首页 / 专利库 / 化学反应,工艺和试剂 / 等离子体氧化 / 用于SiC等离子体氧化的微波等离子体发生装置

用于SiC等离子体化的微波等离子体发生装置

阅读:390发布:2020-05-11

专利汇可以提供用于SiC等离子体化的微波等离子体发生装置专利检索,专利查询,专利分析的服务。并且一种用于SiC 等离子体 氧 化的 微波 等离子体发生装置,包括外腔体和设置在所述外腔体内的多个微孔/微纳结构双耦合 谐振腔 ,其中所述谐振腔包括一圆柱形腔体,所述圆柱形腔体的周壁上均匀分布由多个微孔形成的微孔阵列,所述微孔的直径是 波长 的奇数倍,所述腔体的内壁上具有金属微纳结构,所述金属微纳结构的周期尺寸为λ/n,λ为入射波长,n为谐振腔材料的折射率,所述外腔体上设置有进气口,用于向所述外腔体内输送含氧气体,所述含氧气体在所述谐振腔周围形成用于氧化SiC的氧等离子体,所述谐振腔的下方设置有载物台。本 发明 的 微波等离子 体发生装置可实现高效、均匀性良好的SiC样品的氧化。,下面是用于SiC等离子体化的微波等离子体发生装置专利的具体信息内容。

1.一种用于SiC等离子体化的微波等离子体发生装置,其特征在于,包括外腔体和设置在所述外腔体内的多个微孔/微纳结构双耦合谐振腔,其中所述谐振腔包括一圆柱形腔体,所述圆柱形腔体的周壁上均匀分布由多个微孔形成的微孔阵列,所述微孔的直径是波长的奇数倍,所述腔体的内壁上具有金属微纳结构,所述微孔阵列与金属微纳结构形成双耦合结构从而实现谐振增强和可调,所述金属微纳结构的周期尺寸为λ/n,λ为入射波长,n为谐振腔材料的折射率,所述外腔体上设置有进气口,用于向所述外腔体内输送含氧气体,所述含氧气体在所述谐振腔周围形成用于氧化SiC的氧等离子体,所述谐振腔的下方设置有载物台,用于支撑SiC衬底。
2.根据权利要求1所述的微波等离子体发生装置,其中,所述圆柱形腔体的周长为工作波长的3/4的整数倍,谐振发生在第1个奇模上。
3.根据权利要求1所述的微波等离子体发生装置,其中,所述金属微纳结构为周期性排列的凸起、凹陷或光栅。
4.根据权利要求1所述的微波等离子体发生装置,其中,所述金属微纳结构为光栅,包括等宽等间距的平行狭缝。
5.根据权利要求1所述的微波等离子体发生装置,其中,所述圆柱形腔体由母或陶瓷材料制成,所述金属层为金或
6.根据权利要求1所述的微波等离子体发生装置,其中,所述谐振腔呈直线排列,分别通过双层同轴电缆与一微波发生器相连。
7.根据权利要求6所述的微波等离子体发生装置,其中,所述双层同轴电缆包裹一耦合探针,所述双层同轴电缆的一端与所述微波发生器相连,另一端插入所述微孔/光栅双耦合谐振腔中。
8.根据权利要求1所述的微波等离子体发生装置,其中,所述外腔体为石英管,并且优选地,所述载物台可旋转并且可升降。
9.根据权利要求1所述的微波等离子体发生装置,其中,所述在靠近载物台的外腔体上设置有可视观察孔和高温计
10.根据权利要求1所述的微波等离子体发生装置,其中,所述微波等离子体发生装置的微波输入功率在800w-2000w范围内连续可调,微波频率的可调范围为2.4-2.5GHz。

说明书全文

用于SiC等离子体化的微波等离子体发生装置

技术领域

[0001] 本发明属于等离子体技术领域,具体涉及一种用于SiC等离子体氧化微波等离子体发生装置。

背景技术

[0002] SiC是唯一能够热生长SiO2的化合物半导体,这就使得SiC可以实现所有Si MOS的器件结构。SiC的热氧化需要比Si更高的氧化温度,氧化温度高达1300℃。目前主流的SiC氧化工艺主要是采用电阻加热方式的氧化炉,主要原理是基于与氧气分子的反应,但是这种与氧气分子氧化的方法,容易造成界面处残留碳簇和氧空位等缺陷。特别是在在这么高的温度下,界面除了氧化外,还会造成界面损伤,降低氧化效率。
[0003] 近年来,研究人员提出了利用微波等离子体氧化SiC的工艺,用于改善SiC氧化的界面质量。微波等离子体发生装置广泛用于半导体工业中。谐振腔和耦合装置是微波等离子体发生装置的关键组成部分。电磁场下气体谐振产生所需要的等离子体,需要谐振腔和耦合装置形成严格的匹配,这两个装置是需要严格的尺寸要求的。
[0004] 普通的微波等离子体激发主要依靠较高的电场强度,而符合产生大面积均匀电场要求的反应腔体完全依靠人工设计很难,现有的微波等离子体发生装置存在效率低、均匀性差等问题,并且采用单一放电单元容易造成工作温度过高或过低的险。

发明内容

[0005] 为了解决现有技术中存在的问题,本发明提出了一种用于SiC等离子体氧化的微波等离子体发生装置,可实现高效、均匀性良好的SiC样品的氧化。
[0006] 为了达到上述目的,本发明采用以下技术方案:
[0007] 一种用于SiC等离子体氧化的微波等离子体发生装置,包括外腔体和设置在所述外腔体内的多个微孔/微纳结构双耦合谐振腔,其中所述谐振腔包括一圆柱形腔体,所述圆柱形腔体的周壁上均匀分布由多个微孔形成的微孔阵列,所述微孔的直径是波长的奇数倍,所述腔体的内壁上具有金属微纳结构,所述微孔阵列与金属微纳结构形成双耦合结构从而实现谐振增强和可调,所述金属微纳结构的周期尺寸为λ/n,λ为入射波长,n为谐振腔材料的折射率,所述外腔体上设置有进气口,用于向所述外腔体内输送含氧气体,所述含氧气体在所述谐振腔周围形成用于氧化SiC的氧等离子体,所述谐振腔的下方设置有载物台,用于支撑SiC衬底。
[0008] 优选地,所述圆柱形腔体的周长为工作波长的3/4的整数倍,谐振发生在第1个奇模上。
[0009] 优选地,所述金属微纳结构为周期性排列的凸起、凹陷或光栅。
[0010] 优选地,所述金属微纳结构为光栅,包括等宽等间距的平行狭缝。
[0011] 优选地,所述圆柱形腔体由母或陶瓷材料制成,所述金属层为金或
[0012] 优选地,所述微孔的直径是波长的奇数倍。
[0013] 优选地,所述谐振腔呈直线排列,分别通过双层同轴电缆与一微波发生器相连。
[0014] 优选地,所述双层同轴电缆包裹一耦合探针,所述双层同轴电缆的一端与所述微波发生器相连,另一端插入所述微孔/光栅双耦合谐振腔中。
[0015] 优选地,所述外腔体为石英管。
[0016] 优选地,所述载物台可旋转并且可升降。
[0017] 优选地,所述在靠近载物台的外腔体上设置有可视观察孔和高温计
[0018] 优选地,所述微波等离子体发生装置的微波输入功率在800w-2000w范围内连续可调,微波频率的可调范围为2.4-2.5GHz。
[0019] 与现有技术相比,本发明具有以下优点:
[0020] (1)本发明通过优化设计双耦合谐振方式,来减少引导模和泄漏模的损耗,达到在固定区域谐振最大程度增强和可调的目的,并能提高等离子体的均匀性,可以使等离子温度氧化温度高达1000℃,等离子放电时间可调,可更好的实现分步等离子氧化工艺;
[0021] (2)本发明金属板微孔采用双耦合结构,保证光耦合和场空间局域增强特性的前提下,可改善吸收损耗问题;
[0022] (3)多个谐振腔独立控制,可以有效控制等离子体的温度。附图说明
[0023] 图1为谐振腔内能量的分布与发射增强因子的关系图;
[0024] 图2为本发明实施例的微孔/微纳结构双耦合谐振腔;
[0025] 图3为本发明的微波等离子体发生装置。

具体实施方式

[0026] 为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
[0027] 采用常规微波等离子氧化SiC样品,最大的缺点就是效率低、均匀性不好,本发明采用独特的谐振腔设计、双耦合结构设计、多阵列放电和谐振单元设计、可调谐载物台等方式,可实现高效、均匀性良好的SiC样品的氧化。
[0028] 谐振腔内的能量分为F-P出射模式、引导模式、泄漏模式、吸收模式,其中只有F-P模能够被出射提取,其它三部分都不同程度上损耗掉了,这对能量来说是很大的浪费。所以,谐振腔的设计必须减少腔内非出射模的能量损耗。同时,要达到指定区域谐振增强,谐振腔的设计就尤其重要。本发明通过优化设计双耦合谐振方式,来减少引导模和泄漏模的损耗,达到在固定区域谐振最大程度增强的目的。
[0029] 腔内的模式分布与发射增强因子的关系如图1所示。根据耦合共振机理,直接采用腔内的出射波为气体等离子体化的入射波。
[0030] 本发明通过调节各参数,减少谐振腔内出射模式能量的损耗,达到总体辐射能量在固定区域增强的目的,即不仅是F-P出射模式对应的kx附近有很高的光强,引导模式和泄漏模式对应的k处也出现能量尖峰;金属板微孔采用双耦合结构,保证光耦合和场空间局域增强特性的前提下,可改善吸收损耗问题。
[0031] 如图2所示,本发明中的微孔/微纳结构双耦合谐振腔包括一圆柱形腔体,圆柱形腔体的周壁上均匀分布由多个微孔形成的微孔阵列,所述圆柱形腔体的内壁上具有金属微纳结构。
[0032] 谐振腔材料采用云母或者陶瓷材料,其介电常数为9-10,折射率为1.5-2.0,为防止内层氧化,金属微纳结构采用Au或者黄铜。金属微纳结构为周期性排列的微观结构,可以为凸起、凹陷或者光栅等,在本发明的实施例中,金属微纳结构采用光栅结构,由等宽等间距的平行狭缝周期组成。金属微纳结构的周期尺寸为λ/n,其中λ为入射波长,n为谐振腔材料的折射率,可以防止微波能量不被渗透进金属和介质表面或被吸收。金属微纳结构可以通过常规的半导体工艺形成,例如在形成金属镀层后,再进行光刻
[0033] 在谐振腔的周壁上平均分布有多个微孔,微孔的大小是波长的奇数倍,分别对应波微波驻波的波节,使尽可能多的微波能量通过微孔辐射入反应腔体。
[0034] 谐振腔内的能量密度越大,则产生的微波电场强度越大,因此采用两边带孔的金属板隔离微波,所形成的微孔谐振腔可以隔离微波,但是不隔离气体,可以使微波在指定区域增加,增强的微波通过微孔泄露出去,使气体等离子化
[0035] 微孔/微纳结构双耦合谐振腔的尺寸设计严格要求其周长为工作波长的3/4的整数倍,而且谐振在第1个奇模上,有利于微波等离子体激发过程。
[0036] 金属镀层可以使内部泄漏模式与制作在器件表面的金属膜表面模式相互作用,在谐振腔材料和金属微纳结构处产生耦合共振,使处于泄漏模式的入射波与金属表面自由电子发生同频振荡产生的SP波(非辐射模式)转化为耦合SP波(辐射模式),即使泄漏模式的入射波转化为耦合SP模式的耦合SP波,通过这种模式和能量转化,处于SP耦合共振模式下的光才可以遂穿且在谐振波长处获得增强效应。这种辐射增强至少可提高2-3倍。如图3所示,本发明提供的用于SiC等离子体氧化的微波等离子体发生装置包括多个微孔/微纳结构双耦合谐振腔1,谐振腔1设置在外腔体2内。外腔体2可以为石英管,用于工作空间(反应腔)的密封和隔离。外腔体2的内径可以为100-150mm。多个谐振腔1呈直线排列,分别通过双层同轴电缆3与一微波发生器4相连。双层同轴电缆3包裹一耦合探针,双层同轴电缆3的一端与微波发生器4相连,另一端插入谐振腔1中。双层同轴电缆3在插入谐振腔1的一端,耦合探针伸出双层同轴电缆3。微波发生器4以圆盘方式置于多个谐振腔1的中间位置,可用于调节反应腔的长度和谐振频率。
[0037] 反应腔系统是装置运行的关键部件,为保证微波馈入反应腔的均匀性、对称性和加工的便利性,反应腔体设计为圆柱形,用以激发等离子体。
[0038] 微波输入功率可以在800w-2000w范围内连续可调,激发微波等离子体的微波频率可调范围为2.4-2.5GHz,扫频步长设置为0.1MHz。
[0039] 每根双层同轴电缆3可以采用10cmm的同轴电缆。
[0040] 在外腔体2内设置有载物台5,载物台5可旋转并且可升降,直径可以为4-6inch。在靠近载物台5的外腔体2的外壁上设置有高温计6和可视观察孔7,可随时监控腔体内的反应状态。外腔体2的外壁上可以设置有多个高温计6。
[0041] 外腔体2的一端设置有进气口8,另一端设置有出气口9和设备10。
[0042] 在产生微波等离子体时,可将待处理的衬底11放置在载物台5上,从进气口8通入气体,随后启动微波等离子体发生装置,在衬底11上方的反应区12产生等离子体,对衬底11进行等离子体处理。
[0043] 微波等离子体发生装置的工作温度可以为400-1000℃,对应的等离子放电时间400s-1000s,腔体气压为400mTorr-1000mTorr。
[0044] 在本发明的一个实施例中,微波等离子体发生装置用于实现SiC的两步低温氧化,对应的等离子放电时间是可调谐的。本发明采用2-10独立的谐振腔1独立排列的方式,靠近载物台上方的谐振腔1多于其他位置,以保证整个腔体能够实现低温氧化的目的。
[0045] 在该实施例中,微波等离子体发生装置使氧气分子等离子体化形成氧自由基或者氧等离子,从而替代氧气分子与碳化硅表面反应,使对应的温度和表面氧气浓度降低,从而抑制SiC表面腐蚀坑的形成,减少表面损伤,获得比较平坦化的表面,从而提高MOSFET器件高温、高场下的载流子迁移率。
[0046] 在该实施例中,具体的操作步骤为:选用800w-1000w微波输入功率,激发微波等离子体的微波频率可调范围为2.4-2.5GHz。在气压100mTorr,H2:O2=1∶1的环境下,设置样品载物台最初温度设置为100℃,等离子以1℃/s的速度升温,到达350℃后,进行低温氧化,等离子放电时间为400s;然后,改变升温速率为0.5℃/s,直到设定好的微波等离子体氧化温度800℃,将气体换为纯氧气,气压改变为800mTorr,等离子放电时间为800s,进行高温(低于炉管氧化的1300℃)氧化,氧化层厚度约为30nm,氧化完成后,将纯氧气改为纯氮气,在氮气氛围下冷却降温。
[0047] 以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈