩擦系数;同时,对磨损表面的修复能力较强,修复后的磨损表面耐磨性能更好,在恶劣工况条件下,可以有效延长自润滑表面的使用寿命。
附图说明
[0022] 图1是本发明一种MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料制备流程图
[0023] 图2是本发明一种MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料实物图。
[0024] 图3是MXene的微观形貌照片。
[0025] 图4是复合润滑剂MXene‑Sn‑Ag‑Cu球形粉末的微观形貌照片。
[0026] 图5是本发明实施例1自润滑复合材料摩擦测试后磨痕的微观形貌照片。
[0027] 图6是本发明实施例2自润滑复合材料摩擦测试后磨痕的微观形貌照片。
[0028] 图7是本发明实施例3自润滑复合材料摩擦测试后磨痕的微观形貌照片。
[0029] 图8是本发明实施例1自润滑复合材料摩擦实验过程中摩擦系数图。
[0030] 图9是本发明实施例2自润滑复合材料摩擦实验过程中摩擦系数图。
[0031] 图10是本发明实施例3自润滑复合材料摩擦实验过程中摩擦系数图。

具体实施方式

[0032] 为了更好地理解本发明,下面结合实施例对本发明内容进行清楚、完整地描述,但所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
[0033] 下述实施例中,MXene(Ti3C2)纳米材料由氢氟酸溶液对Ti3AlC2粉末进行刻蚀制得,具体方法为:利用氢氟溶液对Ti3AlC2粉末进行刻蚀得到MXene(Ti3C2)材料。将Ti3AlC2粉末加入到溶度为40%氢氟酸溶液中,并在室温下利用电磁搅拌器搅拌6小时,搅拌转速为1000转/分钟;然后,对悬浮液进行离心分离20分钟,离心转速为6000转/分钟;再用去离子水洗涤悬浮液,直至溶液的PH值接近7;最后,将沉积物过滤后,放在70℃真空下干燥24小时,得到MXene(Ti3C2)纳米材料。如图3所示,经过氢氟酸刻蚀法得到的MXene纳米材料具了明显的琴层状结构,其层状结构非常清晰。
[0034] 实施例1
[0035] 一种MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料,以CSS‑42L轴承钢为基体材料,所述CSS‑42L轴承钢的表面具有沟槽织构,MXene‑Sn‑Ag‑Cu复合润滑剂填充在CSS‑42L轴承钢表面的沟槽织构中;其中,沟槽织构的几何参数:沟槽深度为0.3mm,相邻沟槽间距为0.6mm,沟槽宽度为0.3mm;所述MXene‑Sn‑Ag‑Cu复合润滑剂按重量百分数计组成为:MXene(Ti3C2)8wt.%,Sn 85wt.%,Ag 5wt.%,Cu 2wt.%。
[0036] 如图1所示,一种MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料的制备方法,其具体包括如下步骤:
[0037] 1)依据CSS‑42L表面织构的几何参数:利用电火花机床加工沟槽织构,得到表面具有沟槽织构的CSS‑42L轴承钢;其中,沟槽织构的横截面和纵截面的形状均为矩形,沟槽深度为0.3mm,沟槽间距为0.6mm,沟槽宽度为0.3mm;
[0038] 2)按重量百分比即称取复合润滑剂原料:MXene纳米材料8wt.%,Sn粉85wt.%,Ag粉5wt.%,Cu粉2wt.%;将各原料放入真空球磨机中进行球磨,球料质量比为10:1,速度为:500转/分钟,球磨4小时后,得到混合原料;
[0039] 3)将步骤2)所得混合原料利用真空雾化技术制备球形粉末,熔炼温度为550℃,雾化压力为4MPa,球形粉末粒径尺寸为20‑50μm;然后将球形粉末在70℃真空下干燥24小时,得到MXene‑Sn‑Ag‑Cu球形粉末;如图4所示,真空雾化得到MXene‑Sn‑Ag‑Cu球形颗粒形状均匀,且表面光滑,颗粒尺寸符合要求。
[0040] 4)将步骤3)所述球形MXene‑Sn‑Ag‑Cu粉末利用激光熔覆技术填充在步骤1)中CSS‑42L轴承钢的沟槽中,得到自润滑表面;其中,主要工艺参数为:激光功率600W,层厚20μm,线宽50μm,扫描速度5mm/s;
[0041] 5)将步骤4)所得自润滑表面利用研磨膏和磨抛机打磨处理20分钟;然后,使用酒精和声波清洗机清洗10分钟后,得到MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料。
[0042] 将实施例1所得自润滑复合材料在多功能摩擦实验机上进行往复干摩擦测试,采用球‑盘接触形式,对偶件材质为氮化球体(Si3N4),试样长30mm×宽30mm×厚10mm,测试载荷:30N,测试温度:20‑25℃,往复频率为:1Hz;每个试样完成3次实验,使用每分钟的平均摩擦系数作为实验结果,每次实验时间为:60分钟。然后,利用电子探针显微镜观察试样磨损表面的微观形貌。
[0043] 由图5可知,经过摩擦实验,磨损表面分布着较浅的沟和少量的磨屑;且润滑剂完整,无损伤。由图8可知,自润滑复合材料的平均摩擦系数为0.358。因此,根据上述性能测试及微观形貌观察,该MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料具的摩擦系数较低,且表面磨损损伤轻微。
[0044] 实施例2
[0045] 一种MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料,以CSS‑42L轴承钢为基体材料,所述CSS‑42L轴承钢的表面具有沟槽织构,MXene‑Sn‑Ag‑Cu复合润滑剂填充在CSS‑42L轴承钢表面的沟槽织构中;其中,沟槽织构的几何参数:沟槽深度为0.4mm,沟槽间距为0.8mm,沟槽宽度为0.4mm;所述MXene‑Sn‑Ag‑Cu复合润滑剂按重量百分数计组成为:MXene(Ti3C2)材料9wt.%,Sn 83wt.%,Ag 5wt.%,Cu 3wt.%。
[0046] 上述MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料的制备方法,其具体包括如下步骤:
[0047] 1)依据CSS‑42L表面织构的几何参数:利用电火花机床加工沟槽织构,得到表面具有沟槽织构的CSS‑42L轴承钢;其中,沟槽织构的横截面和纵截面的形状均为矩形,沟槽深度为0.4mm,相邻沟槽间距为0.8mm,沟槽宽度为0.4mm;
[0048] 2)按重量百分比即称取复合润滑剂原料:MXene纳米材料9wt.%,Sn粉83wt.%,Ag粉5wt.%,Cu粉3wt.%;将各原料放入真空球磨机中进行球磨,球料质量比为10:1,速度为:500转/分钟,球磨4小时后,得到混合原料;
[0049] 3)将步骤2)所得混合原料利用真空雾化技术制备球形粉末,熔炼温度为580℃,雾化压力为5MPa,球形粉末粒径尺寸为20‑50μm;然后将球形粉末在70℃真空下干燥24小时,得到MXene‑Sn‑Ag‑Cu球形粉末;
[0050] 4)将步骤3)所述球形MXene‑Sn‑Ag‑Cu粉末利用激光熔覆技术填充在步骤1)中CSS‑42L轴承钢的沟槽中,得到自润滑表面;其中,主要工艺参数为:激光功率800W,层厚22μm,线宽55μm,扫描速度6mm/s;
[0051] 5)将步骤4)所得自润滑表面利用研磨膏和磨抛机打磨处理20分钟;然后,使用酒精和超声波清洗机清洗10分钟后,得到MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料。
[0052] 将实施例2所得自润滑复合材料在多功能摩擦实验机上进行往复干摩擦测试,采用球‑盘接触形式,对偶件材质为氮化硅球体(Si3N4),试样长30mm×宽30mm×厚10mm,测试载荷:30N,测试温度:20‑25℃,往复频率为:1Hz;每个试样完成3次实验,使用每分钟的平均摩擦系数作为实验结果,每次实验时间为:60分钟。然后,利用电子探针显微镜观察试样磨损表面的微观形貌。
[0053] 由图6可知,经过摩擦实验,磨损表面分布着较浅的犁沟和少量的磨屑;且润滑剂完整,无损伤。由图9可知,自润滑复合材料的平均摩擦系数为0.356。因此,根据上述性能测试及微观形貌观察,该MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料具的摩擦系数较低,且表面磨损损伤轻微。
[0054] 实施例3
[0055] 一种MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料,以CSS‑42L轴承钢为基体材料,所述CSS‑42L轴承钢的表面具有沟槽织构,MXene‑Sn‑Ag‑Cu复合润滑剂填充在CSS‑42L轴承钢表面的沟槽织构中;其中,沟槽织构的几何参数:沟槽深度为0.5mm,沟槽间距为1.0mm,沟槽宽度为0.5mm;所述MXene‑Sn‑Ag‑Cu复合润滑剂按重量百分数计组成为:MXene(Ti3C2)10wt.%,Sn 82wt.%,Ag 4wt.%,Cu 4wt.%。
[0056] 上述MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料的制备方法,其具体包括如下步骤:
[0057] 1)依据CSS‑42L表面织构的几何参数:利用电火花机床加工沟槽织构,得到表面具有沟槽织构的CSS‑42L轴承钢;其中,沟槽深度为0.5mm,相邻沟槽间距为1.0mm,沟槽宽度为0.5mm;
[0058] 2)按重量百分比即称取复合润滑剂原料:MXene纳米材料10wt.%,Sn粉82wt.%,Ag粉4wt.%,Cu粉4wt.%;将各原料放入真空球磨机中进行球磨,球料质量比为10:1,速度为:500转/分钟,球磨4小时后,得到混合原料;
[0059] 3)将步骤2)所得混合原料利用真空雾化技术制备球形粉末,熔炼温度为600℃,雾化压力为6MPa,球形粉末粒径尺寸为20‑50μm;然后将球形粉末在70℃真空下干燥24小时,得到MXene‑Sn‑Ag‑Cu球形粉末;
[0060] 4)将步骤3)所述球形MXene‑Sn‑Ag‑Cu粉末利用激光熔覆技术填充在步骤1)中CSS‑42L轴承钢的沟槽中,得到自润滑表面;其中,主要工艺参数为:激光功率1000W,层厚25μm,线宽60μm,扫描速度8mm/s;
[0061] 5)将步骤4)所得自润滑表面利用研磨膏和磨抛机打磨处理20分钟;然后,使用酒精和超声波清洗机清洗10分钟后,得到MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料。
[0062] 将实施例2所得自润滑复合材料在多功能摩擦实验机上进行往复干摩擦测试,采用球‑盘接触形式,对偶件材质为氮化硅球体(Si3N4),试样长30mm×宽30mm×厚10mm,测试载荷:30N,测试温度:20‑25℃,往复频率为:1Hz;每个试样完成3次实验,使用每分钟的平均摩擦系数作为实验结果,每次实验时间为:60分钟。然后,利用电子探针显微镜观察试样磨损表面的微观形貌。
[0063] 由图7可知,经过摩擦实验,磨损表面分布着较浅的犁沟和少量的磨屑;且润滑剂完整,无损伤。由图10可知,自润滑复合材料的平均摩擦系数为0.354。因此,根据上述性能测试及微观形貌观察,该MXene‑Sn‑Ag‑Cu增强CSS‑42L基自润滑复合材料具的摩擦系数较低,且表面磨损损伤轻微。
[0064] 以上所述仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干改进和变换,这些都属于本发明保护范围。
QQ群二维码
意见反馈