首页 / 专利库 / 动物学 / 刺胞动物 / 用于治疗神经系统紊乱的对于能量效率最优化的波形形状

用于治疗神经系统紊乱的对于能量效率最优化的波形形状

阅读:141发布:2020-05-12

专利汇可以提供用于治疗神经系统紊乱的对于能量效率最优化的波形形状专利检索,专利查询,专利分析的服务。并且施加由改进的遗传 算法 (GA)产生的刺激 波形 用于刺激神经组织的系统和方法,所述 遗传算法 可结合至 哺乳动物 有髓鞘的轴突的细胞外刺激的计算模型。所述波形是对于 能量 效率最优化的。,下面是用于治疗神经系统紊乱的对于能量效率最优化的波形形状专利的具体信息内容。

1.一个用于神经组织刺激的系统,包括:
为植入目标组织刺激区域而被设定尺寸和形状的导线;和
结合至所述导线的脉冲产生器,所述脉冲产生器包括电源和微处理器,所述电源包括电池,所述微处理器耦合至所述电池并可操作地将至少部分通过使用全局优化算法产生的刺激波形施加至所述导线,
其中所述微处理器通过执行方程的软件控制所述刺激波形的产生,所述方程包括:
当t≤μ时, 且
当t﹥μ时,
其中所述刺激波形具有包括振幅和脉冲宽度的参数,其中μ大于0且小于脉冲宽度,其中A是在时间t等于μ时所述刺激波形的峰值电流振幅,其中αL为针对时间t小于或等于μ时的比例参数,αR为针对时间t大于μ时的比例参数,βL为针对时间t小于或等于μ时的形状参数,βR为针对时间t大于μ时的形状参数。
2.根据权利要求1所述的系统,其中所述刺激波形通过使用结合至哺乳动物有髓鞘的轴突的细胞外刺激计算模型的规定的遗传算法(GA)得到,其中所述刺激波形是对于能量效率最优化的以延长电池寿命。
3.根据权利要求1所述的系统,其中所述刺激波形基本上由高斯曲线组成。
4.根据权利要求1所述的系统,其中所述刺激波形基本上由截断的高斯曲线组成。
5.根据权利要求1所述的系统,其中所述刺激波形是单相的。
6.根据权利要求1所述的系统,其中所述刺激波形是双相的。
7.根据权利要求1所述的系统,其中所述脉冲产生器是可植入的。
8.根据权利要求1所述的系统,其中A、μ、αL、αR、βL和βR是选择性可编程的。
9.根据权利要求1所述的系统,其中A的范围是约10微安至约10毫安。
10.根据权利要求9所述的系统,其中αL和αR大于零且小于无穷。
11.根据权利要求1所述的系统,其中αL和αR在约0.008至约0.1的范围内。
12.根据权利要求11所述的系统,其中βL和βR大于0且小于无穷。
13.根据权利要求12所述的系统,其中βL和βR在约0.8至约1.8的范围内。

说明书全文

用于治疗神经系统紊乱的对于能量效率最优化的波形形状

[0001] 相关申请
[0002] 本申请要求于2010年5月27日提交的题为“用于神经刺激的能量-优化双相波形形状(Energy-Optimal Biphasic Waveform Shapes for Neural Stimulation)”的第61/348,963号美国临时专利申请的权益,其通过引用结合到本文中。
[0003] 政府特许权利
[0004] 本发明部分在政府支持的美国国立卫生研究院(NIH)基金第R01 NS040894号和第R21 NS054048号资助下进行。政府具有本发明的某些权利。

技术领域

[0005] 本发明涉及在哺乳动物特别是人类中刺激神经的系统和方法。

背景技术

[0006] 可植入的和外部的电刺激器帮助了成千上万的神经障碍的个体。这些刺激器产生电波形,它们通过导线被递送至目标组织区域以治疗神经障碍。使用电刺激治疗神经障碍的实例包括深部大脑刺激、脑皮层刺激(cortical stimulation)、迷走神经刺激、骶神经刺激、脊髓刺激和心脏起搏器和心脏去纤颤器。
[0007] 可植入刺激器通过原电池或可充电电池供电。当原电池的能量耗尽时,必须通过昂贵的且入侵性的外科手术更换整个刺激器。可充电电池的能量容量决定了再充电间隔,以及植入物的整体体积。
[0008] 减少电池更换手术的频率或缩短再充电间隔以及减少刺激器自身的物理尺寸(体积)具有临床益处。问题是如何在不牺牲临床功效和产生不希望的副作用的前提下通过改变刺激参数来实现所述目标。例如,不可孤立地看待刺激的能量效率(即,用于产生给定的刺激脉冲需要消耗多少能量)。在植入设备中刺激的电荷效率同样是重要的考虑方面。在刺激脉冲中递送的电荷增加了组织损伤的险(Yuen等,1981;McCreery等,1990)。如果能量效率刺激参数递送过量的电荷,则高能量效率的益处将被减少。
[0009] 如在图1A和图1B中所示,刺激参数的能量效率取决于刺激脉冲的振幅(典型地例如以从10μA向上达10mA表示);刺激脉冲的宽度或持续时间(典型地例如以从20μs向上达500μs表示);施加时间内的脉冲频率(典型地例如以从10Hz向上达200Hz表示);和脉冲的形状或波形(例如,典型地,取决于治疗目标,正方形(矩形),或上升斜坡,或正弦曲线,或下降指数,或上升指数(参见图2))。
[0010] 以前的研究已经使用被动膜模型以分析波形形状对效率的影响。所有使用被动膜模型的以前的研究均已得出结论:能量最佳波形形状为上升指数型(Offner 1946;Fisher 2000;Kajimoti等,2004;Jezernik和Morari,2005)。
[0011] 然而,在更真实的模型和体内实验中,本发明人已经发现,上升指数波形证明并不比矩形波形、斜坡或衰减指数波形的能量效率高。事实上,在真实膜模型中,本发明人已经发现,由于定义模型中的兴奋性膜的方程的复杂性和非线性,因此不能通过分析确定能量最佳波形的形状。同样,因为可能波形形状的数量是无限的,因此检测每种可能波形形状的“强(brute force)”方法也不可行。

发明内容

[0012] 本发明的一个方面提供了结合最优化算法的体系和方法论,如将全局优化算法(例如遗传算法)结合至哺乳动物有髓鞘的轴突的细胞外刺激的计算模型,用于导出一组对于所需参数(如能量效率)经优化的刺激波形。
[0013] 本发明的一个方面提供了将遗传算法(GA)结合至哺乳动物细胞有髓鞘的轴突的细胞外刺激的计算模型的系统和方法论,用于导出一组对于能量效率最优化的刺激波形。本发明的此方面使得以系统方式产生和分析验证能量-优化波形形状成为可能。
[0014] 本发明的另一方面提供了包括一组使用特定设置的遗传算法(GA)优化的刺激波形的系统和方法论,所述优化的刺激波形在神经刺激过程中较常规波形更具能量-效率,以及在体内兴奋神经纤维方面较常规波形更具能量-效率。优化的GA波形也是电荷有效的。
[0015] 根据本发明导出的能量-效率最优化的刺激波形使得延长刺激器的电池寿命成为可能,从而降低充电频率、花费、更换电池的外科手术风险和可植入刺激器的体积。
[0016] 根据本发明的对于能量效率优化的一组刺激波形可以容易地应用于深部大脑刺激以治疗多种神经障碍,如帕金森氏症、运动障碍癫痫和精神异常(如强迫性-强迫行为障碍(obsessive-compulsion disorder)和抑郁),和其它适应症,如鸣。根据本发明的对于能量效率优化的一组刺激波形同样可容易地应用于其它类型的神经系统电刺激,包括但不限于:脑皮层刺激和脊髓刺激,以产生前述益处并治疗疾病或适应征,例如但不限于:帕金森氏症、特发性震颤、运动障碍、张力失常、癫痫、疼痛、耳鸣、精神障碍(例如强迫性强迫行为、抑郁和抽动秽语综合征(Tourette's syndrome))。附图说明
[0017] 图1A是刺激波形的第一示意图(振幅对时间),指示了假设的神经刺激串的刺激参数。
[0018] 图1B是刺激波形的第二示意图(功率对时间),指示了假设的神经刺激串的刺激参数。
[0019] 图2是用于神经刺激的典型的波形的示意图。
[0020] 图3是用于刺激中枢神经系统组织的系统的解剖图,其包括植入脑组织的连接至脉冲发生器的导线,所述脉冲发生器已使用刺激参数编程以提供通过将遗传算法(GA)结合至哺乳动物有髓鞘的轴突的细胞外刺激的计算模型对于能量效率优化的刺激波形。
[0021] 图4A至4C是图解示出了将遗传算法(GA)结合至哺乳动物有髓鞘的轴突的细胞外刺激的计算模型的操作的流程图
[0022] 图5A和5B是哺乳动物有髓鞘的轴突的细胞外刺激的计算模型的示意图,所述模型结合至遗传算法(GA)。
[0023] 图6A和6B图示说明了将遗传算法(GA)结合至哺乳动物有髓鞘的轴突的细胞外刺激的计算模型的单次试验的进行(刺激脉冲宽度(PW)=0.5ms),图6A是一系列示出跨代的波形形状变化和所指示的每代的能量效率最高的波形的图,而图6B是示出当向着共同的能量效率最优值收敛发生时跨越10000代的过程中,代的极小值和平均能量的图形。
[0024] 图7示出将GA结合至哺乳动物有髓鞘的轴突的细胞外刺激的计算模型产生的能量-优化刺激波形的曲线,对于不同的PW,曲线表示了跨越5个独立的试验产生的波形的平均值,并且灰色区域定义了95%置信区间,合并PW=1ms和2ms的波形,并且截去了最前和最后的低振幅尾巴。
[0025] 图8示出典型的输入/输出(I/O)曲线,所述曲线在包含一百(100)个均匀分布于3-mm直径的圆筒中的平行MGR轴突(11.5-μm直径)的群模型中评价GA波形的能量效率时产生。
[0026] 图9A至9C是图表,示出在有髓鞘的轴突细胞的细胞外刺激的计算模型中GA波形的能量效率。图9A示出用于激活50%轴突的能量-持续时间折线图(平均值+/-SE;n=10个100个轴突的不同的随机群),图9B示出GA波形与用于神经刺激的常规波形形状的能量效率的对比(平均值,n=10,SE可忽略)(“与GA波形的%差异”的正值表明GA波形更具能量效率),以及9C示出能量效率对电荷效率的折线图。
[0027] 图10A、10B和10C是GA波形对模型参数的的灵敏度折线图,图10A示出了对纤维直径(D)的灵敏度(曲线表示基于PW=0.1ms时跨越5次试验的GA波形的平均值),图10B和图10C示出了对霍奇金-赫胥黎(Hidgkin-Huxley)模型(偏斜(skewed)高斯曲线导致)的灵敏度(曲线表示跨越5次独立试验产生的波形的平均,灰色区域限定对于PW=0.2ms(b)和PW=
0.02ms(c)的95%置信区间)(振幅未标度)。另外,显示了GA波形对每个代群的波形数、每个代的存活的波形数、波形的平均起始振幅和突变率不敏感。显示了GA波形对dt的变化敏感(对短PW,较小的dt更具能量效率,而对较长PW,能量效率更低)。
[0028] 图11A和图11B示出了用于GA波形的体内评价的装置。
[0029] 图12A、图12B和图12C示出了使用GA波形进行神经刺激的能量效率的体内检测,图12A示出了产生50%的最大EMG的能量-持续时间曲线(平均+/-SE;n=3),图12B示出了GA波形与矩形波形和衰减指数波形的能量效率比较(平均+/-SE;n=3)(“与GA波形的%差异”的正值表明GA波形更具能量效率),以及图12C示出能量效率对电荷效率的折线图。
[0030] 图13示出了由改变阳极相的持续时间以及计时的双相GA波形而产生的能量最优化双相GA波形(曲线表示跨越5个GA试验的波形的阴极相平均值,移动波形以使峰对齐)。
[0031] 图14A至图14H示出了有髓鞘的轴突的群的细胞外刺激的模型中双相GA波形的能量效率,图14A和图14B为用于激活50%轴突的能量-持续时间曲线(平均值+/-SE;n=5个100个轴突的不同的随机群),图14C至图14H为GA波形与用于神经刺激的常规波形的能量效率对比(平均值+/-SE;n=5)(“与GA波形的%差异”的正值表明GA波形更具能量效率),附图显示对于PW阴极的≤0.2ms、0.05ms和0.05ms分别对于PW阳极的/PW阴极的=1、5和10,以阴极相起始的波形较以阳极相起始的波形更具能量效率(Fisher保护的最小显著性差异法(FPLSD):P﹤
0.0001);然而,对于PW阴极的≥0.5ms和0.2ms分别对于PW阳极的/PW阴极的=1和5,和0.1ms≤PW阴极的≤0.5ms和PW阳极的/PW阴极的=10(FPLSD:p﹤0.0001),以阳极起始的波形更具效率;且当PW阳极的/PW阴极的增加时能量效率提高(FPLSD:p﹤0.0001)。图14A至图14H示出了,与单相GA波形相比,双相GA波形能量效率较低,但当PW阴极的增加时能量效率的差异更低。
[0032] 优选实施方式的描述
[0033] I.系统概述
[0034] 图3是用于刺激中枢神经系统的组织的系统10。所述系统包括置于所需位置与中枢神经系统组织接触的导线12。在具体实施方式中,将导线12植入大脑一区域,如丘脑、丘脑底部或苍白球用以达到深部大脑刺激的目的。然而,应该理解,可将导线12植入至脊髓之中、之上或附近;或外周神经(感官神经或运动神经)之中、之上或附近,任何皮下组织之中如肌肉组织(包括心脏组织)或脂肪组织中用于选择性刺激的目的以达到治疗目的。进一步,当电极放置于皮肤外表面而非皮下时,导线12可用于经皮刺激。
[0035] 导线12的远端携带一个或多个电极14以向靶向组织区域施加电脉冲。电脉冲由连接至导线12的脉冲产生器16提供。
[0036] 在图示说明的实施方式中,将脉冲产生器16植入远离导线12的合适位置,如,肩膀区域。然而,应该意识到,可将脉冲产生器16放置于身体的其它区域或身体外部。
[0037] 当被植入后,脉冲产生器的壳体或外罩的至少一部分可作为参考或返回电极。可替代地,导线12可包括参考或返回电极(包含双极布置),或可被植入或附着在身体上的其他部位的分离的参考或返回电极(包括单极布置)。
[0038] 脉冲产生器16包括刺激产生电路,其优选包括载板(on-board)、可编程微处理器18,其可访问和/或携带嵌入式代码。代码表示在其下产生所需电刺激的预编程规则或算法,所需电刺激具有所需的电刺激参数(其同样可由微处理器18计算,并且分配至导线12上的电极14)。依照这些编程规则,脉冲产生器16将刺激通过导线12引导至电极14,其用作靶向组织区域的选择性刺激。代码可由临床医生编程、修改或选择以获得所需的特定生理反应。另外地或可替代地对于微处理器18,刺激产生电路可以包括可操作地产生具有所需刺激参数的电刺激的离散的电器元件。如图2所示,刺激参数可以包括脉冲振幅(例如以从10μA向上达10mA的范围表示);脉冲宽度(PW)或持续时间(例如以从20μs向上达500μs的范围表示);在时间期内施加的刺激脉冲的频率(例如以从10Hz向上达200Hz的范围表示);以及刺激脉冲的形状或波形。当与特定的治疗方案或适应症相关时,一个或多个参数可以是规定的或预定的。
[0039] 在图示说明的实施方式中,载板电池20为微处理器18和相关电路供电。目前,根据治疗失调所需的刺激参数,电池20必须每1至9年更换。当电池寿命耗尽时,更换电池需要另外的侵入性外科手术以接近植入的脉冲产生器。如即将进行的讨论,系统10使得若干益处之一,使电池寿命延长成为可能。
[0040] 如后续即将进行的更为详细的讨论,由脉冲产生器使用的可被规定的刺激参数与可被规定的常规的刺激参数不同,在其中通过使用诸如全局优化算法的优化算法对脉冲的波形形状进行了优化。用于优化电刺激波形的全局优化算法的实例是用于最优化对于神经刺激的波形的能量效率的遗传算法(GA)。使用对于能量效率最优化的波形形状降低了能量消耗,从而延长了电池寿命、缩小了所需电池体积和/或降低了电池更换频率。
[0041] 尽管以下说明主要基于遗传算法,但也可在神经刺激的计算模型中使用其它优化算法以最优化基于成本函数的刺激,其可以包括多种因素,如能量效率。可使用的其它优化算法包括,例如,模拟退火法、蒙特-卡罗方法(Monte-Carlo method)、其它进化算法、群算法(swarm algorithms)(例如,蚁群优化(ant colony optimization)、蜂群优化(bees optimization)、粒子群(particle swarm))、微分进化(differential evolution)、萤火虫算法(firefly algorithm)、入侵性杂草优化(invasive weed optimization)、和声搜索算法(harmony search algorithm),和/或智能滴(intelligent water drop)。
[0042] II.能量最优化波形(单相)
[0043] A.概述
[0044] 本发明人已在外周神经刺激的计算模型中执行了遗传算法,以确定用于神经刺激的能量最优化的波形形状。已在轴突群的计算模型以及外周神经纤维的体内刺激过程中将GA波形的能量效率与那些常规波形形状的能量效率进行了比较。
[0045] B.导出遗传算法
[0046] 1.通常
[0047] 遗传算法基于生物进化的原理寻找最优解。如图4A所示,第一代GA以候选解的群起始。图4A中,有两个候选刺激参数,每个参数具有不同的波形形式(上升斜坡和正方形)。候选解与自然生物体类似,并且表征每个候选解的刺激参数是其“基因”。
[0048] 接下来,如图4A进一步所示,使用针对优化问题特异性的成本函数评价每个解的适应性(fitness)。如后续将更为详细描述的,在单一的有髓鞘的哺乳动物的外周轴突的细胞外刺激的计算模型中评价适应性。每个候选解的适应性(n)以术语能量效率(Energyn)表示。
[0049] 如图4B所示,候选解之间相互“配对”,产生拥有亲代基因(即,刺激参数)组合的后代解,以及,及时地,已发生突变的后代的基因(不同的刺激参数值,优选地不出现于亲代中)。配对过程和突变过程的适应性加速对解空间的彻底搜索,以提高发现全局优化而非局部优化的几率。在每代之后,由后代部分地或完全地替代群。随着GA的进展,有益基因保留在群的基因池中同时不需要的基因被丢弃。
[0050] 如图4C所示,该过程—评价适应性、配对、以及替代解—在预定的代数(如10、20、50、100、200、500、1000、2000、5000、10,000或更多代)中重复,或直至解收敛、聚集,或解在来自适应性值的所需范围内。
[0051] 2.特定的遗传算法
[0052] 在单一的有髓鞘的哺乳动物的外周轴突的细胞外刺激的计算模型中运行特定的遗传算法(GA)以寻找能量最优化的波形形状,其在图5A和5B中所示。
[0053] 在NEURON(Hines和Carvevale 1997)中使用MRG模型(纤维直径=11.5μm)运行刺激,MRG模型将有髓鞘的哺乳动物的外周神经轴突表示为具有有限阻抗髓磷脂鞘和朗维埃氏结、节旁部分(paranodal)、节间部分的显式表示(explicit representation)的双索模型(double cable model)(McIntyre等,2002)(参见图5B)。刺激由位于传导介质(300Ω-cm)(McNeal 1976)中、定位于纤维中心节点垂直上方1mm处的电流调节点源递送。
[0054] C.得到GA波形
[0055] 图6A示出GA波形产生过程的结果的概述。
[0056] 对于每一代的GA,群由五十(50)个具有固定脉冲宽度(PW)的刺激波形组成。使用与计算模型相等的时间步长(dt=0.002ms),在时间上将波形离散化,且每个波形的基因在每一时间步长表示振幅。第一代波形的基因值随机选自从0至在等效PW下具有矩形波形刺激的阴极阈值(例如,对于PW=10μs为807μA;对于PW=100μs为190μA;对于PW=1ms为79.8μA)的二倍之间的均匀分布。
[0057] 用于评价每个波形适应性的成本函数(F)等于波形消耗的总能量(E)和如果波形无法得出(elicit)动作电位时的真实处罚(substantial penalty)的总和:
[0058] F=E+处罚 方程(1)
[0059]
[0060] 其中,P是瞬时功率,t是时间,I是瞬时电流,而N是刺激波形的离散(基因)数。如果波形得出了动作电位,那么惩罚等于0,但是如果波形未得出动作电位,那么惩罚等于1nJ/欧姆(比E大2至3个数量级)。
[0061] 在每一代结束时,最适合的前十(10)个波形(即,最小的F)保留在群中同时其它四十(40)个波形由后代替换。每个波形,不考虑其F值,具有与被选为亲代的相等概率,并且每个后代均使用两个杂交点将两个亲代的基因组合产生。杂交点是随机选择的基因位置(gene location),在配对过程中,来自一个亲代的、杂交点之前的基因,与来自另一个亲代的、杂交点之后的基因组合。具有两个杂交点,其效果为来自一个亲代的基因的一段与来自另一个亲代的基因的相应部分之间的交换。
[0062] 后代的每个基因通过从正态分布(μ=1,σ2=0.025)中选择的随机因子缩放(scaling)其值从而发生突变。由于起始波形为单相阴极脉冲,基因被限制为负值。
[0063] 使用宽范围的PW(0.02、0.05、0.1、0.2、0.5、1和2ms)运行GA以确定GA的结果是否随着PW发生变化。对于每个PW,GA均运行具有不同起始群的5个独立的10,000代试验。对于每个试验,记录下列数据:由每代中最具能量效率的波形消耗的能量(代能量);最终代的最具能量效率的波形(GA波形);和由GA波形递送的电荷(Q),其中:
[0064]
[0065] 针对每个PW,记录跨越5个独立试验中的由GA波形消耗的能量的平均值和标准误差以及电荷。
[0066] 在该特定的GA中,对于成本函数(F)唯一需要考虑的是能量效率和是否得出轴突的动作电位。然而,F还可使用除能量效率外的其它度量标准(measure),或作为F的唯一需要考虑的事项,或与其它度量标准结合。这些其它度量标准可以包括电荷效率、功率效率(即,波形的峰值功率)、最大电压或电流、刺激的治疗益处、不良反应、和刺激的选择性(即,激活一个由位置、尺寸、或其它群的无激活类型(type-without activation)定义的神经元群或纤维群)。F可以包括与每一度量标准相关的不同的权重,反映了每一度量标准的相对重要性。例如,F可同时考虑能量和电荷,并且对于给定的刺激的应用,能量的重要性是电荷的重要性的三倍。那么F=0.75E+0.25Q。因此,根据本发明的方法论可产生针对任何特定成本函数最优化的波形形状,其包括所需的成本参数。
[0067] D.产生的GA波形
[0068] 每个GA的试验以随机波形的不同群开始,但每次试验结束时,GA收敛于一致的且高度能量效率的波形形状(如图6A和图6B所示)。对于PW≤0.5ms,通过5000代,代能量收敛至最终代能量的1%以内,而对于PW=1ms和PW=2ms,通过9000代,代能量收敛至最终代能量的1%以内。如图7所示,对于每个PW,跨各试验的GA波形均非常相似,且跨各PW的GA波形的形状也非常相似。如图7所示,对于PW≤0.2ms,GA波形类似截断的高斯曲线,其峰值接近脉冲的中央。对于PW≥0.5ms,GA波形的形状同样类似高斯曲线,但具有可忽略振幅的前导和/或拖尾踪迹。
[0069] E.评价GA波形的能量效率
[0070] 1.群模型
[0071] (i)方法论
[0072] 在一百(100)个均匀分布于具有3-mm直径的圆筒中的平行MRG轴突(直径11.5-μm)的群模型中评估GA波形。通过定位于圆筒中央的点电流源递送细胞外刺激。对于每个PW(0.02、0.05、0.1、0.2、0.5、1和2ms),选择十(10)个随机定位的轴突的群。对于每个群,建立激活的纤维数对于E以及激活的纤维数对于Q的输入/输出(I/O)曲线(参见图8)。为调整波形的刺激振幅,对整个波形进行缩放。对于每个I/O曲线,计算用以激活整个群的50%所需的E和Q,并计算跨越十(10)个轴突群的以上各值的平均值和标准误差。使用相同的轴突群,计算用于神经刺激的对于常规波形的I/O曲线:矩形、上升斜坡/下降斜坡、上升/衰减指数和正弦曲线波形(参见附录对于常规波形的方程)
[0073] (ii)结果
[0074] (a)概述
[0075] 在群模型中,对于所有PW的GA波形均较常规刺激波形形状更具能量效率。GA波形的能量-持续时间曲线为上凹的(concave up)(参见图9A),而对于跨各PW的GA波形的最小E值低于对于常规波形形状的最小E值。这些其他形状中,与GA波形最相似的形状—正弦曲线—跨各PW具有最低的能量。对于PW≤0.2ms,GA波形仅比其它波形形状的能量效率略高(﹤20%)(参见图9B)。当PW=0.2ms和0.5ms之间时,GA波形与常规形状之间的能量效率的差显著增加,且所述差对于除指数波形之外的所有常规波形伴随PW增加而进一步增加。由于群模型中轴突的位置是随机化的,因此这些结果表明,GA波形的优异能量效率与电极相对于轴突的位置无关。同样,当能量对电荷作图时,GA波形较大多数波形形状更具能量效率。对于所有波形形状,E值对Q值的曲线均为上凹的(concave up)且曲线中的许多基本上重叠(参见图9C)。然而,对于GA波形和正弦曲线的曲线位于其它曲线之下,表明对于任何给定量的电荷,GA波形和正弦曲线波形较其它波形形状消耗较少的能量以达到阈值。
[0076] (b)GA波形灵敏度分析
[0077] 如图10A所示,能量最优化波形形状对GA的参数变化基本不敏感。将存活至下一代的波形数或每代中的波形数倍增或减半对GA波形的形状或它们的能量效率没有实质的影响(差﹤0.1%)。同样,起始代中波形的振幅被缩放至原始振幅的0.4至1.6倍、且缩放因子﹥0.8,对GA波形的形状和能量效率几乎没有影响(差﹤0.1%)。然而缩放因子﹤0.6,导致起始波形均低于阈值,且GA并不收敛于能量效率波形。进一步,突变中使用的正态分布的变化缩放至原始变化的0至4倍之间。当变化=0时(没有突变),GA快速收敛于低能量效率波形。然而,对于所有其它变化的值,GA产生了几乎同样的具有大致相同的能量效率(差﹤0.4%)的GA波形。
[0078] 如图10B所示,当dt在0.001ms至0.01ms之间变化时,尽管GA波形的形状仍然一致,但是能量效率确实发生了改变。较小值的dt产生波形形状的较优解(finer resolution),对于PW≤0.1ms,其产生能量效率更高的GA波形(|ΔE|﹤11%)。然而,对于PW≥1ms,改良解(improved resolution)也可导致更低能量效率的GA波形,其结果为在波形中产生更多噪音(|ΔE|﹤10.5%)。
[0079] 除了使用直径11.5μm的纤维之外,我们使用直径为5.7μm和16μm的纤维运行了GA。对于每一纤维直径产生的GA波形仍是相应模型中最具能量效率的波形,且在跨直径时其整体形状一致(参见图10A)。进一步,对于直径=11.5μm最优化的GA波形(参见图7)仍较对于另两个直径的激励的常规波形形状更具能量效率。
[0080] GA波形的形状和效率依赖于神经膜的模型。我们在由具有霍奇金-赫胥黎(Hodgkin-Huxley)膜参数的节点由电绝缘的有髓鞘的节间(myelinated internode)连接所构成的有髓鞘的轴突模型中运行了GA。此模型与MRG模型在几何学(如,没有节旁部分)和生理学(如:更低的温度、无持续的钠通道)均不同,但纤维直径和电极-纤维距离未改变。在霍奇金-赫胥黎模型中,对于PW≥0.05ms,霍奇金-赫胥黎模型中产生的GA波形如在MRG模型中仍保持单峰(unimodal)但是不对称(参见图10B)。然而,对于PW=0.02ms,来自两个模型的GA波形发散(参见图10C)。另外,当在霍奇金-赫胥黎模型中实验时,来自MRG模型的原始GA波形不能一致地较常规波形形状更具能量效率。
[0081] (c)用解析式(Analytical Equation)拟合GA波形
[0082] 为了获得对能量最优化波形精确形状的更好理解,将GA波形与分段(piece-wise)广义正态分布拟合:
[0083] 对于t≤μ,
[0084] 对于t﹥μ,
[0085] 其中,A是位于峰值处的振幅,定位于t=μ处;α和β分别为缩放比例(scale)参数和形状参数,且必须大于0且α和β优选小于无穷大;且下标对应于峰的左(L)和右(R)。当αL=αR且βL=βR时,函数关于μ对称,且β值表示波形的峰度(kurtosis)(即,峰态(peakedness))。当αL≠αR和/或βL≠βR时,可以产生不同程度的峰度和偏度(skewness)[参见对于方程的附录]。因此,可使用方程(4)产生能量最优化的电刺激波形。
[0086] 使用Matlab(R2007b;The Mathworks,Natick,MA)的lsq曲线拟合(lsqcurvefit)函数优化方程(4)的参数以拟合平均GA波形(即,如图7所示)。最小二乘优化的波形与能量-优化的波形拟合良好(R2﹥0.96)。跨各PW,经拟合的波形偏度较低(-0.5﹤偏度﹤0.5,其中偏度=0为完全对称),较正态分布(峰度=0)具有更尖锐的峰(峰度﹥0.55),且随着PW增加,经拟合的波形的峰度增加。
[0087] 同样运行经修正的GA,其中刺激波形用方程(4)表征替代用振幅在每一时间步长中表征。作为结果,所有波形均只由6个参数表征:A、μ、αL、αR、βL、和βR,且这些参数的起始值均随机选自均匀分布(A:介于0至以等效PW时矩形波形刺激的阴极阈值的四倍之间;μ:0-PW;α值:0.01-0.5;β值:0.01-3)。
[0088] 优选地,至少部分由方程(4)定义的波形是由微处理器产生或控制的,其对于指定的参数可接受不同的值。峰值电流振幅(A)随着刺激施加而改变,且在患者间可以不同,然而如前文所述,典型的范围为约10μA至约10mA。参数μ优选介于零(0)至刺激脉冲宽度(PW)之间。参数αL、αR、βL、和βR优选大于0且小于无穷大。对于单相GA波形的优选α和β值的一个的示例性组为α值的范围在约0.008毫秒至约0.1毫秒且β值的范围在约0.8至约1.8。然而,在不同情况下α和β值可能落在此范围之外,且这些值的变化可能与给定的纤维直径直接相关。
[0089] 由用该经修正的GA最优化产生的GA波形与由初始GA产生的波形没有实质性区别。波形的形状与跨所有PW(R2﹥0.93)的初始GA波形非常相似,并且对于PW≤0.5ms能量效率的改进非常有限(﹤2%)。然而,对于PW=1ms和PW=2ms,作为经修正的GA波形的平滑度和它们在尾部处达到振幅接近零的能力的结果,经修正的GA波形较初始GA波形更具能量效率(分别为5.6%和10.4%)。因此,利用此GA的能量-持续时间曲线不是如初始GA那样上凹的,相反,随着PW增加E保持恒定。
[0090] 2.体内试验
[0091] (i)手术准备
[0092] 所有动物的护理和实验过程由杜克大学实验动物护理和使用委员会(Institutional Animal Care and Use Committees of Duke University)核准并根据美国国家研究委员会(National Research Council)1996版The Guide to the Care and Use of Laboratory Animals进行。
[0093] 实验针对三只成年雄性猫实施。使用乙酰丙嗪(Vedco Inc.,0.3mg/kg;S.Q.)引起镇静反应,并使用盐酸开泰敏(开泰敏35mg/kg;I.M.(肌肉注射))进行麻醉,并在实验过程中使用α-氯糖(a-chloralose)(Sigma-Aldrich,Inc.,初始65mg/kg,补充15mg/kg;I.V.(静脉内))保持麻醉。对猫进行插管,并控制呼吸以维持CO2最终涨落(end tidal)为3-4%。监控核心温度并保持在39℃。通过头静脉递送盐水溶液和乳酸林格氏液(15ml/kg/hr,I.V.(静脉内))以维持体液水平。使用导管伸入颈动脉监测血压。
[0094] 经由后肢上部的内侧面上的切口接近坐骨神经。如图11A所示,将单极C型电极(其由嵌入聚基板中的铂触点组成)环绕神经放置并用缝合线在电极外部将其固定。返回电极为皮下针。将两个不锈金属丝电极插入腓肠肌内侧以测量刺激坐骨神经引发的肌动电流图(EMG)(参见图11B)。将EMG信号放大、过滤(1-3000Hz)、在500kHz时记录、调整,并积分以定量反应(EMG积分)。
[0095] 使用Labview(DAQ:PCI-MIO-16E-1)(National Instruments,Austin,TX)控制刺激并记录。以速率500ksamples/s将电压波形输出至线性电压电流转化器(bp isolator,FHC,Bowdoin,ME)并通过C型电极递送。放大(SR560,Stanford Research Systems,Sunnyvale,CA)并记录(fsample=500kHz)通过C型电极和返回电极的跨电压(V)(voltage across(V))和电流通量(current through)(I)。在刺激过程中递送的能量通过对V(t)和I(t)的乘积积分来确定:
[0096]
[0097] 使用上述方程(3)通过积分I(t)确定刺激过程中递送的电荷。
[0098] (ii)募集曲线(Recruitment Curves)
[0099] 对于矩形波形、衰减指数波形(时间常数[τ]=132、263、和526μs)、和GA波形在不同PW(0.02、0.05、0.1、0.2、0.5、和1ms)下以随机顺序测量作为E和Q的函数的矫正的EMG的积分的募集曲线。以实验过程内的频率间隔,以固定PW将矩形波形刺激提供至监视器迁移阈值。阈值迁移仅出现在一只动物中,并由此缩放E和Q的值。使用与计算模型类似的程序产生募集曲线:增大刺激振幅,每次增大1Hz递送三(3)个刺激脉冲,并记录平均的E值、Q值和EMG积分。来自每个募集曲线,计算产生最大EMG的50%所需的E和Q的值,并将矩形波形中在PW=0.02ms下的值定义为基线值。随后,所有的E值和Q值均归一化(normalized)至它们相应的基线值,并计算实验中的平均值和标准误差。
[0100] 在对数据进行对数转化后,分析波形形状对能量效率和电荷效率的影响。对效率的每次测量均进行二因子重复测量变异数分析(two-way repeated measure ANOVA);因变量为E或Q,而自变量为波形形状、PW(受试者内部因子)、和猫(受试者)。其中,发现波形形状和PW之间的相互作用显著相关(p﹤0.05),将数据以PW再分以用于单因子重复测量变异数分析。再次,因变量为E或Q,并且自变量为波形形状(受试者内部因子)和猫(受试者)。对于显示波形间的显著差异(p﹤0.05)的试验,使用费(Fisher's)保护的最小显著性差异(FPLSD)法进行此后的比较。尽管为了统计学分析将数据进行了对数转化,但是绘制了作为相对于GA波形的平均百分数差异的折线图。
[0101] (iii)结果
[0102] 对比了GA波形与矩形波形和衰减指数波形的效率的体内测量极大程度确证了群模型的结果。对于PW≥0.05ms,GA波形较多数矩形波形和衰减指数波形(p﹤0.05,FPLSD)(参见图12A和12B)更具能量效率。尽管对于PW≥0.05ms,τ=132μs的衰减指数型波形较GA波形更具能量效率,但这个结果是误导性的;对于长PW,对于指数波形增加PW容易延长低振幅拖尾,其对激励具有可忽略的影响。其结果,长PW时对于指数波形的能量-持续时间曲线变平,对于GA波形的能量-持续时间曲线随PW增加而增加,与群模型结果一致。当归一化E值对归一化Q值作图时,当归一化Q值﹥2时,GA波形似乎较矩形波形更具能量-效率(参见图12C)。然而,GA波形较衰减指数波形的能量效率没有显著提高。
[0103] III.能量最优化的波形(双相)
[0104] 原始GA显示了对于单相刺激的能量最优化的波形。然而,用于神经刺激的大多数波形为双向的。由于电荷恢复脉冲会影响初级脉冲(primary pulse)的阈值(van den Honert和Mortimer 1979),因此迄今为止仍不清楚单相GA波形对于双相刺激是否会保持能量最优化。第一,在单纤维模型中,增加矩形电荷平衡阳极相后重新计算了对于所有波形形状的阈值。改变持续时间(PW阳极的/PW阴极的=1、5、或10),如电荷平衡相的定时(前述或后述的阴极相)。将阳极相的振幅调节至对于整个波形产生零净余电荷,并由波形的两个相计算E值。
[0105] 双相的结果显示,针对单相刺激优化的GA波形在跨所有PW时并非是最具能量效率的。因此,修正GA以寻找能量最优化的双相波形形状。对于矩形电荷平衡阳极相的每一个持续时间和定时的组合(即,阴极相之前或之后),对于PW=0.02-1ms,运行五(5)次独立的GA试验以优化阴极脉冲的形状,并由波形的阳极相和阴极相二者计算E值。
[0106] 双相GA波形的形状随着阳极相的定时和持续时间而改变。多数波形仍然类似截断的正态曲线,但阴极相的峰远离阳极相发生位移(参见图13)。与单相GA波形一致,伴随PW阴极的增加,波形逐渐变得更平缓。阳极相相对于阴极相的持续时间影响产生的波形的峰度:阳极相越短,阴极相的峰越尖锐。然而,对于由阳极相起始的波形,当PW阳极的=1ms和PW阴极的=0.2ms或PW阴极的=0.1ms时,所产生波形的峰比预期的尖锐。令人惊奇地,对于每次试验,这些波形的两个峰均精确位于阳极脉冲之后0.086ms处。在刺激过程中,针对控参数(gating parameter)和膜电压的分析对于这种特殊形状没有任何明确解释。
[0107] 从群模型中随机选择五个群施加双相GA波形,并如在单相的情况下计算能量-持续时间曲线。双相GA波形以及常规波形的能量效率均依赖于阳极相的定时和持续时间(参见图14A和图14B)。利用如双相GA波形相同的持续时间和定时,将常规波形形状与矩形电荷平衡阳极相配对,并在群模型中计算这些波形的能量效率。双相GA波形始终比常规波形形状更具能量效率,并且伴随阳极相的持续时间的变化,能量效率之间的差别也发生变化。通常,随着PW阳极的/PW阴极的增加,双相GA波形形状与常规波形形状之间的能量效率的差异也减小(参见图14C至图14H)。同样,对于PW阳极的/PW阴极的=1,双相GA波形和常规波形之间的差异通常大于单相情况下它们之间的差异(图8),但对于PW阳极的/PW阴极的=10,该差异小于单相情况下的差异。
[0108] IV.结论
[0109] 本文中描述的遗传算法(GA)模拟生物进化,为神经刺激提供能量-效率最优化的波形形状。GA产生了高度能量效率的与截断的高斯曲线类似的GA波形。当在计算模型中测试并在外周神经刺激体内实验中确认时,GA波形较很多常规波形形状更具能量效率。对于长PW,能量效率的差异比对于短PW的更加显著。GA波形将延长植入式刺激器的电池寿命,并因此减少与电池更换相关的费用和风险,降低充电频率,并减小植入式刺激器的体积。
[0110] 随同能量效率一起,植入式设备的刺激电荷效率是重要的考虑因素。刺激脉冲过程中递送的电荷带来组织损伤的危险(Yuen等,1981;McCreery等,1990)。可将电荷效率以与反映每个因子相对重要程度的电荷和能量效率相关的权重结合至成本函数,F(方程(1))中。本文中描述的GA中的F未考虑电荷效率。然而,GA波形是兼具能量效率和电荷效率终止的(ended up)。
[0111] 在计算模型中,GA波形是最具能量效率的波形形状。所有五个GA的独立试验中针对每个PW均收敛至接近一致的形状并获得了类似水平的能量效率。另外,所有GA波形类似截断的高斯曲线,且GA的参数的改变对输出没有实质性的影响。
[0112] 之前已有对非-GA高斯曲线或正弦曲线的能量效率的研究。Sahin和Tie(2007)在哺乳动物有髓鞘的轴突的计算模型(Sweeney等,1987)中发现,高斯曲线和正弦函数波形在数个常规波形形状中阈值能量最低。然而,与本文中描述的GA波形不同,高斯曲线和正弦曲线波形在所有PW范围中并非是最具能量效率的波形。Qu等(2005)针对兔心脏进行了体外实验,并发现使用Gurvich(双相正弦曲线)波形在达到心脏除颤所需的能量显著低于使用双相衰减指数波形或矩形波形。Dimitrova和Dimitrov(1992)在无髓鞘的霍奇金-赫胥黎轴突的模型中发现,类似突触后电位(偏斜高斯曲线)的波形较矩形波形更具能量效率。尽管先前的这些研究显示,正弦曲线、高斯曲线、或偏斜高斯曲线较其它波形形状更具能量效率,然而未证明这些非-GA波形是能量最优化的。
[0113] 具有代表分段广义正态分布(方程(4))参数的基因的GA并未产生具有显著不同形状的GA波形。然而,波形更平滑,且对于长PW尾值更接近于零。这些差异改进了原始GA波形的能量效率,特别是针对长PW。作为结果,能量-持续时间曲线不再是如原始GA中的上凹(参见图8),相反随PW增加,E值不再增加。此结果与预期更为一致;一个可以预期的是在给定PW下,GA可产生在较短PW下产生的、以尾值为零振幅限定的任何波形。因此,随着PW的增加,E应该更为平整(level off)或降低。
[0114] MRG轴突与霍奇金-赫胥黎轴突的不同特性导致这两种模型中产生的遗传优化的波形的不同性(dissimilarities)。两种模型之间不仅在离子通道动力学方面有实质性差异,而且霍奇金-赫胥黎轴突缺少节旁部分,这两个因素均可能导致GA波形产生差异。然而,由于控制膜电压的方程的非线性和复杂性,很难精确指出(pinpoint)轴突模型的哪个特性是变化结果的主要原因。在其中特定的几何学参数和生理学参数均系统地变化的模型中进行的额外GA试验可确定能量最优化波形如何伴随模型参数而变化。因此,GA近似可以确定对于给定模型或系统的能量最优化波形形状,但在每种情况下最优形状可以互不相同。
[0115] 双相GA波形显示与单相GA波形的诸多相似性。两组GA波形均较常规波形形状更具能量效率且为单峰形。然而,双相GA波形的峰度和峰位置与单相GA波形不同。阳极相对于钠通道的作用解释了双相GA波形的不同形状之间的差异。阳极相使膜超极化,使钠通道的m-门(m-gates)去激活且h-门(h-gates)失活。当首先递送阴极相时,峰远离阳极相发生迁移,以较单相的情况下更早地激活钠通道,从而抵消由阳极相产生的去激活作用。当首先递送阳极相时,峰远离阳极相发生位移以使钠通道的m-门(m-gate)回到基线。单相GA波形和双相GA波形之间的差异对于短PW阳极的较对于长PW阳极的更大。随着PW阳极的增加,阳极相的振幅降低,阳极相对于膜电压和钠通道的影响减少。因此,双相GA波形开始在形状和能量效率方面均类似于单相GA波长
[0116] 之前的说明描述了用于兴奋外周神经纤维的能量效率和电荷效率。尽管如此,GA波形的技术特征仍涉及刺激神经系统的其它部分。在脊髓刺激过程中,刺激的目标被认为是轴突(Coburn 1985;Struijk等,1993;Struijk等,1993),并且目前的发现可能是可以应用的。此外,我们的结果对肌肉刺激也是有效的,其中刺激的目标为运动神经轴突(Crago等,1974)。由于在脑皮层刺激(Nowak和Bullier 1998;Manola等,2007)和深部大脑刺激(McIntyre和Grill 1999)中,刺激的目标被认为是轴突,因此对于如本文中描述的GA波形的技术特征同样可与大脑的刺激相关。
[0117] GA波形可充分地延长植入式刺激器的电池寿命。例如,用于深部大脑刺激的刺激器,使用常规波形时刺激器可持续大约36-48个月(Ondo等,2007)。在过去的30年中,设备必须更换约8-10次。在临床相关的PW的范围中(约0.05-0.2ms),GA波形的能量效率较临床上使用频率最高的矩形波形或指数衰减波形的能量效率升高大约60%(Buston和McIntyre 2007)。60%的能量效率的提高可延长电池寿命超过21个月。作为结果,在30年的时间内仅必须更换设备约5-6次。
[0118] 本文中所描述的GA并不考虑植入式刺激器的电子线路所消耗的能量。可使用简单的类似线路产生的刺激波形所消耗的能量可以少于需要多个有源部件的波形的能量。如果线路的能量消耗也被结合至GA,则该算法可能产生不同的波形形状。
[0119] 本发明的多个特征将在随附的权利要求中阐明。
[0120] 附录
[0121] 1.常规波形形状
[0122] 测量了神经刺激中使用的常规波形的阈值,包括:矩形、上升/下降斜坡、上升/衰减指数、以及正弦波。对于所有形状,在t=0时施加刺激且在t=PW时停止。利用矩形波形的刺激电流的方程为
[0123] Istim(t)=Ks*[u(t)-u(t-PW)] 方程(6)
[0124] 其中Ks是电流振幅,t是时间,u(t)是单位步长函数。对于上升斜坡和下降斜坡的方程分别为
[0125] Istim(t)=Kr*t*[u(t)-u(t-PW)] 方程(7)
[0126] Istim(t)=Kr(PW-t)*[u(t)-u(t-PW)] 方程8
[0127] 其中Kr是斜坡的斜率的大小。对于上升指数和衰减指数波形的方程分别为[0128] Istim(t)=Keet/τ*[u(t)-u(t-PW)] 方程(9)
[0129] Istim(t)=Kee(PW-t)/τ*[u(t)-u(t-PW)] 方程(10)
[0130] 其中对于方程(9),Ke是t=0时的振幅,而对于方程(10),Ke是t=PW时的振幅。在计算模型中,τ等于263μs。对于正弦波的方程为
[0131]
[0132] 其中Ksin是正弦波的振幅。注意在一个脉冲中,正弦波的一个周期只有一半递送。
[0133] 2.分段广义正态分布的偏度(Skewness)和峰度(Kurtosis)
[0134] 为了定量GA波形的形状,将波形与分段广义正态分布f(t)(4)相拟合,并计算偏度和峰度。首先,在t=0时,峰为关于中心的:
[0135] τ=t-μ 方程(12)
[0136] 然后,将f(τ)标准化,使得时间从-∞至+∞的积分等于1:
[0137] F(τ)=f(τ)/N 方程(14)
[0138] 接着,计算分布的平均值和方差:
[0139]
[0140]
[0141] 最后,由这些方程计算偏度和峰度:
[0142]
[0143]
[0144] 参考文献
[0145] Butson,C.R.and C.C.Mclntyre 2007"Differences among implanted pulse generator waveforms cause variations in the neural response to deep brain stimulation."Clin Neurophysiol 118(8):1889-94.
[0146] Coburn,B.1985"A theoretical study of epidural electrical stimulation of the spinal cord--Part II:Effects on long myelinated fibers."IEEE Trans Biomed Eng 32(11):978-86.
[0147] Crago,P.E.,P.H.Peckham,J.T.Mortimer and J.P.Van der Meulen 1974"The choice of pulse duration for chronic electrical stimulation via surface,nerve,and intramuscular electrodes."Ann Biomed Eng 2(3):252-64.
[0148] Dimitrova,N.A.and G.V.Dimitrov 1992"Effect of stimulus(postsynaptic current)shape on fibre excitation."Gen Physiol Biophys 11(1):69-83.
[0149] Fishier,M.G.2000"Theoretical predictions of the optimal monophasic and biphasic defibrillation waveshapes."IEEE Trans Biomed Eng 47(1):59-67.[0150] Hines,M.L.and N.T.Carnevale 1997"The NEURON simulation environment."Neural Comput 9(6):1179-209.Jezernik,S.and M.Morari 2005"Energy-optimal electrical excitation of nerve fibers."IEEE Trans Biomed Eng 52(4):740-3.[0151] Kajimoto,H.,N.Kawakami and S.Tachi 2004"Optimal Design Method for Selective Nerve Stimulation."Electronics and Communications in Japan,Part 3 87(9):62-72.
[0152] Manola,L.,J.Holsheimer,P.Veltink and J.R.Buitenweg 2007"Anodal vs cathodal stimulation of motor cortex:a modeling study."Clin Neurophysiol 118(2):464-74.
[0153] McCreery,D.B.,W.F.Agnew,T.G.Yuen and L.Bullara 1990"Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation."IEEE Trans Biomed Eng 37(10):996-1001.
[0154] Mclntyre,C.C.and W.M.Grill 1999"Excitation of central nervous system neurons by nonuniform electric fields."Biophys J 76(2):878-88.
[0155] Mclntyre,C.C,A.G.Richardson and W.M.Grill 2002"Modeling the excitability of mammalian nerve fibers:influence of afterpotentials on the recovery cycle."J Neurophysiol 87(2):995-1006.
[0156] McNeal,D.R.1976"Analysis of a model for excitation of myelinated nerve."IEEE Trans Biomed Eng 23(4):329-37.Nowak,L.G.and J.Bullier 1998"Axons,but not cell bodies,are activated by electrical stimulation in cortical gray matter.I.Evidence from chronaxie measurements."Exp Brain Res 118(4):477-88.[0157] Offner,F.1946"Stimulation with Minimum Power."J Neurophysiol 9:387-390.
[0158] Ondo,W.G.,C.Meilak and K.D.Vuong 2007"Predictors of battery life for the Activa Soletra 7426 Neurostimulator."Parkinsonism Relat Disord 13(4):240-2.Qu,F.,F.Zarubin,B.Wollenzier,V.P.Nikolski and I.R.Efimov 2005"The Gurvich waveform has lower defibrillation threshold than the rectilinear waveform and the truncated exponential waveform in the rabbit heart."Can J Physiol 
Pharmacol 83(2):152-60.
[0159] Sahin,M.and Y.Tie(2007).Non-rectangular waveforms for neural stimulation with practical electrodes.J.Neural Eng.4:227.
[0160] Struijk,J.J.,J.Holsheimer,G.Barolat,J.He and H.B.K.Boom 1993"Paresthesia thresholds in spinal cord stimulation:a comparison of theoretical results with clinical data."IEEE Trans Rehabil Eng 1(2):101-108.
[0161] Struijk,J.J.,J.Holsheimer and H.B.Boom 1993"Excitation of dorsal root fibers in spinal cord stimulation:a theoretical study."IEEE Trans Biomed Eng 40(7):632-9.
[0162] Sweeney,J.D.,J.D.Mortimer and D.Durand(1987)."Modeling of mammalian myelinated nerve for functional neuromuscular stimulation."IEEE/Ninth Annu.Conf.Eng.Med.Biol.Sci.,Boston,MA.
[0163] van den Honert,C.and J.T.Mortimer 1979"The response of the myelinated nerve fiber to short duration biphasic stimulating currents."Ann Biomed Eng 7(2):117-25.Yuen,T.G.,W.F.Agnew,L.A.Bullara,S.Jacques and D.B.McCreery 1981"Histological evaluation of neural damage from electrical stimulation:considerations for the selection of parameters for clinical application."Neurosurgery 9(3):292-9.
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈