首页 / 专利库 / 光学 / 荧光寿命成像显微术 / 五维荧光显微成像技术

五维荧光显微成像技术

阅读:757发布:2020-05-24

专利汇可以提供五维荧光显微成像技术专利检索,专利查询,专利分析的服务。并且本 发明 是一种可以同时获取 生物 体的 光谱 信息和寿命信息,而且可以实现三维成像的方法。该发明的显著特点是可以获得多 光子 或单光子激发5维 荧光 显微功能图像信息,即三维空间、一维时间和一维光谱。这种多参量复合测量和多参量同时测量技术,能够满足生物学研究中不同层次的需要,而且可以做到根据研究的需要,实现灵活定制(3维光谱、3维寿命或3维强度成像)的同时测量。发明的另一个显著特点是利用我们自行设计的光学 显微镜 、两个自聚焦微透镜阵列和分光棱镜,可以在不扫描激发光束的情况下,同时获得两维空间光谱分辨的多光子或单光子激发 荧光寿命 显微图像,从而提高了信息的获取速率。本发明具有高 时空 分辨、高光谱分辨、测量时间短、成像深度深、有利于活体测量等优点,是一种新型的多光谱分辨荧光显微功能成像技术,可广泛用于生物医学研究、临床诊断以及药物筛选等领域。,下面是五维荧光显微成像技术专利的具体信息内容。

1.一种5维荧光显微功能成像的方法,其特征是将高重复频率激光器、荧光显微镜、样品 台、微位移系统、微透镜阵列、分光棱镜与计算机数字图像复原处理技术结合起来,形 成一套基于皮秒同步扫描相机的多光谱分辨荧光寿命显微成像系统。该系统采用扩束镜 和微透镜阵列实现两维同时荧光激发;用一对微透镜阵列和一个分光棱镜实现两维同时 荧光光谱分辨;通过对同步扫描相机变像管的特殊设计和特殊工作模式的选取实现两维 空间同时时间分辨;通过样品的三维微位移,获得三维高空间分辨率信息。因此本系统 可以获得多光子或单光子激发的5维荧光显微功能图像信息,即三维空间、一维时间和 一维光谱。
2.根据权利要求1所述的方法,其特征是采用高重复频率激光器,如宝石模飞秒激光 器或其它高重复频率飞秒或皮秒激光器作为多光子或单光子激发的5维荧光显微成像系 统的激发光源
3.根据权利要求2所述的方法,其特征是所述的激光器其光谱范围既可是固定波长的也可 是变波长的,波长允许变化范围400-1000nm,其脉冲重复频率既可是固定的,也可在一 定的范围内改变,但每一次工作频率应当是稳定的,重复频率变化范围50MHz-500MHz。
4.根据权利要求1所述的方法,其特征是在高重复频率激光器光路中采用脉冲提取装置, 将高重复频率激光器输出的超短脉冲重复频率从50MHz-500MHz降到50kHz-500MHz。
5.根据权利要求1所述的方法,其特征是扩束镜采用特殊设计,可以对激光束均匀扩束, 使光束能量在空间的分布均匀化。
6.根据权利要求1所述的方法,其特征是用一个具有相同焦距的N×N(N≥2)微透镜阵列 将激光器光束离散成N×N的二维点阵光源通过显微物镜激发样品,从而实现对样品的二 维空间同时离散激发。
7.根据权利要求1和6所述的方法,其特征是从样品发出的荧光又通过显微物镜聚焦放大 后,形成两维点阵荧光。
8.根据权利要求7所述的方法,其特征是N×N微透镜阵列的所有透镜分别具有相同的焦距、 好的像质和高的透过率,并在微透镜阵列平面上等距排列。
9.根据权利要求1所述的方法,其特征是所用的两个微透镜阵列具有相同的结构和相同的 性能参数。
10.根据权利要求1所述的方法,其特征是所用的两个微透镜阵列与分光棱镜之间要具有合 理的相对位置和方位。
11.根据权利要求1和7所述的方法,其特征是通过显微物镜所形成的两维点阵荧光通过微 透镜阵列后变成平行光,再通过分光棱镜实现分光,最后通过另一个微透镜阵列聚焦, 实现两维空间同时光谱分辨。
12.根据权利要求1和11所述的方法,其特征是位于棱镜和同步扫描相机光电阴极之间的第 二个微透镜阵列可以由一个大孔径的单透镜或复合透镜来代替。
13.根据权利要求1和12所述的方法,其特征是可以把微透镜阵列置于照明光路,利用棱镜 和一个大口径的单透镜或复合透镜实现点阵荧光的分光和成像。
14.根据权利要求1所述的方法,其特征是荧光显微镜为多光子或单光子激发共焦显微镜, 由于所完成的特殊设计,在400-1000nm光谱范围内都具有高的空间分辨率。
15.根据权利要求1所述的方法,其特征是同步扫描变像管具有大工作面积的光电阴极,具 有好的像质和小的时间畸变的电子光学聚焦系统,具有满足宽电子束像质要求的偏转系 统。
16.根据权利要求1和15所述的方法,其特征是同步扫描变像管在扫描电路的驱动下能实现 两维空间同时时间分辨。
17.根据权利要求1所述的方法,其特征是投影镜置于同步扫描变像管之前和微透镜阵列之 后,将微透镜阵列所成的点阵光谱分辨图像投影到同步扫描变像管光电阴极上。
18.根据权利要求1所述的方法,其特征是所设计的扫描电路在相同的工作频率下具有不同 的扫描电压斜率,从而获得不同的时间量程和时间分辨率
19.根据权利要求1所述的方法,其特征是快速光电转换器在超短光脉冲作用下产生电脉冲, 并用该电脉冲触发扫描电路,产生所需的高压高重复频率斜坡电压脉冲,用于驱动同步 扫描变像管的偏转系统。
20.根据权利要求1和19所述的方法,其特征是在快速光电转换器和扫描电路之间引入一可 变延时器,通过调节其延时使入射到同步扫描变像管光电阴极上的光脉冲产生的电子脉 冲与加在偏转系统上的斜坡电压脉冲同步。
21.根据权利要求1所述的方法,其特征是同步扫描相机的时间扫描方向相对于两维阵列光 谱扫描线方向具有合理的取向,通过扫描电路和同步扫描变相管偏转系统的共同作用, 可测量不同光谱的荧光寿命。
22.根据权利要求1所述的方法,其特征是采用CCD实时读出系统,CCD实时读出系统和同 步扫描变像管之间的光耦合或者通过光学透镜或者通过光锥实现。
23.根据权利要求1所述的方法,其特征是采用三维微位移系统,通过样品的三维微位移, 既可以通过像素大小的位移在x-y平面内获得高的空间分辨率,又可以通过在Z方向的 微位移,获得三维空间信息。

说明书全文

技术领域

发明是一种可以同时获取生物体的光谱信息和寿命信息,而且还能实现三维空间成像 的方法,具有高时空分辨、高光谱分辨、测量时间短、成像深度深、有利于活体测量等优点, 是一种新型的多光谱分辨荧光显微功能成像技术,可用于生物医学研究、临床诊断以及药物 筛选等领域。

背景技术

荧光寿命信息和光谱信息的测量,对生物体功能信息的获取非常重要,它有助于揭示生 物分子组分、分子间的相互作用、分子微环境变化等方面的多样化信息,因此,已引起了人 们的广泛关注[1,2]。
光学功能成像是发展最快的功能成像方法之一。光子、特别是可见与红外波段光子的能 量较低,对生命体的杀伤作用小,适合于活体动态监测[3,4];光谱测量具有良好的分子对比性 和多参量性,可包含丰富的分子结构与微空间环境信息,能够反映各种代谢过程和病变;作 为光谱测量的补充,荧光寿命成像可以获取样品的功能信息,对荧光分子所处微环境内诸如 pH值、离子浓度(Ca2+,Na+等)、压等生理参数进行定量测量,并已在生物物理、生物 化学等领域获得了广泛的应用[5-7];光学系统可操作性强,原理成熟,结构相对简单;另外, 由于激光技术、探测技术和计算机技术的高度发展,研制廉价的光学功能成像系统的技术环 境已经成熟。正因为此,生物医学光学已经成为一蓬勃发展的新兴学科领域。
与其它功能成像手段相比,基于光学原理的成像方法进行生物活体测量的最大优势是光 学空间分辨率可以达到亚细胞层次[8]。荧光显微成像技术已经在细胞生物物理、细胞生物化 学和医学研究中显示出极大的潜。在另一方面,光学方法测量生物体的一个最主要障碍是 穿透深度有限。由于大多数生物组织是强散射体,基于荧光测量的各种三维光学成像方法穿 透深度一般不超过1毫米,并且成像分辨率随着成像深度急剧降低[9]。利用双光子激发可以 提高荧光成像的穿透深度[10]。由于光散射系数反比于入射光波长的四次方,采用双光子激发 时激发光的散射损失只是单光子过程的十六分之一,探测深度明显增加[11]。除此之外,双光 子激发对生物体的杀伤降低,有利于对活体的长时间动态监测;并且,双光子激发的吸收谱 很宽,可以利用单一光源激发不同荧光波段的多种探针。这些特点使双光子激发荧光成像在 生物医学的许多研究领域得到了广泛的应用[12-14]。同步扫描相机技术的发展,大大提高了信 息获取速率,以及空间和时间分辨率[15-17]。
近年来,随着探测技术尤其是超快固体成像器件、宽频谱调谐激光技术及计算机技术的 发展,荧光寿命和荧光光谱分辨显微成像技术已经获得人们的广泛重视[18-26],已经有一些国 外的科研单位在开展这方面的研究,取得了一些研究成果,并已有一些相关的诊断设备开发 出来,应用于临床研究。但由于技术上的限制,荧光寿命和光谱成像目前仍然大都限于样品 表面,寿命信息和光谱信息的获取是通过分立实验得到的,没有同时获得生物分子的寿命和 光谱;尽管有人尝试将多光谱技术和时间分辨技术结合起来以图解决这个问题,但所得到的 结果是在最多两个光谱段得到生物体的寿命信息。三维寿命和光谱成像工作虽然引起越来越 多用户和厂商的关注,目前仍然停留在实验室研究阶段[27,28]。

发明内容

本发明主要解决目前荧光寿命显微成像技术中存在的测量时间长、时间分辨率不够高、 寿命测量范围不够宽、没有光谱分辨等问题,提出了一种同时获取生物体的光谱信息和寿命 信息,而且可以三维成像的方法。
本发明的原理图如图1所示,主要由高重复频率超短脉冲激光器、脉冲提取器、扩束器、 微透镜阵列、荧光显微镜、三维微位移系统、棱镜分光系统、同步扫描相机及其控制电路、 CCD实时读出系统和计算机等组成。
本发明在高重复频率超短脉冲激光器如飞秒激光器光路中采用了脉冲提取装置,将高重 复频率超短脉冲激光器如Ti宝石激光器输出的超短脉冲重复频率从76MHz降到1MHz,因 此可测的荧光寿命范围可从皮秒级到1微秒。
本发明采用特殊设计的扩束镜对激光束进行均匀扩束,用微透镜阵列将均匀激光束作两 维空间离散化处理,并通过显微物镜对样品进行两维高空间分辨离散化照明,通过多光子或 单光子激发,使样品被照明的两维分布的离散点同时发出荧光,即实现两维同时荧光激发
本发明用两个N×N(N≥2)微透镜阵列和一个分光棱镜实现两维同时荧光光谱分辨。荧 光通过显微物镜聚焦后生成两维空间离散的荧光点阵列图像,再经微透镜阵列形成一系列平 行光束,并经过棱镜进行分光,分光后的光束再经过另一个与上述微透镜阵列结构完全相同 的微透镜阵列,则在其焦平面上形成彼此平行的光谱分辨的扫描线阵列。
本发明在同步扫描相机的时间扫描方向和输入荧光的光谱扫描方向之间设计了一个合理 的夹,通过扫描电路和同步扫描变像管偏转系统的共同作用,可测量出不同光谱的荧光寿 命。
本发明将放大倍数为2x投影镜置于同步扫描相机之前,将微透镜阵列输出的点阵光谱分 辨图像中继成像到同步扫描变像管光电阴极上,解决微透镜阵列焦距短,不能直接成像于光 电阴极上的问题。
本发明采用一个三维微位移系统,通过样品的三维微位移,既可以通过像素大小的位移 在x-y平面内获得高的空间分辨率,又可以通过在Z方向的微位移,获得三维空间信息。
本发明利用特殊设计的扫描电路,能在相同的工作频率下送出具有不同斜率的斜坡电压 脉冲,从而扩张荧光寿命测量范围和改变系统的时间分辨率。
本发明通过图像增强技术、高效光耦合技术和同步扫描工作模式,实现对微弱信号的高 灵敏度探测。
本发明采用特殊设计的光学系统或光锥实现同步扫描变像管荧光屏和CCD读出系统之 间的高效光耦合。通过CCD实时读出系统可以实时监测和记录样品的荧光光谱和时间分辨荧 光强度等数据信息。
附图说明
图1五维荧光显微成像技术原理图。
图2同步扫描相机工作原理图。
图3二维同时荧光光谱成像方法示意图-1。
图4二维同时荧光光谱成像方法示意图-2。
图5二维同时荧光光谱成像方法示意图-3。
图6微透镜阵列示意图。

具体实施方式

图1中,由高重复频率超短光脉冲激光器如宝石模飞秒激光器光路输出的超短脉冲 经过脉冲提取器后,重复频率从76MHz降到1MHz,然后采用扩束镜对激光束进行均匀扩束, 用微透镜阵列如自聚焦透镜将均匀激光束作两维空间离散化处理,并通过显微物镜对样品进 行两维高空间分辨离散化照明,使样品被照明的两维分布的离散点同时发出荧光,这些荧光 通过显微物镜聚焦后生成两维空间离散的荧光点阵列图像(图中1处);再经微透镜阵列形 成一系列平行光束,经过棱镜或光栅分光系统后,光束进入另一个微透镜阵列,并在其焦平 面上(图中2处)形成彼此平行的光谱分辨的扫描线阵列;最后经投影镜成像到同步扫描变 像管的光电阴极上,通过扫描电路和同步扫描变像管偏转系统的共同作用,可测量出不同光 谱的荧光寿命,从而我们可在图中3处同时获得两维空间离散点不同光谱的荧光寿命,即同 时实现荧光光谱分布测量和荧光寿命测量。通过特殊设计的光学系统或光锥实现同步扫描变 像管荧光屏与CCD的光耦合。通过该实时读出系统和显示器,可以实时监测和记录样品的荧 光光谱和时间分辨荧光强度等数据信息。通过样品的三维微位移,既可以通过像素大小的位 移在x-y平面内获得高的空间分辨率,又可以通过在Z方向的微位移,获得三维空间信息。
图2中,1.分束镜 2.物镜 3.狭缝 4.中继镜 5.同步扫描变像管 6.高压电源 7.全反镜 8.PIN 9.可变延时器 10.扫描电路 11.耦合透镜 12.CCD摄像机 13.微机 14.监视器 P/C:光 电阴极 M:加速栅网 F:静电聚焦系统 D:偏转系统 MCP:微通道板 P/S:荧光屏。采用 高重复频率的激发光脉冲序列作为光源,该脉冲序列被分光镜分为两束,即主光束和触发光 束。主光束用于激发样品,样品发出的也是高重复频率的荧光脉冲。荧光脉冲序列通过物镜、 狭缝和中继镜,被成像在同步扫描变像管的光电阴极上并产生光电子脉冲序列。光电子脉冲 序列经电子光学聚焦系统聚焦后进入偏转区。若这时同步重复扫描电路不工作,则在同步扫 描变像管荧光屏上或在CCD实时读出系统的监视器上看到的是一幅静态狭缝图像。当上述光 脉冲序列触发PIN光电转换器时,PIN光电转换器送出的电脉冲序列经可变延时器由扫描电 路产生一高电压斜坡脉冲序列,并加到偏转系统上。通过调节可变延时器的延时,使通过偏 转系统的每一光电子脉冲和加到偏转系统上的高电压斜坡脉冲同步,则光电子脉冲序列中的 每一光电子脉冲被相应的以线性变化的偏转场所扫描。被扫描后的电子束经MCP电子倍增、 近贴聚焦后轰击荧光屏,转换成可见光扫描图像,再经耦合透镜后由CCD实时读出系统给出 荧光脉冲随时间衰减的波形
图3中,透镜L1、L2共同组成物镜,1是微透镜阵列板,2是微透镜,扩束后的激光光 束3,照明微透镜阵列LA1,聚焦在透镜L2的物方焦平面上,形成一点阵光源,经透镜L2准 直为平行光,并通过透镜L1照明置于物镜的像方焦平面上的样品;物镜收集样品的激发荧光, 生成两维空间离散的荧光点阵列图像;再经过微透镜阵列LA1形成平行光,并经过分光棱镜 或光栅进行分光,分光后的光束再经过一个和LA1完全相同的微透镜阵列LA2,则在其焦平 面上形成彼此平行的光谱分辨的扫描线阵列,即实现二维同时荧光光谱成像,最后经投影镜 照射到同步扫描变像管的光电阴极上。
图4中,透镜L1、L2共同组成物镜,1是微透镜阵列板,2是微透镜,扩束后的激光光 束3,照明微透镜阵列LA1,聚焦在透镜L2的物方焦平面上,形成一点阵光源,经透镜L2准 直为平行光,并通过透镜L1照明置于物镜的像方焦平面上的样品;物镜收集样品的激发荧光, 生成两维空间离散的荧光点阵列图像;再经过微透镜阵列LA1形成平行光,并经过分光棱镜 或光栅进行分光,分光后的光束再经过一个大口径的单透镜或复合透镜L3,则在其焦平面上 形成彼此平行的光谱分辨的扫描线阵列,即实现二维同时荧光光谱成像,最后经投影镜照射 到同步扫描变像管的光电阴极上。
图5中,透镜L1、L2共同组成物镜,1是微透镜阵列板,2是微透镜,扩束后的激光光 束3,照明微透镜阵列LA1,经透镜L3后在L2的物方焦平面上形成一点阵光源,经透镜L2 准直为平行光,并通过透镜L1照明置于物镜的像方焦平面上的样品;物镜收集样品的激发荧 光,生成两维空间离散的荧光点阵列图像;经过分光棱镜或光栅进行分光,分光后的光束再 经过一个大口径的单透镜或复合透镜L4,则在其像面上形成彼此平行的光谱分辨的扫描线阵 列,即实现二维同时荧光光谱成像,最后经投影镜照射到同步扫描变像管的光电阴极上。
图6中,1是微透镜阵列板,2是微透镜。图中左侧表示可选择的运动轨迹,左上方轨迹 表示快速的双向扫描,下方轨迹表示精度更高的单向扫描;图中右侧为微透镜阵列的侧视图。
综上所述,本发明利用多光子或单光子激发两维同时光谱分辨荧光显微镜、两维同时时 间分辨同步扫描相机和光锥或特殊设计的光学系统耦合的CCD实时读出系统以及微透镜阵 列、阵列分光系统、三维微位移系统实现了5维多光子或单光子荧光显微功能成像,即三维 空间、一维时间和一维光谱。它是一种同时获取生物体的光谱信息和寿命信息,而且是一种 可实现三维成像的新技术,主要解决了目前荧光寿命显微成像技术中存在的测量时间长、时 间分辨率不够高、寿命测量范围不够宽、没有光谱分辨等问题,还可实现时空谱的高分辨测 量、多参量复合测量和多参量同时测量,对实时、在体观察分析生物体具有重要的应用价值, 可广泛用于生物医学研究、临床诊断以及药物筛选等领域。
参考文献
[1]M.Christenson,and S.Sternberg,“Fluorescence lifetime imaging microscopy(FLIM)lets biologists study cellular processes”,SPIE’s oemagazine,2004,1,pp28-30.
[2]J.R.Lakowicz.“Principles of fluorescence spectroscopy”,Kluwer Academic/Plenum,2nd ed., 1999.
[3]W.Denk and K.Svoboda.“Photon Upmanship:Why Multiphoton Imaging Is More than a Gimmick”,Neuron,1997,Vol.18,pp351-357.
[4]A.periasamy,K.K.Sharman,and R.Ahuja,et al.“Fluorescence Lifetime Imaging of Green Fluorescent Protein in a Single Living Cell”,SPIE,Vol.3604,1999,pp6-12.
[5]A.Periasamy,P.Wodnicki,and Xue F.Wang,et al.“Time-resolved fluorescence lifetime imaging microscopy using a picosecond pulsed tunable dye laser system”,Rev.Sci.Instrum. 1996,67(10),pp3722-3730.
[6]K.Dowling,S.C.W.Hyde,and J.C.Dainty,et al.“2-D fluorescence lifetime imaging using a time-gated image intensifier”,Optics Communications,1997,135,pp27-31.
[7]D.Elson,S.Webb,and J.Siegel,et al.“Biomedical Applications of Fluorescence Lifetime Imaging”,Optics & Photonics News,2002,11,pp27-32.
[8]J.B.Pawley ed.,“Handbook of Biological Confocal Microscopy”,Plunum Press,New York, 1995.
[9]S.Rawlings and J.Byatt.“How Microscopy Produces a Sharper Image”,Biophotonics International,2002,5.
[10]W.Denk,J.H.Stricker and W.W.Webb.“Two-photon laser scanning fluorescence microscopy”,Science,1990,248,p73.
[11]R.Nitschke,and S.Ricken.“2-Photon Microscopy-the Future of Fluorescence Microscopy” Innovation Special-Research and Technology,1999.
[12]P.T.C.So.“Two photon excitation fluorescence microscopy”,Annu.Rev.,Biomed.Eng.,2000, 2,pp399-429.
[13]T.Gura.“Biologists get up close and personal with live cells”,Science,1997,276,p1988.
[14]S.A.Tatarkov,C.Lloyd and D.A.Berk.“Two-photon fluorescence correlation microscopy for biophysical studies”,Proceedings of SPIE,2001,Vol.4241,pp312-316.
[15]M.Heya,S.Fujioka,and H.Shiraga,et al.“Development of wide-field,multi-imaging x-ray streak camera technique with increased image-sampling arrays”,Review of Scientific Instruments,2001,Vol.72(1),pp755-758.
[16]R.V.Krishnan,Eva Biener,and Jian-Hua Zhang,et al.“Probing subtle fluorescence dynamics in cellular proteins by streak camera based fluorescence lifetime imaging microscopy”,Applied Physics Letters,2003,Vol.83(22),pp4658-4660.
[17]R.V.Krishnan,H.Saitoh,and H.Terada,et al.“Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera”,Review of Scientific Instruments, 2003,Vol.74(5),pp2714-2721.
[18]E.Schrck,S.du Manoir,and T.Veldman,et al.“Multicolor Spectral Karyotyping of Human Chromosomes”,Science,1996,273,pp494-497.
[19]P.I.H.Bastiaens and A.Squire.“Fluorescence lifetime imaging microscopy:spatial resolution of biochemical processes in the cell”,Trends in Cell Biology,1999,9,pp48-52.
[20]T.Oida,Y.Sako,and A.Kusumi.“Fluorescence lifetime imaging microscopy(flimscopy): Methodology development and application to studies of endosome fusion in single cells”, Biophys.J.,1993,64,pp676-685.
[21]J.R.Lakowicz,H.Szmacinski,and K.Nowaczyk et al.“Fluorescence lifetime imaging of intracellular calcium in COS cells using Quin-2”,Cell Calcium,1994,15,pp7-27.
[22]R.Sanders,R.Sanders,and A.Draaijer et al.“Quantitative pH imaging in cells using confocal fluorescence lifetime imaging microscopy”,Anal.Biochem.,1995,227,pp302-308.
[23]H.Szmacinski,J.R.Lakowicz,and M.L.Johnson.“Fluorescence lifetime imaging microscopy: Homodyne technique using high-speed gated image intensifier”,Method Enzymol.,1994,240, pp723-748.
[24]J.R.Lakowicz,H.Szmacinski,and K.Nowaczyk et al.“Fluorescence lifetime imaging”, Anal.Biochem.,1992,202,pp316-330.
[25]R.Cubeddu,G.Canti,and A.Pifferi,et al.“Fluorescence lifetime imaging of experimental tumors in hematoporphyrin derivative-sensitized mice”,Photochem.Photobiol.,1997,66, pp229-236.
[26]T.French,D.J.Weaver,and T.Coelho-Sampaio et al.“Two-photon fluorescence lifetime imaging microscopy of macrophage-mediated antigen processing”,J.Mocrosc.,1997,185, pp339-353.
[27]J.Siegel,D.S.Elson,and S.E.D.Webb,et al.“Whole-field five-dimensional fluorescence microscopy combining lifetime and spectral resolution with optical sectioning”,Optics Letters, 2001,Vol.26(17),pp1338-1340.
[28]S.E.D.Webb,D.S.Elson,and J.Siegel,et al.“5-D fluorescence microscopy”,Proceedings of SPIE,2001,Vol.4431,pp87-93.
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈