首页 / 专利库 / 电磁学 / 驻极体 / 用于破坏细胞聚集以及分离或富集细胞的方法和装置

用于破坏细胞聚集以及分离或富集细胞的方法和装置

阅读:638发布:2022-09-06

专利汇可以提供用于破坏细胞聚集以及分离或富集细胞的方法和装置专利检索,专利查询,专利分析的服务。并且一方面,公开了从液体样品中分离目标成分的方法,该方法包括:a)通过微型 过滤器 传递包含或疑似包含目标成分和细胞聚集体的液体样品以便于使假设存在于所述液体样品中的目标成分被保留或通过所述微型过滤器,并且b)在传递所述液体样品通过所述微型过滤器之前和/或同时, 接触 以降低或去除假设存在于所述液体样品中的所述细胞聚集体。,下面是用于破坏细胞聚集以及分离或富集细胞的方法和装置专利的具体信息内容。

1.用于分离液体样品中目标成分的方法,所述方法包括:
a)传递包含或疑似包含目标成分和细胞聚集体的液体样品通过微型过滤器以便假设存在于所述液体样品中的目标成分被保留或通过所述微型过滤器,并且
b)在传递所述液体样品通过所述微型过滤器之前和/或同时,使所述液体样品与乳化剂和/或细胞膜充电剂接触以降低和/或分散假设存在于所述液体样品中的所述细胞聚集体,和/或
在使所述液体样品通过所述微型过滤器之前和/或同时使所述液体样品与约300mOsm至约1000mOsm之间,任选地在约350mOsm至约1000mOsm之间,介于约350mOsm和约600mOsm,约400mOsm至约600mOsm之间,约450mOsm至约600mOsm之间,或约550mOsm至约600mOsm之间的高渗盐溶液接触,以减少或分散假设存在于所述液体样品中的所述细胞聚集体。
2.根据权利要求1所述的方法,其中通过所述微型过滤器外部的结构和/或过滤器内置的结构产生的物理来控制液体样品。
3.根据权利要求2所述的方法,其中所述物理力选自介电泳力、行波介电泳力、磁力、声力、静电力、机械力、光辐射力和热对流力组成的组。
4.根据权利要求3所述的方法,所述介电泳力或行波介电泳力通过电极产生的电场产生。
5.根据权利要求3所述的方法,所述声力通过驻波声场或行波声场产生。
6.根据权利要求3所述的方法,所述声力通过压电材料产生的声场产生。
7.根据权利要求3所述的方法,所述声力通过音圈或音频扬声器产生。
8.根据权利要求3所述的方法,所述静电力通过直流电(DC)电场产生。
9.根据权利要求3所述的方法,所述光辐射力通过激光镊产生。
10.根据权利要求1-9任一所述的方法,所述目标成分为所述液体样品中的细胞、亚细胞结构或病毒。
11.根据权利要求1-10任一所述的方法,所述液体样品是血液、渗出物、尿液、骨髓样品、腹水、盆腔冲洗液、胸膜液、脊髓液、淋巴液、血清、粘液、痰、唾液、精液、眼液、鼻腔提取液、咽喉或生殖器拭子、消化后的组织的细胞悬液、排泄物提取液、混合类型和/或混合大小的培养细胞,或者包含需要去除污染物或游离反应物的细胞。
12.根据权利要求11所述的方法,所述液体样品是血液样品且所述要去除的成分是血浆、血小板和/或红细胞(RBC)。
13.根据权利要求11所述的方法,所述液体样品是包含需要去除污染物或游离反应物的细胞。
14.根据权利要求13所述的方法,其中所述游离反应物是所述细胞的标签试剂,或者对下游分析有竞争性或干扰性的可溶性抗原或分子。
15.根据权利要求11所述的方法,所述液体样品是血样并且所述目标成分是有核细胞。
16.根据权利要求15所述的方法,所述有核细胞是非造血细胞、血细胞亚群、胎儿红细胞、干细胞,或癌细胞。
17.根据权利要求11所述的方法,所述液体样品是渗出物或尿液样品,所述目标成分是有核细胞。
18.根据权利要求17所述的方法,所述有核细胞是癌细胞或非造血细胞。
19.根据权利要求1-18任一所述的方法,所述液体样品是血样,所述待降低或分散的所述细胞聚集体是缗钱状聚集体(血红细胞聚集体或细胞堆)。
20.根据权利要求1-19任一所述的方法,所述目标成分被所述微型过滤器保留。
21.根据权利要求1-19任一所述的方法,所述目标成分通过所述微型过滤器。
22.根据权利要求1-21任一所述的方法,所述方法包括,在所述液体样品通过所述微型过滤器之前,将所述液体样品与乳化剂和/或细胞膜充电剂接触。
23.根据权利要求1-21任一所述的方法,所述方法包括,在所述液体样品通过所述微型过滤器的同时,将所述液体样品与乳化剂和/或细胞膜充电剂接触。
24.根据权利要求1-21任一所述的方法,所述方法包括,在所述液体样品通过所述微型过滤器的之前以及同时,将所述液体样品与乳化剂和/或细胞膜充电剂接触。
25.根据权利要求1-24任一所述的方法,所述乳化剂和/或细胞膜充电剂采用从约1mg/mL到约300mg/mL,或从约0.01%(v/v)到约15%(v/v)的水平范围。
26.根据权利要求24所述的方法,在所述液体样品通过所述微型过滤器之前,所述乳化剂和/或细胞膜充电剂被用在第一层,并且在所述液体样品通过所述微型过滤器的同时,所述乳化剂和/或细胞膜充电剂被用在第二层,并且所述第一层高于第二层。
27.根据权利要求1-26任一所述的方法,所述乳化剂可以是合成乳化剂、天然乳化剂、细分散或细分散的固体颗粒乳化剂、辅助乳化剂、单分子乳化剂、多分子乳化剂、或固体颗粒膜乳化剂;并且其中细胞膜充电剂是带负电荷的多糖或杂多糖,例如肝素,硫酸乙酰肝素,葡聚糖,硫酸葡聚糖或4-硫酸软骨素,硫酸质素,硫酸皮肤素,水蛭素或透明质酸,或低分子量(例如,<约50kD,优选约45kD,<约40kD,<约35kD,<约30kD,<约25kD,<约20kD,<约
15kD,<约10kD kD,<约5kD,或更优选<约2kD)葡聚糖或普朗尼克酸。
28.根据权利要求27所述的方法,所述合成的乳化剂是阳离子、阴离子或非离子试剂。
29.根据权利要求28所述的方法,所述阳离子乳化剂是苯扎氯铵或苄索氯铵。
30.根据权利要求28所述的方法,所述阴离子乳化剂是性皂,例如油酸钠或;胺皂,例如三乙醇硬脂酸盐,或洗涤剂,例如月桂基硫酸钠,二辛基磺基琥珀酸钠,或多库酯钠。
31.根据权利要求28所述的方法,所述非离子乳化剂是脱水山梨醇酯,例如 脱水山梨醇酯的聚乙烯衍生物,例如 或甘油酯。
32.根据权利要求27所述的方法,所述天然乳化剂是蔬菜衍生物,动物衍生物,半合成试剂或合成试剂。
33.根据权利要求32所述的方法,所述蔬菜衍生物是阿拉伯胶、黄蓍胶、果胶、角叉菜胶或卵磷脂。
34.根据权利要求32所述的方法,所述动物衍生物是明胶、羊毛脂或胆固醇。
35.根据权利要求32所述的方法,所述半合成试剂是甲基纤维素或羧甲纤维素
36.根据权利要求32所述的方法,所述合成试剂是
37.根据权利要求27所述的方法,所述细分散或细分散的固体颗粒乳化剂、辅助乳化剂、单分子乳化剂、多分子乳化剂、或固体颗粒膜乳化剂。
38.根据权利要求27所述的方法,所述辅助乳化剂是脂肪酸,例如硬脂酸,脂肪醇、例如硬脂基或鲸蜡醇,或脂肪酸酯,例如单硬脂酸甘油酯。
39.根据权利要求1-38任一所述的方法,所述乳化剂具有从约1至约40的水油平衡(HLB)值。
40.根据权利要求1-39任一所述的方法,所述乳化试剂选自包括PEG 400单油酸酯(聚氧乙烯单油酸酯),PEG 400单硬脂酸酯(聚氧乙烯单硬脂酸酯),PEG 400单月桂酸酯(聚氧乙烯单月桂酸酯),油酸钾,月桂基硫酸钠,油酸钠, 20(脱水山梨醇单月桂酸酯),
40(脱水山梨糖醇单棕榈酸酯)(脱水山梨醇单硬脂酸酯), 65(脱水山梨醇三硬
脂酸酯), 80(脱水山梨醇单油酸酯), 85(脱水山梨醇三油酸酯),三乙醇胺油酸酯, 20(聚氧乙烯失水山梨醇单月桂酸酯),Tween 21(聚氧乙烯脱水山梨糖醇单月桂酸酯) 40(聚氧乙烯失水山梨糖醇单棕榈酸酯), 60(聚氧乙烯脱水山梨糖
醇单硬脂酸酯), 61(聚氧乙烯脱水山梨糖醇单硬脂酸酯), 65(聚氧乙烯脱
水山梨醇三硬脂酸酯), 80(聚氧乙烯脱水山梨糖醇单油酸酯)脱水山梨醇单油酸酯)和 85(聚氧乙烯脱水山梨糖醇三油酸酯),并且
其中所述细胞膜充电剂是带负电荷的多糖或杂多糖,例如肝素,硫酸乙酰肝素,葡聚糖,硫酸葡聚糖或4-硫酸软骨素,硫酸角质素,硫酸皮肤素,水蛭素或透明质酸,或低分子量(例如,<约50kD,优选约45kD,<约40kD,<约35kD,<约30kD,<约25kD,<约20kD,<约15kD,<约
10kD kD,<约5kD,或更优选<约2kD)右旋糖酐,或普朗尼克酸。
41.根据权利要求1-26任一所述的方法,所述乳化剂是普朗尼克酸或有机硫化合物。
42.根据权利要求41所述的方法,所述普朗尼克酸是 10R5, 17R2,
17R4, 25R2, 25R4, 31R1, F-108,Pluronic 
F-108NF,Pluronic F-108Pastille, F-108NF Prill Poloxamer 338, F-
127NF, F-127NF 500BHT Prill, F-127NF Prill Poloxamer 407,
F 38, F 38Pastille, F 68, F 68 NF, F 
68NF Prill Poloxamer 188, F 68Pastille, F 77, F 
77Micropastille, F 87, F 87NF, F 87NF Prill Poloxamer 
237, F 88, F 88Pastille, FT L 61, L 10, L 
101, L 121, L 31, L 35, L 43,Pluronic L 61,
Pluronic L 62,Pluronic L 62LF,Pluronic L 62D,Pluronic L 64,Pluronic L 81,Pluronic L 92,Pluronic L44NF INH表面活性剂Poloxamer 124,Pluronic N 3,Pluronic P 103,Pluronic P 104,Pluronic P 105,Pluronic P 123表面活性剂,Pluronic P 65,Pluronic P 84,Pluronic P 85,或其任意组合。
43.根据权利要求41所述的方法,所述普朗尼克酸的使用水平范围为从约1mg/mL到约
300mg/mL,从约1mg/mL到约200mg/mL,从约5mg/mL到约50mg/mL,从约5mg/mL到约15mg/mL从约15mg/mL到约50mg/mL 50mg/mL。
44.根据权利要求41所述的方法,所述有机硫化合物是二甲基亚砜(DMSO)。
45.根据权利要求44所述的方法,所述DMSO的使用水平范围为从约0.01%(v/v)到约
15%(v/v),从约0.02%(v/v)到约0.4%(v/v),或者从约0.01%(v/v)到约0.5%(v/v)。
46.根据权利要求1-45任一所述的方法,使用至少两种不同的乳化剂或两种细胞膜充电剂,或者采用至少一种乳化剂和至少一种细胞膜充电剂。
47.根据权利要求46所述的方法,其中使用普朗尼克酸和DMSO。
48.根据实施例1-47任一所述的方法,还包括:
c)使用另外的无样品冲洗试剂冲洗所述液体样品中被保留的目标成分。
49.根据实施例1-48任一所述的方法,还包括:
d)提供结合所述目标成分的标记试剂。
50.根据权利要求49所述的方法,所述标记试剂是抗体
51.根据权利要求49或50所述的方法,进一步包括:
e)移除所述非结合标记试剂。
52.根据实施例1-51任一所述的方法,还包括:
f)回收收集装置中的所述目标成分。
53.根据实施例1-52任一所述的方法,包括使用特异结合分子从所述液体样品中去除至少一种不需要的成分。
54.根据实施例53所述的方法,所述液体样品是血样。
55.根据权利要求54所述的方法,所述至少一种不需要的成分为白细胞(WBCs)。
56.根据权利要求55所述的方法,所述特异结合分子选择性地结合白细胞(WBCs)并连接在固相载体上。
57.根据权利要求56所述的方法,所述特异结合分子为选择性地结合WBCs的抗体或抗体片段
58.根据权利要求57所述的方法,所述特异性结合分子是选择性结合CD3,CD11b,CD14,CD17,CD31,CD35,CD45,CD50,CD53,CD63,CD69,CD81,CD84,CD102,CD166,CD138,CD27,CD49(对浆细胞),CD235a(对RBCs),CD71(对有核RBCs和胎RBCs),CD19,CD20(对B-细胞s),CD56/CD16(对NK细胞),CD34(对干细胞),CD8/CD4(对T细胞),和/或CD62p(对活化血小板)的抗体。
59.根据权利要求58所述的方法,所述特异结合分子为选择性地结合CD35和/或CD50的抗体。
60.根据权利要求53-59任一所述的方法,还包括使血液样品与第二特异结合分子接触。
61.根据权利要求60所述的方法,所述第二特异性结合成分是选择性结合CD31,CD36,CD41,CD42(a,b or c),CD51,CD51/61,CD138,CD27,CD49(对浆细胞),CD235a(对RBCs),CD71(对有核RBCs和胎RBCs),CD19,CD20(对B-cells),CD56/CD16(对NK细胞),CD34(对干细胞),CD8/CD4(对T细胞),和/或CD62p(对活化血小板)的抗体。
62.根据权利要求1所述的方法,所述液体样品是血样,所述目标成分是有核细胞,待降低或分散的所述细胞聚集体是缗钱状聚集体,所述液体样品采用包含一种或多种乳化剂和/或细胞膜充电剂,例如DMSO和/或普朗尼克酸的洗涤组合物在过滤步骤(步骤a)之前和/或过程中进行处理,所述红细胞、血小板和血浆通过所述微型过滤器,并且所述目标有核细胞被所述微型过滤器保留。
63.根据权利要求1所述的方法,所述液体样品是血样,所述目标成分是有核细胞,待降低或分散的所述细胞聚集体是缗钱状聚集体,所述液体样品采用包含一种或多种乳化剂和/或细胞膜充电剂,例如DMSO和/或普朗尼克酸的洗涤组合物在过滤步骤(步骤a)之前和/或过程中进行处理,所述血样通过所述微型过滤器的第一部分以产生先滤液,其基本上已经清除红细胞、血小板和血浆,所述先滤液然后通过所述微型过滤器的第二部分,其允许有核细胞和其它小细胞,例如淋巴细胞和单核细胞通过,同时保留更大的细胞或细胞聚集体,例如成对细胞。
64.根据权利要求63所述的方法,通过所述微型过滤器第二部分的所述有核细胞或其它更小的细胞由一个单独的通道收集。
65.根据权利要求1所述的方法,所述液体样品是血样,待降低或分散的所述细胞聚集体是缗钱状聚集体,所述液体样品采用包含一种或多种乳化剂和/或细胞膜充电剂,例如DMSO,和/或普朗尼克酸的洗涤组合物在过滤步骤(步骤a)之前和/或过程中处理,采用包含第一和第二微型过滤器、样本加样通道和回收室的过滤装置,所述第一微型过滤器放置于所述样本加样通道上方,具有不粘表面和小于5μm的孔径,并且所述第二微型过滤器位于所述样本加样通道下方,所述第一微型过滤器用于保持洗涤缓冲液连续流过两个微型过滤器,以便于当所述血样加到所述加样通道并进入所述回收室时,所有更小的颗粒,例如RBC,在所述交叉流动中被捕捉到并从所述血样中移除。
66.根据权利要求65所述的方法,进一步包括,在步骤a)和/或b)之前,使所述液体样品经过预过滤,其保留聚集的细胞和微,并允许单个细胞和更小的直径小于20μm的颗粒通过以产生预处理液体样品,用于后续的步骤a)和/或b。
67.根据权利要求66所述的方法,还包括在所述液体样品经过所述预过滤之前,采用细胞聚集试剂处理所述液体样品以聚集血红细胞,并移除聚集的血红细胞。
68.根据权利要求67的方法,其中所述细胞聚集试剂是葡聚糖,硫酸葡聚糖,分子量小于15KD的葡聚糖或硫酸葡聚糖,高分子量葡聚糖或硫酸葡聚糖(例如,>2kD),羟乙基淀粉,明胶,戊聚糖,聚乙二醇(PEG),纤维蛋白原或γ球蛋白。
69.根据权利要求67所述的方法,所述聚集的血红细胞通过沉淀或层流或其组合移除。
70.根据权利要求1-69任一所述的方法,所述液体样品基于所述液体样品中成分,例如目标成分、细胞和细胞聚集体的大小、形状、可塑性、亲和性和/或结合专一性进行分离。
71.根据权利要求1-70任一所述的方法,所述微型过滤器包含于根据实施例1-80任一所述的过滤室中,并且所述方法包括:
a)将液体样品分配进实施例1-80任一所述的过滤室;和
b)提供通过过滤室的液体样品的液流,所述液体样品的目标成分被所述过滤器保留或通过所述过滤器。
72.根据权利要求71所述的方法,包括提供通过所述过滤室的前室的液体样品的液流及通过所述过滤室的过滤后亚室的溶液的液流,以及选择性地通过所述过滤室的上室的溶液的液流。
73.根据权利要求71或72所述的方法,基于所述液体样品中的成分的尺寸、形状、可塑性、亲和性和/或结合专一性分离所述液体样品。
74.根据权利要求72或73所述的方法,通过所述前室的所述流入口分配所述液体样品。
75.根据权利要求72-74任一所述的方法,所述溶液被引至所述过滤后亚室的所述流入口。
76.根据权利要求72-74任一所述的方法,所述溶液被引至所述上部过滤室的所述流入口。
77.根据权利要求1-70任一所述的方法,所述微型过滤器包含于根据实施例84-99任一所述的过滤室中,并且所述方法包括:
a)将所述液体样品分配进实施例84-99任一所述的自动过滤单元中的过滤室,和b)提供通过所述过滤室的液体样品的液流,所述液体样品的目标成分被过滤器保留或通过所述过滤器。
78.根据权利要求77所述的方法,基于所述液体样品中的成分的尺寸、形状、可塑性、亲和性和/或结合专一性分离所述液体样品。
79.根据权利要求77或78所述的方法,所述液体样品在前室中的流动基本上反向平行于过滤后亚室的溶液的流动。
80.根据权利要求77-79任一所述的方法,所述过滤速率约为0-5mL/min。
81.根据权利要求80所述的方法,所述过滤速率约为10-500μL/min。
82.根据权利要求81所述的方法,所述过滤速率约为80-140μL/min。
83.根据权利要求80-82任一所述的方法,所述补料速率约为过滤速率的1-10倍。
84.根据实施例77-83任一所述的方法,还包括:
c)使用另外的无样品冲洗试剂冲洗液体样品的被保留成分。
85.根据权利要求84所述的方法,在所述冲洗步骤中补料速率小于或等于过滤速率。
86.根据权利要求84或85所述的方法,将冲洗试剂引入所述过滤后亚室。
87.根据权利要求84或85所述的方法,将所述冲洗试剂引入所述前室和/或所述上室。
88.根据实施例77-87任一所述的方法,还包括:
d)提供结合所述目标成分的标记试剂。
89.根据权利要求88所述的方法,所述标记试剂是抗体。
90.根据权利要求88或89所述的方法,将所述标记试剂加入所述收集室。
91.根据权利要求88或89所述的方法,将所述标记试剂加入所述前室和/或所述上室。
92.根据权利要求88-91任一所述的方法,在所述标记步骤中所述过滤后亚室中的液流被停止。
93.根据实施例88-92任一所述的方法,还包括:
e)移除所述非结合标记试剂。
94.根据实施例71-93任一所述的方法,还包括:
f)回收所述收集室中的所述目标成分。
95.根据权利要求94所述的方法,所述回收步骤中所述补料速率约为5-20μL/min。
96.根据权利要求94或95所述的方法,在所述回收步骤中所述过滤后亚室内的流出速率等于流入速率。
97.根据权利要求94-96任一所述的方法,在所述回收步骤中所述流出暂停约50ms。
98.根据权利要求1-70任一所述的方法,所述微型过滤器包含于根据实施例100或101任一所述的自动过滤系统中,并且所述方法包括:
a)将液体样品分配进根据实施例100或101所述的自动过滤系统内的所述过滤室中;
b)提供通过所述过滤室的前室的液体样品的液流及通过所述过滤室的过滤后亚室的溶液的液流,所述液体样品的目标成分在所述前室中被保留而非目标成分流过所述过滤器流入过滤后亚室;
c)标记所述目标成分;和
d)使用所述分析仪器分析所述标记的目标成分。
99.根据权利要求98所述的方法,包括提供液流进入所述上室中。
100.根据权利要求98或99所述的方法,所述目标成分为细胞或细胞器。
101.根据权利要求100所述的方法,所述细胞为有核细胞。
102.实施例100所述的方法,所述细胞为稀有细胞。
103.用于分离液体样品中目标成分的装置、系统或组件,所述液体样品包含或疑似包含目标成分或细胞聚集体,其中所述装置、系统和组件包括:
a)实施例1-80任一所述的过滤室;以及
b)有效剂量的乳化剂和/或细胞膜充电剂以减少或分散假设存在于所述液体样品中的所述细胞聚集体;和介于约350mOsm和约1000mOsm之间,优选约400mOsm至约600mOsm之间的高渗盐水以减少或分散假设存在于所述液体样品中的所述细胞聚集体。
104.用于分离液体样品中目标成分的装置、系统或组件,所述液体样品包含或疑似包含目标成分或细胞聚集体,其中所述装置、系统和组件包括:
a)实施例81-83任一所述的盒;以及
b)有效剂量的乳化剂和/或细胞膜充电剂以减少或分散假设存在于所述液体样品中的所述细胞聚集体;和介于约350mOsm和约1000mOsm之间,优选约400mOsm至约600mOsm之间的高渗盐水以减少或分散假设存在于所述液体样品中的所述细胞聚集体。
105.用于分离液体样品中目标成分的装置、系统或组件,所述液体样品包含或疑似包含目标成分或细胞聚集体,其中所述装置、系统和组件包括:
a)实施例84-99任一所述的自动过滤单元;以及
b)有效剂量的乳化剂和/或细胞膜充电剂以减少或分散假设存在于所述液体样品中的所述细胞聚集体;和介于约350mOsm和约1000mOsm之间,优选约400mOsm至约600mOsm之间的高渗盐水以减少或分散假设存在于所述液体样品中的所述细胞聚集体。
106.用于分离液体样品中目标成分的装置、系统或组件,所述液体样品包含或疑似包含目标成分或细胞聚集体,其中所述装置、系统和组件包括:
a)实施例100或101所述的自动系统;以及
b)有效剂量的乳化剂和/或细胞膜充电剂以减少或分散假设存在于所述液体样品中的所述细胞聚集体;和介于约350mOsm和约1000mOsm之间,优选约400mOsm至约600mOsm之间的高渗盐水以减少或分散假设存在于所述液体样品中的所述细胞聚集体。

说明书全文

用于破坏细胞聚集以及分离或富集细胞的方法和装置

相关申请的交叉引用

[0001] 本申请要求2015年1月9号提交的序列号为62/101,938的美国临时专利申请的优先权,在此基于所有的目的,其内容通过引用的方式并入.

技术领域

[0002] 本发明主要涉及生物分离领域,尤其涉及生物样品处理领域。

背景技术

[0003] 样品制备是许多生物和环境样品的遗传、生物化学和生物分析的必要步骤。样品制备经常需要从样品剩余成分中将感兴趣的样品成分分离出来。这种分离常常是劳动密集的并且难以自动化。
[0004] 在许多情况下需要分析样品中相对稀少的成分。在这种情况下,可能需要提高待分析的稀有成分的浓度,同时去除样品中可能干扰感兴趣成分分析的不需要的成分。因此,必须将样品“压实”以减小它的体积,然后通过能够富集感兴趣成分的分离技术进行分离。生物样品尤其符合这一点,例如腹、淋巴液或血液,它们可以被大量收集,但可能含有极小比例的目标细胞(例如病毒感染的细胞、抗肿瘤T细胞、炎症细胞、癌细胞或胎细胞),其分离对于了解疾病状况的基本规律及诊断和治疗方法的开发极其重要。
[0005] [基于样品成分流过或被过滤器保留的能,过滤已用作减小样品体积以及分离样品成分的方法。通常膜过滤器被应用于这样的应用中,其中膜过滤器具有互相连接、纤维样、结构分布并且膜上的孔不是分散隔离的;相反地,膜上的孔具有不规则形状并在膜上相互连接。所谓的“孔”径实际上取决于膜上流体流动空间(例如,孔)的随意弯曲。虽然膜过滤器可以用于许多分离应用,但孔径的变化和孔的不规则形状阻碍了它们用于基于颗粒大小和其它性质的精确过滤。
[0006] 微型过滤器已被制作用于一些细胞或分子的分离应用。这些微型结构不具有孔,而是包括通道,即通过在建造于芯片表面上的“砖状物”(参见,例如,通过引用包含于此的1998年11月17日颁发给Austin等人的美国专利5,837,115)或障碍物(参见,例如通过引用包含于此的1998年3月10日颁发给Wilding等人的美国专利5,726,026)微刻到一个或多个芯片中。虽然这些微型过滤器具有精确的几何形状,其局限是所述过滤器的过滤区域小,因为受限于这些过滤器几何形状,因此这些过滤器只能处理小量的液体样品。
[0007] 血液样品给样品制备和分析带来了特殊的挑战。血液样品容易从受试者获得,并且能够提供大量的新陈代谢的、诊断的、预后的和遗传的信息。然而,大量无核红细胞和它们的主要成分血红蛋白,可能妨碍遗传的、新陈代谢的和诊断性检测。已经通过使用不同分层的浓溶液(例如,参见1995年8月1日颁发给Teng,Nelson N.H.等人的美国专利5,437,987)实现对来自外周血液的红细胞的压实。已经使用长链聚合酶来诱导导致长的红细胞链的红细胞聚集(Sewchand LS,Canham PB.(1979)‘Modes of Rouleaux formation of human red blood cells in polyvinylpyrrolidone and dextran solutions’
Can.J.Physiol.Pharmacol.57(11):1213-22).然而,这些方法去除红细胞的效率还不是最理想,尤其是想要从患者母血或者癌细胞中分离或富集稀有细胞例如胎细胞时。细胞裂解技术也已经用于去除红细胞。然而,细胞裂解技术的缺点包括作为细胞裂解结果的非特定的有核细胞裂解、红细胞碎片,以及可能的细胞体积改变(Resnitzky P,Reichman N.(1978)‘Osmotic fragility of peripheral blood lymphocytes in chronic lymphatic leukemia and malignant lymphoma’Blood 51(4):645-651)。
[0008] 体液(例如痰、尿或者乃至腹水或其它渗出物)中的脱落细胞为癌前病变的检测和肿瘤发展早期癌症的根除提供了重要的时机。例如,尿液细胞学作为移行细胞癌诊断和监测的非损伤性检测被普遍接受(Larsson et al(2001)Molecular Diagnosis 6:181-188)。181-188)。然而,在许多情况下,异常脱落细胞的细胞学鉴定受限于分离的异常细胞数量。
对于尿常规细胞学检查(Ahrendt et al.(1999)J.Natl.Cancer Inst.91:299-301),总的灵敏度低于50%,所述灵敏度随着肿瘤级别、肿瘤阶段及使用的尿液收集和处理方法的不同而不同。基于分子和遗传生物标记的体液中异常脱落细胞的分子分析(例如使用原位杂交、PCR、微阵列等)能够显著提高细胞学灵敏度。生物标记研究和临床实践中生物标记的使用都需要从体液中富集的相对纯的脱落细胞群,所述体液不仅包含脱落细胞,还包含正常细胞、细菌、体液、体蛋白和其它细胞碎片。因此,目前急需研发一种有效的从体液中富集和分离脱落的异常细胞的富集方法。
[0009] Meye et al.,Int.J.Oncol.,21(3):521-30(2002)描述了通过半自动CD45消耗自动磁性细胞分离方法从血液样品中分离和富集泌尿系肿瘤细胞。Iinuma et al.,Int.J.Cancer,89(4):337-44(2000)描述了在结肠直肠癌患者的血液中使用CD45磁性细胞分离及随后的p53和K-ras基因的巢式突变等位基因特异性扩增的方法来检测肿瘤细胞。在两项研究中,肿瘤细胞都与通过聚蔗糖梯度离心从血液样品中分离出来的单核细胞(MNCs)混合在一起。然后通过使用抗CD45抗体负消耗的方法将肿瘤细胞从单核细胞中富集出来。
[0010] 用于从体液,例如血液样品中,富集和制备脱落细胞的现有方法采用基于介质的分离、抗体捕获、离心和膜过滤。这些技术虽然简单和直观,但是他们受到一些限制,包括:稀有细胞富集效率不高;稀有细胞检测灵敏度低;难以处理大体积样品;富集性能不稳定;
以及分离过程劳动密集。
[0011] 目前需要提供有效的和/或可自动化的能够处理相对大量的样品(例如大量的生物液体样品)并分离目标细胞的样品制备方法和设备。本发明提供了具有这些优势及其它益处的方法和设备。

发明内容

[0012] 在一些方面,本发明认识到许多疾病的诊断、预后和治疗可以依赖于从复杂的液体样品中富集目标细胞和/或细胞器。经常地,富集可以通过一个或多个分离,使用具有狭缝的过滤装置根据细胞的大小、形状、可塑性、亲和性和/或结合专一性过滤细胞来实现。例如,可以使用过滤装置将外周血中的有核细胞从无核红细胞中分离出来。与基于细胞裂解技术去除红细胞相比,本申请公开的过滤装置可以基于细胞的大小、形状、可塑性、亲和性和/或结合专一性来消除红细胞,并使因非特异性裂解导致的有核细胞的损失最小化。此外,可以使有核细胞的体积改变最小并且无须离心步骤。
[0013] 特别是,从母血样品中分离胎细胞可以极大地促进胎细胞异常或多种遗传情况的检测。在某些方面,本发明认识到从患者样品中富集或分离稀有的恶性细胞,例如从患者体液样品中分离癌细胞,有助于这种恶性细胞的检测和分类,并因此有助于诊断和预后,以及患者治疗方式的研发。
[0014] 在一些实施例中,公开了从液体样品中分离目标成分的方法,该方法包括:a)通过微型过滤器传递包含或疑似包含目标成分和细胞聚集体的液体样品以便于使假设存在于所述液体样品中的目标成分被保留或通过所述微型过滤器,并且b)在传递所述液体样品通过所述微型过滤器之前和/或同时,使所述液体样品与乳化剂和/或细胞膜充电剂接触以降低、去除、和/或分散假设存在于所述液体样品中的所述细胞聚集体。
[0015] 在一个实施例中,所述液体样品是血样,所述目标成分是有核细胞,待降低或分散的所述细胞聚集体是缗钱状聚集体,所述液体样品采用包含一种或多种乳化剂和/或一种或多种细胞膜充电剂,例如DMSO,和/或普鲁康酸的洗涤组合物在过滤步骤(步骤a)之前或过程中处理,所述红细胞、血小板和血浆通过所述微型过滤器,并且所述目标有核细胞被微型过滤器保留。
[0016] 在另一实施例中,所述液体样品是血样,所述目标成分是有核细胞,待降低或分散的所述细胞聚集体是缗钱状聚集体,所述液体样品采用包含一种或多种乳化剂和/或一种或多种细胞膜充电剂,例如DMSO,和/或普鲁康酸的洗涤组合物在过滤步骤(步骤a)之前或过程中处理,所述血样通过所述微型过滤器的第一部分以产生先滤液,其基本上已经清除红细胞、血小板和血浆,所述先滤液然后通过所述微型过滤器的第二部分,其允许有核细胞和其它小细胞,例如淋巴细胞和单核细胞通过,同时保留更大的细胞或细胞聚集体,例如成对细胞。一方面,通过所述微型过滤器第二部分的所述有核细胞或其它更小的细胞由一个单独的通道收集。
[0017] 在另一个方面,所述液体样品是血样,所述目标成分是有核细胞,待降低或分散的所述细胞聚集体是缗钱状聚集体,所述液体样品采用包含一种或多种乳化剂和/或一种或多种细胞膜充电剂,例如DMSO,和/或普鲁康酸的洗涤组合物在过滤步骤(步骤a)之前或过程中处理,采用一个包括第一和第二微型过滤器、样本加样通道和回收室的过滤装置,所述第一微型过滤器放置于所述样本加样通道上方,具有不粘表面和小于5μm的孔径,并且所述第二微型过滤器位于所述样本加样通道下方,所述第一微型过滤器用于使经过两个微型过滤器的洗涤缓冲液保持持续流通,以便于当所述血样加到所述加样通道并进入所述回收室时,所有更小的颗粒,例如RBC,在所述交叉流动中被捕捉到并从所述血样中移除。示例性过滤装置如图33-38所示。
[0018] 在任何前述实施例中,所述方法进一步包括,在步骤a)和/或b)之前,使所述液体样品经过预过滤,其保留聚集的细胞和microclots并允许单个细胞和更小的直径不超过约20μm的颗粒通过以产生预处理液体样品,用于后续的步骤a)和/或b)。一方面,所述方法,还包括在所述液体样品经过所述预过滤之前,采用细胞聚集试剂处理所述液体样品以聚集血红细胞,并移除聚集的血红细胞。另一方面,所述细胞聚集试剂是葡聚糖,硫酸葡聚糖,分子量小于15kD的葡聚糖或硫酸葡聚糖,黑曲霉,明胶,戊聚糖,聚乙二醇(PEG),纤维蛋白原,γ球蛋白,羟乙基淀粉,pentaspan,肝素,聚蔗糖,阿拉伯胶,聚乙烯吡咯烷或其任意组合。
另一方面所述聚集的血红细胞通过沉淀或层流或其组合移除。
[0019] 在任意前述实施例中,所述液体样品可以基于成分,例如所述液体样品中的目标成分,细胞和细胞聚集体的大小、形状、可塑性、亲和性和/或结合专一性进行分离。
[0020] 在任意前述实施例中,所述液体样品可以通过被一个位于所述微型过滤器外部的结构和/或设置于所述过滤器内部的结构产生的物理力来控制。在一个实施例中,所述物理力选自介电泳力、行波介电电泳力、磁力、声力、静电力、机械力、光辐射力和热对流力组成的组。在一方面,所述介电电泳力或行波介电泳力通过电极产生的电场实现。在一些方面,所述声力通过所述声力通过驻波声场或行波声场实现,通过压电材料产生的声力场实现,和/或音圈或音频扬声器实现,或它们的结合实现.在一方面,所述静电力通过直流电(DC)电场实现。在另一方面,所述光辐射力通过激光镊实现。
[0021] 在前述任一实施例中,所述目标成分可以是所述液体样品中的细胞、亚细胞结构或病毒。
[0022] 在任一前述实施例中,所述液体样品是血液、渗出物、尿液、骨髓样品、腹水、盆腔冲洗液、胸膜液、脊髓液、淋巴液、血清、粘液、痰、唾液、精液、眼液、鼻腔提取液、咽喉或生殖器拭子、消化后的组织的细胞悬液、排泄物提取液、类型混合的和/或大小混合的培养细胞,或者包含需要去除污染物或游离反应物的细胞。一方面,所述液体样品是血液样品,所述需要去除的成分是血浆、血小板和/或红细胞(RBC)。
[0023] 另一方面,所述液体样品包括需要除去污染物和游离反应物的细胞。在一个实施例中,所述游离反应物是所述细胞的标签试剂。在另一些实施例中,所述游离反应物是对下游分析竞争性或干扰性的可溶的或溶解的抗原或分子。在另一个实施例中,所述液体样品是血样并且所述目标成分是有核细胞。另一方面,所述有核细胞是非造血细胞,血细胞亚群,胎儿红细胞,干细胞或癌细胞。在另一方面,所述液体样品是渗出物或尿液样品并且所述靶成分使有核细胞。在另一方面,所述有核细胞是癌细胞或非造血细胞。
[0024] 在任意前述实施例中,所述液体样品可以是血并且要减少的,移除的和/分散的所述细胞聚集体可以缗钱状聚集体,例如,红细胞的堆叠或聚集体。
[0025] 在任意前述实施中,所述目标成分可以被所述微型过滤器保留。在任意前述实施例中,所述目标成分可以通过所述微型过滤器。
[0026] 在前述任一实施例中,所述方法包括,在所述液体样品通过所述微型过滤器之前,将所述液体样品与乳化剂和/或细胞膜充电剂接触。
[0027] 在任意前述实施例中,所述方法包括,在所述液体样品通过所述微型过滤器的同时,使所述液体样品与乳化剂和/或细胞膜充电剂接触。
[0028] 在前述任一实施例中,所述方法包括,在所述液体样品通过所述微型过滤器之前以及过程中,使所述液体样品与乳化剂和/或细胞膜充电剂接触。在一个实施例中,在所述液体样品通过所述微型过滤器之前,所述乳化剂和/或细胞膜充电剂被用在第一层,并且在所述液体样品通过所述微型过滤器过程中,所述乳化剂和/或细胞膜充电剂被用在第二层,并且所述第一层高于第二层。
[0029] 在前述任一实施例中,所述乳化剂和/或细胞膜充电剂可以采用从约1mg/mL到约300mg/mL,或从约0.01%(v/v)到约15%(v/v)的水平范围。
[0030] 在前述任一实施例中,所述乳化剂可以是合成乳化剂、天然乳化剂、细分散或细分散的固体颗粒乳化剂、辅助乳化剂、单分子乳化剂、多分子乳化剂、或固体颗粒膜乳化剂。在一方面,所述合成的乳化剂是阳离子、阴离子或非离子试剂。在另一方面,所述阳离子乳化剂是苯扎氯铵或苄索氯铵。在一个实施例中,所述阴离子乳化剂是性皂,例如油酸钠或,胺皂,例如三乙醇硬脂酸盐或洗涤剂,例如月桂基硫酸钠,二辛基磺基琥珀酸钠,或多库酯钠。在其它实施例中,所述非离子乳化剂可以是脱水山梨醇酯,例如 脱水山梨醇酯的聚乙烯衍生物,例如 或甘油酯。
[0031] 在一些实施例中,所述天然的乳化剂是蔬菜衍生物,动物衍生物,半合成试剂或合成试剂。在一方面,所述蔬菜衍生物是阿拉伯胶、黄蓍胶、果胶、叉菜胶或卵磷脂。在另一方面,所述动物衍生物是明胶、羊毛脂或胆固醇。再另一方面,所述半合成试剂是甲基纤维素或羧甲纤维素。在一个实施例中,所述合成试剂是
[0032] 在另一实施例中,所述细分离或细分散的固体颗粒乳化剂是膨润土矿、锂蒙脱石、氢氧化镁、三酸镁。
[0033] 在一些实施例中,所述辅助乳化剂是脂肪酸,例如硬脂酸、脂肪醇、例如硬脂基或鲸蜡醇,例如单硬脂酸甘油酯。
[0034] 在任一前述实施例中,所述乳化剂具有从约1至约40的亲水亲油平衡值。
[0035] 在任一前述实施中,所述乳化试剂选自包括PEG 400单油酸酯(聚氧乙烯单油酸酯),PEG 400单硬脂酸酯(聚氧乙烯单硬脂酸酯),PEG 400单月桂酸酯(聚氧乙烯单月桂酸酯),油酸钾,月桂基硫酸钠,油酸钠, 20(脱水山梨醇单月桂酸酯), 40(脱水山梨糖醇单棕榈酸酯)(脱水山梨醇单硬脂酸酯), 65(脱水山梨醇三硬脂酸酯),
80(脱水山梨醇单油酸酯), 85(脱水山梨醇三油酸酯),三乙醇胺油酸酯, 20
(聚氧乙烯失水山梨醇单月桂酸酯),Tween 21(聚氧乙烯脱水山梨糖醇单月桂酸酯)
40(聚氧乙烯失水山梨糖醇单棕榈酸酯), 60(聚氧乙烯脱水山梨糖醇单硬
脂酸酯), 61(聚氧乙烯脱水山梨糖醇单硬脂酸酯), 65(聚氧乙烯脱水山梨
醇三硬脂酸酯), 80(聚氧乙烯脱水山梨糖醇单油酸酯)脱水山梨醇单油酸酯)和
85(聚氧乙烯脱水山梨糖醇三油酸酯的组
[0036] 在任何前述实施方案中,乳化剂可以是普朗尼克酸或有机硫化合物。在一方面,所述普朗尼克酸是 10R5, 17R2, 17R4, 25R2,25R4, 31R1, F-108,Pluronic F-108NF,Pluronic F-108Pastille,
F-108NF Prill Poloxamer 338, F-127NF, F-127NF 500BHT 
Prill, F-127NF Prill Poloxamer 407, F 38, F 38Pastille,
F 68, F 68NF, F 68NF Prill Poloxamer 188, F 
68Pastille, F 77, F 77Micropastille, F 87, F 
87NF, F 87NF Prill Poloxamer 237, F 88, F 88Pastille,
FT  L 61, L 10, L 101, L 121, L 31,
L 35, L 43,Pluronic L 61,Pluronic L 62,Pluronic L 62LF,
Pluronic L 62D,Pluronic L64,Pluronic L 81,Pluronic L 92,Pluronic L44NF INH表面活性剂Poloxamer 124,Pluronic N 3,Pluronic P 103,Pluronic P 104,Pluronic P 
105,Pluronic P 123表面活性剂,Pluronic P65,Pluronic P 84,Pluronic P 85,或其任意组合。在另一方面,所述普朗尼克酸的使用水平范围以从约1mg/mL到约300mg/mL,从约
1mg/mL到约200mg/mL,从约5mg/mL到约50mg/mL,从约5mg/mL到约15mg/mL从约15mg/mL到约
50mg/mL 50mg/mL。在特定实施例中,所述普朗尼克酸采用约15mg/mL。在另一方面,所述有机硫化合物是二甲基亚砜(DMSO)。在一个实施例中,所述DMSO的使用水平范围为从约
0.01%(v/v)到约15%(v/v),从约0.02%(v/v)到约0.4%(v/v),或者从约0.01%(v/v)到约0.5%(v/v)。在一个实施例中,所述DMSO采用约0.1%(v/v)的。再另一个实施例中,所述DMSO采用约0.5%(v/v)。
[0037] 在任何前述实施例中,可以使用至少两种不同的乳化剂,或者至少一种乳化剂和至少一种细胞膜充电剂。在一个实施例中,采用普朗尼克酸和DMSO。
[0038] 在前述任一实施例中,所述方法还包括:c)采用无样品冲洗剂冲洗所述液体样品中保留的目标成分。
[0039] 在前述任一实施例中,所述方法还可包括:d)提供标签试剂以结合目标成分。在一方面,所述标记试剂为抗体。在另一方面,所述可进一步包括:e)移除非结合标签试剂。
[0040] 在前述任一实施例中,所述方法还包括:f)回收所述收集装置中的所述目标成分。
[0041] 在前述任一实施例中,所述方法还包括采用特异结合分子从所述液体样品中移除至少一种不需要成分。在一个实施例中,所述液体样品是血样。在一方面,所述至少一种不需要的成分为白细胞(WBCs)。在另一方面,所述特异结合分子选择性地结合白细胞(WBCs)并连接在固相载体上。在另一方面,所述特异结合分子为选择性结合WBCs的抗体或抗体片段。在一些实施例中,所述特异结合分子可以是选择性地结合CD3,CD11b,CD14,CD17,CD31,CD35,CD45,CD50,CD53,CD63,CD69,CD81,CD84,CD102和/或CD166的抗体。在特定实施例中,所述特异结合分子为选择性地结合CD35和/或CD50的抗体。
[0042] 在前述任一实施例中,所述方法还包括使血液样品与第二特异结合分子接触。在一些实施例中,所述第二特异结合分子为选择性地结合CD31,CD36,CD41,CD42(a,b或c),CD51和/或CD51/61的抗体。
[0043] 在前述任一实施例中,所述液体样品是血样,所述目标成分是有核细胞,待降低、移除和/或分散的所述细胞聚集体是缗钱状聚集体,所述液体样品采用含有一种或多种乳化剂和/或一种或多种细胞膜充电剂,例如DMSO,和/或普朗尼克酸的洗涤组合物在过滤步骤(步骤a)之前或过程中处理,所述红细胞、血小板和血浆通过所述微型过滤器,所述靶标有核细胞被所述微型过滤器保留。
[0044] 在前述任一实施例中,所述液体样品可以是血样,所述目标成分是有核细胞,待降低、移除和/或分散的所述细胞聚集体是缗钱状聚集体,所述液体样品采用包含一种或多种乳化剂和/或一种或多种细胞膜充电剂,例如DMSO,和/或普朗尼克酸的洗涤组合物在过滤步骤(步骤a)之前或过程中处理,所述血样通过所述微型过滤器的第一部分以产生先滤液,其基本上已经清除红细胞、血小板和血浆,所述先滤液然后通过所述微型过滤器的第二部分,其允许有核细胞和其它小细胞,例如淋巴细胞和单核细胞通过,同时保留更大的细胞或细胞聚集体,例如成对细胞。一方面,通过所述微型过滤器第二部分的所述有核细胞或其它更小的细胞经一个单独的通道收集.
[0045] 在前述任一实施例中,所述液体样品是血样,所述目标成分是有核细胞,待降低、移除和/或分散的所述细胞聚集体是缗钱状聚集体,所述液体样品采用包含一种或多种乳化剂和/或一种或多种细胞膜充电剂,例如DMSO,和/或普朗尼克酸的洗涤组合物在过滤步骤(步骤a)之前或过程中处理,采用一个包括第一和第二微型过滤器、样本加样通道和回收室的过滤装置,所述第一微型过滤器放置于所述样本加样通道上方,具有不粘表面和小于5μm的孔径,并且所述第二微型过滤器位于所述样本加样通道下方,所述第一微型过滤器用于使穿过两个微型过滤器的洗涤缓冲液保持持续流动,以便于当所述血样加到所述加样通道并进入所述回收室时,所有更小的颗粒,例如RBC,在所述交叉流动中被捕捉到并从所述血样中移除.
[0046] 在前述任一实施例中,所述方法进一步包括,在步骤a)和/或b)之前,使所述液体样品经过预过滤,其保留聚集的细胞和微并允许单个细胞和更小的直径不超过约20μm的颗粒通过以产生预处理液体样品,用于后续的步骤a)和/或b。一方面,所述方法,还包括在所述液体样品经过所述预过滤之前,采用细胞聚集试剂处理所述液体样品以聚集血红细胞,并移除聚集的血红细胞。另一方面,所述细胞聚集试剂是葡聚糖,硫酸葡聚糖,分子量小于15kD的葡聚糖或硫酸葡聚糖,黑曲霉,明胶,戊聚糖,聚乙二醇(PEG),纤维蛋白原,γ球蛋白,羟乙基淀粉,pentaspan,肝素,聚蔗糖,阿拉伯胶,聚乙烯吡咯烷酮或其任意组合。另一方面所述聚集的血红细胞通过沉淀或层流或其组合移除。
[0047] 在任意前述实施例中,所述液体样品可以基于成分,例如,所述液体样品中的目标成分、细胞和细胞聚集体的大小、形状、可塑性、亲和性和/或结合专一性进行分离。
[0048] 在另一方面,在此根据前述任一实施例,提供一种方法,其中所述微型过滤器包含于根据1-80任一实施例所述的过滤腔室中,并且其方法包括:a)将液体样品分配进根据1-80任一实施例所述的过滤腔室中;和b)提供通过过滤室的液体样品的流体流动,其中液体样品的目标成分被过滤器保留或通过过滤器。在一方面,所述方法还包括提供通过所述过滤腔室的前室的液体样品的液流及通过过滤腔室后过滤亚室的溶液的液流,并且可选地,所述溶液液流通过所述过滤腔室的上腔。
[0049] 在前述任一实施例中,所述液体样品可以基于成分,例如,所述液体样品中的目标成分、细胞和细胞聚集体的大小、形状、可塑性、亲和性和/或结合专一性进行分离。一方面,所述液体样品通过前室的流入口分配。
[0050] 在前述任一实施例中,所述溶液可被引入所述后过滤亚室的所述流入口。
[0051] 在前述任一实施例中,所述溶液可引入被所述上过滤腔室的流入口。
[0052] 再一方面,根据前述任一实施例提供一种方法,其中根据84-89任一实施例,所述微型过滤器包含于一个自动过滤单元中,所述方法包括:a)将液体样品分配到根据84-89任一实施例所述的自动过滤单元内的所述过滤腔室中,并且b)提供通过所述过滤腔室的所述液体样品的液流,其中所述液体样品中的目标成分被保留或流过所述微型过滤器。在一方面,所述液体样品基于所述成分的大小、形状、可塑性、亲和性和/或结合专一性被分离。
[0053] 在前述任一实施例中,前室中的液体流动基本上是反相平行所述后过滤亚室中的溶液。
[0054] 在前述任一实施例中,过滤速率约为0-5mL/min。在一个实施例中,所述过滤速率约为10-500μL/min。在另一个实施例中,过滤速率约为80-140μL/min。
[0055] 在前述任一实施例中,所述加样速率是过滤速率的1-10倍。
[0056] 在前述任一实施例中,所述方法还包括:c)使用另外的无样品冲洗试剂冲洗液体样品中被保留的成分。在一方面,在所述冲洗步骤中所述加样速率小于或等于所述过滤速率。在前述任一实施例中,所述冲洗试剂可以被引入所述过滤后亚室中。在前述任一实施例中,冲洗试剂可被引入所述前室和/或所述上腔室。
[0057] 在前述任一实施例中,所述方法还包括:d)提供标签试剂以结合目标成分。在一方面,所述标记试剂为抗体。在前述任一实施例中,所述标签试剂可被加入到所述收集室。在前述任一实施例中,所述标签试剂可被加入到所述前室和/或所述上腔室。
[0058] 在前述任一实施例中,在所述标记步骤,所述后过滤亚室中的所述液体流动可被停止。
[0059] 在前述任一实施例中,所述方法还包括:e)移除非结合标签试剂。
[0060] 在前述任一实施例中,所述方法还可包括:f)回收所述收集室中的所述目标成分。在一方面,在回收过程中,所述加样速率约为5-20mL/min。在前述任一实施例中,在回收步骤中,所述过滤后亚室的流出速率等于流入速率。在前述任一实施中,在回收步骤中,所述流出速率可以停止50ms。
[0061] 在前述任一实施例中,所述微型过滤器可包含于根据实施例100或101所述的自动系统中,并且所述方法包括:a)分配所述液体样品进入根据实施例100或101所述的自动系统中的过滤腔室中;b)提供通过所述过滤腔室的所述前室的液体样品的液流及通过所述过滤室的所述过滤后亚室的溶液的液流,其中液体样品中的靶标目标成分在前室中被保留而非目标成分通过所述过滤器流入所述过滤后亚室;c)标记目标成分;和d)使用分析仪器分析标记的目标成分。在一些实施例中,所述方法还包括提供液流进入向所述上腔室中。
[0062] 在前述任一实施例中,所述目标成分可以是细胞或细胞器。在一个实施例中,所述细胞为有核细胞。在另一实施例中,所述细胞为稀有细胞。因此,在前述任一实施例中,所述细胞膜充电剂可以是一种试剂,其为所述细胞膜、细胞质膜、细胞器的膜提供电荷。
[0063] 在另一个实施例中,在此提供用于分离液体样品中目标成分的装置、系统或组件,所述液体样品包含或疑似包含目标成分或细胞聚集体,其中所述装置、系统和组件包含:a)根据权利要求1-80任一所述的过滤腔室,和b)有效剂量的乳化剂和/或细胞膜充电剂,用于降低、移除,和/或分散假设存在于所述液体样品中的所述细胞聚集体。
[0064] 在另一个实施例中,在此提供用于分离液体样品中目标成分的装置、系统或组件,所述液体样品包含或疑似包含目标成分或细胞聚集体,其中所述装置、系统和组件包含:a)根据权利要求81-83任一所述的滤盒,和b)有效剂量的乳化剂和/或细胞膜充电剂,用于降低、移除,和/或分散假设存在于所述液体样品中的所述细胞聚集体。
[0065] 在一个实施例中,提供用于分离液体样品中目标成分的装置、系统或组件,所述液体样品包含或疑似包含目标成分或细胞聚集体,其中所述装置、系统和组件包含:a)根据实施例84-99任一所述的自动过滤单元,和b)有效剂量的乳化剂和/或细胞膜充电剂用于降低或分散假设存在于所述液体样品中的所述细胞聚集体,和/或在约300mOsm和约1000mOsm之间,优选在约350mOsm和约1000mOsm之间,在约350mOsm和约1000mOsm之间,在约350mOsm和约600mOsm之间,在约400mOsm和约600mOsm之间,在约450mOsm和约600mOsm之间,在约550mOsm和约600mOsm的高渗盐溶液,用于降低或分散假设存在于所述液体样品中的所述细胞聚集体。
[0066] 在一个实施例中,提供用于分离液体样品中目标成分的系统或组件,所述液体样品包含或疑似包含目标成分或细胞聚集体,其中所述系统和组件包含:a)根据实施例100或101任一所述的自动系统,和b)有效剂量的乳化剂和/或细胞膜充电剂用于降低或分散假设存在于所述液体样品中的所述细胞聚集体,和/或在约300mOsm和约1000mOsm之间,优选在约350mOsm和约1000mOsm之间,在约350mOsm和约1000mOsm之间,在约350mOsm和约600mOsm之间,在约400mOsm和约600mOsm之间,在约450mOsm和约600mOsm之间,在约550mOsm和约
600mOsm的高渗盐溶液,用于降低或分散假设存在于所述液体样品中的所述细胞聚集体。
附图说明
[0067] 图1是本发明示例性实施例中微型芯片的一个区域的俯视图。黑色区域是在具有2
1cm过滤区域的所述过滤器中精密制造的狭缝。
[0068] 图2是本发明示例性实施例中的微型过滤器的图示。A)俯视图,显示了具有10x 10mm2过滤区域(1)的18x 18mm2微型过滤器。B)俯视图的部分放大图,显示了所述狭缝(2)具有4微米×50,狭缝之间中心到中心之间的距离为12微米,并且它们平行排列。C)所述微型过滤器的剖视图,其中所述狭缝延伸穿过所述过滤器基片。
[0069] 图3描绘了本发明示例性过滤器实施例中将电极并入其表面。A)狭缝宽度具有2微米的微型过滤器的一部分的20倍放大图。B)具有3微米狭缝宽度的微型过滤器的一部分的20倍放大图。
[0070] 图4描绘了本发明示例性实施例的微型过滤器的孔的横截面。所述孔的深度与所述过滤器的厚度相符。Y代表过滤器表面和垂直贯穿过滤器的孔的切面之间的直角,而X为圆锥角,该圆锥角使圆锥孔在其通过所述过滤器的方向或取向上不同于非圆锥孔。
[0071] 图5描绘了本发明示例性实施例的过滤单元,具有微型过滤器(3),其将过滤室分为上部的前室(4)和过滤后亚室(5))。所述过滤单元具有,用于控制液流进入或流出所述过滤单元。阀门A(6)控制所述样品流从上样贮液器(10)流入所述过滤单元,阀门B(7)通过与注射的连接控制液流穿过所述过滤腔室,并且阀门C(8)用于将冲洗溶液引入所述过滤腔室。
[0072] 图6是本发明示例性实施例的自动系统的图示,包扩用于添加血液样品(11)的进口;包含声学混合芯片(13)和微型过滤器(103)的过滤腔室(12);具有相邻磁(15)的磁性捕获柱(14);混合/过滤室(112);包含电磁片(17)的磁性分离室(16),以及用于稀有细胞收集的容器(18)。
[0073] 图7描绘了本发明典型实施例的过滤室的三维透视图,所述过滤室具有包含狭缝(202)两个过滤器(203)和含有声学元件(200)的芯片(所述声学元件在芯片表面可以是看不见的,但这里为达到解释的目的将其显示出来)。在这简化的描绘中,没有显示所述狭缝的宽度。
[0074] 图8描绘了本发明典型实施例的过滤室的剖视图,所述过滤室具有两个过滤器(303),分别在完成过滤后以及向包含目标细胞(20)的样品中添加磁珠(19)后。所述声学元件在混合操作过程中打开。
[0075] 图9描绘了本发明示例性实施例的自动系统剖视图:磁性捕获柱(114)。磁铁(115)紧邻所述分离柱设置。
[0076] 图10描绘了本发明示例性实施例的自动系统的过滤腔室(416)的三维透视图,所述自动系统包含能从液体样品中分离稀有细胞的多力操纵芯片。所述过滤腔室具有用于液流穿过所述过滤腔室的进口(429)和出口(430)。剖视图显示所述芯片具有电极层(427),所述电极层包括用于介电泳分离的电极阵列,和电磁层(417),所述电磁层包含电磁单元(421)--在另一层上的电极阵列。目标细胞(420)结合在用于电磁捕获的磁珠(419)上。
[0077] 图11显示了新生儿红细胞nRBC(X)和红细胞RBC(圆圈)悬浮于导电率为0.2S/m的介质中时它们的DEP光谱之间的理论对比。
[0078] 图12显示了使用本发明示例性实施例的方法分离的有核胎细胞的FISH分析,该分析使用已经在母血样品中检测到雄性胎细胞的Y染色体标记。
[0079] 图13显示了从母血中富集胎儿有核RBCs的工艺流程图
[0080] 图14是本发明典型实施例的过滤单元的示意图。
[0081] 图15是本发明典型实施例的自动系统的模型。
[0082] 图16描绘了本发明典型实施例的自动系统的过滤过程。A)显示了具有上样贮液器(510)的所述过滤单元,所述上样贮液器通过阀门(506)与过滤室连接,所述过滤室包含通过微型过滤器(503)分隔的过滤后亚室(505)与前室(504)。冲洗泵(526)通过阀门(508)与所述下室连接,用于将冲洗缓冲液(524)泵穿过所述下亚室。另一个阀门(507)通向另一个负压泵,所述负压泵用于促进液流穿过所述过滤腔室并通过出口导管(530)出来。收集容器(518)可以可逆地衔接所述上室(504)。B)显示了血液样品(525)加载到所述上样贮液器(510)中。在C)中,通向用于促进液体穿过所述过滤腔室的负压泵的阀门(507)是开启的,并且D)和E)显示了血液样品正被过滤穿过所述过滤腔室。在F)中,通过上样贮液器引入的冲洗缓冲液被过滤穿过所述过滤室。在G)中,阀门(508)是打开的,同时所述上样贮液器阀门(506)是关闭的,并且冲洗缓冲液从所述冲洗泵(526)泵入到下室中。在H)中,所述过滤阀门(507)和冲洗泵阀门(508)是关闭的,在I)和J)中过滤腔室被旋转了90度。K)显示收集容器(518)与上室(504)衔接以便于冲洗泵(526)产生的液流促使保留于前室中稀有靶标细胞(520)流入所述收集管中。
[0083] 图17描绘了通过微过滤富集后在未标记的血细胞背景下荧光标记的乳癌细胞。A)过滤后血液样品的相差显微图。B)A中所示相同视野的荧光显微图。
[0084] 图18描绘了本发明示例性实施例的介电泳芯片的两种构造。A)具有交叉式电极几何的芯片;B)具有齿形电极几何的芯片。
[0085] 图19描绘了本发明示例性实施例的包含介电泳芯片的分离腔室。A)所述腔室的剖视图,B)所述芯片的俯视图。
[0086] 图20为MDA231癌细胞(实线)、T淋巴细胞(虚线)和红细胞(短虚线)悬浮于导电率为10mS/m的介质中时其DEP光谱的理论对比。
[0087] 图21A和B描绘了典型的介电泳芯片的电极上保留的一簇血液样品中的乳癌细胞。
[0088] 图22描绘了典型的介电泳芯片的电极上保留的血液样品中的白细胞。
[0089] 图23是本发明典型实施例的自动系统的过滤单元的示意代表图。所述过滤单元具有上样贮液器(610),通过阀门A(606)与过滤腔室连接,所述过滤腔室包含被微型过滤器(603)分开的过滤后亚室(605)与前室(604)。吸式泵通过连接到废料口(634)的导管连接,其中过滤过的样品经废料口排出所述过滤腔室。侧面接口(632)可用于连接用于通过下亚室(605)泵出冲洗缓冲液的注射泵。所述过滤完成后,所述过滤腔室(包括前室(604)、过滤后亚室(605)、过滤器(603)以及侧面接口(632),图中圆圈范围内描述的所有部件)可以在所述过滤单元的边框(636)内旋转,从而使前室富集的细胞能够通过收集口(635)收集。
[0090] 图24显示了从血液样品中富集胎细胞的整体过程,以及血液样品第二次清洗的上清液(方框标记的上清液(W2))中和过滤步骤之后保留的细胞(方框标记的富集的细胞)中存在的富集的胎细胞。示意图显示了,从左上角至右下角,血细胞处理步骤“两次清洗(W1和W2)、血细胞的选择性沉淀及具有联合试剂(AVIPrep+AVIBeads+抗体)的白细胞的移除、所述沉淀的上清液的过滤,以及富集的胎细胞的收集”。示意图显示了在处理过程中不同样品部分的有核细胞的富集水平,以及用FISH分析的样品部分。
[0091] 图25显示了被评估的所述过滤盒(右)及其与常规的圆盘注射式过滤器(左)其具有插入微型硅滤芯片的顶部视野的对比图,其中黑色狭缝即为所述过滤器“孔”(a),于美国专利6,949,355中记载,以及所述过滤盒结构的草图(b)。
[0092] 图26显示了从经历了裂解不洗(Lyse No Wash)、裂解洗涤(Lyse Wash)及过滤程序(从顶排至底排)的全血中分离的白细胞的点阵图。P1是TrucountTM计数珠粒数,P2是CD45+细胞门控的所述白细胞数。
[0093] 图27显示了经过裂解不洗(LNW)、裂解洗涤(LW)及过滤程序的用MultitestTM试剂染色的血液的点阵图(a);经过LNW、LW和过滤程序的总白细胞、主要白细胞群和主要淋巴细胞亚群的细胞回收的比较(b)。参考CD45+细胞、淋巴细胞、粒细胞和单核细胞的回收参比ABX血液分析仪(n=30)获得的细胞计数,以及T细胞、NK细胞和B细胞的回收参比LNW样品(n=15)获得的结果。
[0094] 图28显示了采用Viability试剂盒中的试剂染色的全血的点阵图,左边板是用氯化铵裂解的全血的结果,右边板是从过滤回收的细胞的结果(a);以及用FITC Annexin V Apoptosis Detection试剂盒中的试剂染色的从过滤回收的细胞的点阵图,左边面板是血液抽出1小时内过滤的结果,右边面板是血液抽出后8小时后过滤的结果(b)。
[0095] 图29显示了滤盒的示例性实施例。
[0096] 图30a-d显示了经氯化铵裂解后的细胞活力。
[0097] 图31显示了过滤后的细胞活力。
[0098] 图32显示了典型的过滤工作过程。在所述过滤过程的示例性实施例中,具有两个注射泵,一个在右边,而另一个在底部。底部那个泵吸入的同时右边那个泵排出,但吸入更快以便血液有差别地通过过滤器。一旦过滤完成,关闭底部那个泵的抽吸,将有核细胞从已经快速倒置过来的过滤器推回去将细胞直接分配进细胞计数管(如步骤6是用一个注射筒替替代了接收计数管)。
[0099] 图33显示了过滤室的典型实施例,其中前室和过滤后亚室具有允许液体流过的进口和出口。在描述的典型实施例中,前室中的液体流反向平行于过滤后亚室中的液体流动。
[0100] 图34显示了具有8个过滤室的多元结构的典型实施例,每个过滤室都包含具有类似于图33所示的流道的独立过滤室。
[0101] 图35显示了用于分离和分析液体样品中目标成分的自动系统的典型实施例,其中可以通过置于样品中的吸管收集,所述样品可以连续通过前室,然后直接进入分析仪器,所述分析仪器在此图中显示为流式细胞仪的流动吸收池。
[0102] 图36示出了具有高冲洗能力过滤室的示例性实施例示意图,其中图33中存在的相同流体路径现在具有从上方引入并穿过两个过滤器的冲洗试剂(缓冲液或缓冲液加生物标志物或任何合适的物质)以最大化样品和底部微型过滤器之间的相互作用。
[0103] 图37显示了两个串联的过滤室的典型实施例,其中样品在第一过滤室中去除残渣和小成分,然后第二过滤室将剩余物中的大细胞和小细胞分离。例如,白细胞可以优先进入回收1口,而大的肿瘤细胞可以连续进入回收2口。
[0104] 图38显示了具有多个回收口的过滤室的典型实施例,其中微型过滤器包含一排宽度递增的狭缝以便每个口输出尺寸渐大的细胞,并且回收口可以间隔开以便将其输出物直接输送进多孔筛板中。本发明的详细说明
定义
[0105] 除非另外规定,本文使用的所有技术和科学术语的含义与本发明所属技术领域的普通技术人员通常理解的含义相同。所有涉及本发明的专利、申请、公开的申请和其它出版物,通过引用全部包含于此。如果在这部分阐述的定义与通过引用包含于此的专利、申请、公开的申请和其它出版物中阐述的定义相反或不一致,那么这部分阐述的定义优先于通过引用包含于此的定义。
[0106] 正如这里所使用的,单数形式“一个(a)”、“一个(an)”及“所述”包含提及物的复数形式,除非另有说明。例如,“一个”二聚物包括一个或多个二聚物。
[0107] 样品的“成分”或“样品成分”指样品的任何成分,可以是离子、分子、化合物、分子络合物、细胞器、病毒、细胞、聚集体,或任何形式的颗粒,包括胶体、聚集体、微粒、结晶、矿物质,等等。样品的成分在样品介质中或提供的样品缓冲液中或样品溶液中可以是可溶的或不溶的。样品的成分可以是气态的、液态的或固态的形式。样品的成分可以是基团或者可以不是基团。
[0108] “基团”或“感兴趣的基团”是需要分离、纯化和/或处理的任何实体。基团可以是固体的,包括悬浮固体,或可以是可溶形式。基团可以是分子。可以处理的分子包括,但不限于无机分子(包括离子和无机化合物),或可以是有机分子(包括基酸、肽、蛋白质、糖蛋白、脂蛋白、糖脂蛋白、脂类、脂肪、固醇、糖、水化合物、核酸分子、小的有机分子,或复杂的有机分子)。基团也可以是分子络合物,可以是细胞器,可以是一个或多个细胞(包括原核的和真核的细胞),或可以是一种或多种病原(包括病毒、寄生虫,或朊病毒,或它们的一部分)。基团也可以是结晶、矿物质、胶体、碎片、微胞、微滴、气泡,或其类似物,可以包含一种或多种无机材料,例如聚合材料、金属、矿物质、玻璃、陶瓷,或其类似物。基团也可以是分子、复合物、细胞、细胞器、病毒、病原、结晶、胶体或碎片的聚集体。细胞可以是任何细胞,包括原核的和真核的细胞。真核细胞可以是任何类型的。特别感兴趣的是细胞,例如,但不限于白细胞、恶性细胞、干细胞、祖细胞、胎细胞、病原感染的细胞,以及细菌细胞。基团也可以是人造颗粒,例如聚苯乙烯微珠、其它聚合物组成的微珠、磁性微珠,以及碳微珠。
[0109] 正如这里所使用的,“处理”指的是基团的移动或处理,引起基团在单室内或单片上,或在多片和/或多室之间或之中的一维、二维或三维运动。通过本发明所述方法处理的基团可以随意地结合配体,例如微粒。所述处理的非限制性例子包括基团的运输、捕获、集中、富集、浓缩、聚集、诱捕、排斥、漂浮、分开、分离或线性的或其它方向的移动。为了有效地处理偶联至结合配体的基团,结合配体与方法中使用的物理力必须是相容的。例如,具有磁性的结合配体必须使用磁力。类似地,具有某种介电性能的结合配体(例如,塑料微粒、聚苯乙烯微珠)必须使用介电力。
[0110] “结合配体”指的是通过所需的亲和性或特异性与基团结合并通过所需物理力进行操作的任何物质。结合配体的非限制性例子包括细胞、细胞的细胞器、微粒或其聚集体或络合物,或分子的聚集体或络合物。
[0111] “偶联的”指结合的。例如,基团可以通过特异的或非特异的结合与微粒偶联。正如这里公开的,所述结合可以是共价的或非共价的、可逆的或不可逆的。
[0112] 正如这里所使用的,“待处理基团基本上偶联在结合配体的表面上”指的是待处理基团的一部分偶联在结合配体的表面上并可以借助合适的物理力通过对结合配体的操作进行处理。通常,待处理基团的至少0.1%偶联在结合配体的表面上。优选地,待处理基团的至少1%,5%,10%,20%,30%,40%,50%,60%,70%,80%或90%偶联在结合配体的表面上。
[0113] 正如这里所使用的,“待处理基团完全偶联在结合配体的表面上”指的是待处理基团的至少90%偶联在结合配体的表面上。优选地,待处理基团的至少91%,92%,93%,94%,95%,96%,97%,98%,99%或100%偶联在结合配体的表面上。
[0114] “特异结合分子”是两种不同分子中的一种分子在其表面或腔内具有特异结合另一种分子的区域,并因此定义为与另一种分子的特别的空间和化学结构互补。特异结合分子可以是免疫配对例如抗原-抗体或抗体-抗体中的一个成员,可以是生物素-抗生物素蛋白、生物素-链霉亲和素,或生物素-中和亲和素、配体-受体、核酸双螺旋、IgG-蛋白A,DNA-DNA,DNA-RNA,RNA-RNA,等等。
[0115] “抗体”是免疫球蛋白分子,可以是但不限于IgG、IgM或其它类型的免疫球蛋白分子。正如这里所使用的,“抗体”也指保留了其来源抗体的结合特异性的抗体分子的一部分(例如,单链抗体或Fab片段)。
[0116] “核酸分子”是多聚核苷酸。核酸分子可以是DNA、RNA或两者的组合。核酸分子也可以包括除了作为骨架组成部分的核糖和脱氧核糖之外的糖,因此可以不是DNA或RNA。核酸可以包含自然产生的或非自然产生的核苷碱基,例如黄嘌呤,核苷碱基的衍生物,例如2-腺嘌呤,等等。本发明的核酸分子可以具有不同于磷酸二酯键的键。本发明的核酸分子可以是核酸肽分子,其中核苷碱基与肽骨架连接。核酸分子可以具有任何长度,并且可以是单链的、双链的或三链的,或其任意组合。
[0117] “均质操作”指使用物理力对混合物中的颗粒进行操作,其中混合物中所有的颗粒对作用力具有相同的反应。
[0118] “选择性操作”指使用物理力对颗粒进行操作,其中混合物中不同的颗粒对作用力具有不同的反应。
[0119] “液体样品”指从中分离或分析成分的任何液体。样品可以来自任何来源,例如生物体、来自相同或不同物种的生物群体,来自环境,例如来自水域或来自土壤,或来自食品来源或工业来源。样品可以是未经加工或加工过的样品。样品可以是气体、液体或半固体,可以是溶液或悬浮液。样品可以是提取物,例如土壤或食物样品的液体提取物、咽喉或生殖器拭子的提取物,或粪便样品的提取物,或身体内部的清洗液。
[0120] 这里使用的“血液样品”指处理过的或未经处理的血液样品,即,它可以是离心的、过滤的、提取的或以其它方式处理的血液样品,包括添加了一种或多种试剂的血液样品,所述试剂例如但不限于抗凝血剂或稳定剂。血液样品的一个例子是为富集白细胞而处理人血获得的白细胞层。血液样品的另一个例子是通过将样品离心成团块细胞、除去血清上清液并将细胞重悬于溶液或缓冲液中,从而“洗涤”去除血清成分的血液样品。其它的血液样品包括脐带血样品、骨髓穿刺液、内部血或外周血。血液样品可以具有任何体积,可以来自诸如动物或人类的任何研究对象。优选研究对象为人类。
[0121] “稀有细胞”指的是1)液体样品中数量少于总的有核细胞群体的1%的细胞类型,或者2)每毫升液体样品中存在的细胞数量少于一百万的细胞类型。“感兴趣的稀有细胞”指的是希望富集的细胞。
[0122] “白血球”或“WBC”指白细胞,或者在动物或人类血液中可以发现的非网状细胞或血小板的造血系的细胞。白细胞可以包括自然杀伤细胞(NK细胞)和淋巴细胞,例如B淋巴细胞(B细胞)或T淋巴细胞(T细胞)。白细胞也可以包括吞噬细胞,例如单核细胞、巨噬细胞和粒细胞,包括嗜碱粒细胞、嗜酸粒细胞和嗜中性粒细胞。白细胞也可以包含肥大细胞。
[0123] “红血球”或“RBC”指红细胞。除非命名为“有核红细胞”(nRBC)或“胎儿有核红细胞”或有核胎儿红细胞,正如这里所使用的,“红血球”用于表示无核红细胞。
[0124] “肿瘤细胞”或“癌细胞”指的是细胞增殖失去控制的异常细胞,该细胞可以在受到引起肿瘤迁移的刺激后继续生长。肿瘤细胞往往显示出部分或全部缺乏正常组织的结构组织和功能协调,并且可以是良性的或恶性的。
[0125] “恶性细胞”指的是具有局部扩散性和破坏性生长和转移的细胞。“恶性细胞”的例子包括,但不限于多种体液(包括血液、骨髓、腹水、粪便、尿液、支气管清洗物等)中的白血病细胞、淋巴瘤细胞、实体瘤的癌细胞、转移性实体瘤细胞(例如,乳癌细胞、前列腺癌细胞、癌细胞、结肠癌细胞)。
[0126] “癌细胞”指的是表现出不受控制的生长以及在大多数情况下失去至少一种它的分化特性的细胞,所述分化特性例如但不限于形态特征、非迁移性行为、细胞与细胞相互作用及细胞信号转导行为、蛋白表达和分泌模式,等等。
[0127] “癌症”指的是其自然发展具有致命性的肿瘤病。不同于良性瘤细胞,癌细胞表现出扩散性和迁移性并且是高度退化发育的。癌细胞包括癌和恶性毒瘤两大类。
[0128] “干细胞”指的是可以通过一个或多个细胞分裂周期产生至少一种分化细胞类型的未分化细胞。
[0129] “祖细胞”指的是能够通过一个或多个细胞分裂周期产生至少一种分化细胞类型的明确的但未分化的细胞。通常,干细胞对特定的刺激物或一系列刺激物做出反应而产生祖细胞,祖细胞对特定的刺激物或一系列刺激物做出反应而产生一种或多种分化细胞类型。
[0130] “病原体”指的是可以感染寄主的任何病原,例如细菌、真菌原生动物、病毒、寄生虫或朊病毒。病原能够在其感染的寄主体内引起症状或疾病状态。人类病原是能够感染人类寄主的病原。这些人类病原对人类可以是特异性的,例如特异的人类病原,或可以感染多种物种,例如混杂的人类病原。
[0131] “主体”指的是任何生物体,例如动物或人类。动物可以包括任何动物,例如野化家畜、伴生动物例如狗或猫、农业动物例如猪或,或娱乐动物例如
[0132] “室”指的是能够容纳液体样品的结构,其中至少可以进行一个工序。在一些实施例中,室可以具有多种尺寸,其体积可以在0.01微升和0.5升之间变化。
[0133] “过滤室”指的是通过它液体样品可被过滤的室。
[0134] “过滤器”指的是包含一个或多个具有特定尺寸(可以是特定范围内)的孔或狭缝的结构,基于成分的大小、形状、可塑性、亲和性和/或结合专一性允许一些样品成分而非其它成分从过滤器的一边通向另一边。过滤器可以用任何合适的阻碍不溶成分(例如金属、陶瓷、玻璃、硅、塑料、聚合物、纤维(例如纸或布),等等)通过的材料制造。
[0135] “过滤单元”指的是过滤室及相关的允许将样品和溶液引入过滤室且样品成分从过滤室去除的进口、阀门和导管。过滤装置还选择性地包含上样贮液器。
[0136] “盒”指的是包含至少一个作为手动或自动系统组成部分的室及一个或多个用于液体输入或输出至少一个室的导管的结构。盒可以或可以不包含一个或多个芯片。
[0137] “用于从液体样品中分离目标成分的自动系统”或“自动系统”指包含至少一个过滤室、用于引导液体流过所述过滤室的自动方法和至少一个用于提供液体流动的电源,以及可选择地提供在作用芯片上产生力量的信号源。本发明的自动系统也可以选择性地包括一个或多个作用芯片、分离室、分离柱或永久磁铁。
[0138] “接口”是过滤室外罩上的开口,通过它液体样品可以进入或排出过滤室。接口可以具有任何尺寸,但优选地具有允许液体通过导管泵送,或通过吸液管、注射器或其它分配或运输样品的方式分配进过滤室的形状和大小。
[0139] “进口”是样品、溶液、缓冲液或试剂进入液体室的入口处。进口可以是过滤室的接口,或者可以是直接或间接通向自动系统过滤室的导管上的开口。
[0140] “出口”是样品、样品成分或试剂排出液体室的开口。离开液体室的样品成分和试剂可以是废料,即不再使用的样品成分,或者可以是待回收的样品成分或试剂,例如,可重复使用的试剂或需要进一步分析或处理的目标细胞。出口可以是过滤室的接口,但优选地是直接或间接地从自动系统过滤室导出的导管的开口。
[0141] “导管”是从本发明的容器或过滤室运输液体的手段。优选地,导管直接或间接地与过滤室外罩上的接口衔接。导管可以包含任何允许液体经过它流通的材料。导管可以包含管形材料,例如橡胶、特氟龙或聚乙烯管形材料。导管也可以用多聚物或塑料来塑造,或钻、蚀刻或用机器加工成金属的、玻璃的或陶瓷的基底。因此导管可以是结构不可或缺的,例如本发明中的筒。导管可以具有任何尺寸,但优选内径为10微米至5毫米的范围。优选附上导管(除了液体入口和出口处之外),或可以在其上表面开口,像食道型导管一样。
[0142] “芯片”是指在其上可以进行一种或多种过程(例如物理的、化学的、生物化学的、生物的或生物物理的过程)的固体基片,或者包含或支撑用于进行一种或多种物理的、化学的、生物化学的、生物的或生物物理的过程的一种或多种作用力产生元件的固体基片。所述过程可以是试验,包括生物化学的、细胞的和化学的试验;分离,包括电的、磁的、物理的和化学的(包括生物化学的)力量介导的分离,或相互作用;化学反应、酶促反应和结合作用,包括捕获。微结构或微尺度结构例如,通道和孔、砖、坝、过滤器、电极元件、电磁元件或声学元件可以并入或制造在基片上,用于促进芯片上的物理的、生物物理的、生物的、生物化学的、化学的反应或过程。所述芯片在一个维度上可以是薄的,在其它维度上可以具有多种形状,例如矩形、圆形、椭圆或其它不规则形状。本发明的芯片的主要表面的大小可以非常不同,例如,从大约1mm2至大约0.25m2。优选地,芯片的大小为大约4mm2至大约25cm2,典型的大小为大约1mm至大约5cm。芯片表面可以是平的或不平的。表面不平的芯片可以包括在表面制造的通道或孔。芯片可以具有一个或多个开口,例如孔或狭缝。
[0143] “作用芯片”是指在芯片内或芯片上建有微尺度结构的芯片,当外部电源提供能量时,可以产生至少一种能执行处理步骤或任务或分析步骤或任务(例如,但不限于混合、移动、聚集、分离、浓缩、捕获、离析或富集)的物理力。作用芯片使用作用物理力来推进、增强或促进所需生物化学反应或处理步骤或任务或分析步骤或任务。在作用芯片上,“作用物理力”是当作用芯片外部的电源提供能量时,通过建在芯片内或芯片上的微尺度结构产生的物理力。
[0144] “微尺度结构”是组成或附在芯片、圆片或室上的结构,具有在微流控应用中使用的大约0.1微米至大约20mm范围内的特征尺寸比例。可用在本发明的芯片上的微尺度结构的例子是孔、通道、坝、砖、过滤器、安装架、电极、电磁单元、声学元件,或微型泵或阀门。在2000年10月4日提交的代理人案号为471842000400、名称为“含有多个作用力产生元件的仪器及其应用”的美国专利申请09/679,024中公开了多种微尺度结构,通过引用其全文包含于此。能够在提供能量(例如电信号)时产生对本发明有利的物理力的微尺度结构可以指“物理力产生元件”、“物理力元件”、“作用力元件”或“作用元件”。
[0145] 在2000年10月4日提交的代理人案号为471842000400、名称为“含有多个作用力产生元件的仪器及其应用”的美国专利申请09/679,024中公开了多种微尺度结构,通过引用其全文包含于此。能够在提供能量(例如电信号)时产生对本发明有利的物理力的微尺度结构可以指“物理力产生元件”、“物理力元件”、“作用力元件”或“作用元件”。
[0146] “多力操纵芯片”或“多力芯片”是指产生物理力场并具有两种不同类型的嵌入结构的芯片,每种嵌入结构与外部电源结合,能够产生一种类型的物理场。在2000年10月4日提交的代理人案号为471842000400、名称为“含有多个作用力产生元件的仪器及其应用”的美国专利申请09/679,024中提供了对多力操纵芯片的详细说明,通过引用其全文包含于此。
[0147] “声力”是指通过声波场直接或间接施加在基团(例如微粒和/或分子)上的力。声力可用于处理(例如,诱捕、移动、引导、操作)液体中的微粒。声波,驻声波和行声波,两者都可以直接在基团上施力,这样的力被称为“声辐射力”。声波也可以在基团所处的,或悬浮的,或溶解的液体基质上施力,从而产生所谓的声流。声流转而将力施加在处于、悬浮于或溶解于所述液体基质中的基团上。在这种情况下,声波场可以直接在基团上施力。
[0148] “声学元件”是指能够对动力信号做出反应从而产生声波场的结构。优选的声学元件是能够对作用的交流电压做出反应从而产生振动(机械)能量的压电式换能器。振动能量可被转移至接近换能器的液体中,使声力施加在液体中的微粒(例如,细胞)上。在2000年8月10日提交的美国专利申请09/636,104中可以找到对声力和声学元件的说明。
[0149] “压电式换能器”是能对电信号做出反应从而产生声场的结构。压电式换能器的非限制性例子是用金属膜电极、压电薄膜(例如,氧化锌)覆盖双面的陶瓷盘(例如压电陶瓷(PZT)、钛酸铅锆)。
[0150] 正如这里所使用的,“混合”是指用物理力在样品、溶液或混合物中引起移动,从而使样品、溶液或混合物的成分散布开。本发明使用的优选的混合方法包括声力的使用。
[0151] “处理”指用于分析的样品的准备,可以包括一个或多个步骤或任务。通常处理任务用于分离样品成分、浓缩样品成分、至少部分纯化样品成分,或者在结构上改变样品成分(例如,通过裂解或变性)。
[0152] 正如这里所使用的,“离析(isolating)”指的是将所需样品成分从样品中其它不需要的成分中分离出来,从而在最后的制备中,使优选地至少15%、更优选地至少30%、甚至更优选地至少50%,以及进一步优选地至少80%原样品中存在的所需成分得到保留,并且优选地至少50%、更优选地至少80%、甚至更优选地至少95%,以及还更优选地至少99%原组分中的至少一种不需要的成分被去除。
[0153] “富集”指的是相对于其它样品成分而言提高样品中某种样品成分的浓度(可以是降低其它样品成分浓度的结果),或提高样品成分的浓度。例如,这里所使用的,从血液样品中“富集”有核胎细胞指的是提高有核胎细胞与血液样品中所有细胞的比例,富集血液样品中的癌细胞可以指提高样品中癌细胞的浓度(例如,通过减小样品体积)或降低血液样品中其它细胞成分的浓度,“富集”尿液样品中的癌细胞可以指提高样品中癌细胞的浓度。
[0154] “分离”是指一种或多种样品成分在空间上从一种或多种其它样品成分中分离出来的过程。可以进行分离,从而使一种或多种感兴趣的样品成分转移至或保留在分离仪器的一个或多个区域,并且至少部分保留成分从一种或多种感兴趣的样品成分转移至的和/或保留在的一个或多个区域中移出,或者其中,一种或多种样品成分保留在一个或多个区域,并且至少部分保留成分从所述一个或多个区域中移除。或者,一种或多种样品成分可以转移至和/或保留在一个或多个区域,而一种或多种样品成分可以从所述一个或多个区域中移除。也可以使一种或多种样品成分转移至一个或多个区域,而一种或多种感兴趣的样品成分或一种或多种样品成分转移至一个或多个其它区域。可以通过例如过滤,或使用物理的、化学的、电的或磁性的力来实现分离。可用于分离的力的非限制性例子是重力、质量流、介电力、行波介电力和电磁力。
[0155] “从(液体)样品中分离样品成分”指的是从原样品的其它成分中,或从经过一个或多个处理步骤后剩余的样品成分中分离样品成分。“从(液体)样品中移除样品成分”指的是从原样品的其它成分中,或从经过一个或多个处理步骤后剩余的样品成分中移除样品成分。
[0156] “捕获”是一种分离类型,其中一种或多种基团或样品成分保留在包含样品的表面、室、芯片、管或任何容器的一个或多个区域内或区域上,其中样品剩余物可以从所述区域移除。
[0157] “测验”是在样品或样品成分上进行的检验。测验可以检测成分的存在、成分的数量或浓度、成分的组成、成分的活性,等等。结合本发明的成分和方法可以进行的测验包括,但不限于免疫细胞化学测验、分裂间期FISH(荧光原位杂交)、染色体组型分型、免疫测验、生物化学测验、结合测验、细胞测验、遗传测验、基因表达测验和蛋白表达测验。
[0158] “结合测验”是通过检测某种实体与特异结合分子的结合从而检测该实体的存在或浓度的试验,或检测某种实体与另一种实体的结合能力的试验,或检测一种实体与另一种实体的亲和性的试验。所述实体可以是有机或无机分子、分子络合物(包括有机化合物、无机化合物,或有机化合物和无机化合物的组合)、细胞器、病毒或细胞。结合试验可以使用检测性标记或信号发生系统,在结合实体存在时产生检测信号。标准结合测验包括依靠核酸杂交来检测特异核酸序列、依靠抗体结合实体以及依靠配体结合受体的试验。
[0159] “生物化学测验”是检测样品的一种或多种成分的存在、浓度或活性的试验。
[0160] “细胞试验”是检测细胞过程的试验,所述细胞过程例如,但不限于代谢活性、分解代谢活性、离子通道活性、细胞内信号转导活性、受体介导的信号转导活性、转录活性、翻译活性或分泌活性。
[0161] “遗传测验”是用于检测遗传元件的存在或序列的试验,其中遗传元件可以是DNA或RNA分子的任何片段,包括但不限于基因、重复元件、转位因子、调控元件、端粒、着丝粒,或未知功能的DNA或RNA。作为非限制性例子,遗传试验可以是基因表达试验、PCR试验、染色体组型分型或FISH。遗传试验可以使用核酸杂交技术,可以包含核酸测序反应,或可以使用一种或多种酶如聚合酶,例如基于PCR的遗传试验。遗传试验可以使用一种或多种检测性标记,例如,但不限于荧光染料放射性同位元素,或信号发生系统。
[0162] “免疫染色”指通过任何方法使特异性抗原或结构着色,其中染料(或染料产生系统)与特异性抗体络合。
[0163] “聚合酶链式反应”或“PCR”指用于扩增特异核酸序列(扩增子)的方法。PCR依靠核酸聚合酶的能力,优选热稳定聚合酶,在含有所述扩增子的模板上延伸引物。RT-PCR是基于从样品中制备的mRNA反转录产生的模板(cDNA)的PCR。定量反转录PCR(qRT-PCR)或实时RT-PCR是指对每个样品每个循环的RT-PCR产物进行定量的RT-PCR。
[0164] “FISH”或“荧光原位杂交”是通过杂交使遗传标记可以定位于染色体上的试验。通常,为了进行FISH,将荧光标记的核酸探针杂交在制备于载玻片上的间期染色体上。通过荧光显微镜可以看见杂交探针的存在和位置。所述探针也可以包括酶并与荧光酶底物联合使用。
[0165] “染色体组型分型”是指对包含相应数量的每个类型的染色体(例如,人类单倍型(染色体1-22、X和Y)的24条染色体中的每一条)以及染色体中存在的形态异常,例如异位或缺失的染色体的分析。染色体组型分型通常包括进行中期细胞的染色体分散。然后可以使用例如但不限于染色或遗传探针使染色体可见,从而区分特定的染色体。
[0166] “基因表达测验”(或“基因表达谱测验”)是指对一种或多种基因表达产物,即信使RNA的存在或数量进行检测的测验。从样品中感兴趣的细胞上可以同时检测到一种或多种所述类型的mRNA。对于不同的应用,在基因表达测验中待分析的mRNA分子的数量和/或类型可以不同。
[0167] “蛋白表达测验”(或“蛋白表达谱测验”)是指对一种或多种蛋白的存在或数量进行检测的测验。可以从样品中感兴趣的细胞上同时检测到一种或多种类型的蛋白。对于不同的应用,在蛋白表达测验中待分析的蛋白分子的数量和/或类型可以不同。
[0168] “组织学检查”指使用能够确定细胞类型、细胞特定标记的表达,或可以显示细胞结构(例如细胞核、细胞骨架等)或细胞状态或细胞功能的组织化学的或染色的或特异的结合分子(通常与检测标记偶联)的细胞检查。通常,为进行组织学检查,可以在载玻片上制备细胞并使用直接或间接结合检测标记的染料或特异结合分子进行染色。可用于组织学检查的染料的例子是细胞核染料,例如Hoechst染料,或细胞活力染料,例如台盼蓝(Trypan blue),或细胞结构染料,例如瑞脱氏(Wright)染料或基姆萨氏(Gimsa)染料,酶活性染料联苯胺与辣根过氧化物酶(HRP)形成可见沉淀。可用于胎儿红细胞的组织学检查的特异结合分子的例子是特异识别胎儿或胚胎血红蛋白的抗体。
[0169] “电极”是高导电性材料做成的构造物。高导电性材料是导电性大于周围结构或材料的材料。合适的高导电性材料包括金属,例如金、铬、铂、,等等,也可以包括非金属材料,例如碳和导电聚合物。电极可以是任何形状,例如矩形、圆形、齿形,等等。电极也可以包括掺杂质的半导体,其中半导体材料与小量的其它“杂质”材料混合。例如,掺有磷的硅可用作构成电极的半导体材料。
[0170] “孔(well)”是芯片中的结构,具有较低表面,所述表面被从所述井或通道的所述较低表面延伸出来的一面或多面墙从至少两个侧面包围。所述墙可以在任何角度或以任何方式从井或通道的较低表面向上延伸。所述墙可以具有不规则构造,即,它们可以以反曲或其它的弧形的或多角度的方式向上延伸。所述井或通道的较低表面可以与芯片上表面等高或高于芯片上表面,或低于芯片上表面,使所述井成为芯片表面的凹陷。井或通道的侧面或墙可以包含不同于组成芯片较低表面的材料的材料。
[0171] “通道”是芯片内具有较低表面及至少两面从通道较低表面向上延伸的两面墙的结构,其中两对面墙的长度大于两对面墙之间的距离。因此,通道允许液体沿其内部长度流动。通道可被覆盖(隧道)或敞开。
[0172] “接口”是表面上的开口,例如本发明的过滤器,提供了表面的一面与另一面之间的液体流通。孔可以具有任何大小和任何形状,但优选地,孔具有限制至少一种不溶样品成分从过滤器的一面通向过滤器的另一面的大小和形状,所述限制基于所述样品成分的大小、形状、可塑性、亲和性和/或结合专一性(或缺少它的)。
[0173] “狭缝”是表面的开口,例如本发明的过滤器。狭缝长度长于其宽度(狭缝长度和狭缝宽度指的是样品成分将要通过的过滤器的平面或表面上的狭缝尺寸,狭缝深度指的是过滤器的厚度)。因此,术语“狭缝”描述了孔的形状,在一些情况下约为矩形、椭圆形、或四边形或平行四边形。
[0174] “砖状物”是指可以建在表面里面或上面的能够限制样品成分在砖状物之间通过的构造。在1998年11月17日颁发给Austin等人的美国专利5,837,115中描述了一种芯片上的砖状物(称为“障碍物”)的设计和使用,通过引用其全文包含于此。
[0175] “坝”是指可以建在室的较低表面上,朝着室的上表面向上延伸,在坝的顶部和室的顶部之间留下规定宽度的空间的结构。优选地,坝的顶部和室的顶壁之间的空间的宽度是使液体样品能够通过所述空间的宽度,但至少一种样品成分基于其大小、形状或可塑性(或缺少它的)不能通过所述空间。在1999年7月27日颁发给Wilding等人的美国专利5,928,880中描述了一种芯片上的坝结构的设计和使用,通过引用其全文包含于此。
[0176] “连续流动”是指在分离过程中连续地将液体泵入或注入本发明的室中。从而使非选择性保留在室内的样品成分在分离过程中排出室外。
[0177] “结合配体”指的是通过所需的亲和性或特异性与基团结合并通过所需物理力进行操作的任何物质。结合配体的非限制性例子包括微粒。
[0178] “微粒”是指通过所需物理力操作的具有任何形状、任何组成的结构。用于所述方法中的微粒可以具有大约0.01微米至大约10厘米的尺寸。优选地,用于所述方法中的微粒具有大约0.1微米至大约几百微米的尺寸。这样的颗粒或微粒可以由任何合适的材料组成,TM例如玻璃或陶瓷,和/或一种或多种聚合物,例如尼龙、聚四氟乙烯(TEFLON )、聚苯乙烯、聚丙烯酰胺、琼脂糖凝胶、琼脂糖、纤维素、纤维素衍生物、右旋糖酐,和/或可以包含金属。微粒的例子包括,但不限于磁珠、磁粉、塑料粒、陶瓷粒、碳粒、聚苯乙烯微粒、玻璃珠、空心玻璃球、金属粒、复合组成微粒、微型独立微结构,等等。微型独立微结构的例子可以包括“Design of asynchronous dielectric micromotors”by Hagedorn et al.,in Journal of Electrostatics,Volume:33,Pages 159-185(1994)中描述的那些。复合组成微粒指的是包含或由多种构成元素组成的微粒,例如,由薄层的非导电聚合物膜覆盖的金属球。
[0179] “微粒制剂”指包含一种或多种微粒并可以选择性地包含至少一种其它化合物、分子、结构、溶液、试剂、颗粒或化学实体的组合物。例如,微粒制剂可以是微粒的缓冲液悬浮液,并且可以选择性地包括特异结合分子、酶、惰性粒子、表面活性剂、配体、去垢剂,等等。
[0180] 正如这里所使用的,术语“基本反向平行的”和“基本相对的”分别理解为“近似反向平行的”和“近似相对的”,例如在大约30°,优选在约20°,更优选在约10°内,最优选在约5°或更小的范围内是完全反向平行或相反的。
[0181] 正如这里所使用的,术语“衔接”指的是任何方式的机械的或物理的附着、联、接合、结合或偶联,从而使所述“衔接”的分子在缺少某种积极努力、能量供应等的情况下不会相互分开或分离。
[0182] 要理解的是,这里所述的本发明的各方面和实施例包括“包括”和/或“基本上包括”的各方面和实施例。
[0183] 本公开中自始至终,本发明的各个方面以范围的形式呈现。应该理解的是,范围形式的描述仅仅是为了方便和简洁,而不应该解释为对本发明保护范围的不可改变的限制。因此,对范围的描述应该被认为是明确公开了所有可能的子范围以及所述范围内的单个数值。例如,对范围的描述如“1至6”应该被认为是明确公开了诸如“1至3”、“1至4”、“1至5”、“2至4”、“2至6”、“3至6”等的子范围,以及所述范围内的单个数字,例如1、2、3、4、5、6。无论范围的宽度如何,这都适用。
[0184] 这里使用的其它技术用语具有它们所使用的技术领域的普通含义,正如多种技术词典举例说明的一样。介绍
[0185] 本发明认识到,复杂液体(例如生物液体样品)的分析可以被许多能够干扰分析的样品成分混淆。当分析靶标是稀有细胞类型时,样品分析可能会更加成为问题。例如,当靶标细胞是存在于患者母血中的胎细胞或血液或尿液中的恶性细胞时。在处理这类样品时,常常需要通过减小体积至易控制水平来“压实”样品,并富集作为分析靶标的稀有细胞群(参见,例如美国专利号6,949,355和 7,166,443,美国专利公开号2006/0252054,2007/0202536,2008/0057505and 2008/0206757)。处理液体样品的过程经常是耗费时间的和低效的。在一些方面,本发明提供用于从液体样品中分离目标成分的有效方法及自动系统。
[0186] 本发明认识到,复杂液体(例如生物液体样品)的分析可以被许多能够干扰分析的样品成分混淆。当分析靶标是稀有细胞类型时,样品分析可能会更加成为问题。例如,当靶标细胞是存在于患者母血中的胎细胞或血液或尿液中的恶性细胞时。在处理这类样品时,常常需要通过减小体积至易控制水平来“压实”样品,并富集作为分析靶标的稀有细胞群(参见,例如美国专利号6,949,355和7,166,443,美国专利公开号2006/0252054,2007/0202536,2008/0057505and 2008/0206757)。处理液体样品的过程经常是耗费时间的和低效的。在一些方面,本发明提供用于从液体样品中分离目标成分的有效方法及自动系统。
(1)一种过滤室,包括装在外罩里的微型过滤器,其中所述过滤室包括前室和过滤后亚室,并且所述前室中的液体流动路径与所述过滤后亚室的液体流动路径基本相反;
(2)一种过滤室,所述过滤室包括装在外罩里的微型过滤器,其中,所述过滤器的表面和/或所述外罩的内表面通过气相沉积、升华、气相表面反应或粒子溅射进行修饰从而产生均一的涂层;
(3)一种过滤室,所述过滤室包括装在外罩里的微型过滤器,其中,所述过滤器的表面和/或所述外罩的内表面通过金属氮化物、金属卤化物、聚对二甲苯或其衍生物、聚四氟乙烯(PTFE)、特氟隆AF或全氟化碳修饰;
(4)一种盒,包含有此处公开的过滤室;
(5)自动过滤单元,用于分离液体样品中目标成分,包括有此处公开的过滤室;
(6)自动系统,用于从液体样品中分离和分析目标成分,包含有这里公开的自动过滤单元以及与过滤单元连接的分析仪器;
用于分离液体样品中目标成分的方法,包括:a)将液体样品分配进本文所公开的所述过滤室;以及b)提供穿过所述过滤室的样品液体流,其中所述目标成分被所述过滤器保留或通过所述过滤器。
8)使用本文公开的自动过滤单元从液体样品中分离目标成分的方法,包括:a)将液体样品分配进过滤室;和b)提供通过过滤室的液体样品的流体流动,其中液体样品的目标成分被过滤器保留或通过过滤器,以及。
9)使用本文公开的所述自动过滤系统富集和分析液体样品中的成分的方法,包括a)将所述液体样品分配进所述过滤室;b)提供通过所述过滤室前室的液体样品的流动及通过所述过滤后亚室的溶液的流动,其中所述液体样品的目标成分被保留在所述前室中并且非目标成分流过所述过滤器进入所述过滤后亚室中;以及c)标记所述目标成分,并且d)使用所述分析仪器分析标记的目标成分。
[0187] 本发明的这些方面,以及本文所述的其它方面,可以通过使用这里所述的方法、制造规则及物质组成来实现。为了获得对本发明保护范围的全面了解,可以进一步认识到,本发明的各个方面可以组合产生理想的本发明的实施方式。I I过滤室
[0188] 一方面,本发明提供一种过滤室,所述过滤室包括装在外罩里的微型过滤器。在实施例中,本发明过滤室包括一个或多个内置于所述过滤室内的微型过滤器,一个或多个所述过滤器将所述过滤室分为亚室。在某种情况下,当过滤室包含单个内置的微型过滤器时,例如,过滤室可以包含预过滤“前室”,或适当时,“上部亚室”和“过滤后亚室”,或适当时,“底部亚室”。在其它情况下,微型过滤器可以形成过滤室的内壁,在过滤时可滤过的样品成分经由所述过滤器排出室外。
[0189] 在本发明的一些实施例中,本发明的过滤室具有至少一个允许样品引入所述过滤室内的接口以及可以将样品输入或输出本发明过滤室的导管。当液体流动开始时,流过一个或多个过滤器的样品成分可以流入所述过滤室的一个或多个区域,然后通过导管排出室外,并优选地,但可选择地,从导管排进入容器,例如废料容器。所述过滤室也可以选择性地具有一个或多个额外的接口,用于添加一种或多种试剂、溶液或缓冲液。本描述自始至终,要理解的是,流入口或流出口可以用于与它们指定功能方向相反的流动。
[0190] ]在一些实施例中,所述过滤室可以包含一个额外的过滤器,或适当时,一个“上部过滤器”。在一些实施例中,位于前室和上室之间的上部过滤器可以是在低流速情况下足以严格保持其平面度的并且可以通过产生开口小于5微米的孔或狭缝的任何方法来生产的任何过滤器。所述上部过滤器可以进一步分隔所述前室或所述过滤后亚室。在一些实施例中,过滤前室可以包含流入口、流出口和附加流入口,所述附加流入口还通过另一个微型过滤器与前室分开,由此产生上部过滤室。
[0191] 本发明的过滤室可以包括一种或多种液体不可渗透的材料,例如但不限于金属、聚合物、塑料、陶瓷、玻璃、硅或二氧化硅。优选地,本发明的过滤室具有约0.01毫升至约10升的容量,更优选地具有约0.2毫升至约2升的容量。在本发明的一些优选实施例中,过滤室可以具有约1毫升至约80毫升的容量。
[0192] 本发明的过滤室可以包括或结合任何数量的过滤器。在本发明的一个优选实施例中,过滤室包括一个过滤器(参见,例如图5和图14)。在本发明的另一个优选实施例中,过滤室包括一个以上的过滤器,例如图6和图7中例示的过滤室。过滤室构造可以是多种多样的。例如,在本发明的保护范围内有一种过滤室,所述过滤室的一面或多面壁上包含有微型过滤器。还在本发明的保护范围内有一种过滤室,所述过滤室连接有一个或多个过滤器。在这种情况下,所述过滤器可以是与过滤室固定连接,或可拆卸地连接(例如,它们可被插入过滤室上提供的狭缝或轨道)。过滤器可以作为过滤室的壁,或嵌入过滤室内部,并且可以选择性地将过滤器串联排列用于连续过滤。如果过滤器插入过滤室内,那么它们与过滤室的壁形成紧密密封,以便在过滤操作过程中,流过过滤室(从过滤器的一边到另一边)的液体必然会经过过滤器的孔。
[0193] 在本发明的优选实施例中,例如,具有大约1厘米×1厘米×(0.2-10)厘米的尺寸的过滤室可以具有包含4至1,000,000个狭缝,优选100至250,000个狭缝的一个或多个过滤器。在这个优选实施例中,所述狭缝优选具有矩形形状、约0.1至约1000微米的狭缝长度,以及优选约0.1至约100微米的狭缝宽度,视实际应用而定。
[0194] 优选地,狭缝可以允许成熟红细胞(缺少细胞核)通过通道而排出过滤室,而不允许或最低限度地允许具有更大的直径或形状的细胞(例如但不限于有核细胞,例如白细胞和有核红细胞)排出过滤室。可以通过液体流过过滤室而去除红细胞,同时保留血液样品的其它细胞的过滤器在图7、图14和图16中附有插图。例如,为了从有核红细胞和白细胞中去除成熟红细胞,可以使用2.5至6.0微米,更优选地2.2至4.0微米的狭缝宽度。狭缝长度可以,例如在20至200微米之间变化。狭缝深度(即滤膜厚度)可以在40至100微米之间变化。在2.0至4.0之间的狭缝宽度将允许双面盘形的红细胞通过狭缝,而主要保留直径或形状大于
7微米的有核红细胞和白细胞。
反相平行流动
[0195] 在一些实施例中,本发明的过滤室可以设置成允许液体在前室和过滤后亚室中平行或反向平行流动。所述前室可以具有两个接口,流入口和流出口。所述过滤后亚室可以具有两个接口,流入口和流出口。所述接口可以按这样的方式排列,使前室和过滤后亚室中的液体流动彼此基本相反,或反向平行。所述前室的流入口可以用于将液体样品,例如血液样品、细胞悬浮液等分配进过滤室中。
[0196] ]在一些实施例中,所述装置具有单一的前室,所述前室含有两个用于流入和流出的接口,一个接口在一个或多个过滤器的任何一边,以便血液样品可以从前室中流过。例如,血液样品可以被泵送经过前室以填满所述过滤室。在优选实施例中,其中一个开口在其端部包含贮液器,细胞这类微粒和化合物可以经由所述贮液器选择性地添加。或者,微粒、化合物或两者可以经由不与贮液器连接的开口处添加至前室中。在一些实施例中,所述前室可以包含一个以上的流入口和/或流出口。例如,附加流入口可以用于冲洗溶液的流入,或提供将液体样品成分推过过滤器的流体力。在包含用于将前室分隔成上室和前室的上部过滤器的实施例中,附加流入口可以向上部过滤器提供液体流。
[0197] 在一些优选的实施例中,过滤后亚室也是单一的流体通道,在一端具有用于引入溶液的开口,在另一端具有用于溶液流出的开口。在一些实施例中,所述过滤后亚室可以包含一个以上的流入口和/或流出口。例如,在过滤后亚室中的多个流出口可以用于收集不同的过滤成分,基于成分的大小、形状、可塑性、亲和性和/或结合专一性。
[0198] 在一些实施例中,前室和过滤后亚室中的液体流动可以是这样的,可以产生负压以将成分或细胞抽过过滤器。在一些实施例中,下室的流出量大于下室的流入量,使穿过前室的部分液体样品可以被吸入过滤后亚室,以便红细胞和血小板与通过过滤器保留在前室中的白细胞和其它有核细胞分离。在一些实施例中,流出液体包含的细胞可以少于流入液体包含的细胞。
[0199] 在一些实施例中,前室和过滤后亚室中的液体流动可以设置成分别具有不同的流速。考虑到的是前室和过滤后亚室中液体流动的不同可以产生穿过前室和过滤后亚室之间的过滤器的流体力。前室和过滤后亚室中的液体流速可以通过压力控制装置(例如泵)在流入口和/或流出口控制。在一些实施例中,所述压力控制装置可以通过自动控制系统调节,例如运行计算程序的计算机
[0200] 过滤室可以包括一种或多种表面轮廓以影响样品、冲洗溶液或稀释溶液之类的溶液或两者的流动。例如,轮廓可以偏离、分散或引导样品,从而促进样品沿着所述过滤器扩散。或者,轮廓可以偏离、分散或引导冲洗溶液,使冲洗溶液对过滤室或过滤器的冲洗具有更高的效率。这样的表面轮廓可以是任何合适的构造。所述轮廓可以包括总体上朝着芯片突出的表面或总体上远离芯片突出的表面。它们可以总体上围绕所述过滤器。轮廓可以包括但不限于突起、凹陷部分、狭缝、歪曲结构例如球状部分、泡(例如空气、去垢剂或聚合物形成的),等等。例如两个或多个狭缝的轮廓可以设置成总体上互相平行、当垂直观察过滤室时又呈一定角度的形式,从而在总体呈螺旋形的轨道中引导流动。
[0201] 在一些实施例中,前室的流出口可以与收集室连接,其中液体样品的目标成分,例如血液样品中的有核细胞或细胞悬浮液中的癌细胞,可以在不需要的成分通过过滤分离后被收集到。
[0202] 在一些实施例中,本发明的过滤室可以由两个外罩部件构成,例如顶部外罩部件和底部外罩部件,它们可以可逆地结合在一起形成装有过滤器的过滤室。所述外罩部件可以使用任何合适的方法结合在一起,例如但不限于激光焊接、粘性材料等。底部外罩部件可以是浅盘或箱的形式,优选地具有允许缓冲液流过过滤室的至少一个进口和至少一个出口。表面处理或修饰
[0203] 在一些实施例中,本发明提供对微型过滤器表面和/或装有微型过滤器的外罩的内表面的处理或修饰,从而改善其过滤效率。在一些实施例中,表面处理产生过滤器和外罩的均一涂层。在一些实施例中,处理或包覆或修饰过滤器的一面或两面以提高其过滤效率。表面修饰可以促进穿过过滤器的液体样品成分的过滤,或减少过滤器上的狭缝受到液体样品成分(例如细胞、细胞碎片、蛋白聚集体、脂类,等等)的堵塞。在一些实施例中,处理或修饰过滤器的一面或两面以减小样品成分(例如但不限于细胞)与过滤器相互作用或粘附在过滤器上的可能性。
[0204] 所述过滤器的表面和/或所述外罩的内表面可以通过金属氮化物、金属卤化物、聚对二甲苯、聚四氟乙烯(PTFE)、特氟隆AF或全氟化碳修饰。在一些实施例中,全氟化碳可以是液体形式。在一些实施例中,所述全氟化碳为1H,1H,2H,2H-全氟辛基三乙氧基硅烷、1H,1H,2H,2H-全氟癸基三乙氧基硅烷、三氯(1H,1H,2H,2H-全氟辛基)硅烷或三氯(十八烷基)硅烷,它们可以是液体形式的。在一些实施例中,所述全氟化碳可以共价结合在表面上。所述过滤器的表面和/或所述外罩的内表面可以通过气相沉积、升华、气相表面反应或粒子溅射进行修饰,从而产生均一的涂层。
[0205] 可以对过滤器和/或外罩进行物理或化学处理,例如,改变其表面性质(例如疏水性、亲水性)。任何合适的气相沉积方法都可以使用,例如物理气相沉积等离子体增强的化学气相沉积、化学气相沉积,等等。用于物理气相沉积、化学气相沉积、等离子体增强的化学气相沉积或粒子溅射的合适材料可以包括但不限于金属氮化物或金属卤化物(例如氮化钛、氮化硅、氮化锌、氮化铟、氮化)、聚对二甲苯或其衍生物(例如聚对二甲苯、聚对二甲苯-N、聚对二甲苯-D,聚对二甲苯AF-4、聚对二甲苯SF及聚对二甲苯HT)。聚四氟乙烯(PTFE)或特氟隆AF也可以用于化学气相沉积。
[0206] 例如,过滤器和/或外罩可以在过滤室内、在含量低的氮气或氨气或亚硝气或其它气体或这些的任意组合或系列的存在下用等离子体处理或加热,修饰成氮化硅,或可以用至少一种酸或至少一种碱处理,以获得所需的表面电荷和类型。例如,玻璃或硅的过滤器和/或外罩可以在氮气或氩气环境下加热,从所述过滤器和/或外罩的表面去除氧化物。根据过滤器和/或外罩的材料以及所需反应的级别,加热的时间和温度可以不同。在一个实施例中,玻璃过滤器和/或外罩可以加热至大约200至1200摄氏度的温度,维持大约30分钟至24小时。
[0207] 在另一个实施例中,可以用一种或多种酸或者一种或多种碱来处理过滤器和/或外罩,以增加过滤器表面的正电性。在优选的实施例中,用至少一种酸来处理包含玻璃或硅的过滤器和/或外罩。
[0208] 用于处理本发明的过滤器和/或外罩的酸可以是任何酸。作为非限制性例子,所述酸可以是蚁酸、草酸抗坏血酸。所述酸可以具有大约0.1N的浓度或更高,优选地具有大约0.5N的浓度或更高,更优选地具有高于大约1N的浓度。例如,酸的浓度优选为大约1N至大约
10N。孵育时间可以是1分钟至数天,但优选的是大约5分钟至大约2小时。
[0209] 为提高亲水性而处理微型过滤器和/或外罩的最佳浓度和孵育时间可以凭经验确定。所述微型过滤器和/或外罩可以在酸溶液中放置任何长度的时间,优选一分钟以上,更优选地大约5分钟以上。酸处理可以在任何非冷冻和非煮沸的温度下完成,优选高于或等于室温的温度。
[0210] 或者,可以用还原剂替代酸或与酸并存或与酸按任何次序使用,例如但不限于联氨、氢化铝锂、硼氢化物、亚硫酸盐亚磷酸盐、二硫苏糖醇、含铁化合物例如硫酸亚铁。还原性溶液可以具有大约0.01M或更高的浓度,优选地大约0.05M或更高的浓度,更优选地大约0.1M或更高的浓度。所述微型过滤器和/或外罩可以在还原性溶液中放置任何长度的时间,优选一分钟以上,更优选地大约5分钟以上。处理可以在任何非冷冻和非煮沸的温度下完成,优选高于或等于室温的温度。
[0211] 为提高过滤器和/或外罩表面的亲水性所进行的物理或化学处理的有效性可以通过测量置于处理过的和未处理的过滤器和/或外罩表面的水滴的展开度来检测,其中相同体积的水滴的展开度增加表明表面的亲和性增加(图5)。过滤器和/或外罩处理的有效性也可以通过将处理过的过滤器和/或外罩与细胞或生物样品一起孵育,确定样品成分在处理过的过滤器和/或外罩上的粘附度来检测。
[0212] 在另一个实施例中,过滤器和/或外罩的表面,例如但不限于聚合物的过滤器和/或外罩,可以进行化学处理改变所述过滤器和/或外罩的表面性质。例如,玻璃的、硅的或聚合物的过滤器和/或外罩的表面可以通过多种化学处理的任何一种衍生化,从而加上能够减少样品成分与过滤器和/或外罩表面相互作用的化学基团。
[0213] 也可以使一种或多种化合物吸附在或结合在任何合适的材料制成的微型过滤器和/或外罩表面,例如,一种或多种金属、一种或多种陶瓷、一种或多种聚合物、玻璃、硅、氮化硅,或它们的组合。在本发明的优选实施例中,本发明的微型过滤器和/或外罩的表面用化合物包覆,通过减少样品成分与过滤器和/或外罩表面的相互作用来提高过滤效率。
[0214] 例如,过滤器和/或外罩的表面可以用分子包覆,所述分子例如,但不限于蛋白、肽,或多聚物,包括自然产生的或合成的多聚物。用于包覆过滤器和/或外罩的材料优选生物相容的,意思是所述材料对细胞或其它生物样品成分没有毒害作用,例如蛋白、核酸,等等。白蛋白,例如牛血清白蛋白(BSA)是可以用于包覆本发明的微型过滤器和/或外罩的例子。用于包覆过滤器和/或外罩的多聚物可以是不会促使细胞粘附在过滤器和/或外罩上的任何多聚物,例如非疏水性多聚物,例如但不限于聚乙二醇(PEG)、聚乙烯乙酸酯(PVA)以及聚乙烯吡咯烷酮(PVP),和纤维素或纤维素样衍生物。
[0215] 例如,用金属、陶瓷、聚合物、玻璃或硅制成的过滤器和/或外罩可以通过任何可行的手段,例如吸附作用或化学偶联用,用化合物包覆。
[0216] 在许多情况下,在用化合物或多聚物包覆过滤器和/或外罩之前对过滤器和/或外罩进行表面处理是有利的。表面处理可以提高包覆的稳定性和均一性。例如,在用化合物或多聚物包覆过滤器和/或外罩之前,可以用至少一种酸或至少一种碱,或用至少一种酸和至少一种碱来处理过滤器和/或外罩。在本发明的优选方面,由多聚物、玻璃或硅制成的过滤器和/或外罩经过至少一种酸处理,然后在包覆化合物的溶液中孵育数分钟至数天的一段时间。例如,玻璃过滤器和/或外罩可以在酸中孵育,用水冲洗,然后在BSA、PEG或PVP溶液中孵育。
[0217] 在本发明的一些方面,在酸或碱处理或用氧化剂处理之前,还优选在使用化合物或多聚物包覆过滤器和/或外罩之前,优选用水(例如,去离子水)或缓冲溶液冲洗过滤器和/或外罩。如果在微型过滤器和/或外罩上进行一种以上的处理,也可以在处理和处理之间进行冲洗,例如,在用氧化剂和酸处理之间,或在用酸和碱处理之间。过滤器和/或外罩可以用PH值在大约3.5至大约10.5之间,更优选地在大约5至大约9之间的水或水溶液冲洗。用于冲洗微型过滤器和/或外罩的合适的水溶液的非限制性例子可以包括盐溶液(所述盐溶液的浓度范围可以从微克分子级至5M或更大)、生物缓冲溶液、细胞基质,或其稀释液或组合。冲洗可以进行任何长度的时间,例如数分钟至数小时。
[0218] 用于包覆过滤器和/或外罩的化合物或多聚物溶液的浓度可以在大约0.02%至20%或更大之间变化,在某种程度上将取决于所使用的化合物。可以在包覆溶液中孵育数分钟至数天,优选大约10分钟至2小时。
[0219] 包覆后,过滤器和/或外罩可以在水或缓冲液中冲洗。
[0220] 本发明的处理方法也可以在除了包含过滤孔的芯片以外的芯片上使用。例如,可以使用本发明的方法对包含金属、陶瓷、一种或多种聚合物、硅、二氧化硅或玻璃的芯片进行物理或化学处理。这类芯片可以用于,例如分离、检测或分析生物种类,例如细胞、细胞器、络合物或生物分子(例如,核酸、蛋白、小分子)的分离、分析以及检测设备。芯片的处理可以增强或减小生物种类与芯片表面的相互作用,取决于所使用的处理、处理的生物种类的性质以及处理的类型。例如,根据所操作的生物物种和操作的性质,芯片可以用亲水或疏水聚合物涂覆。作为进一步的例子,用亲水聚合物包覆芯片表面(例如但不限于用PVP或PVA包覆芯片)可以减小或最小化芯片表面与细胞之间的相互作用。多元化
[0221] 在本发明的一些实施例中,一个以上的过滤室可以组合在多元构造中。例如,至少2,3,4,5,6,7,8,9,10或更多的过滤室可以组合在一起。图34显示了八个过滤室组合在一起的典型实施例。在一些实施例中,多元构造中的每个过滤室彼此是独立的,即每个过滤室与多元构造中的其它过滤室不是液体相通的。在一些实施例中,多元构造中的一些或所有过滤室彼此可以是液体相通的。例如,一些或所有过滤室可以共用外罩,或可以通过液体通道或导管互相连接。
[0222] 多元构造中的过滤室可以并排排列,如图34所示,或线性排列,或两种方式的结合。多元构造中的过滤室可以朝着相同方向排列,或朝着相反方向排列,或两种方式的结合。在一些实施例中,至少两个过滤室串联运行而且每个过滤室中的过滤器的狭缝具有不同宽度,其中过滤室按照狭缝宽度递增的顺序排列。
[0223] 在一些实施例中,至少两个过滤室串联排列并且随后的过滤室包含狭缝宽度递增的过滤器。在一些实施例中,所述过滤器包含沿着流道递增的狭缝宽度而且存在上部过滤室,并且过滤后室包含多个隔板,引导液体通过每个隔板的一个流出口流出。在一些实施例中,所述过滤后室的每个隔板部分的流出口可以与多孔药物筛选板的单孔对准并将其流出物直接沉积在单孔中,所述单孔间隔2.25mm或4.5mm或9mm或18mm。
[0224] 图37阐明了多元构造的另一个实施例。在这个构造中,两个过滤室通过上部过滤器和微型过滤器之间的前室液体相通。过滤室的过滤器可以具有不同的狭缝大小,因此不同的成分可以在回收区域1和2中回收到。自动过滤单元
[0225] 在一些实施例中,本发明的过滤室是自动过滤单元的组成部分,所述自动过滤单元包括用于控制液体流过过滤室的手段。任何合适的机械装置都可以用于控制液体流过过滤室,例如液体泵、阀门、导管、通道,等等。在一些实施例中,控制运算法,例如计算机程序,可以用于控制液体流动。前室和过滤后亚室中的液体流动都可以通过控制运算法控制。
[0226] 在前室和过滤后亚室中的液体流动基本反相平行的实施例中,例如图33中描述的,可以使用多个液体泵分别控制前室和过滤后亚室中的流速。进料泵(3)可以用来控制前室中的液体流速,缓冲液泵(1)和废料泵(2)可以用来控制过滤后亚室中的液体流速。
[0227] 在一些实施例中,前室和过滤后亚室中的液体流动可以设置成分别具有不同的流速。考虑到的是前室和过滤后亚室中液体流动的不同可以产生穿过前室和过滤后亚室之间的过滤器的流体力。
[0228] 在一些实施例中,前室和过滤后亚室中的液体流动可以是这样的,可以产生负压(5)将成分或细胞抽过过滤器。在一些实施例中,下室的流出量大于下室的流入量,使穿过前室的部分液体样品可以被吸入过滤后亚室,以便红细胞和血小板与通过过滤器保留在前室中的白细胞和其它有核细胞分离。在一些实施例中,流出液体包含的细胞可以少于流入液体包含的细胞。
[0229] 例如,图5描绘的本发明的一种优选过滤装置,包含用于添加样品的阀门控制进口(阀门A(6)),用于样品过滤的与导管(通过所述导管施加负压)连接的阀门(阀门B(7)),以及用于冲洗过滤室的控制冲洗缓冲液流入过滤室的阀门(阀门C(8))。在本发明的一些实施例中,过滤装置可以包含能够选择性地处于自动控制下的阀门,所述控制指允许样品进入室内,废料排出室外,以及提供用于过滤的液体流动的负压。
[0230] 为了将溶液或上清液转移至过滤室中,可以使用针(但不限于陈述的物体)。针可以与能够容纳一定体积的容器(例如管或室)连接。所述针可以从装有溶液的管子中收集细胞并利用推溶液或抽溶液的设备(例如泵或注射器)将所述溶液分配进另一个室内。
[0231] 在一些实施例中,前室的进口可以与柱连接,使用于结合样品液体中无用成分的特异结合分子可以固定在柱的固体表面。例如,可以将凝集素、受体配体或抗体固定在柱内,以去除血液样品中的红细胞、白细胞或血小板。用于分离和分析液体样品成分的自动系统
[0232] 本发明还提供用于分离和分析液体样品的目标成分的自动系统,包括与用于分析过滤室分离的目标成分的仪器液体相连通的过滤室。在一些实施例中,过滤室的前室可以直接与所述及仪器连接,使目标成分(例如过滤器保留的有核细胞或稀有细胞)可以直接进入分析仪器。前室的流出口或收集室也可以与仪器(例如流式细胞仪)连接,使分离的成分可以不经过进一步处理而直接得到分析。在一些实施例中,可以在分析之前标记所述目标成分。包含电极的过滤器
[0233] 在一些优选实施例中,行波介电泳力可以由建在作为过滤室组成部分的芯片上的电极产生,可以用于从过滤器上移走诸如细胞之类的样品成分。在这种情况下,将微电极建在过滤器表面并排列电极,使行波介电泳可以引起诸如细胞之类的样品成分在电极平面或过滤器表面上移动,通过过滤器表面发生过滤过程。在2000年10月4日提交的代理人案号为471842000400、名称为“含有多个作用力产生元件的仪器及其应用”的美国专利申请09/
679,024中提供了对行波介电泳的全面描述,通过引用其全文包含于此。
[0234] 在过滤器的一个实施例中,将交错的微电极构造在过滤器表面,例如图2所示或“Novel dielectrophoresis-based device of the selective retention of viable cells in cell  culture media”by  Docoslis et al,in Biotechnology and Bioengineering,Vol.54,No.3,pages 239–250,1997以及1997年5月7日颁发给Docoslis等人的美国专利5,626,734中所描述的。对于这个实施例,由电极产生的负介电泳力可以从过滤器表面或过滤器狭缝排斥诸如细胞之类的样品成分,使过滤器上收集的细胞在过滤过程中不会堵塞过滤器。如果行波介电泳或负介电泳用于增强过滤,可以在整个过滤过程中,在液体流动停止或大大减弱的期间定期接通电极元件。
[0235] 具有微米级狭缝的整合有电极的可以产生介电泳力的过滤器如图3(A和B)所示。例如,制造过滤器,18微米宽的交错电极和18微米缝隙被构造在过滤器上,所述过滤器制造在硅基片上。单个的过滤器狭缝具有大小为100微米(长)×2–3.8微米(宽)的矩形形状。每个过滤器具有独一无二的狭缝尺寸(例如长乘宽:100微米×2.4微米,100微米×3微米,100微米×3.8微米)。沿着长的方向,相邻过滤器狭缝间的间隔是20微米。沿着宽的方向,相邻狭缝不在一条直线上;相反,它们是并列的。相邻的过滤器狭缝列之间的并列距离是50微米或30微米。过滤器狭缝相对于电极进行设置,使狭缝中心线沿着长的方向与电极中心线或电极边缘或电极间间隔的中心线对齐。
[0236] 电极也可以安置在装有过滤器的过滤室的外罩上。在一些实施例中,电极可以安置在前室和/或过滤后亚室中。电极可以以这样的方式相对于过滤器安置,所述方式使得介电泳力围绕过滤器狭缝产生。在一些实施例中,介电泳力可以使细胞或其它样品成分远离所述过滤器狭缝或过滤器表面。
[0237] 下述讨论和参考文献可以提供通过从过滤器移开诸如不可过滤细胞之类的样品成分来促进过滤的电极的设计和使用的体系:
[0238] 介电泳指的是极化粒子在不均匀的交流电场中的移动。当粒子处于电场中时,如果粒子的介电性能与其周围介质不同,那么粒子将经历电解质极化。因此,在粒子/介质的交界面诱导产生电荷。如果施加的电场是不均匀的,那么不均匀电场和诱导产生的极化电荷之间的相互作用将产生作用于粒子上的净力,从而导致朝着强或弱的电场强度区域的粒子运动。作用于粒子上的净力就是所谓的介电泳力,而粒子运动就是介电泳。介电力取决于粒子的介电性能、粒子周围介质、施加电场的频率及电场分布。
[0239] 行波介电泳类似于行波电场与场诱导极化相互作用并产生作用于粒子上的电力的介电泳。导致粒子朝着行波场或背离行波场移动。行波介电力取决于粒子的介电性能、粒子周围介质、行波场的频率及强度。在许多出版物(例如“Non-uniform Spatial Distributions of Both the Magnitude and Phase of AC Electric Fields determine Dielectrophoretic Forces by Wang et al.,in Biochim Biophys Acta Vol.1243,
1995,pages 185-194”,“Dielectrophoretic Manipulation of Particles”by Wang et al,in IEEE Transaction on Industry Applications,Vol.33,No.3,May/June,1997,pages 660-669,“Electrokinetic behavior of colloidal particles in traveling electric fields:studies using yeast cells”by Huang et al,in J.Phys.D:
Appl.Phys.,Vol.26,pages 1528-1535,“Positioning and manipulation of cells and microparticles using miniaturized electric field traps and traveling waves”By Fuhr et al.,in Sensors and Materials.Vol.7:pages 131-146,“Dielectrophoretic manipulation of cells using spiral electrodes”by Wang,X-B.et al.,in 
Biophys.J.Volume 72,pages 1887-1899,1997,“Separation of human breast cancer cells from blood by differential dielectric affinity”by Becker et al,in Proc.Natl.Acad.Sci.,Vol.,92,January 1995,pages 860-864)中可以找到介电泳和行波介电泳以及用于操作和处理粒子的介电泳的使用的理论。使用介电泳和行波介电泳对粒子的处理包括粒子的浓缩/聚集、诱捕、排斥、线性化或其它定向运动、悬浮或分离。粒子可以在电极反应室的特定区域被聚集、富集和诱捕。粒子可以被分成不同的极小比例的亚群。关于本发明的过滤方法,粒子可被转运一定的距离。特定粒子处理所需的电场分布取决于微电极结构的大小和形状并且可以用介电泳理论和电场模拟方法设计。
[0240] 作用于处于不均匀电场中的半径为r的粒子上的介电泳力 可以通过得出,Erms其中是电场强度的的额定功率RMS值,εm是介质的介电常数。χDEP是粒子电介质极化因子或介电泳极化因子,通过
得出,
[0241] “Re”指“复数”的实数部分。符号 是复介电常数(粒子的x=p,介质的x=m)。参数εp和σp分别是粒子的有效介电常数和导电性。这些参数可以是频率依赖的。例如,因为细胞质膜极化,典型的生物细胞将至少具有频率依赖性、有效导电性和介电常数。
[0242] 上述求介电泳力的方程式也可以写成其中p(z)是电极上单位电压激励(V=1V)的方形场分布,V是施加的电压。
[0243] 通常有两种类型的介电泳,正介电泳和负介电泳。在正介电泳中,粒子被朝着强电场区域的介电泳力移动。在负介电泳中,粒子被朝着弱电场区域的介电泳力移动。粒子表现出正的还是负的介电泳取决于粒子比周围介质更易极化还是更不易极化。在本发明的过滤方法中,过滤室的一个或多个过滤器上的电极模式可被设计成导致诸如细胞之类的样品成分表现出负介电泳,致使诸如细胞之类的样品成分从过滤器表面的电极上被排斥掉。
[0244] 行波介电泳力是指因行波电场而产生在粒子或分子上的力。行波电场的特点是交流电场要素的相值的不均匀分布。
[0245] 在这里我们分析理想行波电场的行波介电泳力。作用于处于行波电场(即x方向场沿z方向移动)中的半径为r的粒子上的介电泳
力通过
得出,
其中E是所述电场强度的级数,εm是介质的介电常数。ζTWD是粒子极化因子,通过得出,
“Im”指“复数”的虚数部。符号 是复介电常数(粒子的x=p,介质的x=
m)。参数εp和σp分别是粒子的有效介电常数和导电性。这些参数可以是频率依赖的。
[0246] 具有不同介电性能(由介电常数和导电性确定)的粒子(例如生物细胞)将经历不同的介电泳力。对于操作粒子(包括生物细胞)的行波DEP,作用于直径为10微米的粒子上的行波DEP可以在大约0.01至10000pN之间变化。
[0247] 行波电场可以通过对适当排列在芯片上的微电极施加适当的交流电信号来建立。为了产生行波电场,需要施加至少三种类型的电信号,每种电信号具有不同的相值。产生行波电场的例子是使用四相正交信号(0,90,180和270度)接通在芯片表面形成的线性的、平行的电极。这四个电极形成基本的重复单元。根据应用,可以有两个以上的这种单元相邻放置。这将在电极上方或附近空间产生行波电场。由于电极元件按照一定的空间顺序排列,施加相位序列信号将在电极附近区域建立行波电场。
[0248] 作用于粒子上的介电泳和行波介电泳力都不仅取决于电场分布(例如,电场要素的强度、频率和相分布;电场的强度和/或频率的调制),还取决于粒子及介质(粒子悬浮或置于其中)的介电性能。对于介电泳,如果粒子比介质更易极化(例如,具有更大的取决于施加频率的导电性和/或介电常数),粒子将受到正介电泳力并被引导朝向强电场区域。比周围介质更不易极化的粒子将受到负介电泳力并被引导朝向弱电场区域。对于行波介电泳,粒子可以受到驱动它们朝着电场移动方向相同或相反方向的介电泳力,取决于极化因子ζTWD。下述文献提供了关于介电泳和行波介电泳的基本理论和实践:Huang,et al.,J.Phys.D:Huang,et al.,J.Phys.D:Appl.Phys.26:1528-1535(1993);Wang,et al.,Biochim.Biophys.Acta.1243:185-194(1995);Wang,et al.,IEEE Trans.Ind.Appl.33:660-669(1997)。
包含作用芯片的过滤室
[0249] 过滤室也可以优选包含或衔接至少一个作用芯片的至少一部分,其中所述作用芯片是利用施加的物理力促进、增强或利于样品的处理或所需生物化学反应的芯片,和/或降低或减少别的可能对样品产生的或在样品中产生的任何不想要的作用的芯片。本发明过滤室的作用芯片优选包含声学元件、电极或者甚至电磁元件。作用芯片可以用于传递能够防止狭缝堵塞的物理力或用于通过样品中太大而不能通过所述孔、狭缝或开口的成分在所述结构(例如砖、坝或通道、刻入或穿过过滤器基片的狭缝)周围生成一个过滤器,或聚集在所述孔、狭缝或开口。例如,当施加电信号时,声学元件可以引起所述过滤室内所述成分混合,从而将不能过滤的成分从狭缝或孔移走。
[0250] 在备选实施例中,芯片上的电极模式可以提供样品成分的负介电泳,从狭缝、通道或结构周围的开口处移去不能过滤的成分,允许可过滤的样品成分进入狭缝或开口。在通过引用包含于此的“Novel dielectrophoresis-based device of the selective retention of viable cells in cell culture media”by Docoslis et al,in 
Biotechnology and Bioengineering,Vol.54,No.3,pages 239–250,1997和通过引用包含于此的1997年5月7日颁发给Docoslis等人的美国专利5,626,734中已经描述了建在不同的“基于介电泳的选择性保留”的运行机制下的过滤器上的这样的电极阵列的例子。在通过引用全部包含于此的2000年8月10日提交的名称为“在微流体系统中操作基团的方法”的美国申请09/636,104、2000年10月10日提交的名称为“用于样品分离和分析的集成生物芯片系统”的美国临时申请60/239,299以及2000年10月10日提交的名称为“用于在芯片上分离基团的成分和方法”的美国申请09/686,737中描述了包括能够用于通过声力混合样品的芯片以及能够用于通过介电泳力移动基团(包括样品成分)的芯片在内的作用芯片。
[0251] 可用于本发明过滤器上的行波介电泳的电极的并入,以及介电泳和行波介电泳的原理,已经在本文先前对微型过滤器的描述中有所描述。也可以将电极并入本发明过滤室中使用的作用芯片上来提高过滤效率。
[0252] 过滤室也可以包括含有电磁元件的芯片。这样的电磁元件可以用于在样品过滤前或优选过滤后捕获样品成分。可以在样品成分与磁珠结合后再捕获样品成分。捕获的样品成分可以是在含有所需成分的样品从过滤室被移走后留在室内的不需要的成分,或捕获的样品成分可以是过滤后在室内捕获的所需成分。
[0253] 声力芯片可以衔接过滤室或作为过滤室的组成部分,或者可以在过滤室的一面或多面壁上提供一个或多个声学元件。在过滤过程中,可以发生由声力芯片激活的样品混合。优选地,使用电源向一个或多个声学芯片的声学元件或位于过滤室的一面或多面壁上的一个或多个声学元件传递电信号。在整个过滤过程中一个或多个声学元件可以是连续运作的,或者在过滤过程中可以是间歇(脉冲)工作。
[0254] 样品成分以及,可选择地,加入样品的溶液或试剂可以通过作用于液体和基团(包括但不限于分子、络合物、细胞和微粒)的声力在室内混合。当电信号提供能量后声学元件产生传入并通过液体的机械振动,此时出现声流,声力可以通过液体的声流来引起混合。此外,声能可以通过产生在样品成分(基团)或试剂本身上形成声辐射力的声波而引起样品成分和/或试剂的移动。
[0255] 下述的讨论和参考文献可以提供声学元件的设计和使用以提供混合功能的框架
[0256] “声力”是指通过声波场直接或间接施加在基团,例如微粒和/或分子上的力。(它也可以被称为声辐射力)声力可以用于控制,例如捕获、移动、引导、操作、混合液体中的粒子。用于粒子控制的驻超声波中的声力已被证实用于浓缩红细胞(Yasuda et al,J.Acoust.Soc.Am.,102(1):642-645(1997)),focusing micron-size polystyrene beads(0.3 to 10 micron in diameter,Yasuda and Kamakura,Appl.Phys.Lett,71(13):1771-
1773(1997))、浓缩DNA分子(Yasuda et al,J.Acoust.Soc.Am.,99(2):1248-1251,
(1996)),batch and semi-continuous aggregation and sedimentation of cells(Pui et al,Biotechnol.Prog.,11:146-152(1995))。具有不同大小和电荷的聚苯乙烯珠的通过竞争静电和声辐射力进行分离已经被(Yasuda et al,J.Acoust.Soc.Am.,99(4):1965-
1970(1996);and Yasuda et al.,Jpn.J.Appl.Phys.,35(1):3295-3299(1996))所报道。此外,当使用声辐射力处理哺乳动物细胞时发现的损害或危害作用很小或没有,具有离子渗漏(用于红细胞时,Yasuda et al,J.Acoust.Soc.Am.,102(1):642-645(1997))或抗体产生(用于杂交瘤细胞时,Pui et al,Biotechnol.Prog.,11:146-152(1995))的特点。
[0257] 声波可以通过声换能器建立,例如,PZT材料之类的压电陶瓷。压电换能器由“压电材料”制成,所述压电材料在处于强加机械力引起的大小变化时产生电场(压电的或发电机效应)。相反地,施加的电场将在所述材料中产生机械应力(电致伸缩的或运动效应)。它们将机械能转化为电能,反之亦然。在压电换能器上施加交流电压时,换能器发生振动并且这种振动可以传递到置于包含所述压电换能器的室内的液体中。
[0258] 声学芯片可以包含声能传感器,以便当向声换传感器上的电极施加合适频率的AC信号时,在压电材料内产生交替的机械应力并传递至所述过滤器室内的液体溶液中。在所述过滤室设置好以便于沿着所述声波传播和反射方向建立驻声波的情况下(例如:z-axis),所述液体中的所述驻声波沿着所述Z轴的变化可以表达为:Δp(z)=p0sin(kz)cos(ωt)
其中Δp是在z的声压,P0是声压变化幅度,k是波数(2π/λ,其中λ是波长),z是距压力波节点的距离,ω是角频率,t是时间。在一个例子中,所述驻波声场可以由形成过滤器室的主表面的声传感器产生的声波和来自所述过滤室的另一主表面的反射波叠加产生,所述另一主表面平行于声传感器放置并反射来自所述声传感器的声波。根据
Yosioka和Kawasima阐释的理论(Acoustic Radiation Pressure on a Compressible Sphere by Yosioka K.and Kawasima Y.in Acustica,Volume 5,pages 167-173,1955),作用于静止驻波场中的球形粒子上的声力Facoustic通过
得出,其中r是粒子半径,Eacoustic是平均声能密度,A是通过
得到的常数,其中ρm和ρp分别是粒子和介质的密度,γm和γp分别是粒子和介质
的可压缩性。材料的可压缩性是材料密度和材料中声波速度的乘积。可压缩性有时被称为声阻抗。A被称为声极化因子。
[0259] 当A>0时,粒子朝着驻波的压力波节点(z=0)移动。
[0260] 当A<0时,粒子从压力波节点移开。
[0261] 作用于粒子上的声辐射力取决于声能密度分布以及粒子密度和可压缩性。当具有不同密度和可压缩性的粒子处于相同驻声波场中的时候,它们将受到不同的声辐射力。例如,作用于直径为10微米的粒子上的声辐射力可以在大约<0.01和>1000pN之间变化,取决于建立的声能密度分布。
[0262] 上述分析考虑了作用于驻声波中的粒子上的声辐射力。进一步的分析延伸至作用于行波中的粒子上的声辐射力的情况。通常,声波场可以由驻波要素和行波要素组成。在这种情况下,所述过滤室内的粒子会受到不同于上面等式所描述的那些形式的声辐射力。下列文献提供了通过行声波和驻声波作用于球形粒子上的声辐射力的详细分析:Yosioka et al.,Acoustic Radiation Pressure on a Compressible Sphere.Acustica(1955)5:167-173;以及Hasegawa,Acoustic-Radiation  force  on  a solid  elastic 
sphere.J.Acoust.Soc.Am.(1969)46:1139。
[0263] 作用于颗粒上的声辐射力也可以由各种特殊情况的声波产生。例如,声力可以由聚焦波束(“Acoustic radiation force on a small compressible sphere in a focused beam”by Wu and Du,J.Acoust.Soc.Am.,87:997-1003(1990))或声镊(“Acoustic tweezers”by Wu J.Acoust.Soc.Am.,89:2140-2143(1991))产生。
[0264] 液体中建立的声波场也可以诱导产生与时间无关的液体流,称为声流。这种液体流也可以在生物芯片应用或用于转运或泵送液体的微流体应用中使用。此外,可以利用这种声波液体流控制液体中的分子或粒子。所述声流取决于声场分布和液体性质(“Nonlinear phenomena”by Rooney J.A.in“Methods of Experimental Physics:
Ultrasonics,Editor:P.D.Edmonds”,Chapter 6.4,pages 319-327,Academic Press,
1981;“Acoustic Streaming”by Nyborg W.L.M.in“Physical Acoustics,Vol.II-Part B,Properties of Polymers and Nonlinear Acoustics”,Chapter 11,pages 265-330,
1965)。
[0265] 因此,一种或多种作用芯片,诸如一种或多种声力芯片,也可以用于促进在样品加入和过滤过程之前、之中或之后加入到过滤室的试剂、溶液或缓冲液的混合。例如,试剂,例如但不限于可以促进去除不需要的样品成分或捕获所需样品成分的特异结合分子,可以在过滤过程已经完成并且导管已经关闭后加入过滤室。所述作用芯片的所述声学元件可以用于促进一种或多种特异结合分子与因过滤其体积已经减小的所述样品的混合。一个例子是样品成分与包含可以结合样品中特定细胞类型(例如,白细胞或胎儿有核红细胞)的抗体的磁珠的混合。在本发明方法的后续步骤中,所述磁珠可以用于选择性地分别去除或分离(捕获)不需要的或需要的样品成分。所述声学元件可以在连续混合期间运行,或脉冲式运行期间运行。微型过滤器
[0266] 一方面,本发明含有至少一个圆锥孔的微型过滤器,其中孔是过滤器的开口。孔可以具有任何形状和任何大小。例如,孔可以是四边形、矩形、椭圆形或圆形,或具有任何其它形状。孔可以具有大约0.1微米至大约1000微米的直径(或最宽尺寸),优选大约20至大约200微米的直径,取决于过滤应用。优选地,孔是在过滤器加工的过程中制造,并且是微刻或钻孔到在过滤器材料上,所述过滤器材料包含硬质、不渗液材料,例如玻璃、硅、陶瓷、金属或硬塑料,例如丙烯酸塑料、聚碳酸酯或聚酰亚胺。对于采用硬固相支撑的过滤器,也可以使用相对不硬的表面。本发明的另一方面是对所述材料(例如但不限于化学地或加热地修饰所述材料成为二氧化硅或氮化硅)进行修饰。优选地,然而,所述过滤器优选包含硬质材料,所述硬材料在受到用于产生通过所述过滤器的液流的压力(例如抽吸压)是不变形的。
[0267] 狭缝是长大于宽的孔,其中“长”和“宽”是过滤器平面上开口的尺寸。(所述狭缝的“深度”对应于所述过滤器的厚度)也就是说,“狭缝”描述了所述开口的形状,这在大多数情况下大致为矩形或椭圆形,但也可以近似为四边形或平行四边形。在本发明的优选实施例中,其中狭缝宽度是决定样品成分流过过滤器或被过滤器保留的临界尺寸,狭缝的形状可以在其端部变化(例如,形状规则的或不规则的、弧形的或有角的),但优选地,对于狭缝的长边的大部分而言,狭缝的长边之间的相互距离是一致的,所述距离即狭缝宽度。因此,对于狭缝的长边的大部分而言,狭缝的长边将是平行的或非常近似平行的。
[0268] 优选地,本发明用于过滤的过滤器是微型过滤器或微机械制造过滤器,使得过滤器中的孔或狭缝能达到精确的和均一的尺寸。与传统的用尼龙、聚碳酸酯、聚酯、混合纤维素酯、聚四氟乙烯、聚醚砜等这类材料制成的膜过滤器相比,这种精确的和均一的孔或狭缝尺寸是本发明微型过滤器或微制造过滤器的明显优势。在本发明的过滤器中,各孔是分离的,具有相似的或几乎相同的特征大小,并形成于过滤器上。这种过滤器允许粒子基于它们的大小和其它性质进行精确分离。
[0269] 过滤器的过滤面积由包含孔的基片面积决定。本发明微型过滤器的过滤面积可以在大约0.01mm2至大约0.1m2之间。优选地,过滤面积在大约0.25mm2至大约25cm2之间,更优选地,在大约0.5mm2至大约10cm2之间。大的过滤面积允许本发明过滤器处理体积为大约10微升至大约10升的样品。由孔覆盖的过滤区域的比例可以是大约1%至大约70%,优选大约10%至大约50%,更优选大约15-40%。本发明微型过滤器的过滤区域可以包含任何数量的孔,优选包含至少两个孔,但更优选地,本发明过滤器的过滤区域中孔的数量在大约4至大约1,000,000之间,甚至更优选地,在大约100至大约250,000之间。过滤区域中的过滤器厚度可以在大约10至大约500微米之间,但优选在大约40至大约100微米之间的范围。
[0270] 本发明微型过滤器具有穿过过滤器基片本身而蚀刻出的狭缝或孔。过滤器的孔或开口可以使用微细加工或显微机械加工技术在基片材料,包括但不限于硅、二氧化硅、陶瓷、玻璃、聚合物例如聚酰亚胺、聚酰胺,等等上制造。可以使用显微光刻法和微细加工领域技术人员已知的多种加工方法(参见,例如Rai-Choudhury P.(Editor),Handbook of Microlithography,Micromachining and Microfabrication,Volume 2:Micromachining and microfabrication.Micromachining and microfabrication.SPIE Optical Engineering Press,Bellingham,Washington,USA(1997))。在许多情况下,可以包含标准的微细加工和显微机械加工方法和方案。合适的加工方法的一个例子是包含单个或多个光掩膜的光刻法。微细加工方案可以包含多个基本步骤,例如,光刻掩膜生成、光刻胶沉积、“牺牲的”材料层的沉积、用掩膜和显示剂使光刻胶成形,或“牺牲的”材料层成形。可以在一定的掩盖工艺下将孔刻入基片中,使掩盖区域不被刻掉而非掩盖保护的区域被刻掉。蚀刻方法可以是干刻,例如深RIE(反应离子刻蚀)、激光消融术,或者可以是使用湿化学药品的湿刻。所述材料可以通过明确的方法增加,以基片材料出现的狭缝或孔围绕狭缝或孔沉积或增加,或者所述材料可以围绕抗蚀剂生长,当去除抗蚀剂时将产生孔或狭缝。
[0271] 优选地,选用合适的微细加工或显微机械加工技术来获得所需的过滤孔的高宽比。所述高宽比指狭缝深度(相当于在孔区域内的过滤器厚度)和狭缝宽度或狭缝长度的比率。具有较高高宽比(即较大的狭缝深度)的过滤器狭缝的制造可以包括深蚀刻方法。许多对制造MEMS(微电子机械系统)设备有用的制造方法,例如深RIE,可以在制造微型过滤器中使用或利用。作为高的高宽比和蚀刻方法的结果,产生的孔可以具有微小的尖端变细,使它们在过滤器一面的开口比另一面的开口狭窄。例如,在图4中,垂直穿过过滤器基片的假设孔的角Y是90度,圆锥角X(本发明微型过滤器的圆锥孔通过它区别于垂直孔)为大约0度至大约90度,优选0.1度至45度,最优选大约0.5度至10度,取决于过滤器的厚度(孔深)。
[0272] 本发明包括具有两个或两个以上圆锥孔的微型过滤器。在其上制造或加工过滤孔、狭缝或开口的基片,可以是硅、二氧化硅、塑料、玻璃、陶瓷或其它固体材料。所述固体材料可以是有孔或无孔的。那些微细加工和显微机械加工制造领域的技术人员可以容易地选择和确定用于制造特定过滤结构的制造方案和材料。
[0273] 使用微细加工或显微机械加工的方法,过滤狭缝、孔或开口可被制成精密结构。取决于制造方法或使用的材料,过滤狭缝的单一尺寸(例如,狭缝长度、狭缝宽度)的精确度可以在20%以内,或低于10%,或低于5%。因此,对于本发明过滤器的过滤孔的单一尺寸(例如,对于矩形或四边形的狭缝来说是狭缝宽度)的决定性精确度优选制成小于2微米,更优选制成小于1微米,或甚至更优选制成小于0.5微米。
[0274] 优选地,本发明过滤器可以利用径迹蚀刻技术制造,其中由玻璃、硅、二氧化硅或诸如聚碳酸酯或聚酯之类的聚合物制成的具有相对一致的孔径大小的离散孔的过滤器被制造出。例如,可以通过对过滤基片选配和运用用于核孔径迹蚀刻膜的径迹蚀刻技术来制造所述过滤器。在用于制造膜过滤器的技术中,使用高能重离子跟踪聚合物薄膜,从而在膜上产生潜径迹。然后将膜放入蚀刻剂中产生孔。
[0275] 本发明用于细胞分离方法和系统的优选过滤器包括微细加工或显微机械加工的过滤器,所述过滤器可以制成具有精密结构的开口。各开口是分离的并具有相似或几乎相同的特征大小并形成于过滤器上。开口可以具有不同形状,例如圆形、四边形或椭圆形。这种过滤器允许粒子基于它们的大小和其它性质进行精确分离。
[0276] 在微型过滤器的优选实施例中,各孔是分离的并且具有圆筒形状,孔径大小在20%变化范围内,其中孔径大小由孔的最小尺寸和最大尺寸(分别是宽和长)计算。
Ⅱ.利用微过滤分离液体样品的目标成分的方法
[0277] 另一方面,本发明提供通过本发明的过滤室过滤分离液体样品的目标成分的方法,所述过滤室包含装在外罩中的微型过滤器。所述过滤室可以设置以允许所述前室和过滤后亚室中基本反向平行的流动。所述过滤器的表面和/或所述外罩的内表面可以通过气相沉积、升华、气相表面反应或粒子溅射进行修饰从而产生均一的涂层。在一些实施例中,所述过滤器的表面和/或所述外罩的内表面通过气相沉积、升华、气相表面反应或粒子溅射进行修饰,从而产生均一的涂层。所述方法包括:将样品分配进包含或衔接装在外罩中的微型过滤器的过滤室;提供穿过所述过滤室的所述样品的液流,使液体样品的目标成分流过一个或多个微型过滤器或被一个或多个微型过滤器保留。所述成分的分离可以基于成分的大小、形状、可塑性、亲和性和/或结合专一性。
[0278] 在一些实施例中,所述方法可以进一步包括使用物理力操纵液体样品,其中所述操纵是通过所述过滤器以外的结构和/或内置于所述过滤器的结构来实现。在一些实施例中,所述方法可以进一步包括从所述过滤室中收集所述目标成分,例如有核细胞或稀有细胞。在一些实施例中,为了浓缩细胞以促进进一步分离和分析,过滤可以将可溶的和小的样品成分与样品中至少一部分有核细胞或稀有细胞分离。在一些方面,过滤可以从样品中去除不需要的成分,例如但不限于不需要的细胞类型。如果过滤减小至少50%的样品体积或去除50%以上的样品的细胞成分,可以将过滤认为是压实步骤。本发明考虑了用于压实以及液体样品处理过程中其它功能的过滤的使用,所述其它功能例如,样品成分的浓缩或样品成分的分离(包括,例如,不需要的样品成分的去除和所需样品成分的保留)。
[0279] 在现有技术和2007年7月13日提交的美国专利申请号11/777,962、2006年8月2日提交的美国专利申请号11/497,919、2004年9月15日提交的美国专利申请号11/264,413、2003年11月4日提交的美国专利申请号10/701,684、2002年10月10日提交的美国专利申请号10/268,312中已知的液体样品制备和稀有细胞富集方法(在此通过引用包含所有的血液样品制备和从血液样品中分离稀有细胞的公开),可以与本文中公开的方法和设计结合。
样品
[0280] 样品可以是任何液体样品,例如环境样品,包括空气样品、水样品、食物样品,和生物样品,包括悬浮液、提取物,或环境样品或生物样品的沥出物。生物样品可以是血液、骨髓样品、任何类型的流出液、腹水、盆腔冲洗液、或胸膜液、脊髓液、淋巴液、血清、粘液、痰、唾液、尿、精液、眼液、鼻腔提取液、咽喉或生殖器拭子、消化后的组织的细胞悬液,或排泄物提取液。生物样品也可以是器官或组织样品,包括肿瘤,例如器官或组织的细的针吸物或灌注样品。生物样品也可以是细胞培养物样品,包括初级培养细胞和细胞系。样品体积可以非常小,例如在微升范围,可以甚至需要稀释,或者样品体积可以非常大,例如对于腹水来说多达2升。优选样品为血液样品。
[0281] 血液样品可以是任何血液样品,从研究对象最新取得的,从贮存物取得的,或从研究对象外部来源,例如衣服、室内装饰品、工具,等,取下的。因此血液样品可以是提取获得,例如将含有血液的物品在缓冲液或溶液中浸透。血液样品可以是未处理的或部分处理的,例如,透析过的血液样品、加入了试剂的血液样品,等等。血液样品可以是任何体积的血液样品。可以是任何体积的生物样品。例如,根据应用,血液样品可以小于5微升,或大于5升。然而,优选地,利用本发明方法处理的血液样品将具有大约10微升至大约2升的体积,更优选地,大约1毫升至大约250毫升的体积,以及最优选地,大约5至50毫升的体积。
[0282] 从样品中富集的稀有细胞可以是液体样品中存在的细胞数量少于一百万每毫升的或者数量少于总的有核细胞群体的1%的任何细胞类型。稀有细胞可以是,例如,细菌细胞、真菌细胞、寄生虫细胞、寄生虫感染的细胞、细菌,或病毒,或真核细胞,例如但不限于成纤维细胞或血液细胞。稀有血细胞可以是红细胞(例如,如果样品是每毫升包含不足一百万红细胞的提取物或沥出物)、血细胞亚群和血细胞类型,例如白细胞或白细胞亚型(例如,T细胞或巨噬细胞)、有核红细胞,或可以是胎细胞(包括但不限于有核红细胞、滋养层细胞、粒细胞或单核细胞)。稀有细胞可以是任何类型的干细胞或祖细胞。稀有细胞也可以是癌细胞,包括但不限于肿瘤细胞、恶性细胞及转移性细胞。血液样品的稀有细胞也可以是非造血细胞,例如但不限于上皮细胞。用于胎细胞分离的母血样品选择
[0283] 本发明包括用于从血液样品中分离稀有细胞的方法,包括用于分离特定胎细胞类型的特定胎龄的血液样品的选择。
[0284] 在本发明的一个优选实施例中,用于分离胎有核细胞的母血样品选自大约4周至大约37周之间的孕龄,优选大约7周至大约24周之间的孕龄,更优选大约10周至大约20周之间的孕龄。在这个实施例中,用于分离胎有核细胞的母血样品抽取自孕龄在大约4周至大约37周之间,优选大约7周至大约24周之间,更优选大约10周至大约20周之间的怀孕对象。正如这里所使用的,怀孕对象也可以包括流产24小时内抽取血液样品的指定孕龄的妇女。
利用第二次清洗上清液从母血样品中分离胎细胞
[0285] ]本发明还包括用于从母血样品中分离胎细胞的方法,其中,在压实或分离步骤之前为清洗细胞而在血液样品上进行的第二次离心的上清液被用作用于分离胎细胞的样品的至少一部分。将样品分配进过滤室
[0286] 可以通过任何方便的方法将样品分配进本发明的过滤室中。作为非限制性的例子,可以使用导管(例如管子)将样品引入,样品通过所述导管被泵入或注入所述过滤室内,或可以直接倒入、注入,或手动分配或移液,通过重力进料,或通过机器。本发明中将样品分配进过滤室,可以直接进入过滤室,通过直接或间接补料的上样贮液器进入过滤室,或者可以进入通向过滤室的导管,或进入借助于一个或多个导管通向过滤室的容器。与管子或室有液体交流的针(或任何液体抽吸设备)也可以用于进入管子。所述针可以从装有溶液的管子中收集细胞并利用推或抽溶液的设备(例如泵或注射器)将所述溶液分配进另一个室内。过滤
[0287] 在本发明过滤室进料之后,通过提供穿过过滤室的液体流动实现过滤。可以通过任何方法提供液体流动,包括正压或负压(例如,通过手动或机械操作的注射式系统)、泵,或甚至重力。过滤室可以具有与导管连接的接口,缓冲液或溶液以及液体样品或其成分可以通过所述导管流动。过滤单元也可以具有能够控制液体流过过滤室的阀门。当样品加入过滤室并且引导液体流通过所述过滤室时,过滤器狭缝可以允许液体、可溶样品成分以及可过滤的不溶的液体样品成分通过过滤器,但由于狭缝大小,可以阻止液体样品的其它成分通过过滤器。
[0288] 在一些实施例中,前室和过滤后亚室中的液体流动基本上是反相平行的。可以通过自动方法实现通过过滤室的流入口和/或流出口的流动。在提供了附加流入口的实施例中,可以引入基本上垂直于反相平行流动的溶液流动。例如,如果包含将前室分为上室和前室的上部过滤器,前室可以用于穿过过滤器的液体流动以推动液体样品成分穿过过滤器。
[0289] 通过本发明过滤室的液体流动优选是自动化的,并通过泵或正压或负压系统进行,但这不是本发明的必要条件。最佳流速将取决于过滤的样品,包括可滤过的和不可过滤的样品成分的浓度以及它们的聚集能力和阻塞过滤器的能力。例如,通过过滤室的流速可以是小于每小时1毫升至大约每小时1000毫升,并且流速决不限制本发明的实施。然而,血液样品的过滤优选以每小时5至500毫升的速度发生,更优选以每小时大约5至大约40毫升之间的速度发生。
[0290] 血液(全血或稀释的全血)可以通过连接输送装置即密封在流入口上的移液器引入前室中,并通过泵或重力,或通过任何流动产生方法驱动,将已知量的血液连续地通过前室输送并从前室的流出口收集压实的血液。或者,可以将固定体积的血液或血液混合物输送至作为流入口组成部分的贮液器中,流动装置将与前室的流出口衔接并通过前室连续抽吸所述样品直至收集到所需要的体积。
[0291] 在血液通过顶部室的过程中,底部室将具有流入口和流出口,两个口都将与泵连接,其中流出速率将大于流入速率,从而将来自顶部室的一些成分慢慢地抽过过滤器而进入过滤后亚室中。通过过滤后亚室的流动将优选与顶部室内的流动方向相反,或反向平行流动,使穿过过滤器的微粒将没有机会通过过滤器向后扩散进入没有包含同样多所述微粒的血液区域,如图33所示。采用这种方式,将清除血液中更小的微粒,即血小板和/或红细胞,优选两者都被清除。
[0292] 所述过滤器材料的穿过可以通过向任何接口引入两个或两个以上电极,或通过连接整合在所述单元内的可能形成对面室的顶板和底板的电极,选择性地通过静电的、电磁的、电泳的或电渗透的流动来对材料穿过过滤器进行辅助。可选地,基于尺寸的微粒的分离可以通过振动所述泵产生的振荡流或向穿过过滤器的流体引入声力来辅助。所述声力可以是来自沿流体的任何地方的碰撞的压力波,或者由说话者或嵌入废料室(过滤后亚室)或沿着过滤后亚室流体的其它地方的压电设备产生。
[0293] 在一些实施例中,所述设备可以颠倒方向或在其侧面运转,以致于去除不想要的微粒的底部室的功能实际上可以在侧室或顶部室。
[0294] 在制造穿过过滤器基片的过滤器狭缝时,沿着狭缝深度方向可以产生狭缝的微小变细。因此,可以不用在贯穿整个过滤器深度上保持特定的狭缝宽度,在过滤器一面的狭缝宽度通常大于另一面的狭缝宽度。在使用这种具有锥形狭缝宽度的过滤器时,优选将过滤器的窄狭缝面面向所述样品,从而在过滤过程中样品首先通过狭缝的窄面,然后过滤的细胞在狭缝的宽面排出。这避免了细胞在漏斗状狭缝中过滤而困住。然而,具有一个或多个锥形狭缝的过滤器的取向不构成在使用本发明过滤器时的限制。取决于特定的用途,所述过滤器也可以以过滤器狭缝的宽面面向样品的方向使用。
[0295] 在本发明所述方法中,所需成分,例如想要富集的稀有细胞,优选通过所述过滤器保留。优选地,在本发明所述方法中,当样品中感兴趣的稀有细胞被过滤器保留时,一种或多种不需要的样品成分流过过滤器,从而通过提高样品的过滤器保留部分中稀有细胞占总细胞的比例来富集样品中感兴趣的稀有细胞,尽管这不是本发明的必要条件。例如,在本发明的一些实施例中,过滤可以通过减小样品体积从而浓缩稀有细胞来富集液体样品中的稀有细胞。用于去除不需要的成分的特异结合分子
[0296] 在本发明沉淀溶液的成分之外,本发明的一种组合溶液可以包含至少一种能选择性地结合血液样品中不需要的成分(例如但不限于白细胞、血小板、血清蛋白)而较少结合所需成分的特异结合分子。一种或多种能选择性地结合血液样品中非红细胞的不需要的成分的特异结合分子可以用于去除样品中不需要的成分,提高样品中稀有细胞的相对比例,从而促进样品中稀有细胞的富集。
[0297] “选择性地结合”是指在本发明所述方法中用于去除一种或多种不需要的样品成分的特异结合分子不会明显结合液体样品中感兴趣的稀有细胞。“不会明显结合”是指不超过30%,优选不超过20%,更优选不超过10%,还更优选不超过1.0%的一种或多种稀有细胞被用于从液体样品中去除非红细胞的不需要的成分的特异结合分子结合。在许多情况下,血液样品中不需要的成分会是白细胞。在本发明的优选实施例中,本发明的组合溶液可以用来沉淀红细胞并选择性地从血液样品中去除白细胞。
[0298] 能够作为特异结合白细胞的特异结合分子的非限制性例子,抗体、受体的配体、转运子、白细胞表面的通道或其它基团,或凝集素或能够特异结合白细胞表面特定碳水化合物基团的其它蛋白(例如,选择蛋白)。
[0299] 优选地,选择性地结合白细胞的特异结合分子是结合白细胞但不会明显结合胎儿有核细胞的抗体,例如,抗CD3,CD11b,CD14,CD17,CD31,CD45,CD50,CD53,CD63,CD69,CD81,CD84,CD102,CD166,CD138,CD27,CD49(用于浆细胞),CD235a(用于RBCs),CD71(用于有核RBCs和胎RBCs),CD19,CD20(用于B-cells),CD56/CD16(用于NK细胞),CD34(用于stem cells),CD8/CD4(用于T cells),和/或CD62p(用于活化血小板)的抗体。抗体可以从供应商商购,例如Dako,BD Pharmingen,Antigenix America,Neomarkers,Leinco Technologies,Research&Diagnostic Systems,Serotec,United States Biological,Bender Medsystems Diagnostics,Ancell,Leinco Technologies,Cortex Biochem,CalTag,
Biodesign,Biomeda,Accurate Chemicals&Scientific和Chemicon International。可以使用本领域熟知的捕获试验测试抗体结合白细胞并有效去除白细胞的能力以及允许从样品中富集感兴趣的稀有细胞的能力。
[0300] 本发明选择性地结合一种或多种不需要的成分的特异结合分子可以用于捕获一种或多种不需要的非红细胞成分,以便液体样品中的一种或多种所需成分能够从结合了不需要的成分的区域或容器中移走。这样可以将不需要的成分与包含有待分离稀有细胞的样品中的其它成分分离开。所述捕获可以通过将识别不需要的成分的特异结合分子附着在固相载体上来影响,或通过将识别与不需要的成分结合的特异结合分子的第二特异结合分子结合在固相载体上,从而使不需要的成分附着在固相载体上来影响。在本发明的优选实施例中,本发明组合溶液中提供的选择性地结合不需要的样品成分的特异结合分子与固相载体,例如微粒,偶联,但这不是本发明的必要条件。
[0301] 磁珠是在本发明所述方法中使用的优选固相载体,选择性地结合不需要的样品成分的特异结合分子可以与磁珠偶联。磁珠是本领域公知的,并且可以商购获得。偶联分子,包括蛋白质,例如抗体和凝集素到微粒例如磁珠的方法是本领域公知的。本发明优选的磁珠具有0.02至20微米,优选直径为0.05至10微米,更优选直径为0.05至5微米,甚至更优选直径为0.05至3微米的直径,并且优选在本发明的组合溶液中提供,由第一特异结合分子,例如能够结合要从样品中去除的细胞的抗体,或由那种能够与结合不需要的样品成分的第一特异结合分子(例如生物素化的第一特异结合分子)结合的第二特异结合分子,例如链霉亲和素,所包被。
[0302] 在本发明的优选实施例中,液体样品是母血样品,需要分离的稀有细胞是胎细胞,而要从样品中去除的不需要的样品成分是白细胞。在这些实施例中,通过磁性捕获选择性地结合白细胞的特异结合分子从样品中去除白细胞。优选地,将提供的特异结合分子附着在磁珠上用于直接捕获白细胞,或者所述特异结合分子以生物素化的形式提供,通过链霉亲和素包被的磁珠间接捕获白细胞。
[0303] 本发明用于富集血液样品中稀有细胞的组合溶液也可以包含其它成分,例如但不限于,盐、缓冲试剂、维持特定渗透度的试剂、螯合剂、蛋白、脂类、小分子、抗凝血剂,等等。例如,在本发明的一些优选方面,组合溶液包含生理盐溶液,例如PBS、不含镁的PBS或汉克平衡盐溶液。在本发明的一些优选方面,存在EDTA或肝素,防止红细胞凝固
[0304] 本发明还包括采用能够特异结合血小板或血小板相关分子的抗体或分子。作为非限制性例子,本发明的抗体或分子可以特异性结合CD31,CD36,CD41,CD42(a,b,c),CD51,CD51/61,CD138,CD27,CD49(对浆细胞),CD235a(对RBCs),CD71(对有核RBCs和胎RBCs),CD19,CD20(对B-cells),CD56/CD16(对NK细胞),CD34(对干细胞),CD8/CD4(对T细胞),和/或CD62p(对活化血小板)。CD31是内皮细胞和血小板的细胞标记,极少与胎细胞结合.在实施例中描述了它用于从血液样品中分离血小板的过程。改良的用于捕获样品成分的磁体结构
[0305] 压实的样品,例如压实的血液样品,可以与一种或多种特异识别液体样品中一种或多种不需要的成分的特异结合分子,例如,但不限于抗体,一起孵育。如果过滤室已被用于压实样品,那么一种或多种特异结合分子与样品的混合和孵育可以选择性地在过滤室中进行。所述一种或多种不需要的成分可以通过它们与特异结合分子的结合而直接或间接地被捕获。例如,特异结合分子可以结合在固相载体上,例如珠子、膜或柱基质,在液体样品和特异结合分子孵育后,包含未结合成分的液体样品可以从固相载体上移去。或者,可以将一种或多种第一特异结合分子与液体样品孵育,优选冲洗去除未结合的特异结合分子之后,将液体样品与能够结合或已经结合在固相载体上的第二特异结合分子接触。这样所述一种或多种不需要的样品成分可以与固相载体结合,使不需要的成分能够从液体样品中分离。
[0306] 在本发明的优选方面,将压实的来自怀孕个体的血液样品与用特异结合白细胞而不会明显结合胎儿有核细胞的抗体包被的磁珠一起孵育。磁珠使用活性电磁装置(例如在电磁芯片上),或至少一块与含有液体样品的容器(例如管或柱)物理接近的永久磁铁来捕获收集。通过磁铁捕获磁珠后,将剩余的液体样品从容器中取出。可以手动(例如通过移液)或通过物理力(例如重力)或穿过分选柱的液体流动取出所述液体样品。这样就能够选择性地将不需要的白细胞从母血样品中去除。所述液体样品可以选择性地使用本发明的微型过滤器进一步过滤。过滤优选从样品中去除残余的红细胞并且还能进一步浓缩样品。
[0307] 在一个优选实施例中,包含特异结合不需要的成分的特异结合分子的磁珠与样品一起孵育后,通过包含或衔接至少一块磁铁的分离柱转移样品。当样品流过柱子时,结合在磁珠上的不需要的成分附着在与磁铁邻近的管的一面或多面壁上。替代实施例使用磁力分离器,例如由Immunicon(Huntingdon Valley,PA)制造的磁力分离器。磁性捕获也可以采用包含电磁物理力产生元件的电磁芯片,例如2002年3月12日颁发给Zhou等人的名称为“可独立寻址的微电磁装置阵列芯片”的美国专利6,355,491、2001年9月18日提交的代理人案号为ART-00104.P.2的名称为“可独立寻址的微电磁装置阵列芯片”的序列号09/955,343的美国申请以及2000年10月10日提交的代理人案号为ART-00104.P.1.1的名称为“可独立寻址的水平结构的微电磁装置阵列芯片”的序列号09/685,410的美国申请中描述的那些。还在另一个优选实施例中,包含样品和磁珠的管设置于一块或多块磁铁旁边,用于捕获结合在磁珠上的不需要的成分。当珠子收集于管壁上之后,可从管中移除去除了一种或多种不需要的成分的上清液。
[0308] 在本发明的一些优选实施例中,通过选择性地沉淀红细胞,使去除样品中白细胞与压实血液样品同时进行。在这些实施例中,将选择性地沉淀红细胞的溶液加入血液样品中,并将能结合在固相载体,例如磁珠,上的特异结合白细胞的特异结合分子加入所述血液样品中。混合后,红细胞被沉淀,而白细胞被捕获,例如被磁性捕获。这可以方便地在管内进行,可以将沉淀溶液和所述特异结合分子,优选结合在磁珠上的,加入管中。可以摇晃管子一段时间来混合样品,然后将其置于一块或多块磁铁旁边以捕获磁珠。这样在单个的孵育和分离步骤中,可以将大约99%的红细胞和99%的白细胞从样品中去除。可以将上清液从管中取出并使用本发明的微型过滤器过滤。过滤去除残余的红细胞,获得富集了稀有细胞,例如胎细胞、癌细胞或干细胞的样品。
[0309] 不需要的样品成分可以通过除那些使用特异结合分子的方法之外的方法去除。例如,可以利用特定细胞类型的介电性质通过介电泳分离不需要的成分。例如,图22描绘了红细胞已经被冲洗通过过滤室后保留在介电泳芯片的电极上的稀释过的血液样品中的白细胞。用于沉淀红细胞并选择性地去除血液样品中不需要的样品成分的组合溶液
[0310] 在本发明的优选实施例中,沉淀红细胞的溶液也可以包括一种或多种能够用于从血液样品中选择性地去除除红细胞之外的不需要的样品成分的附加的特异结合分子。在这点上,本发明包括用于富集血液样品中的稀有细胞的组合沉淀溶液,所述溶液沉淀红细胞并提供用于去除其它不需要的样品成分的试剂。因此用于处理血液样品的组合溶液包括:右旋糖酐;至少一种能够诱导红细胞凝集的特异结合分子;以及至少一种能够特异结合除红细胞之外的不需要的样品成分的附加的特异结合分子。
附加的富集步骤
[0311] 本发明还考虑将过滤与其它能够用于富集血液样品的稀有细胞的步骤结合。例如,能够在过滤前或过滤后使用的压实步骤或分离步骤,例如但不限于2003年11月4日提交的序列号为10/701,684的名称为“从液体样品中分离稀有细胞的方法、成分及自动系统”的美国专利申请、2002年10月10日提交的序列号为10/268,312的名称为“从液体样品中分离稀有细胞的方法、成分及自动系统”的美国专利申请中所公开的,通过引用将两个申请中与能够用于富集液体样品的稀有细胞的压实和分离步骤相关的所有公开包含于此。III.使用自动过滤单元分离液体样品中目标成分的方法
[0312] 在另一方面,本发明提供一种使用这里公开的自动过滤单元从液体样品中分离目标成分的方法,包括:a)将液体样品分配进过滤室;b)提供通过过滤室前室的液体样品的液流及通过过滤室过滤后亚室的溶液的液流,其中液体样品的目标成分被过滤器保留或流过过滤器。样品
[0313] 样品可以是任何液体样品,例如环境样品,包括空气样品、水样品、食物样品,和生物样品,包括生物样品的提取物。生物样品可以是血液、骨髓样品、任何类型的流出液、腹水、盆腔冲洗液、或胸膜液、脊髓液、淋巴液、血清、粘液、痰、唾液、尿、阴道或子宫冲洗液、精液、眼液、鼻腔提取液、咽喉或生殖器拭子、消化后的组织的细胞悬液,或排泄物提取液。生物样品也可以是器官或组织样品,包括肿瘤,例如器官或组织的细的针吸物或灌注样品。生物样品也可以是细胞培养物样品,包括初级培养细胞和细胞系。样品体积可以非常小,例如在微升范围,可以甚至需要稀释,或者样品体积可以非常大,例如对于腹水来说多达10升。一个优选样品为尿液样品。另一个优选样品为血液样品。还考虑到的是混合类型或尺寸的实验室培养的细胞样品或包含必须从样品中去除污染物或未结合反应物的细胞样品。在一些实施例中,所述液体样品是使用打算被细胞结合或吸收或接受的标记试剂制备的细胞样品,而所述要去除的成分是标记试剂的未结合成分或间质成分。
[0314] 生物样品可以是任何样品,从研究对象最新取得的,从贮存物取得的,或从研究对象外部来源,例如衣服、室内装饰品、工具,等等取下的。作为范例,血液样品因此可以是获得的提取物,例如,将含有血液的物品在缓冲液或溶液中浸透。生物样品可以是未处理的或部分处理的,例如,透析过的血液样品加入了试剂的血液样品,等等。可以是任何体积的生物样品。例如,根据应用,血液样品可以小于5微升,或大于5升。然而,优选地,利用本发明所述方法处理的生物样品将具有大约10微升至大约2升的体积,更优选地,大约1毫升至大约250毫升的体积,以及最优选地,大约5至50毫升的体积。
·样品介绍
[0315] 在本发明的一些优选实施例中,可以将一种或多种样品可以通过能够置于自动系统的支架上的一个或多个管来提供。可以自动或手动地将所述支架与用于样品操作的所述自动系统衔接。
[0316] 或者,样品可以通过自动系统的进口移入或注射分配进本发明的自动系统中,或者可以被倒入、移入或泵入到所述自动系统的导管或贮液器中。在大多数情况下,样品将被置于用于沉淀细胞最佳分离的管中,但它可被置于容纳液体样品的任何类型的容器中,例如盘、碟、井或室。
[0317] 在将样品分配进自动系统的容器或室内之前,可以选择性地将溶液或试剂加入样品中。可以选择性地在将样品引入本发明自动系统之前或将样品引入本发明自动系统之后将溶液或试剂加入样品中。如果溶液或试剂是在将样品引入本发明自动系统之后加入所述样品中,那么可以选择性地当所述样品处于管中、容器中或贮液器中并在混合或孵育步骤、沉淀步骤或引入过滤室之前加入到样品中。或者,可以通过一个或多个导管,例如管子,加入溶液或试剂,其中样品与溶液或试剂的混合发生在导管内。也可以在样品引入本发明的室,例如,但不限于过滤室,内之后加入一种或多种溶液或试剂,将一种或多种这些溶液或试剂直接加入所述室内,或经由通向所述室的导管加入。
[0318] 样品(以及,可选择地,任何溶液,或试剂)可以通过正压或负压引入自动系统中,例如通过注射式泵。可以一次将所有样品加入自动系统中,或可以逐渐加入,以便在部分样品过滤时,加入另外的样品。样品也可以分批加入,以便第一部分样品加入并通过室过滤,然后更多批的样品连续加入和过滤。通过自动过滤单元的过滤室过滤所述样品
[0319] 样品可以在经过一个或多个压实步骤或一个或多个分离步骤之前或之后在本发明自动过滤单元中过滤。这些压实或分离步骤可以包括但不限于采用特异结合分子的红细胞沉淀步骤或去除步骤。样品可被直接转入过滤室(例如通过手动或自动的分配)或可以通过导管进入过滤室。当样品加入过滤室后,样品被过滤以减小样品体积,并且,选择性地,去除样品中不需要的成分。为过滤样品,引导液体流动通过室。通过室的液体流动优选由自动方法引导而不是手动方法引导,例如由自动注射式泵引导。所述泵可以通过对通向过滤室的导管施加穿过导管的正压或负压而运行。
[0320] 在一些实施例中,前室和过滤后亚室中的液流基本上是反相平行的。可以通过自动方法实现通过过滤室的流入口和/或流出口的流动。在提供了附加流入口的实施例中,可以引入基本上垂直于反相平行流动的溶液流动。例如,如果包含将前室分为上室和前室的上部过滤器,前室可以用于穿过过滤器的液体流动以推动液体样品成分穿过过滤器。
[0321] 前室中的流速和过滤后亚室中的流速可以不同,从而在液体样品成分上产生从前室流向过滤后亚室的流体力。正如这里所使用的,“过滤速率”指通过过滤器的液体流的速率;“喂料速率”指前室中的液体流动速率;“缓冲液速率”和“废料速率”分别指过滤后亚室的流入口和流出口的液体流动速率。进一步地,过滤后亚室的流入速率和流出速率可以不同,从而产生引导液体流过所述过滤器的流体力。例如,当过滤后亚室中的流出速率大于流入速率时,产生从前室到过滤后亚室的流体力,以便将前室中的液体样品成分抽到所述过滤后亚室通过所述过滤器。
[0322] 通过过滤室的液体流动速率可以是允许有效过滤的任何速率,对于全血样品来说优选高达10mL/min,更优选大约10至大约500μL/min,最优选大约80至大约140μL/min。前室中的液体流动速率可以大约是过滤器速率的1-10倍。在样品加入过滤室后,泵或液体分配系统可以选择性地将缓冲液或溶液的液体流动引入室内,冲洗通过室的另外的可过滤的样品成分。
[0323] 当液体样品加入过滤室并且引导液流通过所述室时,过滤器中的孔或狭缝可以允许液体、可溶成分以及一些不溶成分通过一个或多个过滤器,但由于它们的尺寸,可以阻止液体样品的其它成分通过所述一个或多个过滤器。
[0324] 例如,在优选实施例中,可将液体样品分配进包含至少一个含有多个狭缝的过滤器的过滤室中。所述过滤室可以具有选择性地连接缓冲液或溶液以及液体样品及其成分可以流过的导管的接口。当样品加入所述室并且引导液体流动通过所述室时,所述狭缝可以允许液体以及,选择性地,液体样品的一些成分通过所述过滤器,但阻止液体样品的其它成分通过所述过滤器。
[0325] 在本发明的一些实施例中,作为过滤室组成部分的作用芯片可以用于在过滤过程中混合样品。例如,作用芯片可以是包含一个或多个声学元件的声学芯片。当来自电源的电信号激活声学元件时,它们提供引起样品成分混合的振动能。作为本发明过滤室的组成部分的作用芯片也可以是在过滤器表面上包含微电极的介电泳芯片当来自电源的电信号被传递到电极上时,它们提供能够从过滤器表面排斥样品成分的负介电泳力。在这个实施例中,优选间歇地、当液体流动停止或大大减弱时激活过滤器/芯片表面上的电极。
[0326] 在过滤过程中对样品进行混合以避免因样品成分聚集造成的过滤效率降低,特别是避免因样品成分对通过所述室的液流做出反应而在所述过滤室的位置例如坝、狭缝,等等基于大小和形状发生聚集的趋势。混合可以在整个过滤过程中连续进行,例如通过声学元件的连续激活,或可以间隔进行,例如在过滤过程中通过声学元件或电极的短暂激活。如果将介电泳用于混合过滤室内的样品,优选在过滤过程中以短暂的间隔(例如,大约2秒至大约15分钟的时长,优选大约2至大约30秒的时长)产生介电泳力;例如,在过滤过程中可以每5秒至大约每15分钟产生脉冲,或更优选地,在过滤过程中大约每10秒至大约每1分钟产生脉冲。产生的介电泳力用于将样品成分从提供过滤功能的特征(例如,但不限于,狭缝)上移开。
[0327] 在过滤过程中,过滤的样品液体可以凭借通过导管的自动液体流动从过滤室移除,所述导管通向一个或多个用于容纳过滤的样品的容器。在优选实施例中,这些容器是废料容器。过滤后,可以选择性地将液体流动反向引导通过过滤器,从而悬浮可能沉淀在过滤器上或卡在过滤器中的残留成分。
[0328] 过滤步骤(以及可选择地,与一种或多种特异结合分子混合和孵育)之后,可以通过附加接口和导管将过滤步骤后留在过滤室内的样品成分引出所述室,所述导管可以通向收集管或容器或用于进一步处理步骤的自动系统的其它元件,或者可以通过移液或液体吸取方法将所述样品成分从过滤室或收集容器中移走。接口可以具有用于控制液体流动的阀门或其它结构。接口的开启和关闭可被自动控制。因此,允许压实的(保留的)样品流出过滤室(例如流向其它室或收集容器)的接口可以在过滤过程中关闭,允许过滤后样品流出过滤室的导管在过滤步骤后可以选择性地关闭以便能够有效移走剩余的样品成分。冲洗
[0329] 液体样品过滤后,可以选择性地用缓冲液从头至尾清洗过滤室以彻底清洗任何残余的成分,例如不需要的细胞。可以采用与样品相同的方式将所述缓冲液方便地引导通过过滤室,即,优选通过泵或压力系统之类的自动液体流动,或通过重力,或者所述缓冲液可以使用不同于样品的液体流动方式。可以进行一次或多次清洗,使用相同的或不同的清洗缓冲液。除此之外,可以选择性地将空气推过过滤室,例如通过正压或泵送,将残余细胞推过过滤室。也可以具有一次或多次向后冲入过滤室的清洗,有助于所述室的清洗或不需要的细胞的去除或促进所需细胞的回收。
[0330] 在冲洗步骤中,进给速率可以小于或等于过滤速率,例如冲洗试剂,例如EDTA,可以穿过过滤器进入前室,去除过滤器上任何阻塞狭缝的残余成分。标记
[0331] 可选择地,所述分离的目标成分可以使用本发明自动过滤单元进行标记。例如,分离的有核细胞或稀有细胞可以用抗体或用于进一步分析的分析试剂进行标记。在一些实施例中,所述抗体或分析试剂可以与可检测分子偶联,例如放射性的或荧光的染料。
[0332] 可以将所述标记试剂加入过滤后收集所述目标成分的收集室内。或者,取决于目标成分的位置,可以将所述标记试剂加入前室或过滤后亚室。添加所述试剂可以通过自动过滤单元的液体泵和导管进行,并通过控制运算法控制。
[0333] 在所述标记步骤中,液体流动可以在过滤室内暂停,使目标成分和标记试剂之间有效结合。可以使用合适长度的标记时间,例如,大约1-10分钟。
[0334] 标记步骤之后,可以通过向过滤室中加入冲洗缓冲液将未标记试剂冲走。回收
[0335] 在回收步骤中,收集分离的目标成分。在一些实施例中,将过滤器上的目标成分从被过滤器狭缝中提取并推入收集室中。提取阻塞过滤器狭缝的任何成分的流体力可以,例如,通过暂停过滤后亚室的流出,或通过降低过滤后亚室的流出速率使其小于过滤后亚室的流入速率来产生。或者,所述提取步骤可以通过分别提高缓冲液速率和进料速率至大约1-10mL/min和大约0.5-5mL/min。所述提取步骤的持续时间可以不同,例如,从10ms至1s或更长。此外,所述提取步骤在整个过滤中可以间歇进行,从而达到最佳过滤效果。在一些实施例中,清洗缓冲液流过所述室的速度可以大于样品流过所述室的速度。
样品中不需要的成分的选择性去除
[0336] 可选择地,保留在过滤室内的样品成分可以在过滤步骤之前、之中或之后通过液体流动引向自动系统中的一个元件,在其中不需要的成分能从样品中分离出来。在本发明的一些实施例中,在向过滤室加入样品或取出保留在过滤室内的压实样品之前,可以向压实样品中加入一种或多种特异结合分子,并在之前或之后在过滤室内混合,使用,例如,与过滤室衔接或作为过滤室组成部分的提供用于混合的物理力的一种或多种作用芯片。优选地,将一种或多种特异结合分子加入过滤室内的压实样品中,在压实样品和特异结合分子孵育的过程中,所述过滤室的接口是关闭的,并且声学元件被连续或脉冲式激活。优选地,一种或多种特异结合分子是与磁珠结合的抗体。所述特异结合分子可以是结合所需样品成分,例如胎儿有核细胞的抗体,但优选所述特异结合分子是结合不需要的样品成分,例如白细胞而极少结合所需样品成分的抗体。
[0337] 在本发明优选实施例中,将过滤步骤之后保留在过滤室内的样品成分与磁珠一起孵育,孵育后,通过液体流动将其引入分离柱。优选地,在本发明所述方法中使用的分离柱是圆柱形的玻璃的、塑料的或聚合物的柱子,具有大约1毫升至10毫升之间的容量,在所述柱子的相对端具有进口和出口。优选地,在本发明所述方法中使用的分离柱包含至少一块沿着所述柱的长度的磁铁或位于至少一块沿着所述柱的长度的磁铁旁边。所述磁铁可以是永久磁铁,或可以是一个或多个由电源激活的芯片上的一个或多个电磁单元。
[0338] 可以通过液体流动将过滤步骤之后保留在过滤室内的样品成分引入分离柱。试剂,优选包含磁珠制剂,可以在所述样品成分加入所述过滤室之前或之后加入到所述样品成分中。优选地,在将样品成分转移至分离室之前加入所述试剂。优选地,加入到所述样品中的磁珠制剂包含至少一种特异结合分子,优选能够直接结合至少一种不需要的样品成分的特异结合分子。然而,也可以加入包含至少一种能够间接结合至少一种不需要的样品成分的特异结合分子的磁珠制剂。在这种情况下,还需要向样品中加入能够直接结合不需要的成分的第一特异结合分子。优选在包含第二特异结合分子的磁珠制剂加入样品之前将第一特异结合分子加入样品,但这不是本发明的必要条件。磁珠制剂和第一特异结合分子可以分别地或同时在样品加入分离柱之前或之后加入到样品。
[0339] 在磁珠包含第一特异结合分子的实施例中,优选样品和磁珠制剂在磁分离之前一起孵育大约5分钟至大约60分钟。在分离柱包含或邻近一块或多块永久磁铁的实施例中,所述孵育可以在样品加入分离柱之前在自动系统的导管、室或容器中发生。在分离柱包含或接近一个或多个电流激活的电磁元件的实施例中,所述孵育可以在激活所述一个或多个电磁元件之前在分离柱中发生。然而,优选地,样品与包含特异结合分子的磁珠的孵育在样品过滤之后以及导入和导出过滤室的导管已经关闭之后发生在过滤室中。
[0340] 如果采用包含第二特异结合分子的磁珠,可以选择性地进行一次以上的孵育(例如,样品和第一特异结合分子的第一次孵育,样品和包含第二特异结合分子的磁珠的第二次孵育)。不需要的样品成分的分离可以通过引起磁珠直接或间接结合不需要的成分的磁力来完成。这可以在样品和磁珠加入柱子时发生,或者,在采用一个或多个电磁单元的实施例中,通过使用电源激活所述电磁单元而发生。通过液体流动可以将非捕获样品成分从分离柱中移除。优选地,非捕获样品成分通过连接导管的接口排出柱子。所需成分的分离
[0341] 过滤后,样品可以通过液体流动选择性地导入用于稀有细胞分离的分离室。
[0342] 在优选方面,其中压实样品中不需要的成分已经在分离柱中去除,压实样品被转移至用于分离样品中稀有细胞的分离室之前,优选但可选择地被转移至第二过滤室。第二过滤室允许样品体积的进一步减小,也选择性地允许能够用于稀有细胞分离的特异结合分子的加入以及一种或多种特异结合分子与样品的混合。样品从分离柱到分离室的转移是通过从分离柱导向第二过滤室的导管中的液体流动。第二过滤室优选包含至少一个含有狭缝的过滤器,通过所述室的液体流动以每小时大约1至大约500毫升,更优选地每小时大约2至大约100毫升,最优选地每小时大约5至大约50毫升的速度驱动样品过滤。这样,已经选择性地去除了不需要的成分的压实样品的体积可以进一步减小。第二过滤室可以包含或衔接一个或多个作用芯片。作用芯片,例如声学芯片或介电泳芯片,可以在过滤步骤之前、之中或之后用于样品的混合。
[0343] 第二过滤室也可以选择性地用来将能够用于稀有细胞分离的一种或多种试剂加入样品中。样品过滤之后,将样品或样品成分运出所述室的导管可以是关闭的,而一个或多个通向所述室的导管可以用于加入一种或多种试剂、缓冲液,或溶液,例如,但不限于,能够结合稀有细胞的特异结合分子。所述一种或多种试剂、缓冲液,或溶液可以在封闭的分离室中混合,例如,通过可以产生能够移动样品成分的物理力从而提供混合功能的一个或多个声学元件或一个或多个作用芯片上的多个电极的激活。在本发明的优选方面,将包被了至少一种识别稀有细胞的抗体的磁珠加入过滤室内的样品中。所述磁珠通过导管加入,并通过一个或多个第二过滤室必需的或与第二过滤室衔接的作用芯片的激活与样品混合。特异结合分子与样品的孵育可以持续大约5分钟至大约2小时,优选大约8分钟至大约30分钟,并且在整个孵育过程中可以定期地或连续地发生混合。
[0344] 具有不用于一种或多种试剂、溶液或缓冲液的添加及其与样品的混合的第二过滤室属于本发明的保护范围。具有在用于稀有细胞分离的分离室前面的可用于一种或多种试剂、溶液或缓冲液的添加及其与样品的混合,但不执行过滤功能的室也属于本发明的保护范围。在样品从分离柱转移到分离室没有中间过滤或混合室也属于本发明的保护范围。然而,在所述方法被定向为从血液样品中分离稀有细胞的方面,也用于一种或多种试剂的添加及其与样品的混合的第二过滤室的使用是优选的。
[0345] 样品通过液体流动转移至分离室中。优选地,用于稀有细胞分离的分离室包含或衔接至少一个可以进行分离的作用芯片。这样的芯片包含能够,至少部分地,产生可用于将样品成分从室的一个区域移动或操作到室的另一个区域的物理力的功能元件。优选的用于操作样品成分的芯片的功能元件是电极和电磁单元。本发明作用芯片上用于改变样品成分位置的力可以是介电泳力、电磁力、行波介电泳力,或行波电磁力。用于分离稀有细胞的作用芯片优选是室的组成部分。所述室可以是任何合适的材料及任何大小和尺寸的室,但包含用于从样品中分离稀有细胞的作用芯片的室(“分离室”)优选具有大约1微升至10毫升的容量、更优选具有大约10微升至大约1毫升的容量。
[0346] 在本发明的一些实施例中,所述作用芯片是包含电极的介电泳或行波介电泳芯片。这样的芯片及其应用在2001年10月9日提交的名称为“用于样品制备和分析的整合生物芯片系统”的序列号为09/973,629的美国申请、2000年10月10日提交的名称为“用于在芯片上分离基团的成分和方法”的美国申请09/686,737、2000年8月10日提交的名称为“用于在微流体系统中操作基团的方法”的美国申请09/636,104以及2000年10月4日提交的代理人案号为471842000400、名称为“含有多个作用力产生元件的仪器及其应用”的序列号为09/679,024的美国申请中描述;通过引用全部包含于本文。本发明中,稀有细胞可以从样品分离,通过,例如,它们在介电泳芯片上的选择性保留,而液流可以去除所述样品中非保留的成分。
[0347] 电磁芯片。电磁芯片可以通过磁泳或行波电磁泳用于分离。在优选实施例中,稀有细胞与包含能够直接或间接结合稀有细胞的特异结合分子的磁珠可以在加入包含电磁芯片的室之前或之后进行孵育。优选地,在稀有细胞在电磁芯片上被捕获的实施例中,样品与包含特异结合分子的磁珠在混合室中混合。优选地,混合室包含用于样品和珠子混合的声学芯片。可以将细胞通过导管从混合室导入分离室。在分离室的作用芯片的表面上通过磁性捕获可以将稀有细胞从液体样品中分离,通过液体流动可以冲走其它样品成分。
[0348] 本发明所述方法也包括用于稀有细胞分离的作用芯片是多力芯片的实施例。例如,用于稀有细胞分离的多力芯片可以既包括电极又包括电磁单元。这可以提供一种以上样品成分的分离。例如,磁性捕获可用于分离稀有细胞,而负介电泳用于从包含多力芯片的所述室内去除不需要的细胞。
[0349] 从分离室中去除不需要的样品成分之后,通过负介电泳之类的物理作用力或通过液体流动,可以回收捕获的稀有细胞,通过消除引起它们附着在芯片表面的物理力并利用液体流动将细胞收集在容器内。用于沉淀红细胞并选择性地去除血液样品中不需要的样品成分的组合溶液
[0350] 在本发明的优选实施例中,沉淀红细胞的溶液也可以包括一种或多种能够用于从血液样品中选择性地去除除红细胞之外的不需要的样品成分的附加的特异结合分子。在这点上,本发明包括用于富集血液样品中的稀有细胞的组合沉淀溶液,所述溶液沉淀红细胞并提供用于去除其它不需要的样品成分的试剂。因此用于处理血液样品的组合溶液包括:右旋糖酐;至少一种能够诱导红细胞凝集的特异结合分子;以及至少一种能够特异结合除红细胞之外的不需要的样品成分的附加的特异结合分子。
在样品中添加沉淀溶液
[0351] 可以通过任何方便的方法,例如移液、自动液体吸取/分配设备或系统、通过导管的泵送等,将红细胞沉淀溶液加入血液样品中。加入血液样品的沉淀溶液的量可以不同,并且将主要取决于沉淀溶液中右旋糖酐和特异结合分子(以及其它成分)的浓度,使它们的浓度在与样品混合时是最佳的。最优地,评估血液样品的体积,将0.01至100倍样品体积、优选0.1至10倍样品体积,更优选0.25至5倍样品体积,甚至更优选0.5至2倍样品体积,合适比例体积的沉淀溶液加入血液样品中。(也可能将血液样品,或它的一部分,加入红细胞沉淀溶液。在这种情况下,可以在管或其它容器中提供已知体积的沉淀溶液,并且可以将量出体积的血液样品加入沉淀溶液。
用于去除不需要的成分的特异结合分子
[0352] 除本发明沉淀溶液的成分之外,本发明的组合溶液可以包括至少一种能选择性地结合血液样品中不需要的成分(例如但不限于红细胞、白细胞、血小板、血清蛋白)而较少结合所需成分的特异结合分子。一种或多种能选择性地结合样品中不需要的成分的特异结合分子可以用于去除样品中不需要的成分,提高样品中稀有细胞的相对比例,从而促进样品中稀有细胞的富集。“选择性地结合”是指在本发明所述方法中用于去除一种或多种不需要的样品成分的特异结合分子不会明显结合样品中需要的细胞。“不会明显结合”是指不超过30%,优选不超过10%,更优选不超过1.0%的一种或多种所需细胞被用于从样品中去除不需要的成分的特异结合分子结合。在许多情况下,血液样品中不需要的成分将是白细胞。在本发明的优选实施例中,本发明的组合溶液可以用来沉淀红细胞并选择性地从血液样品中去除白细胞。
[0353] 能够特异结合白细胞的特异结合分子可以作为非限制性例子,抗体、受体的配体、转运蛋白、白细胞表面的通道或其它基团,或凝集素或能够特异结合白细胞表面特定碳水化合物基团的其它蛋白(例如,硫酸路易斯型碳水化合物、糖脂、蛋白聚糖或选择蛋白)。
[0354] 优选地,选择性地结合白细胞的特异结合分子是结合白细胞但不会明显结合胎儿有核细胞的抗体,例如,抗CD3,CD11b,CD14,CD17,CD31,CD45,CD50,CD53,CD63,CD69,CD81,CD84,CD102,CD166,CD138,CD27,CD49(用于浆细胞),CD235a(用于RBCs),CD71(用于有核RBCs和胎RBCs),CD19,CD20(用于B-cells),CD56/CD16(用于NK细胞),CD34(用于stem cells),CD8/CD4(用于T cells),和/或CD62p(用于活化血小板)的抗体。抗体可以从供应商商购,例如Dako,BD Pharmingen,Antigenix America,Neomarkers,Leinco Technologies,Research&Diagnostic Systems,Serotec,United States Biological,Bender Medsystems Diagnostics,Ancell,Leinco Technologies,Cortex Biochem,CalTag,
Biodesign,Biomeda,Accurate Chemicals&Scientific和Chemicon International。可以使用本领域熟知的捕获试验测试抗体结合白细胞并有效去除白细胞的能力以及允许从样品中富集所需细胞的能力。
[0355] 本发明选择性地结合一种或多种不需要的成分的特异结合分子可以用于捕获一种或多种不需要的成分,以便能够从结合了不需要的成分的区域或容器中移除液体样品中的一种或多种所需成分。这样可以将不需要的成分与包含待分离的稀有细胞的样品的其它成分分离。所述捕获可以受到将识别不需要的成分的特异结合分子附着在固相载体上的影响,或受到将识别与不需要的成分结合的特异结合分子的第二特异结合分子结合在固相载体上,从而使不需要的成分附着在所述固相载体上的影响。在本发明的优选实施例中,本发明组合溶液中提供的选择性地结合不需要的样品成分的特异结合分子与固相载体,例如微粒偶联,但这不是本发明的必要条件。
[0356] 磁珠是在本发明所述方法中使用的优选固相载体,选择性地结合不需要的样品成分的特异结合分子可以与磁珠偶联。磁珠是本领域公知的,并且可以商购获得。将包括抗体、凝集素和抗生物素蛋白及其衍生物之类的蛋白在内的分子与磁珠之类的微粒偶联的方法是本领域公知的。本发明优选的磁珠的直径为0.02至20微米,优选直径为0.05至10微米,更优选直径为0.05至5微米,甚至更优选直径为0.05至3微米,优选在本发明的组合溶液中提供,并由第一特异结合分子,例如能够结合要从样品中去除的细胞的抗体,或能够与结合不需要的样品成分的第一特异结合分子,例如生物素化的第一特异结合分子结合的第二特异结合分子,例如链霉亲和素或中和亲和素所包被。
[0357] 在本发明的优选实施例中,液体样品是母血样品,需要分离的稀有细胞是胎细胞,而要从样品中去除的不需要的样品成分是白细胞和其它血清成分。在这些实施例中,通过磁性捕获选择性地结合白细胞的特异结合分子从样品中去除白细胞。优选地,将提供的特异结合分子附着在磁珠上用于直接捕获白细胞,或者所述特异结合分子以生物素化的形式提供,通过链霉亲和素包被的磁珠间接捕获白细胞。
[0358] 本发明用于富集血液样品中稀有细胞的组合溶液也可以包含其它成分,例如但不限于,盐、缓冲试剂、维持特定渗透度的试剂、螯合剂、蛋白、脂类、小分子、抗凝血剂,等等。例如,在本发明的一些优选方面,组合溶液包含生理盐溶液,例如PBS、不含钙镁的PBS或汉克平衡盐溶液。在本发明的一些优选方面,存在EDTA或肝素或ACD以防止红细胞凝固。
混合
[0359] 混合血液样品和红细胞沉淀溶液,使沉淀溶液中的红细胞化学凝聚剂(例如多聚物,例如右旋糖酐之类的)和一种或多种特异结合分子以及血液样品的成分分布在整个样品容器中。可以通过电驱动的声学混合、搅拌、摇晃、颠倒、搅动等方式实现混合,优选采用摇晃和颠倒之类的破坏细胞可能性最小的方法。血液样品和沉淀溶液的孵育
[0360] 与沉淀溶液混合后的样品可进行孵育,使红细胞能够沉淀。包含样品的容器在沉淀期间优选是静止的,以便细胞能够有效沉淀。可以在大约5℃至大约37℃之间的任何温度进行沉淀。在大多数情况下,在大约15℃至大约27℃之间进行所述方法步骤很方便。对于指定的沉淀溶液,当改变例如溶液中右旋糖酐和特异结合分子的浓度、加入沉淀溶液后血液样品的稀释因子以及孵育温度之类的参数时,沉淀孵育的最佳时间可以凭经验确定。优选地,所述沉淀孵育时间优选为5分钟至24小时,更优选10分钟至4小时,最优选大约15分钟至大约1。在本发明的一些优选方面,所述孵育时间大约是三十分钟。IV.使用自动过滤单元分离液体样品中目标成分的方法
[0361] 在另一方面,本发明还包括使用本文公开的自动系统富集和分析液体样品中的成分的方法,包括:a)将液体样品分配进过滤室;b)提供通过过滤室前室的液体样品的流体流动及通过过滤室过滤后亚室的溶液的流体流动,其中液体样品的目标成分被过滤器保留或流过过滤器;以及c)使用分析仪器分析标记的目标成分。V.降低或移除细胞聚集体的方法
[0362] 在一方面,公开了从液体样品中分离目标成分的方法,该方法包括:a)通过微型过滤器传递包含或疑似包含目标成分和细胞聚集体的液体样品以便于使假设存在于所述液体样品中的目标成分被保留或通过所述微型过滤器,并且b)在传递所述液体样品通过所述微型过滤器之前和/或同时,使所述液体样品与乳化剂和/或细胞膜充电剂接触以降低和/或分散假设存在于所述液体样品中的所述细胞聚集体;和/或在使所述液体样品通过所述微型过滤器之前和/或之前和/或之间同时使所述液体样品与约300mOsm至约1000mOsm之间,任选地在约350mOsm至约1000mOsm之间,介于约约350mOsm和约600mOsm,约400mOsm至约600mOsm之间,约450mOsm至约600mOsm之间,或约550mOsm至约600mOsm之间的高渗盐水溶液接触,以减少或分散假设存在于所述液体样品中的所述细胞聚集体。
[0363] 一方面,所述方法包括,在将所述液体样品通过所述微型过滤器之前,使所述液体样品与高渗溶液接触。另一方面,所述方法包括在将所述液体样品通过所述微型过滤器的同时,使所述液体样品与高渗溶液接触.一个具体实施方式中,所述高渗溶液是高渗盐溶液,例如高渗NaCl溶液。在一些实施例中,所述高渗溶液具有约 300mOsm和约1000mOsm的渗透压。在特定的实施方案中,高渗溶液的渗透压为约350mOsm至约1000mOsm,约350mOsm至约600mOsm之间,约400mOsm至约600mOsm之间,约450mOsm至约600mOsm之间,或在约550mOsm和约600mOsm之间.在一些实施方案中,所述高渗溶液不含钙和/或蛋白质,使得其降低细胞膜内聚力。.在一些实施方案中,所述高渗溶液基本上不含钙和/或蛋白质-例如,所述高渗溶液含有小于约10-6%(w/w),小于约10-5%(w/w)小于约10-4%(w/w),小于约0.001%(w/w),小于约0.01%(w/w),小于约0.1%(w/w)1%(w/w)的钙和/或蛋白质。
[0364] 所述方法包括,在将所述液体样品通过所述微型过滤器之前,使所述液体样品与高渗溶液接触作为预过滤溶液以减低或分散所述液体样品中存在的细胞聚集体。在一些实施方案中,使液体样品与所述预过滤溶液,例如高渗盐溶液,接触约1秒,或约2,3,4或5秒。在其它实施方案中,所述液体样品与所述预过滤溶液接触约5至10秒,约10至15秒,约15至
20秒,或大于约20秒。在其它实施方案中,使所述液体样品与所述预过滤溶液接触约30秒,约1分钟,约2,3,4,5,6,7,8,9,10,11,12,13,14,或15分钟,或长于约15分钟。在一些方面,将与所述预过滤高渗溶液接触的所述样品进料到所述微型过滤器的样品加样通道中,并且穿过所述微型过滤器(例如,等渗缓冲液)的洗涤缓冲液使样品进行等渗,有效地从样品中去除所述高渗溶液.
[0365] 在一个方面,所述方法包括在使液体样品通过所述微型过滤器之前,使液体样品与乳化剂和/或细胞膜充电剂接触.
[0366] 在另一个方面,所述方法包括在使液体样品通过所述微型过滤器的同时,使液体样品与乳化剂和/或细胞膜充电剂接触.
[0367] 在另一个方面,所述方法包括在使液体样品通过所述微型过滤器之前以及同时,使液体样品与乳化剂和/或细胞膜充电剂接触.在一个实施例中,在所述液体样品通过所述微型过滤器之前,所述乳化剂和/或细胞膜充电剂被用在第一层,并且在所述液体样品通过所述微型过滤器过程中,所述乳化剂和/或细胞膜充电剂被用在第二层,并且所述第一层高于第二层。
[0368] 在前述任一实施例中,所述乳化剂可以是合成乳化剂、天然乳化剂、细分散或细分散的固体颗粒乳化剂、辅助乳化剂、单分子乳化剂、多分子乳化剂、或固体颗粒膜乳化剂。
[0369] 在另一实施中,所述乳化试剂选自包括PEG 400单油酸酯(聚氧乙烯单油酸酯),PEG 400单硬脂酸酯(聚氧乙烯单硬脂酸酯),PEG 400单月桂酸酯(聚氧乙烯单月桂酸酯),油酸钾,月桂基硫酸钠,油酸钠, 20(脱水山梨醇单月桂酸酯), 40(脱水山梨糖醇单棕榈酸酯)(脱水山梨醇单硬脂酸酯), 65(脱水山梨醇三硬脂酸酯), 80(脱
水山梨醇单油酸酯), 85(脱水山梨醇三油酸酯),三乙醇胺油酸酯, 20(聚氧
乙烯失水山梨醇单月桂酸酯),Tween 21(聚氧乙烯脱水山梨糖醇单月桂酸酯) 40
(聚氧乙烯失水山梨糖醇单棕榈酸酯), 60(聚氧乙烯脱水山梨糖醇单硬脂酸酯),
61(聚氧乙烯脱水山梨糖醇单硬脂酸酯), 65(聚氧乙烯脱水山梨醇三硬脂
酸酯), 80(聚氧乙烯脱水山梨糖醇单油酸酯)脱水山梨醇单油酸酯)和 85
(聚氧乙烯脱水山梨糖醇三油酸酯
[0370] 还在另一个实施方案中,所述乳化剂是普朗尼克酸或有机硫化合物.
[0371] 在一个实施例中,公开的细胞膜充电剂赋予细胞膜上相同的电荷(例如,细胞表面上的膜),使得细胞彼此排斥,从而防止、减少或去除细胞聚集体。所述细胞膜充电剂可以是一种试剂,其为所述细胞膜、细胞质膜、细胞器的膜提供电荷。一方面,所述细胞膜充电剂赋予所述细胞表面负电荷。另一方面,所述细胞膜充电剂赋予所述细胞表面正电荷。在一些实施方案中,所述细胞膜充电剂是带负电荷的多糖或杂多糖,例如肝素、硫酸乙酰肝素、硫酸葡聚糖或4-硫酸软骨素、硫酸角质素、硫酸皮肤素、水蛭素或透明质酸或普朗尼克酸。在一些实施例中,所述细胞膜充电剂是普朗尼克酸,例如 F-68非离子表面活性剂。一方面,所述普朗尼克酸可以作为乳化剂和细胞膜充电剂。
[0372] 普朗尼克是聚乙烯和环氧丙烷的共聚物。在一个具体实施例中,可用于本发明中的所述普朗尼克酸是 10R5, 17R2, 17R4, 25R2,25R4, 31R1, F-108, F-108NF, F-
108Pastille, F-108NF Prill Poloxamer 338, F-127NF, F-
127NF 500 BHT Prill, F-127NF Prill Poloxamer 407, F 38,
F38Pastille, F 68, F 68NF, F 68NF Prill 
Poloxamer 188, F 68Pastille, F 77, F 77Micropastille,
F 87, F 87NF, F 87NF Prill Poloxamer 237, F 
88, F  88Pastille, FT  L 61, L  10, L 101,
L 121, L 31, L 35, L 43, L 61,
L 62, L 62LF, L 62D, L 64, L 81, L 92,
L44NF INH表面活性剂Poloxamer 124, N 3, P 103,
P 104, P 105, P 123Surfactant, P 65, P 84,
P 85,或其任意组合。
[0373] Pluronic F-68的分子量为8400并且主要由环氧乙烷(大约80%)组成。它被应用于大批量的哺乳动物细胞的培养中。它防止发酵罐内混合过程中发生的气泡粘附到细胞上,稳定表面上的泡沫,或提高细胞膜对流体动力剪切的抵抗力。
[0374] 在一些方面,所述普朗尼克酸的使用水平范围以从约1mg/mL到约300mg/mL,从约1mg/mL到约200mg/mL,从约5mg/mL到约50mg/mL,从约5mg/mL到约15mg/mL从约15mg/mL到约
50mg/mL或多于300mg/mL。在特定实施方案中,所述普朗尼克酸约15mg/mL,约1mg/mL至约
5mg/mL,约5mg/mL至约10mg/mL,约10mg/mL至约约15mg/mL至约20mg/mL,约20mg/mL至约
25mg/mL,约25mg/mL至约30mg/mL,约30mg/约35mg/mL至约40mg/mL,约40mg/mL至约45mg/mL,约45mg/mL至约50mg/mL,约50mg//mL至约75mg/mL,约75mg/mL至约100mg/mL,约100mg/mL至约125mg/mL,约125mg/mL至约150mg/mL,约为约150mg/mL至约175mg/mL,约175mg/mL至约200mg/mL,约200mg/mL至约225mg/mL,约225mg/mL至约250mg/mL,约250mg/mL至约275mg/mL,或约275mg/mL至约300mg/mL。
[0375] 在另一方面,此处使用的所述有机硫化合物是二甲基亚砜(DMSO)。在一个实施例中,所述DMSO的使用水平范围为从约0.01%(v/v)到约15%(v/v),从约0.02%(v/v)到约0.4%(v/v),或者从约0.01%(v/v)到约0.5%(v/v)。在一些实施例中,所述DMSO的使用水平约为0.1%(v/v),约0.2%(v/v),约0.3%(v/v),约0.4%(v/v),约0.5%(v/v),约0.6%(v/v),约0.7%(v/v),约0.8%约10%(v/v),约0.9%(v/v),约1.0%(v/v),约2.0%(v/v),约3.0%(v/v)约6.0%(v/v),约7.0%(v/v),约8.0%(v/v),约9.0%(v/v)约12.0%(v/v),约12.0%(v/v),约13.0%(v/v),约14.0%(v/v)或约15.0%(v/v))。
[0376] 肝素是一种糖胺聚糖,由具有高度N-硫酸化作用的D-葡糖酸和D-葡糖胺组成的酸性粘多糖。它以蛋白多糖的形式存在于许多哺乳动物组织中,例如肠,肝,肺,定位于结缔组织型肥大细胞,其中例如哺乳动物的血管和浆膜系统。肝素的主要药用特性是其能够增强天然抗凝血剂,抗凝血酶III的活性。水蛭素,其也是抗凝剂,类似于肝素,因为当包含于水系统如血或血液中时,它们都是带负电荷的分子。
[0377] 肝素天然地与蛋白质结合,形成所谓的肝素蛋白聚糖。通常,内源或天然的,自然存在的肝素蛋白聚糖含有10-15个肝素糖胺聚糖链,每个链的分子量在75±25kDa范围内,并且与一个核心蛋白质或多肽结合。每种天然肝素糖胺聚糖链都包含几个单独的肝素单元,它们连续放置在端对端,它们在自然环境中被糖苷内切酶切割。肝素糖胺聚糖属于较大组的带负电荷的杂多糖,其通常与形成所谓的蛋白聚糖的蛋白质相关联。其他天然存在的糖胺聚糖的实例是例如软骨素-4-和6-硫酸盐,硫酸角质素,硫酸皮肤素,透明质酸,硫酸肝素和肝素。另外的合成肝素样化合物公开在美国专利7,504,113中,为了所有目的,其公开内容通过引用整体并入本文。
[0378] 在一些实施方案中,肝素或其衍生物在本文公开的方法中用作细胞膜充电剂。在具体实施方案中,所述肝素或其衍生物的浓度小于约0.5IU/ml,约0.5IU/ml至约11IU/ml,约11IU/ml和约5IU/ml之间,约5IU/IU/ml和约6IU/ml,约6IU/ml至约7IU/ml,约7IU/ml至约8IU/ml,约8IU/ml和约9IU/ml之间约9IU/ml和约10IU/ml,约10IU/ml至约11IU/ml,约11IU/ml至约12IU/ml,约12IU/ml至约13IU/ml,约13IU/ml至约14IU/ml,约14IU/ml至约15IU/ml,约15IU/ml至约16IU/ml之间,约16IU/ml至约17IU约17IU/ml和约18IU/ml之间,约18IU/ml和约19IU/ml之间,约19IU/ml和约20IU/ml之间或大于约20IU/ml。肝素的一个国际单位(IU)被定义为延长1ml全血凝血3分钟所需的溶液量。
[0379] 在一些实施方案中,乳化剂和细胞膜充电剂都用于本发明公开的方法中。在一些方面,在本文公开的方法中使用具有乳化剂和细胞膜充电剂的功能的化合物,例如普朗尼克酸。在其它实施方案中,本文公开的方法使用乳化剂,但不使用细胞膜充电剂.在其它实施方案中,本文公开的方法使用细胞膜充电剂剂,但不使用乳化剂。
[0380] 一方面,本文使用的细胞膜充电剂为低分子量(<约50kD,优选约45kD,<约40kD,<约35kD,<约30kD,<约25kD,<约20kD kD,<约15kD,<约10kD,<约5kD,或更优选<约2kD)葡聚糖。一方面,所用的低分子量葡聚糖的浓度为约5mg/mL至约10mg/mL,约10mg/mL和约15mg/mL,约15mg/mL和约20mg/mL约20mg/mL,约25mg/mL,约25mg/mL,约25mg/mL,约25mg/mL,约25mg/约40mg/mL和约45mg/mL,约45mg/mL和约50mg/mL,约50mg/mL和约55mg/mL,约55mg//mL和约65mg/mL,或大于约65mg/mL。葡聚糖可以被消化或水解以使其分子量更低。
[0381] 另一方面,烟酸和水杨酸组合被用于该溶液中以减少或分散所述细胞聚集体。在一个方面,在细胞表面上恰好存在水杨酸结合位点,其与调节细胞与细胞结合的蛋白质(例如,血小板)吻合。水杨酸盐结合细胞膜上的水杨酸酯结合位点(SIGLEC受体),其大部分参与细胞与细胞结合。一方面,所述烟酸和水杨酸组合起到细胞膜充电剂的作用.另一方面,除了乳化剂和/或细胞膜装填剂之外,该溶液还包含烟酸和水杨酸组合.
[0382] 在前述任一实施例中,所述方法进一步包括,在步骤a)和/或b)之前,使所述液体样品经过预过滤,其保留聚集的细胞和微凝块并允许单个细胞和更小的直径不超过约20μm的颗粒通过以产生预处理液体样品,用于后续的步骤a)和/或b。一方面,该方法还包括在使液体样品通过预过滤器之前,用细胞聚集试剂处理流体样品以聚集红细胞,并移除聚集的红细胞。另一方面,所述细胞聚集试剂是葡聚糖,硫酸葡聚糖,分子量小于15kD的葡聚糖或硫酸葡聚糖,黑曲霉,明胶,戊聚糖,聚乙二醇(PEG),纤维蛋白原,球蛋白,羟乙基淀粉,pentaspan,肝素,聚蔗糖,阿拉伯胶,聚乙烯吡咯烷酮或其任意组合。
[0383] 某些化学试剂可引起红细胞(RBC)的聚集和沉淀。例如,可以使用葡聚糖,海螺,pentaspan,肝硬脂酸,聚糖体,阿拉伯树胶,聚乙烯吡咯烷酮,其它天然或合成聚合物,核酸,甚至一些蛋白质作为细胞聚集剂(参见例如美国专利No.5,482,829和美国专利申请公布2009/0081689,其全部内容通过引用并入本文。细胞聚集剂的最佳分子量和浓度可以凭经验确定。
[0384] 一种试剂基于使用试剂诱导细胞聚集。可以使用化学或蛋白质(例如葡聚糖或肝素)来诱导细胞聚集。将细胞(例如但不限于抗体或凝集素)连接至细胞的试剂可以包括表面标记物以诱导细胞聚集或提高聚集细胞的稳定性。两种试剂的组合可以诱导细胞聚集,这可导致随时间沉降的细胞团块。
[0385] 用于本公开的沉降溶液中或用于通过层流除去所述聚集体的一种细胞聚集诱导剂是聚合物,例如葡聚糖.优选地,细胞沉淀溶液中葡聚糖的所述浓度为约0.1%至约20%之间,更优选约0.2%至约10%之间,更优选约1%至约6%之间。一些优选的实施方案是包含分子量为70至200千道尔顿的葡聚糖。优选地,细胞沉淀溶液中葡聚糖的所述浓度为约0.1%至约20%之间,更优选约0.2%至约10%之间,更优选约1%至约6%之间。
[0386] 在一个实施方案中,包含乳化剂和/或细胞膜装填剂的溶液可以含有Pluronic acid F68(30mg/ml),DMSO 0.2%(v/v),BSA 0.5%,肝素钠(15U/mL)和EDTA 5mM。当以1:1的比例用血液样品稀释时,普朗尼克酸的终浓度为15mg/ml,DMSO的最终浓度为0.1%。在一个方面,溶液在过滤之前立即稀释。在特定实施方案中,包含乳化剂和/或细胞膜充电剂的溶液中的普朗尼克酸F68浓度范围为约5mg/ml至约10mg/ml,约10mg/ml至约15mg/ml,约15mg/ml至约20mg/ml,约20mg/ml至约25mg/ml,约20mg/约40mg/ml至约45mg/ml,约45mg/ml至约50mg/ml,约50mg/ml至约55mg/ml,约55mg/ml至约60mg/ml,或大于约60mg/ml。在具体实施方案中,包含乳化剂和/或细胞膜充电剂的溶液中的DMSO浓度范围为约0.01%(v/v)至约1%(v/v),例如约0.01%约0.02%(v/v),约0.04%(v/v),约0.05%(v/v),约0.08%(v/v),约0.10%(v/v)约0.11%(v/v),约0.12%(v/v),约0.13%(v/v),约0.14%(v/v),约
0.15%(v/v),约0.16%/v),约0.17%(v/v),约0.18%(v/v),约0.19%(v/v),约0.20%(v/v),约0.21%约0.25%(v/v),约0.26%(v/v),约0.23%(v/v),约0.24%(v/v)约0.28%(v/v),约0.29%(v/v),约0.30%(v/v),约0.31%(v/v),约0.32%(v/v)约(V/V),约0.34%(v/v),约0.35%(v/v),约0.36%(v/v),约0.37%(v/v),约0.38%),约0.39%(v/v),约0.40%(v/v)或大于约0.40%(v/v)。在具体实施方案中,包含乳化剂和/或细胞膜充电剂的溶液中的BSA浓度为约0.1%至约0.2%,约0.2%至约0.3%,约0.3%至约0.4%,约0.4约0.5%至约0.6%,约0.6%至约0.7%,约0.7%至约0.8%,约0.8%至约0.9%,或约0.9%至约
1.0%。在具体实施方案中,包含乳化剂和/或细胞膜充电剂的溶液中的肝素浓度范围为约
1U/mL至约2U/mL,约2U/mL至约3U/mL,约3U/mL至约4U/mL,约4U/mL至约5U/mL,约5U/mL至约
6U/mL,约6U/mL至约7U/mL,约7U/mL至约8U/mL,约8U/mL至约9U/mL,约9U/mL至约10U/mL,约
10U/mL至约11U/mL,约11U/mL至约11U/约12U/mL至约13U/mL,约13U/mL至约14U/mL,约14U/mL至约15U/mL,约15U/mL至约16U U/mL,约16U/mL至约17U/mL,约17U/mL至约18U/mL,约
18U/mL至约19U/mL,约19U/mL至约20U/约20U/mL至约21U/mL,约21U/mL至约22U/mL,约22U/mL至约23U/mL,约23U/mL至约24U/mL,约24U/mL至约25U/mL,约25U/mL至约26U/mL,约26U/mL至约27U/mL,约27U/mL至约28U/mL,约28U/mL至约29U/mL,约29U/mL至约30U/mL,或大于约30U/mL。在具体实施方案中,包含乳化剂和/或细胞膜充电剂的溶液中的EDTA浓度范围为约0.5mM至约1.0mM,约1.0mM至约1.5mM,约1.5mM至约2.0mM,约2.0约2.5mM,约2.5mM至约
3.0mM,约3.0mM至约3.5mM,约3.5mM至约4.0mM,约4.0mM至约4.5mM,约4.5mM至约5.0mM,约
5.0mM至约5.0mM约5.5mM,约5.5mM至约6.0mM,约6.0mM至约6.5mM,约6.5mM至约7.0mM,约
7.0mM至约7.5mM,约7.5mM至约8.0mM,约8.0mM至约8.5约8.5mM至约9.0mM,约9.0mM至约
9.5mM,约9.5mM至约10.0mM或大于约10.0mM。
[0387] 一方面,本文提供了在过滤之前稀释血液样品的溶液。该稀释溶液可以,但不必须,具有分解组分。在过滤期间使用用于细胞分离的示例性溶液的成分是:BSA0.5%,肝素钠(15U/ml),和EDTA 5mM.在具体实施方案中,BSA浓度范围为约0.1%至约0.2%,约0.2%至约0.3%,约0.3%至约0.4%,约0.4%至约0.5%,约0.5%至约0.6%,约约0.7%至约0.8%,约0.8%至约0.9%,或约0.9%至约1.0%。在具体实施方案中,所述肝素浓度范围为约1U/mL至约2U/mL,约2U/mL至约3U/mL,约3U/mL至约4U/mL,约4U/mL至约5U/mL,约5U/mL至约6U/mL,约6U/mL至约7U/mL,约7U/mL至约8U/mL,约8U/mL至约9U/mL,约9U/mL至约10U/mL,约10U/mL至约11U/mL,约11U/mL至约12U/mL,约12U/mL至约12U/约13U/mL至约14U/mL,约
14U/mL至约15U/mL,约15U/mL至约16U/mL,约16U/mL至约17U U/mL,约17U/mL至约18U/mL,约18U/mL至约19U/mL,约19U/mL至约20U/mL,约20U/mL至约21U/约22U/mL至约22U/mL,约
22U/mL至约23U/mL,约23U/mL至约24U/mL,约24U/mL至约25U/mL,约25U/mL至约26U/mL,约
26U/mL至约27U/mL,约27U/mL至约28U/mL,约28U/mL至约29U/mL,约29U/U/mL至约30U/mL,约30U/mL至约31U/mL至约32U/mL,约32U/mL至约33U/mL,约33U/mL至约34U/mL,约34U/mL至约35U约35U/mL至约36U/mL,约36U/mL至约37U/mL,约37U/mL至约38U/mL,约38U/mL至约
39U/mL,约39U/mL至约40U/mL,或大于约40U/mL。在具体实施方案中,所述EDTA浓度范围为约0.5mM至约1.0mM,约1.0mM至约1.5mM,约1.5mM至约2.0mM,约2.0约2.5mM,约2.5mM至约
3.0mM,约3.0mM至约3.5mM,约3.5mM至约4.0mM,约4.0mM至约4.5mM,约4.5mM至约5.0mM,约
5.0mM至约5.0mM约5.5mM,约5.5mM至约6.0mM,约6.0mM至约6.5mM,约6.5mM至约7.0mM,约
7.0mM至约7.5mM,约7.5mM至约8.0mM,约8.0mM至约8.5约8.5mM至约9.0mM,约9.0mM至约
9.5mM,约9.5mM至约10.0mM或大于约10.0mM。
[0388] 在一些实施方案中,使用本文公开的方法(例如,通过使样品与乳化剂和/或细胞膜充电剂接触)导致所述缗钱状聚集体的分散。在具体实施方案中,至少约5%,约10%,约15%,约20%,约25%,约30%,约35%,约40%,约45%,约50%约60%,约65%,约70%,约
75%,约80%,约85%,约90%,约95%,约99%或100%的在所述样品中形成的缗钱状聚集体被分散。
[0389] 在一些实施方案中,在经过过滤以及在所述过滤之前和/或与过滤同时将所述样品与乳化剂和/或细胞膜充电剂接触之后,样品中至少约10%,约15%,约20%,约25%,约30%,约35%,约40%,约45%,约50%,约55%,约60%,约65%,约70%,约75%,约80%,约
85%,约90%,约95%或约99%的细胞保持活性。在一个实施方案中,包含活细胞的样品受试于本文公开的方法。在一些方面,所述细胞在过滤之后维持其活力和可持续性,其中所述样品在通过微型过滤器之前和/或同时与乳化剂和/或细胞膜充电剂接触。例如,在从血液或组织样品分离白细胞的情况下,可以测试从所述过滤器回收的白细胞的存活力,并将其与用氯化铵全血裂解的白细胞进行比较。在一些实施方案中,至少约10%,约15%,约20%,约25%,约30%,约35%,约40%,约45%,约50%,约55%,约60%约65%,约70%,约75%,约80%,约85%,约90%,约95%或约99%的白细胞通过过滤除去红细胞并在过滤之前和/或同时进行时使样品与乳化剂和/或细胞膜充电剂接触后仍然存活。为了测试细胞活性,细胞采用FITC Annexin V结合碘化丙啶(PI)染色。
VI.示范性实施例
[0390] 1.一种过滤室,具有装在外罩里的微型过滤器,所述过滤室包括前室和过滤后亚室,所述前室中的液体流动路线与过滤后亚室中的液体流动路线基本相反或基本反向平行。
[0391] 2.根据实施例1所述过滤室,每个前室和过滤后亚室都具有流入口和/或流出口。
[0392] 3.根据实施例2所述过滤室,所述前室包含至少两个流入口。
[0393] 4.根据实施例3所述过滤室,所述前室包括上部过滤器,由此产生上室。
[0394] 5.根据实施例4所述过滤室,位于前室和上室之间的所述上部过滤器在低流速条件下十分严格地保持其平面度。
[0395] 6.根据实施例4或5所述的过滤室,所述上部过滤器包含开口小于大约5微米的孔或狭缝。
[0396] 7.根据实施例2-6任一所述的过滤室,所述流入口和流出口可以交换使用。
[0397] 8.根据实施例1-7任一所述的过滤室,所述微型过滤器包含一个或多个锥形狭缝。
[0398] 9.根据实施例8所述的过滤室,所述微型过滤器包含大约100至5,000,000个锥形狭缝。
[0399] 10.根据实施例1-9任一所述的过滤室,所述微型过滤器的厚度为大约20至大约200微米。
[0400] 11.根据实施例10所述过滤室,所述微型过滤器的厚度为大约40至大约70微米。
[0401] 12.根据实施例8-11任一所述的过滤室,所述锥形狭缝的长度为大约20微米至200微米,宽度为大约2微米至大约16微米,所述狭缝的逐渐变细是从大约0级至大约10级,所述锥形狭缝的狭缝大小的变化小于大约20%。
[0402] 13.根据实施例8-11任一所述的过滤室,所述锥形狭缝的大小变化大于20%。
[0403] 14.根据实施例13所述的过滤室,所述锥形狭缝的大小变化大于50%。
[0404] 15.根据实施例14所述的过滤室,所述锥形狭缝的大小变化大于100%。
[0405] 16.根据实施例13-15任一所述的过滤室,所述锥形狭缝的大小沿着前室中的液体流动路线变化。
[0406] 17.根据实施例2-16任一所述的过滤室,所述过滤后亚室包括至少两个流出口。
[0407] 18.根据实施例17所述的过滤室,其中所述至少两个流出口沿着前室中的液体流动路线排列。
[0408] 19.根据实施例1-18任一所述的过滤室,包括两个或两个以上的电极。
[0409] 20.根据实施例19所述的过滤室,所述电极被置于所述微型过滤器的对面。
[0410] 21.根据实施例19或20所述的过滤室,所述电极被置于所述过滤室的外罩上。
[0411] 22.根据实施例19-21任一所述的过滤室,所述电极被置于所述前室和/或所述过滤后亚室中。
[0412] 23.根据实施例19-21任一所述的过滤室,所述电极被包含或置于一个或多个与前室和/或过滤后亚室相通的接口或接头内。
[0413] 24.根据实施例1-23任一所述的过滤室,所述过滤室包括至少一个声学元件。
[0414] 25.根据实施例1-24任一所述的过滤室,所述前室的流出口与收集室或收集孔连接。
[0415] 26.根据实施例1-25任一所述的过滤室,所述外罩包括顶部部分和底部部分,所述顶部部分和底部部分衔接或结合在一起形成所述过滤室。
[0416] 27.根据实施例1-26任一所述的过滤室,所述过滤室长大约1mm至大约10cm,宽大约1mm至大约3cm,深大约0.02mm至大约20mm。
[0417] 28.根据实施例27所述的过滤室,所述过滤室长大约10mm至大约50mm,宽大约5mm至大约20mm,深大约0.05mm至大约2.5mm。
[0418] 29.根据实施例28所述过滤室,所述过滤室长大约30mm,宽大约6mm,深大约1mm。
[0419] 30.根据实施例1-29任一所述的过滤室,所述外罩的外部尺寸为长大约38mm,宽大约12mm,深大约20mm。
[0420] 31.根据实施例27-30任一所述的过滤室,其前室长大约1mm至大约10cm,宽大约1mm至大约3cm,深大约0.01mm至大约10mm。
[0421] 32.根据实施例31所述的过滤室,其前室长大约10mm至大约50mm,宽大约5mm至大约20mm,深大约0.01mm至大约1mm。
[0422] 33.根据实施例32所述过滤室,其前室长大约30mm,宽大约6mm,深大约0.1-0.4mm。
[0423] 34.根据实施例31-33任一所述的过滤室,所述前室的体积为大约0.01μL至大约5mL。
[0424] 35.根据实施例34所述过滤室,所述前室的体积为大约1μL至大约100μL。
[0425] 36.根据实施例35所述过滤室,所述前室的体积为大约40至80μL。
[0426] 37.根据实施例27-36任一所述的过滤室,所述过滤后亚室长大约1mm至大约10cm,宽大约1mm至大约3cm,深大约0.01mm至大约1cm。
[0427] 38.根据实施例37所述的过滤室,所述过滤后亚室长大约10mm至大约50mm,宽大约5mm至大约20mm,深大约0.2mm至大约1.5mm。
[0428] 39.根据实施例38所述的过滤室,所述过滤后亚室长大约30mm,宽大约6.4mm,深大约0.6-1mm。
[0429] 40.过滤室,含有装在外罩里的微型过滤器,所述过滤器的表面和/或所述外罩的内表面通过气相沉积、升华、气相表面反应或粒子溅射修饰而产生均一的涂层。
[0430] 41.根据实施例40所述的过滤室,所述过滤室包括前室和过滤后亚室。
[0431] 42.根据实施例41所述的过滤室,所述前室包括上部过滤器,由此产生上室。
[0432] 43.根据实施例42所述的过滤室,所述上部过滤器的表面通过气相沉积、升华、气相表面反应或粒子溅射修饰而产生均一的涂层。
[0433] 44.根据实施例40-43任一所述的过滤室,所述修饰通过物理气相沉积。
[0434] 45.根据实施例40-43任一所述的过滤室,所述修饰通过等离子体增强的化学气相沉积。
[0435] 46.根据实施例40-43任一所述的过滤室,所述气相沉积是金属氮化物或金属卤化物的气相沉积。
[0436] 47.根据实施例46所述过滤室,所述金属氮化物为氮化钛、氮化硅、氮化锌、氮化铟,和/或氮化硼。
[0437] 48.根据实施例40-43任一所述的过滤室,所述修饰通过化学气相沉积进行。
[0438] 49.根据实施例48所述过滤室,所述化学气相沉积采用聚对二甲苯或其衍生物。
[0439] 50.根据实施例49所述过滤室,所述聚对二甲苯或其衍生物选自聚对二甲苯、聚对二甲苯-N、聚对二甲苯-D,聚对二甲苯AF-4、聚对二甲苯SF及聚对二甲苯HT组成的组。
[0440] 51.实施例48所述过滤室,所述修饰采用聚四氟乙烯(PTFE)。
[0441] 52.实施例48所述过滤室,所述修饰采用特氟隆AF。
[0442] 53.根据实施例40或43所述的过滤室,所述修饰采用全氟化碳。
[0443] 54.实施例53所述过滤室,所述全氟化碳为1H,1H,2H,2H-全氟辛基三乙氧基硅烷、1H,1H,2H,2H-全氟癸基三乙氧基硅烷、三氯(1H,1H,2H,2H-全氟辛基)硅烷或三氯(十八烷基)硅烷并且是液态。
[0444] 55.根据实施例40-54任一所述的过滤室,所述过滤器和/或外罩包含硅、二氧化硅、玻璃、金属、碳、陶瓷、塑料,或多聚物。
[0445] 56.根据实施例40-54任一所述的过滤室,所述过滤器和/或外罩包含氮化硅或氮化硼。
[0446] 57.过滤室,含有装在外罩里的微型过滤器,所述过滤器的表面和/或所述外罩的内表面通过金属氮化物、金属卤化物、聚对二甲苯或其衍生物、聚四氟乙烯(PTFE)、特氟隆AF或全氟化碳修饰。
[0447] 58.实施例57所述过滤室,所述过滤室包括前室和过滤后亚室。
[0448] 59.实施例58所述过滤室,所述前室包括上部过滤器,由此产生上室。
[0449] 60.实施例59所述过滤室,所述上部过滤器的表面通过金属氮化物、金属卤化物、聚对二甲苯或其衍生物、聚四氟乙烯(PTFE)、特氟隆AF或全氟化碳修饰。
[0450] 61.根据实施例57-60任一所述的过滤室,所述金属氮化物为氮化钛、氮化硅、氮化锌、氮化铟,和/或氮化硼。
[0451] 62.根据实施例57-60任一所述的过滤室,所述聚对二甲苯或其衍生物选自聚对二甲苯、聚对二甲苯-N、聚对二甲苯-D,聚对二甲苯AF-4、聚对二甲苯SF及聚对二甲苯HT组成的组。
[0452] 63.根据实施例57-60任一所述的过滤室,所述全氟化碳为1H,1H,2H,2H-全氟辛基三乙氧基硅烷、1H,1H,2H,2H-全氟癸基三乙氧基硅烷、三氯(1H,1H,2H,2H-全氟辛基)硅烷或三氯(十八烷基)硅烷,并且所述全氟化碳与所述表面共价结合。
[0453] 64.根据实施例57-63任一所述的过滤室,所述过滤器和/或外罩包含硅、二氧化硅、玻璃、金属、碳、陶瓷、塑料,或多聚物。
[0454] 65.根据实施例57-63任一所述的过滤室,所述过滤器和/或外罩包含氮化硅或氮化硼。
[0455] 66.根据实施例1-65任一所述的过滤室,所述过滤器的表面和/或所述外罩的内表面通过气相沉积、升华、气相表面反应或粒子溅射修饰而产生均一的涂层。
[0456] 67.根据实施例66所述的过滤室,所述气相沉积是金属氮化物或金属卤化物的气相沉积。
[0457] 68.根据实施例67所述过滤室,所述金属氮化物为氮化钛、氮化硅、氮化锌、氮化铟,和/或氮化硼。
[0458] 69.根据实施例66所述的过滤室,所述修饰通过化学气相沉积进行。
[0459] 70.根据实施例66所述的过滤室,所述修饰采用全氟化碳。
[0460] 71.根据实施例70所述过滤室,所述全氟化碳为1H,1H,2H,2H-全氟辛基三乙氧基硅烷、1H,1H,2H,2H-全氟癸基三乙氧基硅烷、三氯(1H,1H,2H,2H-全氟辛基)硅烷或三氯(十八烷基)硅烷并且是液态。
[0461] 72.根据实施例1-71任一所述的过滤室,所述过滤器的表面和/或所述外罩的内表面通过金属氮化物、金属卤化物、聚对二甲苯、聚四氟乙烯(PTFE)、特氟隆AF或全氟化碳修饰。
[0462] 73.根据实施例72所述过滤室,所述金属氮化物为氮化钛、氮化硅、氮化锌、氮化铟,和/或氮化硼。
[0463] 74.根据实施例72所述的过滤室,所述全氟化碳为1H,1H,2H,2H-全氟辛基三乙氧基硅烷、1H,1H,2H,2H-全氟癸基三乙氧基硅烷、三氯(1H,1H,2H,2H-全氟辛基)硅烷或三氯(十八烷基)硅烷,并且所述全氟化碳与所述表面共价结合。
[0464] 75.根据实施例1-74任一所述的过滤室,包含至少两个微型过滤器。
[0465] 76.根据实施例75所述过滤室,所述至少两个微型过滤器串联排列。
[0466] 77.一种过滤室,包含至少两个串联排列的实施例1-76任一所述的过滤室。
[0467] 78.根据实施例77所述过滤室,所述至少两个过滤室的前室是液体相通的。
[0468] 79.根据实施例78所述过滤室,所述至少两个过滤室共用一个微型过滤器和/或上部过滤器。
[0469] 80.根据实施例77或78所述的过滤室,每个过滤室中的过滤器的狭缝具有不同宽度,所述过滤室按照狭缝宽度递增的顺序排列。
[0470] 81.一种盒,含有实施例1-80任一所述的过滤室。
[0471] 82.根据实施例81所述的盒,包含至少两个过滤室。
[0472] 83.根据实施例82所述的盒,包含八个过滤室。
[0473] 84.一种用于分离液体样品中目标成分的自动过滤单元,包含实施例1-80任一所述的过滤室。
[0474] 85.根据实施例84所述的自动过滤单元,进一步包含控制过滤室中液体流动的控制算法。
[0475] 86.根据实施例84或85所述的自动过滤单元,包含至少两个过滤室。
[0476] 87.根据实施例86所述的自动过滤单元,所述至少两个过滤室串联排列,所述过滤室包含狭缝宽度递增的过滤器。
[0477] 88.根据实施例86或87所述的自动过滤单元,所述过滤器具有沿着液体流动路线递增的狭缝宽度。
[0478] 89.根据实施例88所述的自动过滤单元,包含上室。
[0479] 90.根据实施例84-89任一所述的自动过滤单元,所述过滤后亚室包括多个隔断,每个隔断都具有流出口。
[0480] 91.根据实施例90所述的自动过滤单元,所述过滤后室的每个隔断的流出口与多孔板的单个孔对准。
[0481] 92.根据实施例91所述的自动过滤单元,所述孔间隔大约1-100mm。
[0482] 93.根据实施例91所述的自动过滤单元,所述孔间隔大约2.25mm。
[0483] 94.根据实施例91所述的自动过滤单元,所述孔间隔大约4.5mm。
[0484] 95.根据实施例91所述的自动过滤单元,所述孔间隔大约9或18mm。
[0485] 96.根据实施例84-95任一所述的自动过滤单元,包含八个过滤室。
[0486] 97.根据实施例84-96任一所述的自动过滤单元,包含在过滤室中产生液体流动的元件。
[0487] 98.根据实施例97所述的自动过滤单元,所述产生液体流动的元件为液体泵。
[0488] 99.根据实施例84-98任一所述的自动过滤单元,包含用于收集分离的目标成分的元件。
[0489] 100.用于分离和分析液体样品中目标成分的自动系统,包含实施例84-98任一所述的自动过滤单元以及与过滤单元连接的分析仪器。
[0490] 101.根据实施例100所述的自动系统,所述分析仪器是细胞分选设备或流式细胞仪。
[0491] 102.用于分离液体样品中目标成分的方法,包括:a)将液体样品分配进实施例1-80任一所述的过滤室;和
b)提供通过过滤室的液体样品的流体流动,所述液体样品的目标成分被过滤器保留或通过过滤器。
[0492] 103.根据根据实施例102所述的方法,包括提供通过过滤室前室的液体样品的流体流动及通过过滤室过滤后亚室的溶液的流体流动,以及可选择性地提供通过过滤室上室的溶液的流体流动。
[0493] 104.根据实施例102或103所述的方法,所述液体样品基于成分的大小、形状、可塑性、亲和性和/或结合专一性进行分离。
[0494] 105.根据实施例103或104所述的方法,所述液体样品通过前室的流入口分配。
[0495] 106.根据实施例103-105任一所述的方法,所述溶液被引至过滤后亚室的流入口。
[0496] 107.根据实施例103-105任一所述的方法,所述溶液被引至上部过滤室的流入口。
[0497] 108.根据实施例102-107任一所述的方法,其中所述液体样品通过置于过滤器外部的结构和/或过滤器内置的结构产生的物理力来控制。
[0498] 109.根据实施例108所述的方法,所述物理力选自介电泳力、行波介电泳力、磁力、声力、静电力、机械力、光辐射力和热对流力组成的组。
[0499] 110.根据实施例109所述的方法,所述介电泳力或行波介电泳力通过电极产生的电场产生。
[0500] 111.根据实施例109所述的方法,所述声力通过驻波声场或行波声场产生。
[0501] 112.根据实施例109所述的方法,所述声力通过压电材料产生的声场产生。
[0502] 113.根据实施例109所述的方法,所述声力通过音圈或音频扬声器产生。
[0503] 114.根据实施例109所述的方法,所述静电力通过直流电(DC)电场产生。
[0504] 115.根据实施例109所述的方法,所述光辐射力通过激光镊产生。
[0505] 116.根据实施例102-115任一所述的方法,所述液体样品是血液、渗出物、尿液、骨髓样品、腹水、盆腔冲洗液、胸膜液、脊髓液、淋巴液、血清、粘液、痰、唾液、精液、眼液、鼻腔提取液、咽喉或生殖器拭子、消化后的组织的细胞悬液、排泄物提取液、混合类型和/或混合大小的培养细胞,或者包含需要去除污染物或游离反应物的细胞。
[0506] 117.根据实施例116所述的方法,所述液体样品是血液样品,要去除的成分是血浆、血小板和/或红细胞(RBC)。
[0507] 118.根据实施例116所述的方法,所述液体样品是包含需要去除的污染物或游离反应物的细胞,所述游离反应物是细胞标记试剂。
[0508] 119.根据实施例116所述的方法,所述液体样品是血液样品,所述目标成分是有核细胞,例如非造血细胞、血细胞亚群、胎儿红细胞、干细胞,或癌细胞。
[0509] 120.根据实施例116所述的方法,所述液体样品是渗出物或尿液样品,而所述目标成分是有核细胞,例如癌细胞或非造血细胞。
[0510] 121.根据使用实施例84-99任一所述的自动过滤单元分离液体样品中目标成分的方法,包括:a)将液体样品分配进所述过滤室;和
b)提供通过所述过滤室的液体样品的液流,所述液体样品的目标成分被过滤器保留或通过所述过滤器。
[0511] 122.根据实施例121所述的方法,其中基于成分的大小、形状、可塑性、亲和性和/或结合专一性分离所述液体样品。
[0512] 123.根据实施例121或122所述的方法,所述液体样品在前室中的流动基本上反向平行于过滤后亚室的溶液流动。
[0513] 124.根据实施例121-123任一所述的方法,所述过滤速率约为0-5mL/min。
[0514] 125.根据实施例125所述的方法,其中所述过滤速率约为10-500μL/min。
[0515] 126.根据实施例125所述的方法,其中所述过滤速率约为80-140μL/min。
[0516] 127.根据实施例124-126任一所述的方法,所述补料速率约为过滤速率的1-10倍。
[0517] 128.根据实施例102-127任一所述的方法,还包括:c)使用另外的无样品冲洗试剂冲洗液体样品的被保留成分。
[0518] 129.根据实施例128所述的方法,在所述冲洗步骤中补料速率小于或等于过滤速率。
[0519] 130.根据实施例128或129所述的方法,将冲洗试剂引入所述过滤后亚室。
[0520] 131.根据实施例128或129所述的方法,将所述冲洗试剂引入前室和/或上室。
[0521] 132.根据实施例102-131任一所述的方法,还包括:d)提供结合所述目标成分的标记试剂。
[0522] 133.根据实施例132所述的方法,所述标记试剂是抗体。
[0523] 134.根据实施例132或133所述的方法,其中将所述标记试剂加入到所述收集室中。
[0524] 135.根据权利要求132或133所述的方法,将所述标记试剂加入所述前室和/或所述上室。
[0525] 136.根据实施例132-135任一所述的方法,在所述标记步骤中使所述过滤后亚室中的液体流动停止。
[0526] 137.根据实施例132-136任一所述的方法,还包括:e)移除所述非结合试剂。
[0527] 138.根据实施例102-137任一所述的方法,还包括:f.回收所述收集室中的所述目标成分。
[0528] 139.根据权利要求138所述的方法,在所述回收步骤中所述补料速率约为5-20mL/min
[0529] 140.根据实施例138或139所述的方法,在所述回收步骤中所述过滤后亚室内的流出速率等于流入速率。
[0530] 141.根据实施例138-140任一所述的方法,其中在回收步骤中所述流出暂停约50ms。
[0531] 142.根据实施例121-141任一所述的方法,所述液体样品为血液样品,所述方法包括使用特异结合分子去除至少一种不需要的成分。
[0532] 143.实施例142所述的方法,所述至少一种不需要的成分为白细胞(WBCs)。
[0533] 144.根据权利要求143所述的方法,所述特异结合分子选择性地结合白细胞(WBCs)并偶联在固相载体上。
[0534] 145.根据实施例144所述的方法,所述特异结合分子为选择性地结合白细胞的抗体或抗体片段。
[0535] 146.根据实施例145所述的方法,所述特异结合分子为选择性地结合CD3,CD11b,CD14,CD17,CD31,CD45,CD50,CD53,CD63,CD69,CD81,CD84,CD102或CD166的抗体。
[0536] 147.根据实施例146所述的方法,其中所述特异结合分子为选择性地结合CD35和/或CD50的抗体。
[0537] 148.根据实施例142-147任一所述的方法,还包括使所述血液样品与第二特异结合分子接触。
[0538] 149.根据实施例148所述的方法,所述第二特异结合分子为选择性地结合CD31,CD36,CD41,CD42(a,b或c),CD51或CD51/61的抗体。
[0539] 150.使用实施例100或101所述的自动系统富集和分析液体样品中目标成分的方法,包括:a)将液体样品分配进过滤室;
b)提供通过所述过滤室的前室的液体样品的液流及通过所述过滤室的过滤后亚室的
溶液的液流,其中所述液体样品的目标成分被保留在所述前室中而非目标成分通过所述过滤器流入所述过滤后亚室;
c)标记所述目标成分;和
d)使用所述分析仪器分所述析标记的目标成分。
[0540] 151.根据实施例150所述的方法,包括向所述上室中提供液流。
[0541] 152.根据实施例150或151所述的方法,所述目标成分为细胞或细胞器。
[0542] 153.根据实施例152所述的方法,所述细胞为有核细胞。
[0543] 154.根据实施例152所述的方法,所述细胞为稀有细胞。示例
示例1
用于从血液样品中去除红细胞的过滤器的制造
[0544] 采用尺寸为(1.8cm×1.8cm×500微米)的硅片制造1cm×1cm×50微米的过滤区域,所述过滤区域具有尺寸为大约0.1微米至大约1000微米,优选大约20-200微米,优选大约1-10微米,更优选2.5-5微米的狭缝。所述狭缝竖直具有小于2%,优选小于0.5%的最大圆锥角,过滤器狭缝的相邻纵列之间的具有1-500微米,优选5-30微米的偏移距离。
[0545] 制造工艺包括提供具有上述尺寸的硅片并用介质层包被所述硅片的顶部和底部。然后创建沿着所述芯片的底部部分的空腔。通过从所述介质层上移除合适的空腔图案,然后主要沿着所述图案蚀刻所述硅片,直至达到所需厚度,从而形成所述空腔。将所述芯片进行再氧化以包被所述塑型区域。然后基本对齐(在上面)所述空腔从包被所述硅片的顶部的介质层上移走过滤器图案。从沿着所述芯片顶部产生的图案开始的上述角度蚀刻(例如,通过深RIE或ICP工艺)所述硅片直至所述硅片被刻穿。然后将所述介质层从顶部和底部移去。
通过移去所述腔内的介质层,通孔,称为狭缝,产生。也可以利用激光切割,在材料上穿孔来产生这些狭缝,包括但不限于硅或塑料之类的多聚物。
示例2
微型过滤器的化学处理
[0546] 如示例1所述制造的过滤芯片置于烤箱内的陶瓷加热板上并在含氧气体(例如空气)中于800摄氏度加热2小时。然后将加热源关掉,使所述芯片慢慢地过夜冷却。这样产生了所述芯片表面上的热生成层。
[0547] 氮化物层也可被沉积在所述过滤器表面上。在反应器内于高达~900℃的温度下通过低压化学气相沉积(LPCVD)将氧化层涂在所述芯片表面上。所述沉积膜是提供给所述反应器的源气体之间的化学反应产物。典型地,在基片的两面同时进行所述工序以形成Si3N4层。示例3
用聚乙烯吡咯烷酮(PVP)和聚乙烯醇(PVA)包被过滤器
[0548] 用PVP或PVA包被按照实施例1所述方法制造的过滤器芯片。为使用PVP或PVA包被所述芯片,将所述芯片按如下预处理:用去离子水冲洗过滤器芯片,然后浸没在6N硝酸中。将所述芯片置于振动器上30分钟,温度50摄氏度。酸处理后,在去离子水中清洗所述芯片。
[0549] 对于PVP包被,将芯片于室温下浸没在0.25%聚乙烯吡咯烷酮(K-30)直至所述芯片可以使用。然后用去离子水冲洗芯片并通过压缩空气干燥。
[0550] 对于PVA包被,在酸处理和水清洗之后,包被前将所述芯片贮存在水中。为制备0.25%PVA(Mn 35,000-50,000)溶液,在缓慢加热至80摄氏度并温和搅拌的条件下将PVA溶解于水中。为进行包被,将所述芯片浸没在热PVA溶液中并加热1-2小时。然后在去离子水中清洗所述芯片并通过压缩空气干燥。
示例4
用牛血清白蛋白(BSA)包被过滤器
[0551] 为使用BSA包被过滤器芯片,将所述芯片按如下预处理:用去离子水冲洗过滤器芯片,然后于室温下浸没在95%乙醇中10秒钟,然后再用去离子水冲洗。
[0552] 然后将所述芯片于室温下浸没于2.%BSA的PBS溶液中2分钟。然后用去离子水冲洗芯片并通过压缩空气干燥。示例5
用聚乙二醇(PEG)包被过滤器
[0553] 为了将PEG结合在所述芯片表面,将过滤器芯片浸没于DBE-814(含有聚硅氧烷的PEG溶液,购自宾西法尼亚州莫里斯维尔的Gelest公司)的5%二氯甲烷溶液中。将浸过的芯片在真空下于70摄氏度加热3小时。孵育后,用去离子水冲洗PEG包被的芯片并通过压缩空气干燥。示例6
从母血中富集有核胎细胞的工艺流程图
[0554] 图13显示了从母血样品中富集胎儿有核细胞的工艺流程图。整个工艺流程包含下列步骤:(1)(1)所述血液样品可以转移至离心管中。
(2)(2)所述样品加入到所述自动装置之前不必但可以被清洗。
(3)(3)所述流程起始于管中10ml(3-40ml的范围)血液样品量。
[0555] 液位传感步骤用于确定管中待处理的血液样品的准确体积。
[0556] 将一定量的组合试剂(例如,等体积的示例6所述的试剂)加入管中的所述血液样品中。
[0557] 转动/摇晃/颠倒/混合所述溶液0.5小时(0.1-2小时的范围)。
[0558] 让管中溶液垂直放置30分钟(0.1-2小时的范围),使聚集的红细胞能够沉淀到管底。在这期间,同时施加磁场,从而将磁珠(可能结合了或没结合血液成分)收集和吸引至管的一侧。
[0559] 另一个液位传感步骤用来确定管内存在的“未聚集的”细胞悬浮液的体积。
[0560] 将适量的所述液体从管中吸入胎细胞过滤室中(或胎细胞盒过程)。
[0561] 在胎细胞过滤室/盒内过滤样品0.2–2小时(所述过滤过程的进一步详述包含在下面的示例8中)。
[0562] 从所述过滤盒的顶部室中吸取出溶液并分配进贮存试验管中。示例7
硅膜过滤法的工艺流程图
[0563] 图14提供了显示所述微过滤流程的示意图。简化的处理步骤包括如下:(1)关闭阀门BD,开启阀门AC。
(2)将试样(来自[示例9]所述过程的第一个步骤)装入45mL的上料贮液器中。
(3)使废料泵运行1小时,使装在贮液器中的所述样品通过所述微型过滤器过滤。
(4)向上料贮液器中加入1-10mL的清洗溶液。
(5)关闭阀门A,开启阀门B。
(6)用1-5mL清洗所述底部亚室。
(7)关闭阀门C并开启阀门D。
(8)旋转所述盒子和过滤室180度。
(9)从阀门B冲洗过滤器。
(10)从阀门D收集体积。
示例8
使用自动系统从母血中分离胎细胞
[0564] 通过使用PBE稀释样品来清洗10毫升孕妇(怀孕6至30周)的血液样品并在470×g离心6分钟(50-900×g范围离心3-20分钟)。将上清液吸掉,向团状物中加入PBE并混匀。再次离心所述样品并吸掉上清液。用PBE重悬最终的团状物至初始体积。10毫升组合试剂(无钙和镁的PBS包含:5毫摩尔EDTA、2%右旋糖酐(分子量70-200千道尔顿)、每毫升0.05微克(0.01至数微克的范围)的抗血型糖蛋白A的IgM抗体,以及大约1-10×109个预包被磁珠)。
[0565] 所述稀有细胞分离自动系统具有用于自动处理步骤的控制电路,并接通110伏的电源插座。将包含样品的管子放入稀有细胞分离自动系统的支架中。所述管子在自动系统支架中被自动旋转30分钟(5-120分钟的范围)。然后使管子直立,同时,具有磁铁磁场的第二支架被自动放在所述管子支架的旁边。也可以具有其它类型的磁场,包括但不限于电磁场。保持管子垂直30分钟(5-120分钟的范围),使聚集的红细胞能够沉淀至管底,而白细胞-磁珠聚集体被吸引至每个管邻近磁铁的那一面。在细胞沉淀后,通过自动系统使用光透射-光传感透明度测量仪器确定上清液的量。
[0566] 所述透明度测量仪器由金属条和光检测器组成,每个金属条都具有能被聚焦在样品管上的检测光源(金属条的数目与管子的数目相对应),光检测器位于管子的对面。所述光源使用发出红外线区域(780纳米)的光并且强度大于3毫瓦特的激光束。来自光源的光穿过样品管聚焦,在样品管的另一侧,具有强度测量装置的光检测器记录通过样品的光量(激光输出测量)。具有低瓦特数激光光源的金属条和光检测器从管底水平向上移动。由于每束激光与相应管中的聚集细胞初始接触,因此激光输出归零。当指定管的测量强度开始上升至阈值以上,金属条的垂直移动停止。然后金属条移动找到透射光等于阈值的准确的垂直点。这样确定了聚集细胞/细胞上清液界面的垂直点位置。一旦确定了这个水平,液体运送装置移动至预设位置并利用电容传感程序找到金属条的水平(相当于界面的水平)。利用这个数据,液体运送精确地从液体容器中移走上清液。所述上清液被自动地直接分配进过滤单元的上料贮液器中。
[0567] 通过稀有细胞分离自动系统进行的自动分离过程的下列描述使用了图23所示的过滤单元(过滤室、上料贮液器、相关的接口和阀门)。在这个设计中,所述过滤室能在过滤单元中旋转180度。
[0568] 所述过滤室包括通过单个过滤器(603)分开的前室(604)和过滤后亚室(605)。所述微型过滤器尺寸为1.8cm×1.8cm,具有大约1cm×1cm的过滤区域。所述过滤器具有约94,000个以图2所示的平行结构排列的狭缝,所述狭缝具有1至2级的锥形并且尺寸为3微米×
100微米,每边尺寸在10%以内变化。视目标物而定,所述过滤器狭缝可以具有1-10微米×
10-500微米的尺寸、0.2-10度的垂直锥形。所述过滤器的厚度为50微米(10-200微米的范围)。所述过滤器位于两片式过滤室内,所述顶部(前室)为近似矩形的向上逐渐变细的体积约为0.5毫升的过滤前室。所述底部的过滤后亚室也是近似圆形并朝向底部逐渐变细,也具有约为0.5毫升的体积。所述过滤器基本上覆盖了所述(顶部)前室的整个底部区域以及所述(底部)过滤后亚室的整个顶部区域。
[0569] 除过滤室之外,所述过滤单元包含具有上样贮液器(610)、控制样品从上样贮液器流入过滤室的阀门(“阀门A”,606)、用于废料或过滤后的样品流出(废料口,634)和用于收集富集后的稀有细胞(收集口,635)的分开的接口的“框”。所述过滤后亚室(605)包含能够用于缓冲液添加的侧面接口(632)和能够在过滤过程中连接废料口用于废料(或过滤后的样品)流出的出口。所述前室(604)包含在过滤过程中能够连接样品上料阀门(阀门A,606)以及在富集细胞的收集过程中能够连接收集口(635)的入口。在自动系统的运行过程中,所述过滤室(包括前室(604)、过滤后亚室(605),以及侧面接口(632))位于过滤单元的框内。
[0570] 在过滤过程中,阀门A开启,所述过滤后亚室的出口与废料口对齐,提供过滤样品从上料贮液器穿过过滤室到废料的流动路线。取决于处理步骤,注射泵抽取液体以每小时大约10-500毫升的流动速率通过过滤室。
[0571] 在将适量的上清液从每管分配进过滤单元的上样贮液器之前,过滤单元的侧面接口(632)和废料口(634)关闭,阀门A(606)开启(见图23)。(当所述过滤单元位于上料/过滤位置时,过滤室不连接收集口(635))。开启过滤单元的侧面接口,用PBE从侧面接口注满所述单元直到所述缓冲液到达样品贮液器的底部。然后关闭侧面接口,并将血液样品上清液装入上料贮液器中。
[0572] 虽然所述稀有细胞分离自动系统可以同时分离若干样品,但是为了清楚,接下来对分离过程的描述将描述单个样品的过滤。为过滤样品,开启过滤单元的废料口(634),使用通过导管连接废料口的注射泵,将样品上清液抽入并通过过滤室。当样品通过过滤室时,较大的细胞保留在顶部室(前室)内,而较小的细胞通过过滤器进入下室(过滤后亚室),然后通过废料口成为废料。以大约每小时2-100毫升的速率进行过滤。
[0573] 在样品通过过滤室后(通常过滤半小时至两小时之后),向上料贮液器中加入3-5毫升的PBE(保持阀门A开启)并使用连接废料口的注射泵将PBE抽过过滤室,从而清洗前室并确保几乎所有小的细胞被清洗下来。
[0574] 然后关闭阀门A(606)并开启侧面接口(632)。使用连接着附在废料口(634)上的导管的注射泵从侧面接口(632)加入5-10毫升的缓冲液清洗底部的过滤后亚室。从过滤后亚室(605)洗掉残余细胞后,通过侧面接口(632)推入空气,进一步清洁底部(过滤后)亚室。
[0575] 然后将滤盒在过滤单元中旋转约180度,使所述前室(604)在所述过滤后亚室(605)下面。当所述室旋转至收集位置时,所述过滤后亚室的出口与废料口分开,由于所述过滤后亚室变到所述前室上方,因此“出口”变到所述倒置的过滤室的顶部,但不对接所述过滤单元中的任何开口,因此是闭塞的。当这一切发生时,所述前室旋转至所述倒置过滤单元的底部,使前室进口与阀门A分开,而与过滤单元底部的收集口连接。在从所述过滤位置旋转至收集位置的过程中,侧面接口不改变位置。它与过滤室的旋转轴对齐,并且仍然是过滤后亚室的组成部分及功能接口。作为所述旋转的结果,所述过滤室处于收集位置。因此,在所述收集位置,所述过滤后亚室,具有侧面接口但现在在其出口处关闭,位于所述前室上方。所述前室“进口”与所述收集口对齐并对收集口开放。
[0576] 将大约两毫升的缓冲液通过侧面接口泵入过滤室,用于收集留在前室中的细胞。将细胞收集到连接在过滤单元的样品收集口位置的小玻璃瓶中,或通过从样品收集口导出的导管将样品分配进收集管中。通过侧面接口泵入大约2毫升额外的PBE和大约2-5毫升空气,将残余细胞从过滤器上清洗下来并装入收集瓶中。
[0577] 富集的稀有细胞可以在显微镜下分析或使用许多试验中的任何一种分析,或可被储存或进入培养。示例9
用于磁性粒子捕获的改良的磁铁构造
[0578] 为了提高利用磁性粒子捕获将细胞之类的成分从液体样品中分离至管或其它容器的一部分的效率,试验了几种磁铁构造。
[0579] 使用尺寸为9/16×1.25×1/8的磁铁(Forcefield(Fort Collins公司),汝铁硼磁铁块,货号#27,镍,最大剩磁12,100高斯,最大磁能积35MGOe)测试磁场强度。在这些实验中,最强磁场可以用来捕获包被着特异结合白细胞的抗体的磁珠,与可以商购的磁细胞分离装置MPC-1(Dynal公司,布朗迪尔,美国威斯康星州)相比提高了血液样品中白细胞的去除。
[0580] 以几种布局和取向将磁铁附着在设计用于固定50毫升管的聚丙烯台上,如图9所示。用高斯计(JobMaster Magnets(兰德尔斯敦,美国马里兰州)型号GM1,探针型号PT-70,货号#373)测量所述管的右边、中心和左边的磁场强度。示例10
使用微型过滤器进行的用于细胞分析的全血白细胞分离
[0581] 白细胞携带着关于免疫系统健康的诊断信息,是通过流式细胞仪和其它细胞分析仪分析的主要样品。当制备用于流式细胞仪分析的全血样品时,首先用荧光标记的单克隆抗体对白细胞染色,然后使标记的白细胞与红细胞分离。传统地,通过密度梯度离心进行血细胞分离,最近,红细胞裂解已成为常规使用的方法。
[0582] FICOLLTM HYPAQUETM密度梯度离心利用单核细胞与血液中其它成分之间密度的不同来进行这种分离(Boyum A.Scand J Clin Lab Invest(1968)21(Suppl 97):77–89)。离心之后不同的细胞群基于它们的密度被分配至聚蔗糖溶液的不同层。因此,可以通过收集所述特定层的细胞纯化单核细胞。BD (Becton Dickinson公司,富兰克林湖,
TM
美国新泽西州)CPT  Cell Preparation Tube with Sodium Citrate(BD 含有
柠檬酸钠的CPTTM细胞制备管)简化了所述FICOLL HYPAQUE(聚糖体-泛影葡胺)方法,并且它将包含柠檬酸抗凝血剂的血液收集管与FICOLL HYPAQUE密度液体以及将两种液体分开的聚酯凝胶屏障组合在一起。然而,内部研究显示,即使在小心的离心步骤中也有多达7%的白细胞丢失(数据未显示)并且单核细胞带可能由于样品来源或离心处理被扰乱;因此,即使使用CPT管(BD CPTTM Cell Preparation Tube with Sodium Citrate的产品
信息)也不能达到所需要的纯度。
[0583] FICOLLTM HYPAQUETM密度梯度离心利用单核细胞与血液中其它成分之间密度的不同来进行这种分离(Boyum A.Scand J Clin Lab Invest(1968)21(Suppl 97):77–89)。离心之后不同的细胞群基于它们的密度被分配至聚蔗糖溶液的不同层。因此,可以通过收集所述特定层的细胞纯化单核细胞。BD (Becton Dickinson公司,富兰克林湖,
美国新泽西州)CPTTM Cell Preparation Tube with Sodium Citrate(BD 含有
柠檬酸钠的CPTTM细胞制备管)简化了所述FICOLL HYPAQUE(聚糖体-泛影葡胺)方法,并且它将包含柠檬酸抗凝血剂的血液收集管与FICOLL HYPAQUE密度液体以及将两种液体分开的聚酯凝胶屏障组合在一起。然而,内部研究显示,即使在小心的离心步骤中也有多达7%的白细胞丢失(数据未显示)并且单核细胞带可能由于样品来源或离心处理被扰乱;因此,即使使用CPT管(BD CPTTM Cell Preparation Tube with Sodium Citrate的产品
信息)也不能达到所需要的纯度。
[0584] 膜过滤器广泛应用于样品清除中,因为它们能基于大小去除颗粒或分子。然而,经典的过滤膜不具有均一的和精确控制的孔径,因此限制了这种分离的分辨率而只能提供定量结果。使用经典的过滤器,被过滤器保留的颗粒很少以高产量回收。例如,在全血RNA制备中使用的过滤膜将白细胞保留在所述过滤器顶部,而红细胞通过过滤器。然而,白细胞还未进行再收集便在过滤器上溶解,而RNA被保留在过滤膜上(应用生物系统,操作指南:LeukoLOCKTM总RNA分离系统(LeukoLOCKTM Total RNA Isolation System);生命技术)。最近,市场上已经有基于过滤器的单核细胞富集技术,但单核细胞的回收率仅为70%(PALL TM TM
Medica应用提示:Purecell 用于从人全血中富集单核细胞的筛选系统(Purecell  
Select System for Enrichment of Mononuclear Cells from Human Whole Blood)的性能特征;Pall医学-细胞疗法)。
[0585] 需要有一种用于细胞分析的样品制备技术,彻底从白细胞中去除红细胞并以>95%的高产量回收白细胞且没有亚群偏向。我们评估了制备用于流式细胞分析的白细胞的微型硅过滤装置的性能特征(Yu et al.,Whole Blood Leukocytes Isolation with Microfabricated Filter for Cell Analysis.
材料和方法
血液样品
[0586] 通过BD献血者计划(BD Blood Donor Program)从健康捐赠者获得血液样品。所有的样品用K3EDTA(Vacutainer;Becton Dickinson)防止凝血。样品经静脉抽血后不超过4h就处理,除非有不同的说明。过滤、Lyse/No Wash和Lyse/Wash制备
[0587] 过滤芯片和滤盒由AVIVA Biosciences公司(圣地亚哥,加州)生产。所述微型过滤器由硅片制成,具有微刻在芯片上的通道。如图25所示,所述滤盒具有连接样品贮液器、清洗贮液器以及注射泵的阀门,控制液体进出所述滤盒。将40台装置分为两批(第一批30台,第二批10台)评估从健康捐赠者全血中分离白细胞的性能。主要对过滤后白细胞和亚群的回收、过滤过程的稳定性以及过滤后细胞的持续性进行仔细评估。推荐滤盒一次性使用;然而,发现伴随中间清洗的连续运行中可以重复使用。(为避免污染,重复使用局限于相同的捐赠者血液。)
[0588] 首先向所述盒提供专有的清洗缓冲液AVIWash-P,然后向上部过滤室引入稀释后的全血(采用CD45-PerCP或MultitestTM试剂标记的10μl或50μl稀释至250μl)。通过连接所述装置的下出口室的注射泵将缓冲液或样品溶液以0.33或0.18ml/min的速度抽过所述过滤芯片。接下来是两个清洗步骤:冲洗过滤器的顶部以及清洗过滤器的底部。最后,将2ml洗脱缓冲液加入所述滤盒并使用3-ml注射器收集保留在所述过滤膜顶部的白细胞(图32)。将收集的白细胞转移至BD TrucountTM绝对计数管(货号340334)中用于流式细胞仪分析。
[0589] 每份血液样品也在ABX Micros 60血液分析仪(Horiba ABX)上检验,以获得总的白细胞数目(WBC)、红细胞数目(RBC)以及淋巴细胞、单核细胞和粒细胞的百分比。在评估过滤装置对总的白细胞及其三个亚群的回收时,使用ABX计数作为参考数目。
[0590] 每个血样50μl用于进行裂解不洗程序[细胞染色采用CD45-PerCP(BD Biosciences,San Jose,CA,cat340665)或BD Multitest CD3FITC/CD16+56PE/CD45PerCP/CD19APC试剂(BD Biosciences,cat.并按照BD  Biosciences网站(http://
www.bdbiosciences.com/support/resources/flowcytometry/index.jsp#protocols)上公布的使用1×FACS Lysing(BD Biosciences,货号349202)溶液的方法,按照Lyse No Wash程序[用CD45-PerCP(BD Biosciences,圣何塞,加州,货号340665)或BD Multitest CD3 FITC/CD16+56PE/CD45PerCP/CD19APC试剂(BD Biosciences,货号340500,CD3 Clone SK7,CD16 Clone B73.1,CD56 Clone NCAM 16.2,CD45 Clone 2D1,及CD19Clone SJ25C1)]以及裂解洗涤程序。在Trucount绝对计数管中对Lyse No Wash样品染色和裂解,而将Lyse Wash样品在洗涤后转移至计数管中。
细胞活力和凋亡试验
[0591] 用BDTM Cell Viability Kit(BD Biosciences,货号349480)试剂盒检测过滤后白细胞的活力。349480).。并对过滤回收的白细胞进行凋亡试验(Annexin V FITC,BD Biosciences,货号556547),以检测所述细胞的持续性。流式细胞仪分析
[0592] 在装有BD FACSCompTM和BD CellQuestTM Pro软件的Becton  Dickinson FACSCaliburTM流式细胞仪上分析样品。血细胞仪校准使用BD CalibriteTM Calibrite 3(cat 340486)和APC(cat 340487)珠子,通过每天运行FACSComp程序,分别自动为Lyse No Wash样品和Lyse Wash样品自动设置血细胞仪配置和补偿(表1)裂解洗涤配置用于过滤的细胞。
Table 1血细胞仪配置和补偿
[0593] FL1-2.1%FL2,FL2-25.4%FL1,FL2-0.0%FL3,FL3-19.2%FL2,FL3-0.8%FL4,FL4-50.4%FL3
[0594] 所述血细胞计数器的四个荧光通道指定为FL1FITC,FL2PE,FL3PerCP和FL4APC。在FL3(PerCP)上设置阈值。除非另有说明,否则每个测试获得了一万次总体事件。在FL3中计数珠子在它们的强荧光信号上被门控,并且白细胞群体也在FL3中在CD45+时间上被门控。淋巴细胞,单核细胞和粒细胞是白细胞的“子群体”,并且基于侧向散射和荧光性被门控。T,B和NK细胞是淋巴细胞的“子群体”,并且基于特异性抗体-荧光缀合物标记进一步被门控。
在多重试剂染色样品中,T细胞定义为CD3+淋巴细胞,NK细胞定义为CD16+CD56+淋巴细胞,并且B细胞为CD19+CD3淋巴细胞(图27a)所有数据在BD FACSDivaTM软件中分析。细胞的绝对数字通过比较细胞事件与Trucount珠子事件获得:每μl细胞=细胞事件的数量×每管中珠子的数量/珠子事件的数量×样品体积。
结果
过滤后白细胞的回收以及与全血透析法比较
[0595] 采用所述微型过滤器从全血分离的白细胞有效地去除了红细胞,其清理了用于流式细胞仪分析的样品图26采用Lyse No Wash程序,Lyse Wash程序和过滤程序制备的相同血液样品的FSC对SSC和FL3对SSC的点图。Lyse No Wash样品基本上被红细胞碎片污染,从点图中可以看出,它们占总获得的总事件的91%。在Lyse Wash样品中,红细胞碎片通过离心除去,点图中仅显示13%的事件来自碎片从过滤过程回收的白细胞包括最小比例的背景颗粒,占总事件的4%;显示所述红细胞从白细胞中有效分离。
[0596] 所述过滤过程导致的白细胞丢失为或最低。每个样品中的白细胞计数参照BD TruCount内标计数珠计算,并且总体回收率基于该结果与从ABX血液分析仪获得的完全血液计数的比率。图27显示了总白细胞,三个主要白细胞群体和三个淋巴细胞亚群(T,B和NK细胞)的回收结果的比较。在10个不同供体血样的白细胞回收商测试总共10个过滤盒,每个样品在过滤器中运行三个重复。与从LNW的100.2%±6.0%,从LW的86.2%±7.8%相比,在最优工作条件(在表2中记载),所述过滤器平均给出了总白细胞的98.6%±4.4%的回收。与细胞裂解方法相比,过滤后的细胞回收在淋巴细胞、单核细胞和粒细胞之间没有偏差。在过滤器的第二批评测中,新鲜血样采用Multitest试剂染色以调查淋巴细胞亚群体T细胞、B细胞和NK细胞的所述回收。采用五个样品,五个过滤器,每个样品三个重复穿过每个过滤器,观察到T细胞106%±5.6%的回收,NK细胞98.5%±19%的回收,以及B细胞83.5%±12的回收。较大的NK细胞和B细胞回收偏差是由于这些细胞的比例小以及样品数量的有限数量。
表2不同操作条件下过滤后白细胞回收的比较照
过滤后细胞可行性和可持续性
[0597] 过滤回收的白细胞的可行性被测试并与采用氯化铵裂解的全血细胞中回收的白细胞比较。没有采用FACS裂解溶液,由于它含有两种情况下,除去红细胞之后仍然有95%的白细胞存活并且没有白细胞死亡(图28a)。为了进一步测试细胞的过滤耐受性,细胞采用结合碘化丙啶(PI)。
[0598] Annexin V阳性先于质膜丢失,暗示了将导致细胞死亡的凋亡早期(PI阳性)。结果(图28b)显示,血液在抽出一小时内过滤时,过滤回收的细胞中95%显示无凋亡迹象;当抽取8小时后对血液进行过滤时,仍有90%的回收细胞保持健康。
[0599] 进一步微调样品过滤程序,以达到最佳的回收率。所有的血细胞都采用设置为“拉”模式的注射泵抽吸通过所述过滤器,并测试了两种不同的泵速。如表1所示,在较高的流速(0.33ml/min)下,白细胞回收率低于较低流速(0.18ml/min),当在过滤器上加载更多的细胞时,这种效果更明显。在较高流速下的抽拉力可能在白细胞上产生了足够的压力引起起物理变形并通过过滤器的狭逢。即使将泵设定为较低的流速(0.18ml/min),将含有平均350,000个白细胞的50μl全血(这是BD流式细胞仪测定中所需的典型体积),抽过所述过滤器,白细胞的回收率不如当应用具有平均50,000个细胞的10μl全血时的回收率。这表明,在测试的配置中,所述过滤器具有有限的保留容量,当超出时,会导致细胞损失。表1所示的结果是来自于至少五个滤筒的测试结果的平均值。将进一步研究确定过滤器尺寸、流量和总回收率之间的最佳关系。
[0600] 依赖于红细胞裂解的白细胞分离方法是快速和方便的,但是如果需要活细胞作为FACS裂解溶液固定细胞,则可能限制分析选择,如果不仔细地控制孵育时间,则氯化铵裂解可导致样品降解。因此,亟待提出用于流式细胞仪应用的替代性样品制备方法。此处评估的微型过滤器能够进行快速、简单的全血分离,白细胞回收率高,而不会引起白细胞亚群之间的偏倚。所述过滤器除去红细胞、血小板、血浆蛋白和未结合的染色试剂。这种温和的过滤过程产生非常干净的用于细胞分析的染色白细胞,白细胞没有受到任何损伤。该过滤盒能够处理流式细胞仪测定中通常需要的细胞数量。其在流式细胞仪样品制备中的应用将有助于方法标准化,节省劳动力和材料,最小化动手操作。
[0601] 从全血的其他成分中分离白细胞是流式细胞分析中非常重要的一步。常规使用的方法,FICOLL HYPAQUE密度梯度离心和红细胞裂解,已经显示出其在应用中的局限性。我们在这里报告微型过滤器在血液分离中的评估结果,这潜在地为流式细胞分析提供了一种新制备染色的清洁活性白细胞的方法。这里评估的微型过滤器能够进行快速、简单的全血分离,白细胞回收率高,不会引起白细胞亚群之间的偏倚。所述过滤器除去红细胞、血小板、血浆蛋白和未结合的染色试剂。这里报告的结果将有利于流式细胞仪器用户使用样品制备方法,其提供了工艺标准化和简单操作。有关更多信息,请参见Yu,Warner,Warner,Recktenwald,Yamanishi,Guia,and Ghetti.Whole blood leukocytes isolation with microfabricated filter for cell analysis.Cytometry A,79A(12):1009-1015,2011.。
示例11
采用具有反向平行流动的过滤室从血样中分离有核细胞的方法
[0602] 如图33示出了过滤室的一个示例性实施例,其通过两个分离的外罩部件在过滤器的两面形成前室和过滤后亚室。
[0603] 所述前室的深度为400μm。也考虑了具有约200μm或更小深度的前室的实施例。在一些实施例中,所述两个外罩部件可以通过激光联结。在一些实施例中,可以使用液体胶来粘合所述两个外罩部件。所述顶部的外罩部件为34.0mm×7.9mm,在流入侧(小口)为正方形,在流出侧(具有大收集井)为圆形。所述流出接收井可装300μL,具有150×150mm2的过滤区域,所述前室能装约65±6μL的流体(取决于胶的厚度)。在前室的深度为200μm的实施例中,体积可以为 所述流入口有一个2.4毫米的对准,其引导漏斗下降到1.1毫米端口(以对接和密封19根管子或移液管尖端或机器注射器尖端)。
[0604] 所述过滤后亚室的深度是不均匀的,从右边入口开始500μm,并且在左边出口700μm结束(为了部分地校正含有废弃细胞的流出浓度增加)。底部外罩部件的周边包含一个高井,其用于在使用时在装置上意外溢出血液或在流入口外部意外分配血液的情况下防止仪器被污染。所述溢流井最大尺寸为37.7mm×11.6mm。这些端口的尺寸适于接合和密封直径为1.1毫米(19规格管)的管道,并且间隔约29.1毫米(收缩后约为29.0毫米)。所述过滤后亚室比前室宽约400μm以报留外罩部件之间任何残留的胶水。所述顶部外罩部件不仅在水平接触表面上衔接底部壳体部分,而且也在外缘起约>1mm的位置准垂直侧壁相接,在拐角处具有一些额外的间隙从血样中分离有核细胞的方法
[0605] 由于血细胞直径约为10μm,占全血的约45%,所以400μm深度应允许细胞堆积25-30个细胞深(不计数血小板)。在测试中,由于过滤发生的大部分变化都是在过滤的前115秒内。即将举行的测试使用两种过滤模式。
1.注射50μL血液,然后将至少5倍体积的清洁培养基(250-300μL)通过细胞洗去血浆、血小板,和红细胞,然后在150μL培养基中回收。
2用干净的介质预填充室,然后缓慢地连续地将100μL的血液通过所述过滤器,并追加更多体积的清洁介质,同时从滤器下方反复施加正压的小脉冲,以使保留的细胞先流到所述出口接收室。
[0606] 在第二种过滤模式中,脉冲的宽度、高度、轮廓以及时间被优化以无损害地回收所述白细胞和稀有细胞,同时最大化地移除红细胞、浆细胞和血小板细胞。表3用于分离和标记细胞的示例性液体流速。
注:粗体显示的是控制元件,而非粗体显示的是衍生(计算)元件。
注:泵5=泵2-泵1
泵4=泵5-泵3
示例12
用于从血液样品中分离和分析细胞的自动系统
[0607] 图35描绘了自动系统的典型实施例,所述自动系统具有直接连接流式细胞仪的过滤室。
[0608] 所述虹吸管利用环境压力作为被动泵吸取所述样品细胞,优选10×至100×稀释的全血,或任何其它混合细胞样品。
[0609] 泵1、2和3是产生过滤速度的可程控流速的计量泵。泵4是通常产生常规流式细胞仪的集中流(聚焦流)的泵。所述流动细胞通过其远端的真空压力泵送。
[0610] 在所述过滤室中有两个过滤器,第一个是预滤器(在所述细胞流动室上方),可以是任何过滤器并且优选市售的采用我们的不粘表面包被的并且当样品流过时只用于提供穿过过滤室的溶液的定向流动的SS过滤器。第二个过滤器是本发明提供的狭缝过滤器,也包被成不粘细胞的表面。血浆、红细胞、血小板及未结合的标记依靠废料泵通过狭缝过滤器被去除。示例13
高冲洗容量过滤室
[0611] 图36描绘了高冲洗容量过滤室的典型实施例。所述高冲洗容量过滤室具有两个干净缓冲液进入点(1和3),当红细胞通过底部过滤器时不仅洗掉红细胞,还从上面加入干净缓冲液推动细胞通过过滤器并提供从进料泵至回收室内更高的流速。在这个实施例中,将优选脉冲流,其中泵1和泵2将在相同速度和更高废料流出量之间交替,与在泵2-泵1的差速和0之间交替的泵3相互配合。当泵3设置在0流速时,泵1和泵2将以相同速度流动。这将使进料泵4能够间歇地逐步地将保留的细胞推过过滤器进入回收室内,当血浆、血小板、红细胞、未结合标记、可溶性抗原等压实了的时候。在这个布置中有两个过滤器,底部过滤器是狭缝过滤器,而顶部过滤器可以是任何普通的在低流速条件下将保持其平面度的过滤器,根据需要可以是采用不粘表面包被的过滤器。所述顶部过滤器可以是,例如,具有直径约为0.05-2微米的任何形状的孔洞的不锈薄板或聚酰亚胺薄板。所述顶部过滤器可以通过其上方的缓冲液分配室上的结构支撑,从而在过滤过程中保持其平面度。
[0612] 所述回收泵是假想的(大气压),其流速可以通过泵4-泵2+泵1+泵3来计算。所述(底部狭缝过滤器的)过滤泵是假想的(由其它串联工作的泵控制的),其流速可以通过泵2-泵1来计算。示例14
两个过滤室串联
[0613] 图37描绘了两个过滤室串联的典型实施例。两个过滤室在彼此部分重叠的两个过滤器之间是液体相通的,例如所述前室。示例15
具有多个输出口的过滤室
[0614] 图38描绘了具有多个输出口的过滤室的典型实施例。两个或多个串联排列的过滤器,每个过滤器具有递增狭缝宽度,可以装入过滤室中。也可以使用单个的、更长的在其底部具有多个输出口的过滤器沿着穿过上室的路线连续去除较大的细胞。示例16
从整片过滤膜上制造过滤器
[0615] 将硅片粘合在作为牺牲载体的玻璃片上,然后使用下列步骤将其变薄、遮掩并蚀刻,从而在所述硅片的整个表面产生连续的过滤器。
[0616] 将粘合化合物在牺牲玻璃片上旋转涂敷成均匀厚度并将硅片按压在牺牲片上已消除聚合过程中的气泡并将胶烤至聚合。
[0617] 然后通过CMP使所述附着的硅片变薄,直到其整个表面的厚度为40-60μm,特别是55-60μm的厚度。
[0618] 然后将诸如二氧化硅之类的介质层沉积在所述硅片上作为硬膜。
[0619] 然后将聚合物膜层(软膜)在硬膜上方通过旋转涂敷的方法形成层次,并在热板上固化
[0620] 然后用投影掩膜在软膜的整个表面塑形,除了即将成为所述狭缝的重复矩形区域,整个表面通过紫外光固化。
[0621] 未固化的软膜材料与其下方暴露的硬膜被蚀刻去掉。
[0622] 然后按照Bosch方法使用深反应离子刻蚀(DRIE)工序对所述硅片进行深蚀刻。这个工序去除了所述软膜并穿过所述硅片蚀刻出塑形的狭缝并继续去除所述两个薄片之间底层片粘合化合物。设定膜的大小及DRIE工序以便产生的狭缝具有2.8μm宽×55-60μm深×50μm长并且在所述硅片的整个表面上沿其短轴每9μm而沿其长轴每70μm重复。所述硅片的外缘从边缘起5mm具有未蚀刻的环状区域,其形成了以后可以当作把手的坚固的周边。
[0623] 然后将所述硅片置于等离子体增强气相沉积室并使(TiN)沉积在其整个表面。
[0624] 使用不含氧的1-十二烯溶解牺牲片和过滤片之间的粘合化合物直到所述过滤片从牺牲片(然后可以重新用于另外的薄片)上释放并浮起。
[0625] 将释放的过滤片在甲醇中洗净并置于真空炉中干燥。
[0626] 然后将所述硅片粘合在塑料处理环以及同样用沉积涂层的注塑模具加工的塑料过滤器主体外罩的一边上。
[0627] 粘合后,断开所述外罩而保留过滤器的粘合部分,将其装入所述模具加工的过滤器外罩的后第二部分,同样用锡沉积涂层,从而产生随时可用的过滤器。
[0628] 涉及本申请的包括专利文件和科学文献在内的所有出版物及其参考书目和附件,通过引用全部包含,以相同的程度用于所有目的,好像每个单独的出版物分别通过引用包含于此。
[0629] 所有的标题是为了方便读者,而不应该用于限制标题后面原文的意思,除非这样指定。
[0630] 上述实施例仅仅是为了解释目的包含于此,而不能限制本发明的保护范围。对上述那些实施例的许多变动是可以的。由于对上述实施例的修改和变动对于本领域技术人员是显而易见的,因此本发明仅受到附加权利要求的范围限制。
[0631] 引用上述出版物或文献并非承认任何前面所提到的都是相关现有技术,也并不构成对这些出版物或文献的内容或日期的任何承认。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈