首页 / 专利库 / 物理 / 辐射 / 电离辐射 / 具有可冷却的能量发射组件的递送装置

具有可冷却的能量发射组件的递送装置

阅读:779发布:2021-07-13

专利汇可以提供具有可冷却的能量发射组件的递送装置专利检索,专利查询,专利分析的服务。并且用于 消融 、破坏或以其它方式影响组织的系统、递送装置和 治疗 方法。该治疗系统能够递送可冷却的消融组件,该消融组件能够消融靶组织而不破坏非靶组织。该可冷却的消融组件能够破坏神经组织,从而暂时或永久地减少神经系统输入。,下面是具有可冷却的能量发射组件的递送装置专利的具体信息内容。

1.递送装置,包括消融组件,
所述消融组件包括电极,所述电极被设置成能够输出能量以消融气道的靶组织,所述电极在第一方向和第二方向间是可移动的,在所述第一方向上所述电极沿所述气道轴向延伸,在所述第二方向上整个电极安装在所述气道的邻近的软骨环间的空间中。
2.如权利要求1所述的递送装置,其中所述消融组件包括用于冷却气道组织的可张开元件,并且所述可张开元件被设置成当其展开时能够致使所述电极位于所述邻近的软骨环之间。
3.如权利要求1所述的递送装置,其中在所述第一方向上,所述电极与所述消融组件的纵轴成一定的度。
4.如权利要求所述1的递送装置,其中当所述电极从所述第一方向向所述第二方向移动时,所述电极向周围延伸的方向移动。
5.如权利要求1所述的递送装置,其中在所述第一方向上所述电极在所述消融组件的纵轴方向上延伸的距离大于在所述第二方向上所述电极在所述消融组件的纵轴方向上延伸的距离。
6.递送装置,包括:
可展开元件,其能够在收缩状态和张开状态之间移动;以及
软骨间能量发射器组件,其位于所述可展开元件的至少一部分的周围,所述能量发射器组件的至少一部分相对于处于张开状态的所述可展开元件是可移动的,以促使所述能量发射器组件的电极处于支气管树气道壁邻近的软骨环间。
7.如权利要求6所述的递送装置,其中所述能量发射器组件能够从递送配置向展开配置移动,处于展开配置的所述能量发射器组件被设置成挤压所述气道壁,从而将所述电极移动至邻近的软骨环之间的软骨间空间,并且处于张开状态的所述可展开元件保持所述能量发射器组件处于展开配置。
8.如权利要求6所述的递送装置,其中所述能量发射器组件的至少一部分相对于所述可展开元件是可移动的,使得所述电极能够沿所述可展开元件移动并且移动至软骨间空间。
9.如权利要求6所述的递送装置,其中所述能量发射器组件从所述可展开元件向外径向突出。
10.如权利要求6所述的递送装置,其中所述电极从所述可展开元件处于收缩状态的第一方向向所述可展开元件处于张开状态的第二方向旋转,所述电极与所述纵轴的角度在所述第一方向上比在所述第二方向上小。
11.如权利要求6所述的递送装置,其中所述能量发射器组件的电极被设置成当所述可展开元件张开时向软骨间空间的位置移动。
12.如权利要求11所述的递送装置,其中当所述可展开元件处于张开状态时,所述能量发射器组件的电极安装在这样的虚拟平面中,该虚拟平面与连接于所述可展开元件的长型杆件的纵轴基本垂直。
13.递送装置,包括:
消融组件,包括能量发射器组件和可膨胀冷却囊,所述能量发射器组件包括冷却通道,所述可膨胀冷却囊包括冷却室;以及
长型杆件,其设置成独立地将第一流体递送至所述冷却通道并且将第二流体独立地递送至所述冷却室。
14.如权利要求13所述的递送装置,其中所述能量发射器组件包括电极,所述电极被设置成消融靶组织而不破坏所述电极和所述靶组织间的非靶组织,同时所述第一流体通过所述冷却通道流动并且所述第二流体通过所述冷却室流动。
15.如权利要求14所述的递送装置,其中所述能量发射器组件被设置成输出射频能量、声波能量、电离辐射微波能量和电能中的至少一种。
16.如权利要求13所述的递送装置,其中所述长型杆件包括:
第一递送腔,其用于将所述第一流体递送至所述冷却通道;以及
第二递送腔,其用于将所述第二流体递送至所述冷却室。
17.如权利要求16所述的递送装置,其中所述长型杆件包括:
第一返回腔,其用于将所述第一流体从所述冷却通道递送至所述长型杆件的近端;以及
第二返回腔,其用于将所述第二流体从所述冷却室递送至所述杆件的近端。
18.如权利要求16所述的递送装置,还包括与所述第一递送腔和所述第二递送腔连接的流体递送系统,所述流体递送系统能够在不同于所述第二流体的温度的温度下输出所述第一流体。
19.如权利要求18所述的递送装置,还包括与所述流体递送系统通讯连接以及与所述消融组件的传感器通讯连接的控制器,所述控制器被设置成基于来自所述传感器的至少一种信号来控制所述流体递送系统。
20.如权利要求19所述的递送装置,其中所述控制器被设置成进行差别冷却程序,从而使得递送所述第一流体的温度显著不同于递送所述第二流体的温度。
21.如权利要求13所述的递送装置,其中所述可膨胀冷却囊通过所述能量发射器组件的电极的近端和远端延伸,使得当所述冷却囊膨胀时,所述电极保持邻近所述气道壁。
22.如权利要求21所述的递送装置,其中所述可膨胀冷却囊界定了通气通道,当所述可膨胀气囊张开时,呼出的气流和吸入的气流能够通过所述通气通道流动。
23.递送装置,包括:
长型杆件;以及
消融组件,其与所述长型杆件连接且包括电极,所述电极能够发射消融能量且具有第一端、第二端和所述第一端和所述第二端之间的主体,所述第一端和所述第二端的至少一端被消融能量绝缘体覆盖
24.如权利要求23所述的递送装置,其中所述消融能量绝缘体的第一部分覆盖所述第一端且所述消融能量绝缘体的第二部分覆盖所述第二端,并且所述电极的主体在所述第一部分和所述第二部分之间延伸。
25.如权利要求23所述的递送装置,其中所述电极为管状,所述消融能量绝缘体包括用于向所述电极或从所述电极递送冷却剂的冷却剂管。
26.如权利要求23所述的递送装置,其中所述电极的主体呈弧形。
27.治疗系统,包括:
递送装置,其被设置成向邻近所述递送装置的第一组织表面递送能量来破坏组织的靶区域,使得界定所述靶区域最大横截面宽度的所述靶区域部分与所述第一组织表面分离。
28.如权利要求27所述的治疗系统,其中所述递送装置包括能够破坏组织的能量发射器组件,使得所述靶区域的最大横截面宽度距所述第一组织表面的深度为至少2mm。
29.如权利要求28所述的治疗系统,其中所述递送装置包括组织保护器和能量发射装置,二者配合破坏所述靶区域的组织,使得所述靶区域在比所述组织中的平滑肌组织区域更深的深度处具有最大的宽度。
30.如权利要求29所述的治疗系统,其中所述组织保护器是可膨胀元件,所述可膨胀元件被设置成含有冷却剂以冷却所述靶区域外部的组织。
31.如权利要求27所述的治疗系统,其中所述递送装置具有输出能量以破坏组织的电极,使得所述受损组织的大部分体积位于气道壁的平滑肌组织区域之外。
32.如权利要求27所述的治疗系统,其中所述递送装置能够冷却所述组织以限制对所述平滑肌组织的破坏,使得对平滑肌组织的破坏,如果有的话,小于基本改变所述气道的反应性或收缩性所需的破坏。
33.如权利要求27所述的治疗系统,其中所述递送装置包括组织保护器,所述组织保护器被设置形成组织的保护区域,其中所述组织的大部分未被永久破坏,并且其中所述组织的保护区域在所述靶区域和所述递送装置之间。
34.如权利要求33所述的治疗系统,其中所述递送装置被设置成不会永久性破坏能量所通过的所述保护区域中的大部分组织。
35.如权利要求27所述的治疗系统,其中所述递送装置包括具有电极宽度的电极,所述电极被设置成输出能量,使得所述靶区域的横截面宽度不大于所述第一表面上的所述电极宽度的约150%。

说明书全文

具有可冷却的能量发射组件的递送装置

[0001] 相关申请的交叉引用
[0002] 本申请根据35U.S.C.§119(e)要求2009年10月27日提交的美国临时专利申请第61/255,367号以及2009年11月11日提交的美国临时专利申请第61/260,348号的权益。这两个临时专利申请均通过引用整体合并入本文。
[0003] 背景

技术领域

[0004] 本申请通常涉及用于治疗组织的系统、设备和方法,更具体而言,本申请涉及具有用于激发所需反应的可冷却能量发射组件的递送装置的系统或治疗系统。
[0005] 相关技术的描述
[0006] 病可能导致诸多对肺部造成不利影响的问题。肺病诸如哮喘和慢性阻塞性肺病(“COPD”),可能会导致肺部的气流阻提高。死亡率、健康相关的成本、由于肺病导致的不利影响的人口规模都是可观的。这些疾病往往对生活质量造成不利影响。肺病的症状是多种多样的,但通常包括咳嗽、呼吸困难及气喘。例如,在COPD中,呼吸困难可能会在当进行一些剧烈的活动,如跑步、慢跑、快走等时被注意到。随着病情的发展,呼吸困难在进行诸如散步的非剧烈活动时会被注意到。随着时间的推移,COPD的症状可能会伴随着越来越小的活动量而出现,直到这些症状在所有的时间中都会出现,从而严重地限制人完成正常活动的能力。
[0007] 肺病经常的特点是气道腔堵塞梗阻、气道壁增厚、气道壁内或周围结构的改变或以上的组合。气道阻塞可以显着降低肺部的气体交换量从而造成呼吸困难。气道腔的堵塞可由过度的腔内粘液或肿液体或两者引起。气道壁增厚可能是由气道平滑肌过度收缩、气道平滑肌肥大、粘液腺增生、炎症、水肿或以上的组合引起。气道周围的结构变化,如肺组织本身破坏,可能导致气道壁的径向收缩的丧失和随后的气道狭窄。
[0008] 哮喘的特征为气道平滑肌收缩、平滑肌肥大、粘液分泌过多、粘液腺增生和/或气道的炎症及肿胀。这些异常是局部炎性细胞因子(由位于气道壁内或附近的免疫细胞在局部释放的化学物质)、吸入的刺激物(如,冷空气、烟雾、过敏原或其他化学物质)、全身激素(血液中的化学物质,如抗炎皮质醇和兴奋剂肾上腺素)、局部神经系统输入(完全包含在气道壁中的能够产生平滑肌细胞及粘液腺的局部反射刺激的神经细胞)以及中枢神经系统输入(从大脑通过迷走神经向平滑肌细胞及粘液腺传导的神经系统信号)的复杂相互影响的结果。这些条件往往会导致广泛的临时组织改变和最初的可逆性气流阻塞,这些最终可能导致永久性组织改变和永久性气流阻塞,这使得哮喘患者呼吸困难。哮喘可以进一步包括通过显著增加气流阻力的超反应气道平滑肌收缩而引起的气道进一步变窄的急性发作或攻击。哮喘症状包括反复发作的呼吸困难(例如,气短或呼吸困难)、气喘、胸闷和咳嗽。
[0009] 肺气肿是慢性阻塞性肺病的一种类型,其特征为肺部气道周围或邻近的肺组织的改变。肺气肿涉及肺组织(如肺泡组织,诸如如肺泡囊)的破坏,这导致气体交换的减小以及周围肺组织施加气道壁的径向收缩的减小。遭到破坏的肺泡组织留下过大的空域,在这里缺乏肺泡壁和肺泡毛细血管并因此导致气体交换失效。空气“被困”在这些较大的空域中。这种“被困”的空气可能会导致肺的过度膨胀并在胸的范围中限制了富含气的空气的内流和健康组织的正常功能。这导致了显著的呼吸困难,并可能导致血液中氧水平降低和二氧化水平升高。即使在健康个体中,这种类型的肺组织破坏作为正常老化过程的一部分而发生。不幸的是,暴露于化学物质或其他物质(如烟草烟雾)可显著加快组织损伤或破坏的速度。气道阻塞可进一步增加呼吸困难。径向收缩的减弱可能引起气道壁变得“松弛”,这样在呼气时气道壁部分地或完全完全塌陷。肺气肿患者可能无法向肺外呼出空气,这是由于呼气时的这种气道塌陷及气道阻塞。
[0010] 慢性气管炎是COPD的一种类型,其特征为气道平滑肌收缩、平滑肌肥大、粘液分泌过多、粘液腺增生和气道壁炎症。与哮喘类似,这些异常是局部炎性细胞因子、吸入刺激物、全身激素、局部神经系统和中枢神经系统的复杂相互作用的结果。与其中呼吸阻塞很大程度上是可逆的哮喘不同,慢性支气管炎的气道梗阻主要是慢性且永久性的。通常对于慢性支气管炎患者,呼吸是困难的,这是因为气短、气喘、胸闷以及粘液导致的咳嗽的慢性症状。
[0011] 不同的技术可以用来评估肺病的严重程度和进程。例如,肺功能测试、运动能力和生活质量问卷被经常用来评价受试者。肺功能检查涉及基本的生理肺参数的客观和可重复性的测量,如总气流、肺容积和气体交换。用于评估慢性阻塞性肺病的肺功能测试指标包括1秒用力呼气体积(FEV1)、用力肺活量(FVC)、FEV1与FVC的比值、总肺活量(TLC)、气道阻力和动脉血气体测试。FEV1是患者肺部完全充满空气时开始的用力呼气第一秒内所呼出的空气体积。FEV1也是发生在用力呼气的第一秒内的平均流量。此参数可用于评估和确定是否存在任何气道阻塞和影响。FVC是患者肺部完全充满空气时开始的用力呼气第一秒内所呼出的空气总体积。FEV1/FVC是在第一秒内用力呼出时所呼出的全部气体的一部分。在给予至少一种支气管扩张剂后,FEV1/FVC比值小于0.7,这确定了COPD的存在。TLC是当肺部完全充满时肺中气体的总量,并且TLC在阻塞性肺病患者的肺内捕获空气时可能会增加。气道阻力被定义为肺泡与口之间的压力梯度与肺泡与口之间的气流速度的比。同样,一个给定的气道的阻力被定义为经过该给定气道的压力梯度与经过该气道的气流的比。动脉血液气体测试测量血液中的氧气的量和二氧化碳的量,并是评估肺部和呼吸系统将氧气从空气中带入血液并将二氧化碳从血液带出体外这种能力的最直接的方法。
[0012] 运动能力测试是对患者执行活动的能力的客观且可重复的检测。六分钟步行试验(6MWT)是一种运动能力测试,其中患者在6分钟内在平坦的表面上尽可能多地行走。另一种运动能力测试涉及测量患者的最大运动能力。例如,医生可以测量患者在踏车测力计上能够产生的功率的量。患者可呼吸30%的氧气且工作负载可以每3分钟增加5-10瓦。
[0013] 生活质量问卷评估患者的整体健康和幸福。圣乔治呼吸问卷是一种生活质量问卷,其包括75个问题,旨在衡量阻塞性肺病对总的健康状况、日常生活和感知幸福的影响。肺病的治疗效果可以使用肺功能测试、运动能力测试和/或问卷进行评估。可以在这些测试和/或问卷的结果的基础上修正治疗方案
[0014] 诸如支气管热整形术的治疗涉及通过消融肺内众多支气管分支的气道壁来破坏平滑肌张力,由此消除肺部气道壁中的平滑肌和神经。治疗的气道无法顺利应答吸入的刺激物、全身激素以及局部和中枢神经系统输入。不幸的是,在气道壁的平滑肌张力和神经的这种破坏由此可能会对肺性能产生不利影响。举例来说,吸入的诸如烟雾或其他毒性物质的刺激物,通常刺激肺刺激性受体以产生咳嗽和气道平滑肌收缩。消除气道壁中的神经去除了局部的神经功能和中枢神经输入,从而消除了肺通过强烈咳嗽来呼出毒性物质的能力。消除气道平滑肌张力可能消除呼吸道的收缩能力,从而允许诸如毒性物质的有害物质更深地渗透入肺中。
[0015] 哮喘和COPD是严重的疾病,其患者越来越多。目前的处理技术,包括处方药,既不完全成功也非无副作用。此外,许多患者不遵守其药物处方剂量规范。因此,需要提供能够改善气流阻力而不需要患者依从性的治疗。
[0016] 简要说明
[0017] 在一些实施方案中,治疗系统可以穿过气道(例如肺根的右和左主支气管以及肺中更远端的气道),以治疗多种肺部症状、状况和/或疾病,包括但不限于哮喘、COPD、阻塞性肺病或能导致肺中气流阻力增加的其他疾病。可伸缩消融组件可以方便地通过气道。消融组件的能量发射器组件能够治疗一个或多个靶位点而不会对非靶向位点进行治疗。即使主支气管、肺叶支气管、肺段支气管或亚段支气管的目标解剖学特征(例如神经、腺体、膜等)受到治疗,非靶向的解剖学特征也基本上不变。例如,治疗系统可以破坏位于靶位点的神经组织而不对非靶位点造成任何显著程度的破坏,非靶向组织在处理后能保持其功能。能量发射器组件是可冷却的以避免或限制对非靶向组织的破坏。
[0018] 在一些实施方案中,用于治疗个体的系统包括递送装置,其被设置成沿着支气管树的气道腔移动。递送装置能够形成损伤以减弱由神经组织(诸如神经干的神经组织)传导的信号,同时不对非靶向特征(诸如气道的内表面或平滑肌)造成任何显著程度的不可逆的破坏。递送装置可以包括具有至少一个消融组件的远端。
[0019] 在一些实施方案中,消融组件能够从用于递送的低级配置向用于治疗靶区域组织的展开配置移动。消融元件能够被启动以消融组织。每个消融元件可以包括可操作用于输出超声、电能、和/或射频(RF)能量的一个或多个电极。在某些实施方案中,每个电极为流体可冷却的电极。
[0020] 在其它实施方案中,递送装置为具有可伸缩能量发射器组件的导管。可张开元件或其它偏置元件向气道壁按压能量发射器组件。能量发射器组件递送能量至靶组织。在某些实施方案中,能量发射器组件和可张开元件同时张开。在其它实施方案中,在能量发射器组件展开之前或之后,张开所述可张开元件。
[0021] 在一些实施方案中,方法包括破坏第一主支气管的神经组织,从而基本上防止神经系统信号传导至与所述第一主支气管连接的几乎所有的远端支气管分支。在一些实施方案中,治疗第一主支气管远端的大部分或全部的支气管分支。在某些实施方案中,受破坏的神经组织位于支气管分支在其中延伸的气管和肺之间。所述方法还可以包括破坏第二主支气管的神经组织,从而基本上防止神经系统信号传导至与所述第二主支气管连接的几乎所有的远端支气管分支。
[0022] 至少一些实施方案能够通过使用射频消融产生损伤来切断肺支气管的神经。消融贯穿右和左主支气管外部的神经干能有效地将衬在肺气道内部的气道平滑肌和位于气道的产粘液腺体与迷走神经和中枢神经系统断开。如果发生这种情况,则气道平滑肌松弛,且粘液产生下降。这些变化降低疾病状态(诸如COPD和哮喘)下的气道阻塞。降低的气道阻塞使呼吸更容易,这能够改善患者的生活质量和健康状况。
[0023] 使用差别温度控制能够使损伤成形并改变。差别温度控制可以包括独立冷却递送装置的不同元件,诸如消融组件、可张开元件或能量发射器组件。差别冷却用于使损伤深度增加或最大化。在一些方法中,神经组织和其它结构(例如,邻近的组织结构,器官或病变组织,诸如癌性肿瘤或非癌肿瘤等)为靶区域的一部分。此外或可选地,差别冷却可以用来控制(例如,限制或最小化)或消除浅层或表面组织破坏。
[0024] 能够在靶区域形成损伤。靶区域可以包括但不限于神经组织(例如,迷走神经组织、神经干等)、纤维组织、病变或异常组织(例如,癌组织、炎性组织等)、心肌组织、肌肉组织、血液、血管、解剖学特征(例如,膜、腺体、纤毛等),或其它目标位点。在RF消融中,当RF电流通过组织时,由于组织电阻而产生热量。组织电阻产生的功率消耗等于电流平方乘以组织电阻。为消融深部组织,如果不采用主动冷却,RF电极和深部组织之间的组织会变热。电极冷却可用来使电极附近的组织保持在导致细胞死亡或破坏的温度以下,从而保护组织。例如,冷却能够防止或限制在电极-组织界面处的过热。过热(例如,组织温度在95℃到约110℃以上)能够导致形成、组织脱水、组织炭化和蒸汽爆发式出气。这些影响可能导致组织电阻提高和传递入组织中的射频能量降低,从而限制有效的RF消融损伤深度。使用主动冷却显著可以产生更深的组织损伤。用于主动冷却的冷却剂的温度为可以为约0℃到约24℃。在一些实施方案中,冷却剂和电极在至少约3毫米的治疗深度产生损伤。在一些实施方案中,在约3毫米至约5毫米的深度形成损伤以破坏神经组织。
[0025] 在一些实施方案中,传感器用于监控温度、膨胀压力、冷却剂流速、组织阻抗或其它目的参数。来自传感器的反馈能够用来调节递送到一个或多个电极的功率。可以调整输出的能量以记录组织中能够改变局部阻抗的局部变化,因此避免了可能导致不想要的热点的过度加热。损伤也能够独立于区域组织特点而形成。
[0026] 在一些实施方案中,递送装置包括消融组件和可展开元件,所述可展开元件从收缩状态可移动至张开状态,从而使能量发射器组件消融组件的组织接触部分与组织(诸如气道壁、心脏组织等)接触。
[0027] 在一些实施方案中,能量发射器组件被设置成能输出能量以消融支气管树的靶组织,并且冷却剂能够通过所述能量发射器组件流动以便冷却能量发射器组件的组织接触部分。冷却区段被设置成含有冷却剂并可移动至与气道壁接触,以便当能量从能量发射器组件输出时,冷却能量发射器组件的组织接触部分附近的组织。可展开元件被设置成含有冷却剂,使得当可展开元件处于张开状态,并且消融组件与气道壁接触时,冷却剂能够冷却能量发射器组件和可展开元件,从而限制或防止破坏位于消融组件和靶组织之间的组织。长型杆件与消融组件连接并向消融组件提供冷却剂流和从消融组件接收冷却剂。
[0028] 控制器能够与流体递送系统通讯连接并与消融组件的传感器通讯连接。控制器被设置成基于来自传感器的至少一个信号来控制流体递送系统。控制器被设置成执行至少一个差别冷却程序,从而以与第二流体的温度显著不同的温度递送第一流体。温度差异可以为至少约5℃、10℃、20℃或30℃。
[0029] 在某些实施方案中,递送装置包括消融组件和可展开元件,所述消融组件包括能量发射器组件,所述能量发射器组件被设置成输出能量以消融支气管树的靶组织,并且冷却剂能够通过能量发射器组件流动,以便冷却能量发射器组件的组织接触部分,并且所述可展开元件从收缩状态可移动至延展状态,从而使能量发射器组件的组织接触部分与支气管树的气道壁接触。冷却区段被设置成含有冷却剂并可移动至与气道壁接触,以便当能量从能量发射器组件输出时,冷却能量发射器组件的组织接触部分附近的组织。长型杆件与消融组件连接。冷却剂能够通过杆件流向消融组件。
[0030] 在一些实施方案中,递送装置包括消融组件,消融组件包括被设置成输出能量以消融气道靶组织的电极。电极在第一方向和第二方向之间是可移动的,在第一方向上电极沿着气道轴向延伸,在第二方向上整个电极安装在气道的邻近的软骨环之间的空间内。
[0031] 在一些实施方案中,递送装置包括在收缩状态和张开状态之间可移动的可展开元件。软骨间能量发射器组件环绕可展开元件的至少一部分。能量发射器组件的至少一部分相对于处于张开状态的可展开元件是可移动的,从而促使能量发射器组件的电极处于支气管树气道壁的邻近软骨环间。
[0032] 在其它实施方案中,递送装置包括消融组件,消融组件包括能量发射器组件和可膨胀冷却囊。能量发射器组件包括冷却通道。可膨胀冷却囊包括冷却室。长型杆件被设置成独立地向冷却通道递送第一流体并且向冷却室递送第二流体。
[0033] 递送装置包括长型杆件和与长型杆件连接的消融组件。在一些实施方案中,消融组件包括电极,电极能够发射消融能量并具有第一端、第二端和位于第一端和第二端之间的主体。第一端和第二端中的至少一个被消融能量绝缘体覆盖,该绝缘体可以是屏蔽物。
[0034] 治疗系统包括递送装置,递送装置被设置成将能量递送至邻近递送装置的第一组织表面以破坏组织的靶区域,使得界定靶区域最大横截面宽度的靶区域部分与第一组织表面分离。
[0035] 治疗个体的方法包括通过位于个体气道中的能量发射器组件的接收口移动递送装置的冷却元件。冷却元件张开到能量发射器组件的至少一部分位于冷却元件和气道壁间的位置。从能量发射器组件递送能量以消融气道壁内的组织,同时冷却剂通过张开的冷却元件和能量发射器组件流动。
[0036] 治疗个体的方法包括将消融组件移动入支气管树的气道内。消融组件包括冷却元件和能量发射器组件。冷却元件张开至气道壁与冷却元件接触。从能量发射器组件递送能量以破坏沿气道延伸的神经干的神经组织。冷却剂流至与能量发射器组件的至少一部分接触,同时递送能量以冷却气道壁,从而限制或防止位于受破坏的神经组织和消融组件之间的组织内的细胞死亡。
[0037] 治疗个体的方法包括将递送装置的消融组件放置在气道中。来自消融组件的电极的能量破坏神经干的神经组织,使得传输至支气管树的一部分的神经系统信号减弱。通过消融组件的电极的通道递送冷却剂。
[0038] 治疗组织的方法包括从靠近组织的第一表面放置的递送装置将能量递送至组织。该能量破坏靶区域,使得界定靶区域最大横截面宽度的靶区域部分与第一表面分离。
[0039] 递送能量的方法包括在没有将组织与电极的边缘接触的情况下从所述电极递送能量,该电极在跨越与组织接触的电极表面具有基本均匀的电压。电极可以包括多个按照所需顺序独立操作的亚电极。
[0040] 附图简述
[0041] 在附图中,相同的附图标记代表相似的元件或组件。
[0042] 图1展示了肺、血管以及肺附近和肺中的神经。
[0043] 图2展示了根据一个实施方案放置在左主支气管中的腔内的治疗系统。
[0044] 图3展示了从放置在左主支气管中的递送装置延伸出的递送设备。
[0045] 图4为支气管树的气道以及沿着气道腔放置的部分张开的消融组件的剖视图。
[0046] 图5为当气道的平滑肌收缩且粘液在气道腔中时,环绕部分张开的消融组件的气道的剖视图。
[0047] 图6为组织深度相对于组织温度的曲线图。
[0048] 图7为气道中的消融组件的侧视图。
[0049] 图8为根据一个实施方案的递送装置的等距视图。
[0050] 图9为沿着图8的线9-9绘制的长型体的剖视图。
[0051] 图10为图9的递送装置的正视图。
[0052] 图11为消融组件的左侧的正视图。
[0053] 图12为图11的消融组件的右侧的正视图。
[0054] 图13为沿着图11的线13-13绘制的剖视图。
[0055] 图14为电极组件的等距视图。
[0056] 图15为沿着图14中的线15-15绘制的电极组件的剖视图。
[0057] 图16为具有向递送装置外延伸的递送设备的治疗系统的局部剖视图。
[0058] 图17为具有流经能量发射器组件的流体的展开的消融组件的侧视图。
[0059] 图18为具有流经可张开元件的流体的展开的消融组件的剖视图。
[0060] 图19为具有流入可张开元件的流体的消融组件的剖视图。
[0061] 图20为具有流经能量发射器组件的流体的消融组件的正视图。
[0062] 图21为邻近软骨环的电极的侧视图。
[0063] 图22为在软骨环之间放置的电极的侧视图。
[0064] 图23为具有一对电极的消融组件的等距视图。
[0065] 图24为具有三个电极的消融组件的等距视图。
[0066] 图25为具有展开的能量发射器组件和收缩的可张开元件的消融组件的侧视图。
[0067] 图26为图25的消融组件在可张开元件处于膨胀状态时的侧视图。
[0068] 图27为具有适应性可张开元件的消融组件的侧视图。
[0069] 图28为沿着图27的线28-28绘制的消融组件的剖视图。
[0070] 图29为图27中与气道壁接触的消融组件的剖视图。
[0071] 图30为具有集成能量发射器组件的消融组件的等距视图。
[0072] 图31为沿着线31-31绘制的消融组件的剖视图。
[0073] 图32为沿着图31的线32-32绘制的消融组件的剖视图。
[0074] 图33为递送装置的侧视图。
[0075] 图34为图33的具有展开的可张开元件的递送装置的侧视图。
[0076] 图35为沿着图33的线35-35绘制的长型体的剖视图。
[0077] 图36为具有膨胀的电极组件的消融组件的侧视图。
[0078] 图37为沿着图36中的线37-37绘制的消融组件的剖视图。
[0079] 图38为图37的电极组件的详细视图。
[0080] 图39为多组件的消融组件的等距视图。
[0081] 图40为准备插入能量发射器组件的环中的可张开元件的等距视图。
[0082] 图41为图39的消融组件的侧视图。
[0083] 图42为图39的消融组件的纵向剖视图。
[0084] 图43为在呼气过程中的消融组件的等距视图。
[0085] 图44为在吸气过程中的图43的消融组件的等距视图。
[0086] 图45为图43的消融组件的俯视图。
[0087] 图46为螺旋消融组件的等距视图。
[0088] 图47为具有增大的线圈的螺旋消融组件的等距视图。
[0089] 图48为具有开放的冷却通道的消融组件的等距视图。
[0090] 图49为沿着图48的线49-49绘制的消融组件的剖视图。
[0091] 图50为根据另一个实施方案的消融组件的纵向剖视图。
[0092] 图51为具有可驱动的递送管道的消融组件的纵向剖视图。
[0093] 图52为处于展开配置的图51的消融组件的剖视图。
[0094] 图53为沿着图52的线53-53绘制的消融组件的一部分的剖视图。
[0095] 图54为能量发射器组件的横向剖视图。
[0096] 图55为沿着图54的线55-55绘制的能量发射器组件的剖视图。
[0097] 图56为具有多腔电极的能量发射器组件的横向剖视图。
[0098] 图57为沿着图56的线57-57绘制的能量发射器组件的剖视图。
[0099] 图58和59是与组织接触的电极的剖视图。
[0100] 图60和61是与组织接触的导热部分的电极的剖视图。
[0101] 图62和63是加热组织的电极的侧视图。
[0102] 图64为具有环电极的电极组件的侧视图。
[0103] 图65为加热组织的屏蔽电极的侧视图。
[0104] 图66为加热组织的弧形屏蔽电极的侧视图。
[0105] 图67A-71B表示等温线和相应的损伤。
[0106] 图72为处于递送配置中的具有远端可增大的可张开元件的递送装置的等距视图。
[0107] 图73为沿着线73-73绘制的消融组件的剖视图。
[0108] 图74为处于展开配置中的具有远端可增大的可张开元件的递送装置的等距视图。
[0109] 图75为沿着线75-75绘制的消融组件的剖视图。
[0110] 图76为沿着图75的线76-76绘制的长型体的剖视图。
[0111] 图77为具有远端可增大的可张开元件并带有电极的递送装置的等距视图。
[0112] 图78为处于膨胀状态的可张开元件的等距视图。
[0113] 图79为沿着图77的线79-79绘制的消融组件的剖视图。
[0114] 图80为沿着图78的线80-80绘制的递送装置的剖视图。
[0115] 图81为沿着图80的线81-81绘制的长型体的剖视图。
[0116] 图82为具有独立冷却的远端可增大的可张开元件和电极的递送装置的等距视图。
[0117] 图83为处于递送配置的远端可增大的可张开元件的等距视图。
[0118] 图84为沿着图82的线84-84绘制的递送装置的剖视图。
[0119] 图85为沿着图86的线85-85绘制的长型体的剖视图。
[0120] 图86为沿着图82的线86-86绘制的递送装置的剖视图。
[0121] 图87A-89B表示等温线和相应的损伤。
[0122] 图90为具有排出口的递送装置的等距视图。
[0123] 图91为沿着图90的线91-91绘制的递送装置的剖视图。
[0124] 图92为具有纵向间排出口的递送装置的纵向剖视图。
[0125] 图93为进行节流过程的递送装置的等距视图。
[0126] 图94为沿着图93的线94-94绘制的递送装置的剖视图。
[0127] 图95为处于递送配置的递送装置的等距视图。
[0128] 图96为处于展开配置的递送装置的等距视图。
[0129] 图97为递送装置的远端区段的详细剖视图。
[0130] 图98为具有定位部件的递送装置的等距视图。
[0131] 图99为图98的递送装置的俯视图。
[0132] 图100为沿着线100-100绘制的递送装置的剖视图。
[0133] 图101为递送设备和递送装置的纵向剖视图。
[0134] 图102为控制递送装置的递送设备的等距剖面图。
[0135] 图103为准备展开的递送装置的等距视图。
[0136] 图104为处于张开配置的图103的递送装置的等距视图。
[0137] 图105为处于展开配置的消融组件的侧视图。
[0138] 图105A为沿着图105的线105A-105A绘制的电极的剖视图。
[0139] 图106为具有处于部分膨胀状态的可张开元件和膨胀的能量发射器组件的消融组件的侧视图。
[0140] 图107为具有缩小的能量发射器组件的消融组件的侧视图。
[0141] 图108为具有处于收缩配置中的缩小的能量发射器组件的消融组件的侧视图。
[0142] 图109为具有可独立展开的电极组件和可张开元件的递送装置的等距视图。
[0143] 图110为具有处于展开状态的可张开元件的递送装置的等距视图。
[0144] 图111为处于递送状态的电极组件和可张开元件的等距视图。
[0145] 图112为沿着图111的线112-112绘制的递送装置的剖视图。
[0146] 图113为沿着图111的线113-113绘制的递送装置的剖视图。
[0147] 图114为具有在圆周方向上可张开的电极的递送装置的等距视图。
[0148] 图115为处于张开状态的图114的电极的等距视图。
[0149] 图116为维持电极处于张开状态的的张开元件的等距视图。
[0150] 图117为另一实施方案的递送装置的等距视图。
[0151] 图118为处于张开状态的递送装置的等距视图。
[0152] 图119为处于张开状态的递送装置的等距视图。
[0153] 详细描述
[0154] 图1展示了具有左肺11和右肺12的人肺10。气管20从口鼻向下延伸并分成左主支气管21和右主支气管22。左主支气管21和右主支气管22各个分支形成肺叶、肺段支气管和亚段支气管,它们向外(即远端方向)具有逐渐变小的直径和逐渐变短的长度。主肺动脉30源于心脏的右心室且在肺根24之前经过。在肺根24处,动脉30分叉进入左、右肺动脉,左、右肺动脉依次分支形成分支的血管网络。这些血管可以沿支气管树27的气道延伸。支气管树27包括左主支气管21、右主支气管22、细支气管和肺泡。迷走神经41、42沿气管20延伸并分支形成神经干45。
[0155] 左和右迷走神经41、42起源于脑干,穿过颈部,并向下通过气管20两侧的胸部。迷走神经41、42向外延伸进入神经干45,神经干45包括环绕气管20、左主支气管21和右主支气管22的前部和后部的肺丛。神经干45还沿着支气管树27的分支气道延伸或在支气管树27的分支气道外延伸。神经干45是神经的主干,包括通过结缔组织的硬鞘结合在一起的神经纤维束。
[0156] 肺10的主要功能是将来自空气的氧气交换入血液,并将来自血液的二氧化碳交换到空气中。当富氧的空气抽入肺10时开始气体交换过程。膈肌收缩和肋间胸腔壁肌肉配合以降低胸部内的压力,使富氧的空气流动通过肺10的气道。例如,空气通过口鼻,气管20,然后通过支气管树27。空气最终被递送到肺泡囊用于气体交换过程。
[0157] 贫氧的血液从心脏右侧出通过肺动脉30并最终被递送到肺泡毛细血管。这种贫氧的血液中含有大量的二氧化碳废物。薄的半渗透膜将毛细血管中的贫氧血液与肺泡中的富氧空气分离。这些毛细血管环绕肺泡并在肺泡中间延伸。来自空气中的氧气通过膜扩散入血液,来自血液的二氧化碳通过膜扩散入肺泡的空气中。然后,新的富氧血液从肺泡毛细血管通过肺静脉系统的分支血管流到心脏。心脏将富氧血液泵送至身体各处。当膈肌和肋间肌放松,并且肺和胸壁弹性返回到正常放松状态时,肺中消耗了氧气的空气被呼出。以这种方式,空气能够流经分支细支气管、支气管21、22、和气管20,并最终通过口鼻排出。
[0158] 图2显示了治疗系统200,其能够进行治疗以在呼气或吸气或者在两者同时时调整气流。为了降低气流阻力以增加气体交换,治疗系统200能用于扩大(例如,扩张)气道。在一些方法中,诸如在肺的内部或外部的神经干的神经组织能够受到影响而扩张气道。神经系统使用电信号和化学信号来提供大脑和肺10之间的通讯。自主神经系统的神经组织网络感觉并调节呼吸系统和血管系统的活动。神经组织包括使用化学信号和电信号从一个身体部位到向另一个身体部位传输感觉和驱动信号信息的纤维。例如,神经组织能够以神经系统输入的形式传输运动信息,诸如导致肌肉收缩或其它反应的信号。纤维可以由神经元组成。神经组织可以由结缔组织,即神经外膜所环绕。自主神经系统包括交感神经系统和副交感神经系统。交感神经系统主要参与紧张期间的“兴奋”功能。副交感神经系统主要参与能量保持期间的“植物”功能。交感神经和副交感神经系统同时激活,并通常对器官系统具有相互影响。当血管的神经分布源于这两个系统时,气道的神经分布在本质上主要是副交感的,并在右迷走神经42和左迷走神经41内的肺和脑之间传递。
[0159] 可以在这些神经干45的一个或多个上进行任何数量的程序以影响肺的与这些神经干相关的部位。由于神经干45的网络中的一些神经组织汇入其它神经(例如,与食道连接的神经、通过胸部进入腹部的神经等),所以治疗系统200能够处理特定位点以最小化、限制或基本上消除其它神经的不想要的破坏。一些前部和后部肺丛的纤维当向外传递入肺10时,,汇入沿着气管20和分支支气管以及细支气管的外表面延伸的小神经干。沿着分支支气管,这些小神经干彼此不断分支并向气道壁发散纤维,如根据图4和5所讨论的。可以利用本发明的装置和方法中的至少一些所进行的多种方法在2009年5月8日提交的第
12/463,304号共同待审申请中描述,其通过引用整体合并入本文。
[0160] 治疗系统200可以影响特定的神经组织,诸如其与特定目标位点有关的迷走神经组织。迷走神经组织包括在神经分支中彼此平行排列的传出神经纤维与传入神经纤维。传出神经组织从大脑向气道效应器细胞、大部分气道平滑肌细胞和产粘液细胞传输信号。传入神经组织从气道感觉受体传输信号,并延伸到大脑,所述气道感觉受体响应于刺激物。尽管传出神经组织总是从气管20到向终端细支气管刺激平滑肌细胞,但传入纤维神经分布主要限制于气管20和较大的支气管。传出迷走神经组织对气道具有不变的基线紧张活性,这使得平滑肌收缩和粘液分泌处于基线水平。治疗系统200可以影响传出和/或传入组织以控制气道平滑肌(例如,刺激平滑肌)、粘液分泌、神经介导的炎症和组织液含量(例如,水肿)。与肺病相关的气道平滑肌收缩、粘液分泌过多、炎症和气道壁水肿常常导致相对高的气流阻力,这造成气体交换减少和肺性能下降。
[0161] 在某些程序中,治疗系统200可用于减弱沿着迷走神经41、42传递的信号的传输,这能够导致或调节肌肉收缩、粘液产生、炎症、水肿等。减弱可以包括但不限于阻碍、限制、阻断和/或中断信号传输。例如,减弱可以包括降低神经信号的信号幅度或减弱经神经信号的传输。减少或停止向远端气道的神经系统输入可以改变气道平滑肌张力、气道粘液产生、气道炎症等,从而控制空气流入和流出肺10。减少或停止从气道和肺向局部效应器细胞或向中枢神经系统的感觉输入还可以降低反射支气管狭窄、反射粘液产生、炎症介质的释放和向体内肺或器官的其它细胞的神经系统输入,这可能导致气道壁水肿。在一些实施方案中,神经系统输入可以被减少,从而相应地降低气道平滑肌张力。在一些实施方案中,气道粘液产生可被降低到足以导致咳嗽和/或气流阻力实质性下降的量。在一些实施方案中,气道炎症可被降低到足以使气流阻力和对气道壁的持续炎性损伤实质性降低的量。信号减弱可以使平滑肌放松,防止、限制或基本上消除产粘液细胞的粘液产生并降低炎症。在这种方式下,可以改变健康和/或患病的气道以调节肺功能。治疗后,各种类型的问卷或测试可被用来评估个体对治疗的反应。如果需要或希望的话,可以进行其它程序以降低咳嗽频率、减弱呼吸困难、减少气喘等。
[0162] 图1和2的主支气管21、22(即气道代1)能够被治疗以影响支气管树27的远端部分。在一些实施方案中,在沿着左和右肺根24以及左和右肺11、12外部的位置治疗左和右主支气管21、22。治疗位点可以位于迷走神经分支与气管和主支气管21、22相会的远端和肺11、12的近端。涉及两种疗法的单一治疗活动,可被用来治疗大部分或整个支气管树27。延伸入肺11、12中的几乎全部的支气管分支都可以受到影响,从而提供高水平的疗效。
因为主支气管21、22的支气管动脉具有相对大的直径和高的吸热能力,所以可以保护支气管动脉免受治疗产生的意想不到的破坏。
[0163] 图3显示了一个以导管系统204的形式延伸通过递送设备206的递送装置。导管系统204能够治疗主支气管21、22的气道,以及主支气管21、22的气道远端。消融组件208能够被放置在位于右或左主支气管、肺叶细支气管、支气管中间部之中的肺部之外。中间支气管为右主支气管的一部分并且是中和较低的肺叶支气管的起源。消融组件208能够放置在更高代(例如,气道代(airway generations)>2)的气道中以影响支气管树27的远端部分。导管系统204可以通过曲折的气道以执行各种不同的程序,诸如例如,切断部分肺叶、整个肺叶、多个肺叶或者一个肺或两个肺的神经。在一些实施方案中,治疗肺叶支气管以切断肺叶的神经。例如,可靶向于沿着肺叶支气管的一个或多个治疗位点以切断与该肺叶支气管连接的整个肺叶的神经。可以治疗左肺叶支气管以影响左上叶和/或左下叶。可以治疗右叶支气管以影响右上叶、右中叶和/或右下叶。在一些实施方案中,医生可以治疗一个肺叶。在一些实施方案中,医生可以同时或相继地治疗其它肺叶。以这种方式,可以治疗支气管树的不同的分离区域。
[0164] 可以通过向沿着各肺段支气管的单个治疗位点递送能量来治疗各肺段支气管。例如,导管系统204能够将能量递送到右肺的各肺段支气管。在一些程序中,十次能量施用能够治疗右肺的大部分或几乎全部。在一些程序中,使用三十六次以下的不同的能量施用能够治疗两个肺的大部分或几乎全部。根据支气管树的解剖学结构,经常可以使用一次或两次能量施用来切断肺段支气管的神经。
[0165] 当神经组织被消融时,可以维持其它组织或解剖学特征的功能,诸如粘液腺、纤毛、平滑肌、体管(例如血管)等。神经组织包括神经细胞、神经纤维、树突和诸如神经胶质的支持组织。神经细胞传输电脉冲,而神经纤维是引导这种脉冲的延长的轴突。该电脉冲转化为化学信号以与效应器细胞或其它神经细胞建立通信。举例来说,可以切断支气管树27部分气道的神经,以减弱由神经组织传输的一个或多个神经系统信号。切断神经可以包括破坏沿着气道的神经干部分的所有神经组织,从而基本上中断所有信号通过神经干的受损区段传导至支气管树的更远端部位或者传导至中枢神经系统更近的支气管树。此外,沿着直接从气道中的感觉受体(例如,咳嗽和刺激物受体)到附近的效应器细胞(例如,节后神经细胞、平滑肌细胞、粘液细胞、炎性细胞和血管细胞)的神经纤维传导的信号也将被中断。如果多个神经干沿气道延伸,则可以破坏每个神经干。这样,沿着支气管树区段的神经供应可以被切断。当信号被切断时,远端气道平滑肌能够松弛,这导致气道扩张、粘液细胞减少粘液产生或炎性细胞停止产生气道壁肿胀和水肿。这些变化使气流阻力降低进而增加肺10中的气体交换,从而减少、限制或基本上消除一种或多种症状,诸如呼吸困难、气喘、胸闷等。环绕或邻近靶向神经组织的组织可能会受到影响,但不会被永久破坏。在一些实施方案中,例如,沿着被治疗的气道的支气管血管能够向支气管壁组织递送相似量的血液,并且在治疗前和治疗后,沿着被治疗的气道的肺血管能够向支气管树27远端区域的肺泡囊递送相似量的血液。这些血管能够继续运送血液以维持充足的气体交换。在一些实施方案中,气道平滑肌未受显著程度的破坏。例如,没有明显影响呼吸功能的气道壁中相对小部分的平滑肌,可被可逆地改变。如果能量被用来破坏气道外的神经组织,治疗有效量的能量不能到达非靶向平滑肌组织的大部分。
[0166] 在一些实施方案中,治疗左和右主支气管21、22之一以治疗支气管树27的一侧。可以基于第一治疗的有效性来治疗其它的主支气管21、22。例如,可以治疗左主支气管21来治疗左肺11。可以治疗右主支气管22以治疗右肺12。在一些实施方案中,单一治疗系统能够破坏支气管21、22之一的神经组织,并且在无需从气管20移除治疗系统的情况下还能够破坏其它主支气管21、22的神经组织。因此,在无需从气管20移除治疗系统的情况下就能破坏沿主支气管21、22的神经组织。在一些实施方案中,能够进行单一程序来方便地治疗基本上全部或至少显著部分(例如,至少50%、70%、80%、90%的支气管气道)的患者支气管树。在其它程序中,在治疗肺11、12之一后,可以从病人移除治疗系统。如果需要,可以在随后的程序中治疗其它肺11、12。
[0167] 图4是健康气道100的横向剖视图,显示了支气管。消融组件208处于部分张开的状态并沿着由气道100的内表面102所界定的腔101放置。所示的内表面102由基质112a环绕的上皮褶皱层110所界定。平滑肌组织层114环绕基质112a。基质层112b位于肌肉组织114和结缔组织124之间。粘液腺116、软骨板118、血管120和神经纤维122处于基质层112b内。支气管动脉分支130和神经干45位于气道100的壁103以外。所示的动脉130和神经干45位于环绕气道壁103的结缔组织124内,并且通常可以平行于气道100而定向。在图1中,例如,神经干45源于迷走神经41、42并沿气道100向气囊延伸。神经纤维122在气道壁103中并从神经干45向肌肉组织114延伸。神经系统信号通过神经纤维
122从神经干45向肌肉114和粘液腺116传输。此外,信号从感觉受体(例如,咳嗽、刺激物和牵张)通过神经干45向中枢神经系统传输。
[0168] 可以破坏、刺激或以其他方式改变纤毛,以沿着上皮110引起所需的应答以控制(例如,增加或减少)粘膜纤毛的运输。当人呼吸时很多颗粒物被吸入,而气道发挥过滤器的功能从空气去除颗粒物。粘膜纤毛运输系统对于整个肺10的所有气道发挥自我清洁的机制。粘膜纤毛运输是从肺10的远端部位清除粘液的主要方法,进而作为肺10的首要的免疫屏障。例如,图4的内表面102可被纤毛覆盖并涂覆有粘液。作为粘膜纤毛运输系统的一部分,粘液诱捕许多吸入的颗粒物(例如,有害的污染物,诸如烟草烟雾)和将这些颗粒物移动至喉部。纤毛的纤毛搏动从肺10的远端位置移动连续的粘液毯和捕获的颗粒物经过喉,并至咽用于从呼吸系统排出。消融组件208能够破坏纤毛以减少粘膜纤毛运输或刺激纤毛以提高粘膜纤毛运输。
[0169] 消融组件208能够选择性地治疗气道壁103内的靶区域(例如,基质112a、112B中的解剖学特征)。例如,粘液腺116能够被破坏以将粘液产生降低至足以防止导致气流阻力增加的粘液积累的量,同时,如需要或想要的话,保持足够的粘液产生以维持有效的粘膜纤毛运输。通过气道壁103或气道壁103中其它解剖学特征的神经分支/纤维也可以被破坏。
[0170] 如果消融元件是RF电极214,可以将电极214移动至与内表面102相接触或与内表面102邻近。RF电极214能够输出RF能量,这种能量通过组织传递并转换为热。热导致损伤形成。RF能量能够被径向向外导向神经干45和软骨板118之间。可以破坏神经干45而不对邻近的软骨板118产生可感知的破坏。对其它非靶向区域(例如,上皮)的破坏也可以保持在或低于可接受的水平。
[0171] 天然的身体功能能够帮助防止、减少或限制对组织的损伤。血管内130的血液能够吸收热能,然后能够将热能从加热的分支130区段带走。以这种方式,血液能够减轻或避免对血管130的损伤。在完成治疗以后,支气管动脉分支130能够继续保持肺组织的健康。在一些实施方案中,足量的RF能量被递送至神经干45以破坏神经干45的整个纵向区段,同时使到达血管130的能量的量保持在导致血管130组织破坏的量以下。因此,能够在不对气道100的其它区域,甚至邻近治疗位点的区域,造成任何显著程度损伤的情况下进行治疗。
[0172] 能够至少在一定程度上基于以下的一种或多种来对治疗效果进行评估:气道属性、肺功能测试、运动能力测试和/或问卷。可以对患者进行评估以跟踪和监控他们的进度。如果需要或想要的话,可以进行其它程序直到实现所需的应答。可以使用用于评估气道属性的不同类型的仪器。在消融期间,来自仪器的反馈能够表明靶组织是否已经被消融。一旦靶组织被消融,可以停止治疗以最小化或限制对健康的非靶向组织(如果可能的话)造成间接破坏。
[0173] 可以对气道的不同属性进行评估以确定待执行的程序。这种气道属性包括但不限于,气道的物理性质(例如,气道依从性、收缩性能等)、气道阻力、气道腔的尺寸(例如,气道的形状、气道的直径等)、气道的反应性(例如,对刺激的反应性)、肌肉特性(例如,肌肉张力、肌肉紧张等)、炎性细胞、炎性细胞因子等。在一些实施方案中,可以通过测量根据已知的压力而膨胀的消融组件208的压力变化来监控气道肌肉特性的变化。如果可能的话,医生根据压力变化确定治疗的效果,包括但不限于,靶向组织是否已经被刺激或消融等。
[0174] 图5是气道100的一部分的横向剖视图,气道100具有处于收缩状态的平滑肌组织114、来自过度生长的粘液腺116的粘液150和炎性肿胀和水肿液体增厚的气道壁103。收缩的肌肉组织114、粘液150和增厚的气道壁103配合以部分地阻塞腔101,导致相对高的气流阻力。神经组织45被破坏以松弛肌肉组织114来扩张气道100从而降低气流阻力,因此允许更多的空气到达用于气体交换过程的肺泡囊。气道阻力减少可能表明,例如应答于这些气道的神经系统输入的减弱,该气道的通道开放。与治疗低代气道(low generation airway)(例如,主支气管、肺叶支气管、肺段支气管)相关的气道阻力的下降量可以大于与治疗高代气道(high generation airway)(例如,亚段支气管)相关的气道阻力的下降量。
医生可以选择适于治疗的气道来实现气道阻力达到期望的减小,并且可以在病人口腔,治疗位点近端的支气管分支、气管或任何其它合适的位置进行测量。可以在进行治疗之前、治疗中和/或治疗后,测量气道阻力。在一些实施方案中,例如通过使用排气治疗系统在支气管树内的位置测量气道阻力,所述排气治疗系统允许从治疗位点较远端的区域进行呼吸。
[0175] 能量可用于破坏靶区域。如本文中所使用,术语“能量”被广泛地解释为包括但不限于热能、冷能(例如,冷却能量)、电能、声能(例如,声波能量)、射频能量、脉冲高电压能量、机械能量、电离辐射、光学能量(例如,光能量)及以上的组合,以及适于治疗组织的其它类型的能量。在一些实施方案中,导管系统204递送能量和一种或多种物质(例如,放射性粒子、放射性物质等)、治疗剂等。示例性非限制的治疗剂包括但不限于一种或多种抗生素、消炎药、药物活性物质、支气管收缩剂、支气管扩张剂(例如,β-肾上腺素受体激动剂、抗胆能药物等)、神经阻断药物、光反应剂或以上的组合。例如,长效或短效神经阻断药物(例如,抗胆碱能药物)能够被递送至神经组织,从而暂时或永久减弱信号传输。还可以将物质直接递送至神经122或神经干45或两者,从而以化学方法破坏神经组织。
[0176] 图6和7显示由RF能量的浅表加热和深层加热以及由在消融组件208中循环的冷却剂的表层冷却所产生的效果。当能量输出时,消融组件208的冷却区段209含有冷却剂,所述冷却剂能够冷却能量发射器组件220的组织接触部分215邻近的组织。冷却区段209能够从气道壁100吸收足量的热能以限制或防止对位于能量发射器组件220和神经组织或其它靶向组织之间的组织造成破坏。
[0177] 图7展示了一段气道壁的横截面温度特征,通过该气道壁递送RF能量来消融组织。术语“消融(ablate)”或“消融(ablation)”,包括其衍生词,包括但不限于,组织的电性能、机械性能、化学性能或其它性能的实质性改变。如本文所使用的术语“消融”包括其变型,是指但不限于,损毁或永久性破坏、损伤或伤害组织。例如消融可以包括局部化的组织破坏、细胞裂解、细胞大小减小、坏死或以上的组合。在肺的消融应用的背景下,术语“消融”包括足以改变神经组织的性质,从而基本上阻断电信号通过消融的神经组织的传输。
[0178] 图6是坐标图,其横轴对应于进入气道壁组织的深度,该深度从接触或邻近电极214的点以毫米起算,其纵轴对应于以摄氏温度表示的组织温度。除非另有说明,图中的温度为摄氏度。坐标图上的点“0”对应于电极214和气道壁组织之间的接触点或接触区域。
坐标图中的三条曲线A、B和C对应于被递送入组织的三种不同的功率水平的射频能量。图中的温度高达约100℃。显示了约100℃或略低的温度,因为该温度被认为是RF消融期间组织温度的上限。在约90℃时,组织液开始沸腾,组织凝结并炭化,从而大大增加其阻抗并损害其向气道壁组织传递RF能量的能力。因此,组织温度维持在约90℃以下是可取的。在约50℃时,线216表示这样的温度,在该温度以上发生组织细胞死亡,在该温度以下,组织将不会承受长期的实质性的影响(或任何长期影响)。
[0179] 图6所示的曲线A表示在相对较低的功率(例如,约10瓦的RF能量)水平下进行或不进行电极214冷却所发生的情况。曲线被划分为三段A1、A2和A3。虚线段A2代表当没有应用冷却时指数曲线A3的延伸。如通过曲线A所观察到的,没有冷却时,电极-组织界面的温度达到80℃,并随着进入气道100的组织中的距离的增加成指数下降。如图所示,曲线A3在约5毫米的深度处与由线216代表的50℃组织细胞死亡界限相交。因此,无电极冷却时,出现细胞死亡的深度为约5毫米,如距离d1所表示的。在该功率水平下进一步的细胞死亡将停止。
[0180] 如果采用主动冷却,温度下降到更低的水平,例如,如曲线A1所表示的在0毫米距离处电极-组织界面为约35℃。因为这个温度低于50℃,所以在距离d2之前细胞死亡不会发生,在该点处曲线A2与50℃的细胞死亡线相交,例如,从表面开始3毫米的深度。在从3毫米到5毫米深度将发生细胞死亡,如距离d3所代表的。这种冷却消融过程是有利的,因为其允许细胞死亡和组织破坏在距电极-组织界面一段距离(或距离范围)处发生,而不破坏上皮和上皮下的组织。在一些实施方案中,沿着气道外排布的神经组织能够被消融而不破坏上皮或下层结构,诸如基质和平滑肌细胞。
[0181] 曲线B表示在较高功率水平(如20瓦RF功率)下进行或不进行电极冷却所发生的情况。曲线B的区段B2代表无冷却的情况下区段B3的指数曲线的延伸。能够看出,在电极-组织界面的温度接近100℃,这是不可取的,因为在该温度下在组织-电极界面处将发生组织液沸腾和组织凝固和炭化,进而会显著增加组织阻抗并损害向气道壁递送额外的RF能量的能力。通过提供主动冷却,曲线B1显示电极-组织界面处的温度下降至约40℃,且在如d4所代表的2毫米的深度至曲线B3与50℃组织细胞死亡边界相交的约8毫米的深度处发生细胞死亡。因此,能够看出,使用较高功率水平在没有达到不想要的高温(例如,在电极-组织界面处导致组织凝结和炭化的温度)下可能提供更深且更大区域的细胞死亡。系统能够用于实现气道上皮表面下的细胞死亡,使得表面不需要被破坏,从而有助于患者尽快从治疗中恢复。
[0182] 曲线C表示更高的功率水平,例如,40瓦的RF能量。曲线C包括区段C1、C2和C3。虚线区段C2是指数曲线C3的延伸。区段C2表明,在电极-组织界面处的温度远超过100℃,并且如果没有主动冷却会是不适合的。应用主动冷却,电极-组织界面的温度接近
80℃,并逐步升高至接近95℃,随后成指数下降,在由距离d6表示的从气道上皮表面的电极-组织界面起约15毫米的距离与50℃细胞死亡线216相交。由于起始温度高于50℃细胞死亡线216,从上皮表面至约15毫米的深度将发生组织细胞死亡,从而提供大且深区域的组织破坏。
[0183] 在图7中,箭头218代表冷却剂通过能量发射器组件220的运动。箭头222代表冷却剂通过可展开元件的运动,所述可展开元件表示为可膨胀的热传导性气囊212。当将功率应用至电极214并将冷却剂(例如,室温的盐水或盐水)递送至气囊212中时,等温曲线表示电极214达到的温度和从电极-组织界面起进入气道壁100的不同深度处的温度。在“可张开元件”的背景下的术语“元件(element)”包括一个离散元件或多个离散元件。
举例来说,可张开元件可以是单个气囊或彼此流体连通的多个气囊。
[0184] 通过调节递送至电极214的功率,冷却剂(例如,盐溶液)通入气囊212的速率,盐溶液的温度和气囊212的大小,能够调节各条等温线精确的外形(contour)和温度。例如,通过选择适当的盐水温度和流速以及递送到电极的功率,实现这样的温度是可能的,其中等温线A=60℃、B=55℃、C=50℃、D=45℃、E=40℃且F=37℃。进一步的调节可能实现这样的温度,其中等温线A=50℃B=47.5℃、C=45℃、D=42.5℃、E=40℃和F=37℃。只有包含在50℃等温线以内的那些区域能被加热到足以诱导细胞死亡。在一些程序中,在气道壁中约2mm至8mm深度处的组织能够被消融,而在气道壁中小于2mm深度处的其它非靶向组织将保持在可使细胞死亡的温度以下。冷却剂218能够吸收能量以冷却能量发射器组件220的组织接触部分215,同时气囊212保持能量发射器组件220紧靠在气道100上。
[0185] 参照图8,导管系统204包括控制模块210和消融组件208,控制模块210与具有杆件230形式的长型体的导管207相连,消融组件208与消融杆件230的远端相连。消融组件208包括能量发射器组件220,能量发射器组件220从长型杆件230延伸并环绕气囊212。气囊212能够从收缩状态膨胀到所示的张开状态。当气囊212膨胀时,电极214能够向气道壁移动。膨胀的气囊212能够有助于将电极214维持在递送能量所通过的组织的附近(例如,邻近或与接触)。冷却剂能够吸收热能来冷却气囊212或能量发射器组件220或两者。这依次冷却气道壁的外表面。
[0186] 控制模块210通常包括控制器244和流体递送系统246。控制器244包括但不限于,一个或多个处理器、微处理器数字信号处理器(DSP)、现场可编程阵列(FPGA)和/或专用集成电路(ASIC)、存储器装置、总线(bus)和电源等。例如,控制器244可以包括与一个或多个存储器装置连通的处理器。总线能够将内部或外部电源连接至处理器。存储器可以采用多种形式,包括,例如,一种或多种缓冲器、暂存器(register)、随机存取存储器(RAM)和/或只读存储器(ROM)。控制器244也可包括诸如屏幕的显示屏245和输入装置250。输入装置250可以包括键盘触摸板等,并且可以由用户操作来控制导管207。
[0187] 控制器244能够存储不同的程序。用户能够选择用于记录组织和所需靶区域的特征的程序。例如,充满空气的肺具有相对高的阻抗,淋巴结具有中等阻抗,血管具有相对低的阻抗。控制器244能够基于阻抗来确定适当的程序。可以进行差别冷却程序来将不同温度的冷却剂递送通过气囊212和能量发射器组件220。温度差异可以为至少10℃。能够基于检测温度、组织阻抗等的传感器的反馈来优化性能。例如,控制器244能够基于能量被递送至的组织的表面温度来控制消融组件208的操作。如果表面温度变得过热,可以增强冷却和/或降低电极功率,以便产生深部损伤同时保护表面组织。
[0188] 内部电源248(图8中虚线所表示的)能够向电极214供给能量并可以是能量发生器,诸如射频(RF)的发电机。可以以所需的频率输出RF能量。频率的实例包括但不限于约50KHZ至约1,000KHZ的频率范围。当RF能量被引导入组织中时,在组织内能量被转换成热,使组织的温度达到约40℃至约99℃。可以施加RF能量持续约1秒至约120秒。在一些实施方案中,RF发生器248具有单一通道且递送约1瓦至25瓦的RF能量,并具有连续流动的能力。也可以使用其它范围的频率、时间间隔和功率输出。另外,内部电源248可以是能量储存装置,诸如一个或多个电池。能够将电能递送至能量发射器组件220,其将电能转换成RF能量或另一种合适形成的能量。可被递送的其它形式的能量包括微波、超声、直流电或激光能量。另外,可以利用低温消融,其中处于低温温度的流体通过杆件230被递送以冷却消融组件208上的低温热交换器
[0189] 流体递送系统246包括连接供应线路268的流体源260和连接回管272的流体容器262。流体源260可以包括容纳在外壳单元264中的容器(例如,瓶、罐、槽、或用于容纳流体的其它类型的容器)。在可加压的实施方案中,流体源260包括一个或多个对冷却剂加压的加压装置(例如,一个或多个泵、压气机等)。温度控制装置(例如,珀尔贴(Peltier)装置、热交换器等)能够冷却或更新流体。流体可以是冷却剂,包括盐水、去离子水、制冷剂、低温液体、气体等。在其它实施方案中,流体源260可以是能保存并将冷的冷却剂递送至供应线路268的隔热容器。冷却剂通过长型杆件230向远端流入消融组件208。在消融组件208中的冷却剂通过长型杆件230向近端流向回管272。冷却剂继续沿回管272并最终流入流体容器262。
[0190] 气囊212任选地具有传感器247(虚线所表示的),传感器247与控制器244通讯连接。控制器244能够基于来自传感器247(例如,压力传感器、温度传感器、热电偶、压力传感器、接触传感器等)的信号来控制导管207。传感器还可以放置在能量发射器组件220上,沿着长型杆件230放置或放置在任何其它位置上。控制器244可以是闭环系统开环系统。例如,在闭环系统中,基于来自一个或多个传感器的反馈信号将电能递送到电极214,所述传感器被设置成传输(或发送)指示一种或多种组织特征、能量分布、组织温度或任何其它可测量的目的参数的信号。基于这些读数,控制器244调节电极214的操作。另外,在开环系统中,通过用户输入来设置电极214的操作。例如,用户可以观察组织温度或阻抗读数并手动调节递送至电极214的功率水平。另外,电源可以被设置成固定的功率模式。在其它实施方案中,用户能够在闭环系统和开环系统之间反复切换。
[0191] 为了有效地冷却电极214,连接至电极214的管道234与杆件230内的冷却剂递送腔流体连通,以便从中接收冷却剂。另外,气囊212中的引流器能够将气囊212中的部分或全部的冷却剂引导至电极214或气囊壁,并可为电极214提供单独的冷却通道。在一些实施方案中,一个或多个冷却通道通过电极214延伸(例如,电极214可为管状以便使冷却剂能够从其中流过)。在其它实施方案中,冷却剂围绕或邻近电极214流动。例如,以如图8中管道234为例的外部元件能够环绕电极214,使得流体能够在电极214和管道234之间流动。另外或可选地,可以使用一个或多个热装置(例如,珀尔帖装置)、冷却/加热通道等,主动冷却或加热消融组件208。
[0192] 参照图8和9,长型杆件230从控制模块210延伸至消融组件208,并包括电源线腔320、递送腔324和返回腔326。电源线280通过电源线腔320延伸并将控制器244与电极214连接起来。递送腔324为流体源260和能量发射器组件220与212气囊之间提供流体连通。返回腔326为气囊212和/或电极214与流体容器262之间提供流体连通。长型杆件230整体或部分可以由一种或多种以下物质制成:金属、合金(例如,合金,诸如不锈钢)、塑料、聚合物及以上的组合组合以及其它生物相容性材料,并且可以是柔韧的,以便方便地通过高度分支的气道。将传感器嵌入在长型杆件230中以检测流经其中的流体的温度。
[0193] 参照图10-12,其中消融组件208处于张开配置,管道234环绕并保护电极214和电源线280免受外部环境和可能导致连接失败的外力。电连接也没有暴露于体液。如果需要或想要的话,电源线380可以沿着其它流体路径排布。另外,为了通过电极214递送冷却剂,电极214可以是两端与管道234连接的金属管状构件。在这情况下,电极214的外表面暴露,这用于在能量递送期间与气道壁接触。
[0194] 管道234包括近端区段286、远端区段288和非线性区段300。近端区段286用作入口并从长型杆件230向远端延伸。非线性区段300在气囊212周围延伸且弧长在约180度至450度的范围内。如图11所示,在消融组件208的张开配置中,非线性区段300的至少一部分可以沿着虚拟平面301放置,虚拟平面301与膨胀的气囊212(和导管杆件230)的纵轴310基本垂直。远端区段288与近端区段286对齐且用作出口,并向防损末端240远端延伸。
[0195] 当缩小时(即,当未用冷却剂加压时),管道234可以是高度柔韧的以符合长型杆件230,并且管道234整体或部分可由当加压或触发时呈现预设形状的材料制成。这种材料包括但不限于,热塑性聚合物(例如,聚对苯二甲酸乙二醇酯、聚乙烯或聚酯)、形状记忆材料或以上的组合。当管道234膨胀时,其呈现预设的形状,该形状被设置成以相对于纵轴310期望的横向方向放置电极214。
[0196] 气囊212整体或部分可由聚合物、塑料、橡胶、聚乙烯、聚氯乙烯,化学惰性材料、非毒性材料、电绝缘材料或以上的组合等材料制成。为增强热传递,气囊侧壁可以包含一种或多种具有高热导率的导热材料。例如,导热条(例如,金属条)可以沿着气囊212延伸以帮助将热能从热点(如果有的话)传导出来。气囊212能够符合气道表面(例如,软骨环,侧枝等)上的不规则形状,并整体或部分由以下材料制成:可膨胀的材料,诸如聚氨酯(例如,低硬度聚氨酯)或其它类型的高度适形材料,这些材料可以是透明的、半透明的或不透明的。气囊212能够具有不同的膨胀形状,包括热狗形、卵圆形、圆柱形等。
[0197] 图13显示放置在管道234的通道330中的电极214,电极214包括冷却剂通道340。电极主体350可以是整体或部分由金属(例如304、不锈钢等)或其它适合的金属制成的刚性管。在一些实施方案中,管道234没有在整个电极214上延伸,使得管状电极的中央部分暴露,用于与气道壁直接接触。在其它实施方案中,电极主体350整体或部分由形状记忆材料制成。形状记忆材料包括,例如,形状记忆金属或合金(例如,镍钛合金(Nitinol))、形状记忆聚合物、磁材料及以上的组合等。这些材料当从受限的状态释放时能够呈现预设的形状或者当用热触发时能够呈现不同的配置。在一些实施方案中,当触发(例如,热触发)时,形状记忆材料能够从第一预设配置转变为第二预设配置。
[0198] 如在图14和图15中所示,传感器360A、360B(统称为“360”)连接于电极主体350。一对线370A、370B(统称为“370”)通过通道340并分别连接于传感器360A、360B。在一些实施方案中,传感器360a为接触传感器,而传感器360b是温度传感器和/或压力传感器。
可以基于待进行的治疗来选择传感器的数量、位置和类型。
[0199] 在多层的实施方案中,电极主体350可以包括至少一个具有一层或多层薄膜或涂层的管(例如,非金属管、塑料管等)。薄膜或涂层可以由以下材料制成:金属、导电聚合物或其它适合材料,这些材料由沉积方法(例如,金属沉积方法)、涂布工艺等形成,并且整体或部分包含墨、银环氧树脂及以上的组合等。
[0200] 射线不透性标记或其它类型的可视化特征可用于放置主体350。为了提高电极214本身的可视性,电极214整体或部分可以由射线不透性材料制成。
[0201] 图16-18显示使用治疗系统200的一个示例性方法。在进行治疗之前、期间和/或之后,医生可以使用递送设备206来直观地检查气道100以定位和评估治疗位点和非靶向组织。递送设备206可以是引导管、递送鞘、气管镜或内窥镜,并可以包括一个或多个可视装置,诸如光学观查装置(例如,照相机)、光学系统(例如,一套镜头)等。例如,递送设备206可以是气管镜,该气管镜具有一个或多个用于照明的灯和用于传输图像的光纤。可调节导管207以沿导线(未显示)进行递送,该导线在气囊212和能量发射器组件220之间经过。这提供了快速交换能力。
[0202] 当图16的递送设备206沿着体腔101(例如,气道)移动时,塌陷的消融组件208被维持在递送设备206的工作通道386中。当导管207处于基本直的配置时,管道234能够形成环221,使得电极214几乎与长轴373平行。如在图16所表示的实施方案中,β由导管207的长轴373方向和电极214的长轴374之间界定。角β的范围为约0度至约30度。在一些实施方案中,角β的范围为约0度至约20度。弯曲的电极214也能够套住并部分环绕长型杆件230。在某些实施方案中,长型杆件的至少一部分放置在电极214的弧形内用于进一步减小外形。因此,杆件230能够放置在电极214的两端之间。在每个电极位置中根据待产生损伤的期望的长度,电极214可以具有不同的长度。在优选的实施方案中,电极214的长度为至少约2mm至长达约3mm。电极的宽度(如果为圆柱则是直径)不超过软骨环间的空间宽度,在一些实施方案中优选0.1mm至约3mm。
[0203] 继续参考图16,工作通道386的直径DL可以小于约8mm。收缩的气囊212的直径DB可以相对较小。例如,气囊212完全塌陷时,最小直径DB最小可以为约2mm至约3mm,且最大直径DB最大为约5mm至约6mm当。如果电极214可伸缩,消融组件208的直径D最大可以小于约3mm。在超低外形(low-profile)配置中,最大直径D最大可以小于约2.8mm。
[0204] 气囊212可膨胀以将能量发射器组件220移近(例如,邻近或接触)气道100。当气囊212完全膨胀时,角β能够增加到70度至约110度。图17显示了展开的消融组件208,其中电极214能够大约垂直于长轴373。在能量发射器组件220和气囊212之间能够活动,使得角β处于约60度至的约120度范围内以便适应解剖学结构、非匹配结构(例如,导管杆件230的非匹配)等的变化。在一些实施方案中,当从递送方向向展开方向移动时,电极214向周围延伸方向移动。处于展开方向的电极214沿着的气道100的壁基本向周围延伸。在某些实施方案中,当消融组件208处于完全展开的配置时,设置电极214使之完全放置在沿着气道的软骨环376之间的空间374内。
[0205] 图17和18显示了与长型杆件230和气囊212流体连接的能量发射器组件220。一般来说,冷却剂使能量发射器组件220的组织接触部分215冷却。消融组件208的冷却区段209接触气道壁100以便冷却组织接触部分215邻近的组织,同时通过电极214输出能量。冷却区段209可以由与气道壁100接触的能量发射组件220和气囊212的一部分形成。
[0206] 当气囊212膨胀时,电极214从图16的第一方向和图17的第二方向间移动(例如,旋转、转动、转移等),在第一方向中电极214沿气道100轴向延伸,在第二方向中整个电极214置于邻近的软骨环376a,376b之间的空间374中。气囊212能够冷却气道100并能使电极114固定在空间374中。
[0207] 图17显示放置的能量发射器组件220,从而使电极214固定于空间374中。在某些实施方案中,第一方向上电极214相对于纵轴373延伸的距离(参见图16)大于第二方向上电极214相对于纵轴373延伸的距离。为展开能量发射组件208,冷却剂从长型杆件230流经能量发射器组件220并流入气囊212。电极214能够输出足以消融靶区域的能量。
冷却剂从电极214和气道壁100吸收热能。
[0208] 当用冷却剂加压时,电极214和管道234的直径DE为约1.5mm至约2.5mm。这种实施方案非常适合于治疗沿主支气管的肺以外的组织。在某些实施方案中,直径DE为约2mm。在其它实施方案中,直径DE为约0.1mm至约3mm。膨胀的管道234和电极214的直径DE可以为约0.1mm至约1mm。
[0209] 为治疗人的支气管树,膨胀气囊212的直径可以为约12mm至约18mm。为了增强治疗灵活性,膨胀的气囊的直径可以为约7mm至约25mm。当然,气囊212可以为能够治疗其它动物的其它器官或组织的其它尺寸。
[0210] 消融组件208提供差别冷却,这是因为能量发射器组件220中的冷却剂与气囊212中的冷却剂相比温度较低并且流速较快。由箭头表示的冷却剂,从长型杆件230流出来并流入能量发射器组件220。冷却剂继续通过能量发射器组件220和电极214的冷却剂通道340(图15)。冷却剂从电极214吸收热能。被加热的冷却剂流入末端240并继续向近端流经腔400,如图18所示。冷却剂流经420(例如,节流阀)并通过端口424。阀420沿着流体路径设置,该路径将能量发射组件220和界定冷却区段209的气囊212的一部分连接起来。冷却剂在腔室426中循环并从组织吸收热量。这将有助于保持浅层组织处于导致细胞死亡或组织损伤的温度以下。
[0211] 冷却剂流经端口430、腔432和节流阀434。节流阀420、434能够配合以维持所需的压力。节流阀420被设置成维持冷却剂以第一流速通过能量发射组件220以及维持冷却剂以第二流速通过冷却区段209。第一流速可以与第二流速显著不同。
[0212] 当加压时,管道234能够呈现预设形状。阀420、434能够配合以维持气囊212处于约5psig至约15psig的所需压力下。这种压力非常有助于将电极214推到软骨环间。基于所进行的治疗可以选择其它压力。阀420、434可以是节流阀、蝶阀、止回阀,鸭嘴阀、单向阀或其它适合的阀门。
[0213] 当RF能量传输至电极214时,电极214输出的RF能量通过组织。RF能量能够对气道壁的组织(例如,浅表组织和深层组织)进行加热,同时冷却剂对组织(例如,浅表组织)进行冷却。这种通过RF能量进行浅表和深层加热以及通过循环冷却剂对浅表进行冷却的净效果与气道壁100外层的热量有关,如参照图6和7所讨论的。结缔组织的温度可以高于上皮、基质和/或平滑肌的温度。例如,结缔组织的温度可以高到足以对神经干组织或其它深层组织造成损伤,同时气道的其它非靶向组织保持在较低的温度以防止或限制对非靶向组织的损伤。
[0214] 热量能够被集中在气道壁的一个或多个内层(例如,基质)或气道壁的内膜(例如,上皮)。而且,支气管动脉分支的一个或多个管道可以处于损伤状态。能够控制使用电极214所产生的热量,使得当破坏神经干组织时,流经支气管动脉分支的血液能够保护这些支气管免受热损伤,即使神经组织位于动脉分支旁边。导管207可能产生相对较小区域的细胞死亡。例如,气道壁100中间的组织的或沿气道壁100的外表面的2mm至3mm的区段可被破坏。通过应用适当的功率和适当的冷却,能够在任何所需深度产生损伤。
[0215] 通过消融组织同时缓慢旋转消融组件208或者通过将消融组件208放置在一系列旋转位置(在每个位置中,递送能量持续所需的时间)中,能够沿在气道壁100圆周的全部或大部分形成圆周损伤。一些过程形成邻近的损伤,这些损伤沿气道壁100连接在一起并形成环状带。在一些实施方案中,整个环221(图17)可以是电极。环221可以涂有导电材料并能够支撑电极。单一程序能够产生圆周损伤。在形成损伤后,可以停止冷却剂流入气囊212。气囊212缩小,致使能量发射器组件220从气道壁100弹回。可以重新放置导管207以治疗其它位点或将导管207从个体中整个去除。
[0216] 如果使用者希望气囊212中的冷却剂的温度低于能量发射器组件220中冷却剂的温度,可将冷冻的冷却剂递送入气囊212然后进入能量发射器组件220。图19和图20显示这样的冷却剂流。低温冷却剂流经长型体230经过阀434和端口430。冷却剂在腔室426中循环并吸收热量。被加热的冷却剂流经阀420并继续经过能量发射器组件220以冷却电极214。
[0217] 气道软骨环或软骨层的电阻通常比气道软组织(例如,平滑肌或结缔组织)的电阻大。气道软骨阻碍能量流(例如,电射频电流),并且当电极接近软骨时,使得由射频电能形成的治疗损伤影响气道神经干具有挑战性。
[0218] 定位器(positioner)能够有助于电极的定位。这样的定位器包括但不限于凸起,膨胀,突起,肋样部件(rid)或有助于优先将电极214置于所需位置,进而很容易进行治疗或确认正确定位的其它部件。图21和图22显示能够作为软骨间定位器的能量发射器组件。当气囊212按压气道100时,环221沿着气囊212移动,从而优先将电极214定位于软骨环
452a,452b之间。环221从气囊212向外突出这样的距离,该距离足以确保消融组件208向气道壁施加足,以导致自就位的压力。导管能够来回移动以帮助将电极214定位在空间453的软适应性组织453附近。能量发射器组件220可以被设置成移动距离Do(例如,沿着长轴310测量),该距离是软骨环452a、452b之间的距离D的至少一半。通常,这将确保电极
214能够被放置在软骨环452a、452b中间。
[0219] 与具有单电极的导管相比,多个电极214能够减少治疗时间和程序复杂性。这是因为与单电极导管相比,多电极导管可能必须更少次地放置在支气管树(或其它中空器官)内以产生所需尺寸的多处损伤。因此,多电极导管能够精准地治疗用户的呼吸系统。
[0220] 图23显示能量发射器组件500,其包括沿气囊520圆周彼此间隔开的两个电极510A、510B(统称为“510”)。相对于消融组件501的长轴511,电极510A、510B彼此可以成约45度至210度。其它电极位置是可能的。图24显示了能量发射器组件530,其具有彼此成约60度放置的三个电极540A、540b和540C(统称为“540”)。在这些实施方案中,各个电极可连接至各自的电源线以允许各自的独立控制,或所有的电极连接至同一电源线以便一起操作。另外,一对电极可以以两极的方式进行操作,其中一个电极是正极另一个是负极,RF功率通过组织从一个电极传导到另一个。
[0221] 参照图25和图26,能量发射器组件552的远端560连接至末端562。能量发射器组件552的近端570连接至长型体574。如弯区区段576所示的中间区段没有与气囊554直接连接。这使得电极583可运动显著的量并方便与在软骨或其它特征之间的间隙对准。
[0222] 当气囊554部分膨胀(图25所示)时,中间区段576的弧形区段580能够基本上垂直于气囊554的纵轴582。当气囊554完全张开(图26所示)时,存在足以使电极583运动而气囊554无明显变形的间隙。例如,电极583可移动范围为约-30度至约30度的角α。其它角度也是可能的。
[0223] 图27和28显示了整体或部分由高度适应性材料制成的相适应的气囊594。高度适应性材料包括但不限于硅、橡胶、聚乙烯、聚氯乙烯或能够经受大变形的其它材料。图29显示了气囊594的侧壁595,侧壁595接触气道壁597并提供相对大的表面接触。这为气道壁表面上或邻近的组织提供了快速且有效的冷却,同时破坏了更深的靶区域601(表示为神经组织的区段)。
[0224] 图30-32显示消融组件600,其包括具有内部电极620a、620b的集成能量发射器组件610。侧壁630的通常向外突出的U形部分650能够有助于定位电极620a、620b。长型体670从气囊640向近端延伸并包括递送腔672、返回腔674和内部支持杆675。端口679在冷却通道678和腔室680之间提供流体连通。冷却剂通过回管674从气囊640流出。侧壁630形成递送腔672的一部分。在一些实施方案中,管道(例如,流体管或软管)在长型体670和能量发射器组件610之间提供流体连通。
[0225] 图33和34显示了消融组件710,其包括可膨胀气囊720和能量发射器组件730(图34中虚线所示)。单独的通道提供单独的流体路径,从而独立地调节气囊720和能量发射器组件730中的压力。气囊720和能量发射器组件730均可以由适应性材料(例如,氨基甲酸乙酯或其它适应性生物相容性材料)制成,以适应不同大小的支气管腔。有利的是,与由非适应性材料制成的导管气囊(不易于调整以适合不同大小的腔)相比,需要较少的导管库存单位(SKU)。
[0226] 导管704具有被设置用于差别冷却的近端区段732。流入管742的近端741具有流入阀743并与图35的流入腔750流体连通。图37和图38的供给管道816从流入腔750向膨胀组件780a的腔室811递送冷却剂。
[0227] 图33的流入管745的近端744具有流入阀746且与图35的流入腔752流体连通。流入阀743、746可以连接至流体源。流出管759的近端758具有流出阀761并与图35的流出腔756流体连通。电源线760、762单独地将电极790b、790a分别与电源连接器781连接。
[0228] 图36和图37显示处于张开状态的可膨胀消融组件780a、780b(统称为“780”)。组件780能够独立膨胀以帮助定位电极790a、790b。在不同冷却剂温度(例如,冷的、热的、室温等)下的不同冷却剂(例如,盐水、水等)能够流经消融组件780。可以增加膨胀压力以提高施加到气道壁上的压力并有助于固定消融组件780。
[0229] 消融组件780可以间隔开以允许各个消融组件780均能放置在软骨环之间。例如,在图36中的距离D可以为约1mm至约5mm。医生通过检查气道能够测定距离D并随后选择适当大小的导管。除了轴向间隔之外,电极790a、790b可以被安装在圆周偏离的位置中以便向气道壁的不同面递送能量。例如,电极790a可以相对于电极790b偏离45度、90度或180度。另外,每个消融组件780a、780b可具有围绕气囊720的圆周间隔开的多个电极。
[0230] 能够将不同温度的流体递送至消融组件780和气囊720。在一些实施方案中,如果治疗目的是产生最大深度的损伤,冷却剂被递送通过能量发射组件780的冷却通道,然后进入气囊720。气囊720和能量发射组件780还可以连接至共用的来源(或槽)路径。这使得各个路径具有独立的冷却剂流。与使用完全分离的冷却剂路径相比,这也减小了张开的消融组件710的整体直径。可以独立地控制电极790a、790b,以便同时或单独且以相同或不同的功率水平递送能量。
[0231] 图39和图40显示具有展开导管811和能量发射器组件820的消融组件800,展开导管811具有气囊810,且能量发射器组件820位于气囊810之上时是可移动的。能量发射器组件820包括一对通过远端环823连接的管状杆件817、819。远端环823可以围绕与杆件817、819的纵轴平行的轴预先形成。或者,当通过引入杆件817、819中的冷却剂而加压时,远端环823能够被设置成呈现展开的方向。
[0232] 杆件817、819中的一个适应于通过环823递送冷却剂,而另一个从该环接收冷却剂并将该冷却剂返回到装置的近端。在图41中,杆件817将冷却剂递送到气囊810。冷却剂通过杆件819从气囊810流出。如图40所示,展开导管811的远末端834能够被插入并通过能量发射器组件820的接收口830。如表面安装的电极836所示的,一旦电极被放置在气囊810的远末端834和近端840之间,气囊810膨胀就会紧紧地固定住能量发射器组件820。
[0233] 能量发射器组件820在用于递送的伸直和收缩配置和所示的展开配置之间是可移动的。例如,在如上所述的预定型的实施方案中,能量发射器组件820上的远端环823可以是伸直的并向内收缩,以便在引入期间可放置在压缩鞘中。一旦从鞘中移出,远端环823将返回其未偏离的展开方向,位于与杆件817、819的纵轴基本垂直的平面中。在另外的实施方案中,在未加压的情况下,远端环823可能是松弛且可伸缩的,当通过杆件817、819引入冷却剂时,将呈现所需的展开形状。为制造远端环823,聚合物管可以被加热处理以便当加压时能够呈现所需的形状。
[0234] 通过将能量发射器设备820与展开导管811分离,它们可以彼此独立地被引入,从而允许该设备可通过直径非常小的通道而被引入。这特别适用于允许消融组件插入气管镜的工作通道。首先,能量发射器组件820可被收缩,并引入工作通道(有或无鞘),然后可引入展开导管811。随后可以在气道中组装组合装置。
[0235] 如在图41和图42中所示,能够通过能量发射器组件820和气囊810独立地递送流体。图41显示的箭头表示冷却剂通过能量发射器组件820流动。图42显示的箭头表示冷却剂通过气囊810流动。冷却剂能通过递送腔854和端口856流动。冷却剂通过端口860从腔室857流出并通过返回腔864流动。单独的递送腔867将冷却剂递送至能量发射器组件820。返回腔869将冷却剂递送出能量发射器组件820。在一些实施方案中,冷却剂被独立地递送至气囊810和能量发射器组件820。可以将单独的管与气囊810和能量发射器组件820连接。
[0236] 一个或多个阀能够提供通过气囊810和能量发射器组件820的不同的流速。例如,阀系统(例如,一个或多个阀,节流阀等)能够提供冷却剂通过能量发射组件220的第一流速以及冷却剂通过气囊810的第二流速。第一流速可以与第二流速显著不同。例如,第一流速可以显著大于第二流速。在其它实施方案中,第一流速可以基本上等于第二流速。
[0237] 参照图43-45,导管883能够在气道的消融治疗中提供通气。可张开元件882具有远端884、近端886以及在两端884、886之间延伸的通气通道890。可张开元件882可以是双层壁的圆柱形气囊,在其内、外壁之间界定圆柱形的腔室。内、外壁间的空间t(参见图45)应足够大,从而允许在元件882中循环足以使能量发射组件896张开至与气道壁啮合并足以有效控制组织温度的流体。
[0238] 通气通道890被设置成允许呼出气流(图43中的箭头892所示)以及吸入气流(图44中的箭头894所示)。可以沿着通道890放置流速传感器以确定由于治疗而引起的气流变化。另外或可选地,阀(例如,单向阀、双向阀等)或调流器可用于控制气流。这些元件可被安装在通道890中。
[0239] 如图39-42的实施方案,能量发射器组件896和可张开元件882可独立地展开。能量发射器组件896能够从递送配置(例如,伸直的配置)膨胀至所示的治疗配置(表示为环)。可张开元件882能够膨胀至所示的管状配置。膨胀的两端884、886能够挤压气道,从而使电极900相对于可张开元件882牢固地保持固定。冷却剂能够通过能量发射器组件896循环并进入可膨胀元件882。为了增强差别冷却,不同的冷却剂可以通过能量发射器组件896和可膨胀元件882流动。
[0240] 图46显示了具有螺旋能量发射器组件920的消融组件910。冷却剂通过递送管944和螺旋区段946流动。冷却剂从螺旋区段946附近的组织吸收热能。冷却剂也冷却电极940。冷却剂流至消融组件910的远端并通过回管950返回近端。递送管944和回管950形成导管杆件952。通过这种方式,在无需使用单独的气囊的情况下,气道壁和电极940同时被冷却。
[0241] 螺旋区段946可以形成中空管状构件并具有七个线圈。线圈匝数能够增加或减少以增加或减小螺旋区段946的轴向长度。每匝线圈可以与邻近的线圈匝连接以防止分离。另外,邻近的线圈匝可以没有通过物理法连接在一起,从而允许解开消融组件910,用于通过气道递送。
[0242] 消融组件910能够膨胀以呈现螺旋配置,并且整体或部分可由诸如PET或其它热塑性材料的预成型的材料制成。另外,消融组件910能够由形状记忆材料制成,当热触发或当从受限的配置释放时,其呈现不同的配置。
[0243] 为有利于电极940和组织间的接触,电极940可以向外突出。电极940可以是表面安装的板。在其它实施方案中,电极940是导电涂层。
[0244] 图47显示具有管状构件964的螺旋区段962,管状构件964具有三个线圈匝。中间线圈匝970可以稍大于邻近的线圈972、974,以便电极975可径向放置在线圈的外部。冷却剂能够流经递送管967,通过螺旋区段962,并通过回管966返回。在一些实施方案中,内线圈将线圈匝970向外推。
[0245] 图48和图49显示开放的冷却通道,其与气囊的腔室相通。电极1010安装至气囊1014的外部。在气囊1014的壁中可以形成环肋(annular rib)1030,并且电极1010可以具有可套在环肋之上的弯曲的横截面形状,以有助于维持电极1010的位置并为在气囊和电极间的热传递创造更大的表面。能够通过递送腔1016递送冷却剂。冷却剂经过端口1019进入气囊1014的腔室1020。端口1019被设置成以水流或喷雾的形式向电极1010引导冷却剂以使该电极冷却。冷却剂流通并通过端口1022从腔室1020流出。冷却剂沿返回腔1018流向近端。为了提高冷却能力,冷却剂流朝向电极1010并被递送至电极1010。
[0246] 如图50所示,递送管道1044具有末端1040,该末端侧向远离纵轴1050向电极1010方向延伸,使得流出端口1042紧邻电极1010放置。冷却剂能够流出端口1042并直接流向电极1010以使冷却最大化。
[0247] 图51显示长型体1111的可转向递送管道1110,可转向递送管道1110从递送位置1112可移动至图52的展开位置1113。递送管道能弹性地偏向展开位置1113。缩小的气囊1130能够将递送管道1110维持在伸直的配置中直到气囊1130膨胀。气囊1130和偏移的递送管道1110能够一起展开。在其它实施方案中,递送管道1110由触发时能移动的形状记忆材料制成。例如,当加热时递送管道1110能够从递送位置1112向展开位置1113移动。
[0248] 参考图53,相对于纵轴1117(图52),端口1114更接近冷却通道1119。流体从端口1114向外喷出并进入通道1119。冷却剂能够沿着电极1120的整个长度和宽度流动以提供基本均匀的电极冷却。当气囊1130缩小时,递送管道1110移动回基本为中线的位置。
[0249] 图54和图55显示能量发射器组件1200的一部分,其在外部构件或管道1220中包括内电极1210。间隔器1222a、1222b、1222c、1222d、1222e、1222f(统称为“1222”)将电极1210从外部构件1220隔开。电极1210具有内冷却通道1234。外冷却通道1235位于电极1210和外部构件1220之间。如图55所示,冷却剂能够在一个方向上流动通过冷却通道1234,并且冷却剂能够在相反的方向上流动通过通道1235。
[0250] 图56和图57显示电极1240,其具有多个冷却通道1242a、1242b、1242c、1242d、1242e(统称为“1242”)。相同的流体能够被递送通过全部的通道1242。另外,通过通道1242能够递送处于不同温度的不同的流体。在一些实施方案中,冷却剂在一个方向上流动通过通道1242中的一些,并且不同的冷却剂能够在相反的方向上流动通过其它的通道1242。
[0251] 参照图58和图59,电极1300包括金属管。热量能够沿电极1300的圆周传导并能导入冷却通道1320中的冷却剂。热流如图59所示。热量能够基本均匀地沿电极1300的壁传递,以便热量被沿内表面1330流动的冷却剂吸收。
[0252] 电极可以包括一个或多个用于增强热传递的传热元件。图58显示了一种可选的翅片1306形式的传热元件(如虚线所表示的),其延伸入冷却剂通道1320。任何数量的向内延伸的翅片都可以位于冷却剂通道1320中,用于通过对流增强热传递。翅片可以由高热导率的材料制成。其它类型的传热元件或部件(例如,表面纹理)可以用于控制热传递。
[0253] 图60和图61显示具有导热部分1360和绝缘部分1362的电极1350。导热部分1360整体或部分可以由金属或其它具有高热导率的材料制成。绝缘部分1362可以由绝缘材料制成,诸如橡胶、塑料等。如图61所示,热传递通常与导热部分1360隔离以防止绝缘构件1362的过度加热,绝缘构件可以与诸如气囊的温度敏感元件接触。
[0254] 如果电极在一端或两端具有利边,电子具有在这些利边和其它不规则区域附近聚集的趋势。边缘附近的电压通常比电极的其它区域高。图62显示与绝缘构件1372连接的电极1370,并且由加号表示的施加的电荷倾向于沿利边1374积聚。高电荷导致过度加热并且被称为“边缘效应”。当高电荷的边缘1374接触组织时,在电极边缘1374附近的高区域电压导致更多的功率被递送至与边缘1374接触或邻近的组织。因此,该组织变得比接触电极1370的其它组织更热。这导致组织的不均匀加热和不想要的热点。在射频消融中,损伤的形成可能很不均匀并且可能是过度的组织损伤,这通常被称为边缘效应。
[0255] 图63显示与绝缘体1376连接的电极1375。电极1375由多个个体电极组成。一个或多个个体电极可以具有利边,但电极足够小使得电荷密度沿整个电极1375的长度和宽度相对均匀。电荷通常均匀分布,以最下化、限制或基本上消除边缘效应。这导致沿电极1375的长度具有基本均匀的温度,如图63所示。
[0256] 图64显示多个离散的间隔电极元件,如电极环1382a、1382b、1382c、1382d(统称为“1382”)所示。每个电极环1382包括多个个体电极以减轻边缘效应。绝缘部分1390a、1390b、1390c,1390d(统称为“1390”)使电极环1382绝缘。
[0257] 图65显示电极元件1410的边缘1430由屏蔽物1420覆盖。电极元件1410的暴露的接触表面1440能够接触组织1450并能导致基本均匀的加热。屏蔽物1420可以是绝缘材料,该绝缘材料能够抑制或阻断由电极元件1410输出的能量。如果电极元件1410输出电能,屏蔽物1420可以由电绝缘材料制成,诸如非传导性塑料或聚合物或其它介电材料。
[0258] 图66显示了消融组件1470,其包括电极1480和屏蔽部分1484a、1484b(统称为“1484”)。电极1480具有第一端1481、第二端1483和主体1485。屏蔽部分1484a、1484b覆盖末端1481,1483并且可以是消融能量绝缘体的一部分。沿着暴露的电极1480的长度,能够产生基本均匀的温度分布。能够根据应用来选择电极1480和屏蔽部分1484之间重叠的长度。在一些实施方案中,能够在每个屏蔽部分1484中接受约4mm长度的电极1480。电极1480的暴露区段的长度可以为约6mm至10mm。电极1480的长度可以为约8mm。其它尺寸也是可能的。
[0259] 屏蔽部分1484a、1484b可以是冷却管道。冷却剂能够流经屏蔽部分1484并通过电极1480的冷却通道。在其它实施方案中,珀尔帖装置被用于冷却电极1480。应当理解的是,图54-66的电极实施方案的任何一个都可以在本申请中所公开的任何一个能量发射器组件中使用。
[0260] 通过调节如下可以控制损伤形状:冷却剂的温度、冷却剂流速、冷却剂的载热能力、气囊的热特性(例如,气囊的热传递性能)或递送功率的量。图67A-71B显示通过逐步提高气囊的冷却所形成的温度谱图和相应的损伤。气囊的冷却能力可以通过降低冷却剂温度或提高冷却剂流速或两者来提高。通过保持气囊的冷却能力基本不变同时改变电极的冷却剂容积或通过提高或降低递送至组织的功率,也能实现对损伤定形。通过举例的方式,图8的消融组件208能够用于形成图67B、68B、69B、70B和71B的损伤。因为气囊212具有比电极通道340更大的直径,相比于通过电极214的高速低速,沿气囊表面的流速相对较低。
这样产生了差别冷却。如果电极214和气囊212拥有独立的流动,则冷却剂可以处于不同的温度和/或流速度,用于差别冷却。图39-42的消融组件800能够用于差别冷却。由电极836递送至组织的功率可以是固定的。通过能量发射器组件820的冷却剂流速可以是固定的。通过气囊810的冷却剂流速可以变化以形成不同形状的损伤。
[0261] 图67A显示组织中的等温线和温度分布,其具有80℃、60℃和40℃的等温线。图67B显示对应于图67A的等温线的损伤1504。冷却通道1522中的冷却剂仅是能吸收显著量的热量的冷却剂。气囊1510不吸收显著量的热能且能够用流体充满,该流体的温度一般为室温或在约20℃-30℃的范围内。在一些实施方案中,气囊1510采用周围的空气来膨胀并能够保持电极1524对组织1500的挤压。在其它实施方案中,气囊1510采用温盐水来膨胀。
[0262] 图67B显示具有基本上为半圆形形状的损伤1504。可以分别通过降低或提高冷却通道1522中冷却剂的温度来增加或减小半径r和深度D。此外或可选地,可以分别通过降低或提高冷却剂的流速来增加或减小半径r和深度D。
[0263] 冷的冷却剂能够通过气囊1510递送以减少组织表面1525上的损伤的横截面宽度。图68A和图68B显示当冷却剂冷却电极1524和当低温冷却剂以低速流经气囊1510时的等温线和相应的损伤1527。气囊1510中的冷却剂吸收足以保护与气囊-组织界面接触或邻近的组织的热能。
[0264] 损伤基本上为椭圆形。在一些实施方案中,包括图68B所示的实施方案,在表面1525上的损伤1504横截面宽度小于在图67B中在表面1525上的损伤1504的横截面宽度。
图68B的损伤1504的截面宽度随深度增加至最大宽度W最大,并随后下降至最深区域1530。
最大宽度W最大小于损伤1504的深度D。图68B显示表面1525上的损伤1527的宽度不大于电极宽度的约150%。图69B显示组织表面1525上的损伤1527的最大横截面宽度约等于电极宽度。
[0265] 图69A和图69B显示当低温冷却剂以高速流经气囊1510或者极低温度的冷却剂以低速流经气囊1510时的等温线和损伤1527。类似泪滴形的损伤1527从组织表面1525延伸。损伤1527的浅层或狭窄部分1534的宽度约等于电极1524的横截面宽度WE。因此,表面1525上的损伤1527具有的最大横截面宽度不大于电极-组织界面的约150%。这确保了破坏最小量的表面组织。从浅层部分1534向外至增大的区域1535,损伤1527逐渐变小。损伤横截面宽度随深度逐渐增加至最大宽度W最大。最大宽度W最大可以比在表面1525上的横截面宽度大约1至约3倍。损伤1527的最深区域1530为部分圆形。
[0266] 图70A和70B显示当极低温度的冷却剂以高速流经通过气囊1510时能够形成的等温线和泪滴形损伤1527。损伤1527从组织表面1525延伸并具有狭窄的浅层区域1534,该浅层区域1534向外迅速扩展至广深区域1552。浅层部分1534的宽度小于电极1524的宽度WE。横截面宽度随深度迅速增加至最大宽度W最大。因此,损伤1527的大部分体积在组织深处。因此,面心的深度显著大于表面1525上的损伤1527的宽度。
[0267] 图71A和图71B显示当极低温度的冷却剂以极高的速度流经气囊1510时能够形成的等温线和相应的圆形损伤1527。损伤1527位于从组织表面1525起的深度D处。损伤1527的最大横截面宽度W最大在深度D宽度最大处。损伤1527与电极-组织界面分离并根据和冷却剂的流速和温度可以具有不同的形状。不同的冷却能够用于获得其它埋入的损伤形状,诸如通常为椭圆形、长型等。
[0268] 能够根据靶区域的位置来选择D宽度最大。为破坏神经组织,D宽度最大可以为至少约2mm以确保损伤包括神经组织。深度D可以为至少约2mm以减轻或避免对平滑肌组织造成显著的损伤。这种实施方案非常适合用于治疗气道壁,因为平滑肌组织的深度通常不低于2mm。以这种方式,靶区域的横截面宽度能够在比平滑肌组织更深的深度达到最大。在一些实施方案中,大部分或基本上全部的损伤将在不是平滑肌组织的组织中,通常是处于比平滑肌组织区域更深的气道中。另外,对在气道壁中的平滑肌细胞的任何破坏可以小于在不破坏神经组织的情况下基本上改变气道的反应性或收缩性(诸如哮喘、COPD或其它肺病)所需的破坏。
[0269] 通过其中大量的组织未被永久性破坏的保护区域,损伤能够从组织表面分离。图70B和图71B显示深度为DP的保护区域1561。有利的是,因为在保护区域1561中的大量组织未被永久性破坏,其组织功能能够被保留。深度的DP可以为至少约1mm至约2mm以消融神经组织。
[0270] 应当了解的是,本文使用的术语“损伤”是指被永久破坏的组织,即指细胞死亡的点。在一些情况下,能量递送将对所谓的“损伤”区域以外的细胞造成暂时的或非致命的破坏。例如,上皮细胞或平滑肌细胞可以被本文所述的能量递送所暂时破坏或改变。然而,有利的是,通过使用差别冷却,这些细胞能够重新恢复并保持功能,因此不认为是所形成的“损伤”的一部分。相比之下,导管207能够对位于气道壁深处或在气道壁以外的神经组织造成永久性破坏,从而减弱造成某些肺病的神经信号。
[0271] 图8中的导管207能够形成图71B的损伤1527。递送腔324、返回腔326和电极通道340(图13)各自的直径可以为约2.1mm。气囊212可以由低硬度聚氨酯制成,其壁厚度约0.019mm至约0.025mm,且纵向长度为约20mm。气囊212的外径为约16mm,并膨胀至约10psig的压力。冷却剂以约100-120ml/分钟的流速流经电极214并为冷盐水或水(例如,冷盐水或冷水)。电极214的长度为约8mm并向组织递送约25W的功率,以形成最大深度D最大为约7mm至约8mm的损伤1527和DP为约1mm至约2mm的保护区域1561。也就是说,损伤1527从组织表面间隔的距离为至少1mm至约2mm。
[0272] 图72和图73显示递送装置1600,具有电极1610和形式为气囊1620的可张开元件。电极1610从缩小的气囊1620向远端延伸,气囊1620紧密环绕长型杆件1640。长型杆件1640的远端区段1688通过腔室1690轴向延伸,并携带电极1610。当膨胀时,气囊1620可向远端扩张,从而沿电极1610延伸。
[0273] 图74显示膨胀的基本上为钟形的气囊1620,其界定远端面向的接触表面1630。接触表面1630环绕电极1610并具有基本上为环形的形状。气囊1620能够防止外部流体沿电极1610流动。
[0274] 图75显示沿着递送管1700流动的冷却剂。冷却剂从出口1710流出并沿电极1610的内表面1720流动。当冷却剂吸收热量时,其被加热。冷却剂通过端口1720a、1720b从电极1610流出,并在气囊室1690中循环。冷却剂吸收热量以冷却组织。冷却剂通过端口1730a、1730b从室1690流出并流动通过回管1740。
[0275] 如果外部液体(例如,血液、尿液、粘液等)沿装置1600周围流动,气囊1620能够阻断液体沿组织1650流动。电极1610能够递送能量至组织,而无大量的热量被外部液体流吸收。例如,如果组织1650是心脏组织,气囊1620能够防止大量的血液在气囊1620和组织1650之间流动,从而防止电极1610附近的组织由于血流被冷却。此外,如果需要或希望的话,气囊1620能够冷却组织1650对损伤定形。
[0276] 图77-81显示递送装置1800,其具有电极1810和与同轴的杆件1801连接的钟形可张开元件1814。电极1810连接至可张开元件1814的远端面。杆件1803中的内腔1820将冷却的膨胀流体递送至可张开元件1814内用于使其张开。膨胀流体从可张开元件流入杆件1852的外腔1850。冷却剂能够流出端口1818流向近端电极表面1830并且能够通过腔室1840循环。电极1810可连接至电源线(未显示),该电源线可通过流体递送腔和气囊延伸,以将能量递送至电极。另外,低温流体可以通过气囊循环以将电极冷却至低温来进行低温消融。
[0277] 图82-86显示了递送装置1900。用于膨胀可张开元件1910的流体沿着递送腔1920流入腔室1930。流体从返回腔1934流出。冷却电极1940的冷却剂沿递送腔1950流动并流经电极室1954。冷却剂通过返回腔1960从腔室1954流出。电极冷却剂和气囊冷却剂可处于不同的温度用于差别冷却。有利的是,能够独立地控制电极和气囊冷却剂的流速和温度。
[0278] 图72-86的远端消融递送装置特别适合向心脏组织递送能量。气囊可以用诸如二氧化碳、氦气或空气的气体或其它热容相对较低的液体填充以形成心内膜表面损伤,甚至会形成相对较大的心内膜表面损伤。液体所处的温度基本等于或高于组织的正常温度以防止不必要的冷却。低温冷却剂能够通过气囊以保护和冷却气囊-组织界面附近的组织,从而限制或消除内膜损伤的大小,并能够用于产生相对大的外膜损伤。
[0279] 图87A-89B显示了等温线和相应的区域。图87A显示向组织2010递送能量的电极1610。电极1610可以使用冷却剂进行冷却。如果组织2010是心脏组织,血液能够流经组织表面2034并能够通过对流从组织2010吸收热量。因此,身体自然机能可有助于冷却组织2010以形成损伤2030,该损伤的形状类似于图68B中损伤1527的形状。图87A的最大深度D最大可以小于厚度t以避免破坏心外膜2032,但靠近电极1610的心内膜2034区段被破坏。
[0280] 气囊1620可以用气体(例如,周围的空气)或其它不吸收大量热能的液体膨胀。气囊1620阻断血流并允许消融邻近气囊组织界面2042的组织。如图88B所示,损伤2030具有较宽的基部。因此,图88B的损伤2030的最大宽度位于表面2044。
[0281] 冷的冷却剂能够通过电极1610和气囊1620以形成与递送装置组织界面间隔的损伤。图89和图89B显示等温线和相应的损伤2030。冷却剂能够冷却电极1610。冷却剂能够通过气囊1620以保持气囊1620附近的组织处于或低于诱导细胞损伤或死亡的温度。心内膜2034能够被保护并且可以破坏大量的心外膜2032。保护区域2035位于损伤2030和电极1610之间。
[0282] 其它类型的结构能够阻断液体流或血液流。例如,屏蔽物、遮罩、伞状结构等能够被放置在组织上以防止自然体液沿组织流动,因此促进浅层损伤的形成。
[0283] 图90和图91显示了具有电极2110的非膨胀递送装置2100,,电极2110具有排出口2112。有利的是,在不张开递送装置2100的情况下就能够形成损伤。端口2112在圆周方向上彼此间隔,并被设置成向组织2116喷射冷却剂。用箭头表示的冷却剂从端口2112流出并沿组织2116流动。在纵轴2117和喷射之间喷射角α可以小于约90度。在某些实施方案中,喷射角α小于约70度以确保冷却剂能够通过对流吸收大量的热量。
[0284] 冷却剂可以是冷盐水或冷水,它们与体液(例如,血液)混合。如果递送装置2100用于含有空气或其它气体的器官中,冷却剂可以是气体。
[0285] 图92显示了改进的递送装置2020,其具有第一组在圆周方向上间隔开的排出口2021和第二组组在圆周方向上间隔开的排出口2022。端口2021组、2022组沿着递送装置
2020的纵轴2028轴向彼此间隔开来。
[0286] 图93和图94显示了递送装置2031,其包括用于产生低温流体的减压元件2032。流体能够向下流至长型体2039的递送腔2037。流体经过减压元件2032,在电极室2039中形成低温液流。如本文所使用的,“减压元件”是指但不限于,被设置以降低工作流体压力的装置。在一些实施方案中,减压元件能够将工作流体的压力降低到等于或小于工作流体的蒸发压力。工作流体可以包含制冷剂(例如,低温制冷剂或非低温制冷剂)。在一些实施方案中,减压元件的形式为减压阀或膨胀阀,它们能够使从中流过的工作流体的至少一部分蒸发。减压元件蒸发有效量的工作流体(例如,低温流体)以降低工作流体的温度。在一些模式中,利用重量通过阀门元件2032的几乎全部或大部分工作流体被转换为低温低压气体。低温气体流经膨胀室2039并从排出口2033流出。在一些实施方案中,减压元件
2032可以是喷嘴阀、针型阀、焦-汤姆逊阀、节流阀元件或任何其它合适的能够提供所需的压力下降的阀。例如,焦耳-汤姆逊阀能够从液体的膨胀回收工作能量,导致较低的下游温度。在一些实施方案中,减压元件能够用流量调节元件(例如,阀系统)替代,尤其是在工作流体为非制冷剂,诸如水的情况下。
[0287] 图94的高压气体P1通过递送腔2037。高压气体P1通过元件2032进入膨胀室2039,在膨胀室2039中压力下降至P2。压力从P1下降至P2导致气体温度从T1下降至T2。
温度变化的幅度由下式计算:
[0288] T1-T2=μ(P1-P2)
[0289] 其中
[0290] T为气体的温度;
[0291] P为气体的压力;
[0292] μ为气体的焦耳-汤姆逊系数;
[0293] 下标1表示高压条件;
[0294] 下标2表示低压条件。
[0295] 当膨胀室2039中的气体从端口2033排出时,出现第二压力下降并下降至环境压力。如果递送装置2031用于肺,环境压力为大气压。该温度下降为:
[0296] T2-T3=μ(P2-PATM)
[0297] 因此,通过阀门元件2032流入膨胀室2039的冷气体将冷却电极2035,并且通过端口2033从膨胀室2039流出的冷气体可被定向至周围的气道并将冷却周围的组织。
[0298] 焦耳-汤姆逊系数(μ)对于各种气体或气体的组合是特异的。μ的标准温度值为:
[0299] 二氧化碳
[0300]
[0301] 空气
[0302]
[0303] 这些系数表明,对于给定的压力下降,CO2导致的温度下降比经历相似压力下降的空气所产生的温度下降大5倍。
[0304] 在肺中使用空气是可取的。如果冷却剂气体的流速足够低以致不能制约患者向肺外排出该额外的二氧化碳的能力,则可以使用二氧化碳。如果冷却剂管中的冷却剂为诸如液态空气或液态二氧化碳的高压流体,冷却效果可被提高。高压流体经过减压元件2032(例如,节流阀)并经历从高压流体向高压气体的吸热相变,这使得气体的温度低于高压流体的温度。然后,在通过出口2033排出电极之前,该气体经过从P1至P2的焦耳-汤姆逊膨胀,使温度进一步下降。
[0305] 应当理解的是,在本文公开的能量发射器组件的任何一个实施方案中,电极和/或邻近电极的组织可通过经历如上所述的焦耳-汤姆逊膨胀的流体进行冷却。例如,加压的液体可以通过这些能量发射组件的任何一种中的减压元件,使得液体发生到气体的相变,可被直接排向待冷却的电极,和/或排向电极接触部位附近的气道壁组织。
[0306] 图95-97显示了可从图95的递送配置移动至图96的组织治疗配置的可驱动的导管2200。可驱动的导管2200包括管套2210和长型体2212。长型体2212包括具有端口(以三个出口2215为例)的电极2214,。可为低温液体诸如冷盐水或冷水的冷却剂能够通过出口2215排出。阀门元件2216(例如,焦耳-汤姆逊元件)能够降低工作流体的温度。
[0307] 展开区段2230能够呈弧形,其符合气道或其它管道的内表面。弧形展开区段2230具有曲率轴,该曲率轴基本上与长型体2212的纵轴共平面。延伸通过长型体2212的偏置元件如金属线或推杆能够调整递送装置2200的配置。如果偏置元件是金属线,则可以拉伸电线以将展开的区段2230移动至弧形。另外,管套2210能够在远端区段1230上向远端滑动以覆盖展开区段2230,并在递送中将展开区段2230限制于伸直的配置。当套筒被移除时,展开区段2230将弹回至弧形。在其它实施方案中,当冷却剂通过远端区段2230递送时,冷却剂的压力使远端区段2230呈现弯曲形状(例如,卷曲(spiral)配置、螺旋(coiled)配置或盘绕(helical)配置)。
[0308] 图98显示了递送装置2300,具有安装在杆件2350上的可视化指示器2310a。当组件2320在气道中膨胀时,很难看到电极2340,尤其在如果电极2340位于软骨环之间或如果粘液聚集在气囊2330外部的情况下。因此,医生可能很难精确定位电极2340。可视化指示器2310a位于可张开元件2330的近端,因此,从可张开元件的近端位置是可见的。可视化指示器2310a与电极2340的位置相对应。在一些实施方案中,包括示例的实施方案,电极2340通常处于可视化指示器2310a的径向向外和轴向偏移的位置,如图100所示。图100的电极2340的弧长一般等于可视化指示器2310a的弧长。基于可视化指示器2310a的位置,医生能够确定电极端2352、2354的大致位置。这使得医生更容易转动并准确定位电极2340。
[0309] 通过气管镜,可视化指示器或标记2310a可以是彩色的、反光的或以其它方式可见的。在一些实施方案中,可视化指示器2310a可以是纵向延伸的条纹或标记。在其它实施方案中,可视化指示器2310a可以是一个或多个光源。如果消融组件2320包括多个电极,不同的可视化指示器可以对应不同的电极位置。可视化指示器可位于长型杆件2350、气囊2330、电极2340或其它合适的位置。
[0310] 图100显示定位在绕长型杆件2350周围的可视化指示器。每个可视化指示器2310a、2310b、2310c、2310d(统称为“2310”)可以为不同的颜色。用户能够使用可视化指示器2310定位消融组件2320。在其它实施方案中,气囊2330的近端具有可视化指示器。
[0311] 图101显示放置在递送设备2410中的导管2400。长型体2420延伸通过工作腔2430。光学元件2440可用于指示和定位消融组件2450。气囊2460能够为透明的或半透明的。
[0312] 递送设备2410是具有相机光学部件2440的气管镜。相机光学部件2440的远端2470与气囊壁光连接。远端2470能够挤压适应性气囊的近端表面以提供光连接。在使用过程中,用户能够看见电极或其它组件或解剖学特征通过气囊的壁和气囊内的流体。
[0313] 在其它实施方案中,递送设备2410可以是具有光纤部件2440的鞘,光纤部件2440具有镜头、光源、相机等。在某些实施方案中,光学元件2440集成或连接于气囊2460。这防止粘液或其它有害物质模糊使用者的视力。可以选择气囊的形状,特别是近端气囊壁的角度,以最优化相机光学部件2440的视野。近端气囊壁可以具有这样的区段,该区段与相机光学部件2440对准,基本上是平的、光滑的、透明的,且平行于相机光学部件2440的远端2470的平面,优选地,在一些实施方案中,该区段相对于长型体2420的纵轴成约75度至约
105度的角度。可以选择近端气囊壁的材料以优化可视度和透明度,例如使用与相机光学部件2440和/或气囊内流体相匹配的折射率。
[0314] 图102显示消融组件2510,其包括长型杆件2530、气囊2540、可置换的能量发射器组件2550。基本上处于伸直配置的消融组件2510可以移动出递送设备2500以呈现弯曲配置,用约180度的弧长示例。能量发射器组件2550可以偏移以呈现预设的螺旋形或弯曲形。当其通过工作腔2520以外,能量发射器组件2550能够呈现递送配置。另外,冷却剂递送经过的能量发射器组件2550可以由形状记忆材料制成。
[0315] 如在图104中所示,气囊2540向远端延伸超过末端2570。膨胀的气囊2540由能量发射器组件2510的弯曲区段2560接收,使得电极2571沿着气囊2540外部定位。电极2571能够被气囊2540冷却。另外或可选地,能量发射器组件2550可以具有冷却剂流经的冷却通道。在一些实施方案中,能量发射器2550与图54-57所示的提供逆向流的实施方案类似。在其它实施方案中,端口、出口或其它特征能够纳入能量发射器组件2550以提供组织的直接冷却。
[0316] 图105和图105A显示消融组件2600,其包括携载于管道或管状构件2618上的可伸缩电极2614。电极2614可以为涂层、薄箔、薄膜或其它导电材料。不同类型的涂布、电或其它制造技术可用于形成电极2614。在其它实施方案中,电极2614可被连接到管状构件2618的内表面2620。这能防止与组织或体液的直接电极接触。
[0317] 图106-图108显示收缩过程。图106显示处于部分收缩配置的气囊2630。管道2618将电极2614维持在展开配置中。
[0318] 图107显示处于完全收缩配置的气囊2630和处于收缩配置的能量发射器组件2634。径向收缩的电极2614呈现相对小的外形。为了方便收缩过程,可抽真空。如图108所示,电极2614可靠置于长型体2640和气囊2630以呈现相对低外形的位置。
[0319] 为了使消融组件2600膨胀,流体可以流过并使管道2618膨胀。内部节流阀能够控制导管2618和气囊2630之间的相对压力。图106显示部分膨胀的气囊2630。连续向气囊2630填充流体直到气囊2630全面展开。因此,在完成气囊2630的膨胀前,导管2618可被充分膨胀。也可采用其它类型的膨胀过程。
[0320] 图109显示包括可张开的篮筐2709的消融组件2700,篮筐2709具有可置换的电极臂2710a、2710b、2710c、2710d、2710e(统称为“2710”)。电极臂2710沿可张开元件2720(以可膨胀气囊为例)的周围间隔开。臂2710从长型杆件2730向远端延展。每个臂
2710携载一个电极元件2740a、2740b、2740c、2740d、2740e(统称为“2740”)。臂2710可为诸如镍钛合金的传导性形状记忆材料,其能弹性地向外侧偏移,以便当从长型杆件2730向远端延伸时,它们能返回到如图110所示的径向张开的配置。可张开元件2720可张开以促使臂2710挤压气道壁。此外,冷却剂可通过可张开元件2720循环以冷却电极2740a-e及其邻近的组织。
[0321] 图112显示在电导体2748a周围具有绝缘体2746a的长型臂2710a。电导体2748a在电极2740a和长型杆件2730之间提供电通信。电导体可以是用于形成臂2710本身的诸如镍钛合金的传导性金属材料。
[0322] 图113显示在可张开元件2720周围在圆周方向上间隔开的电极2740a-e。所示的实施方案包括五个电极。根据治疗位点的数量能够使用更多或更少的电极数量。在其它实施方案中,沿每个长型臂可以放置多个间隔开的电极。可以相继地或同时触发电极。在一些实施方案中,电极能够在同一时间内以单极模式进行操作。另外,能够以双极性模式操作各种配对的多个电极。可以使用大量不同的操作模式。
[0323] 图113的递送管道2754径向向外向每个电极2740递送冷却剂,其用箭头表示。冷却剂能够在气囊2720中循环。
[0324] 图114-116显示消融组件2800,其包括可张开元件2810和可展开能量发射器组件2820。能量发射器组件2820能够张开以展开锯齿形或波浪形的电极2830。展开的电极2830在一对臂2834a、2834b的末端之间延伸。所示的电极2830具有锯齿配置,但其它配置是也是可能的。
[0325] 为将电极2830放置在组织附近,可张开元件2810能够膨胀以向外移动臂2834a、2834b。在一些实施方案中,臂2834a、2834b是自张开的。当消融组件2800移动出递送组件的工作腔时,臂2834a、2834b能够呈现张开配置。在其它实施方案中,臂2834a、2834b由形状记忆材料制成,其能被触发以呈现张开配置。臂自身可由诸如镍钛合金的传导性材料制成以将能量传导到电极2830。
[0326] 图117显示递送装置2090,其包括可展开的篮筐2910。可展开的篮筐2910为长形并包括多个携带有电极2912的长型臂或支柱。在其它实施方案中,篮筐2910通常呈球形、卵形或可以具有任何其它合适的形状。有利的是,空气能够通过2910篮筐以保持通气。多个支柱可以包括冷却剂流动的通道、一个或多个阀(例如,节流阀、焦耳-汤姆逊阀等)。
在一些实施方案中,能够通过支柱(以五个支柱为例)递送低温流体或制冷剂以增强冷却。
图54和图57所示的实施方案可以并入支柱。在一些实施方案中,元件2912可以为包括电极和内部节流阀的能量发射组件形式。
[0327] 图118显示处于部分张开配置的篮筐2910。当篮筐张开时,电极2912径向向外移动。图119显示处于充分张开配置的篮筐29。图119的枢轴或节点2914能够使篮筐2910相对于长型杆件2918转动。当篮筐2910沿着高度弯曲的腔放置时,这提供了柔韧性。枢轴2914可以由铰接、柔性构件、铰链或其它适合提供相对大的转动量的部件形成。
[0328] 本文所公开的递送装置能够治疗消化道系统、神经系统、血管系统或其它系统。例如,本文所公开的长型组件、管腔内导管和递送装置能够通过血管递送以治疗血管系统。本文所公开的治疗系统及其组件能够用作其它医疗方法的辅助手段,所述其它医疗方法诸如能提供进入所需靶点的微创手术、开放式手术、半开放式手术或其它手术(例如,肺体积缩小手术)。各种胸部外科手术可提供进入肺组织。用于提供进入靶点的进入技术和方法能够由医生和/或机器人系统来执行。本领域技术人员了解多种能进入靶区域的不同的方法。
[0329] 本文公开的递送装置能够与导线、递送鞘、光学仪器、引入器、套管活检针或其它适当的医疗设备一起使用。如果目标治疗位点处于患者的远端位置(例如,图1的肺根24附近的治疗位点),则很多工具和技术能够用于进入位点。使用例如,可操纵的递送装置、诸如如上所述的内窥镜和气管镜可以很容易地将柔性的长型组件放置于患者体内。
[0330] 半刚性或刚性长型组件能够通过使用以下来递送:套管、接入端口,使用半开放式手术的刚性递送鞘、开放式手术或能提供略直递送通道的其它递送工具/方法。有利的是,半刚性或刚性长型组件能足够刚性地进入和治疗远端组织,诸如沿气道的迷走神经、神经分支、神经纤维和/或神经干,而不通过气道递送长型组件。本文所公开的实施方案和技术能够与其它方法一起使用,诸如支气管整形术。
[0331] 除非上下文另有要求,整个说明书权利要求都遵循,词语“包括(comprise)”及其变型,诸如“包括(comprises)”和“包括(comprising)”都应被解释为开放、包括的含义,即解释为“包括但不限于”。
[0332] 可以将上述不同的实施方案结合以提供其它实施方案。鉴于上文的详细描述,可以对实施方案进行这些改变和其它改变。本文所公开的实施方案、特征、系统、装置、材料、方法和技术在一些实施方案中与以下所描述的实施方案、特征、系统、装置、材料、方法和技术中的任何一种或多种相似:2009年5月8日提交的第12/463,304号申请、2009年10月27日提交的第61/255,367号美国临时专利申请和2009年11月11日提交的第61/260,348号美国临时专利申请。这些申请每一个通过引用整体合并入本文。此外,本文所描述的实施方案、特征、系统、装置、材料、方法和技术在某些实施方案中可以应用于上述美国专利申请第12/463,304号中所公开的实施方案、特征、系统、装置、材料、方法和技术或与它们结合使用。例如,例如,在美国专利申请第12/463,304号中公开的装置可以与本文所公开的电极或其它特征结合。
[0333] 另外,本文所描述的实施方案、特征、系统、递送装置、材料、方法和技术在某些实施方案中可以应用于上述2009年5月8日提交的第12/463,304号申请、2009年10月27日提交第61/255,367号美国临时专利申请和2009年11月11日提交的第61/260,348号美国临时专利申请所公开的实施方案、特征、系统、装置、材料、方法和技术中的任何一种或多种或者与它们结合使用。
[0334] 一般地,在以下的权利要求书中,所用的术语不应当解释为将权利要求限制于说明书和权利要求书所公开的具体实施方案,而应当解释为包括权利要求所表示的全部范围的等同方式的所有可能的实施方案。因此,权利要求书不受公开内容的限制。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈