首页 / 专利库 / 生物化学 / 磁珠 / 一种TiO2磁珠及其应用

一种TiO2磁珠及其应用

阅读:42发布:2020-05-12

专利汇可以提供一种TiO2磁珠及其应用专利检索,专利查询,专利分析的服务。并且本 发明 提供了一种TiO2 磁珠 及其应用,所述TiO2磁珠的结构式为CoFe2O4@SiO2@GR–TiO2@ALG–Ca–CS,以 磁性 纳米CoFe2O4为 内核 ,SiO2、GR–TiO2及ALG–Ca–CS依次包覆在其表面形成磁珠。相较纯TiO2,本发明所制备TiO2磁珠克服了纯TiO2难以响应可见光、难分离和回收等 缺陷 ,可应用于光催化领域,如降解有机污染物、杀菌和 光动 力 治疗 等。步骤简单、操作方便、实用性强。,下面是一种TiO2磁珠及其应用专利的具体信息内容。

1.一种TiO2磁珠的制备方法,其特征在于,所述TiO2磁珠的结构式为CoFe2O4@SiO2@GR–TiO2@ALG–Ca–CS,以磁性纳米CoFe2O4为内核,在其表面依次包覆SiO2、GR–TiO2及ALG–Ca–CS,形成磁珠;
所述包覆GR–TiO2的具体步骤为:将石墨烯粉体加入无乙醇中,超声处理至清亮,得氧化石墨烯分散液,添加CoFe2O4@SiO2,超声处理,持续搅拌条件下,依次加入酸丁酯、醋酸,逐滴滴加蒸馏水,搅拌,将混合物于一定温度下反应数小时,反应完毕,分离产物,水洗,醇洗,干燥,即得CoFe2O4@SiO2@GR–TiO2;
所述包覆SiO2的具体步骤为:称取磁性纳米CoFe2O4,先加入一定体积正丁醇,再滴加正丁醇和正酸乙酯混合液,超声处理一段时间,于连续搅拌条件下滴加水,反应完毕,磁沉降,水洗,醇洗,干燥,即得CoFe2O4@SiO2;
所述包覆ALG–Ca–CS的具体步骤为:
将CoFe2O4@SiO2@GR–TiO2与海藻酸钠溶胶均匀混合后,将其逐滴滴至CaCl2溶液中,然后,所得磁珠经水洗转至壳聚糖的醋酸溶液中,取出后浸泡在戊二中,浸泡完毕,分离,真空干燥,即得;
或所述包覆ALG–Ca–CS的具体步骤为:
将CoFe2O4@SiO2@GR–TiO2与海藻酸钠溶胶均匀混合后,将其逐滴滴至CaCl2和壳聚糖溶液中,取出磁珠后在戊二醛中浸泡,浸泡完毕,分离,真空干燥,即得。
2.权利要求1所述的方法制备的TiO2磁珠。
3.如权利要求2所述的磁珠,其特征在于,所述CoFe2O4微粒直径为0-100nm但不取零、尖晶石相、外观近似球形。
4.如权利要求2所述的磁珠,其特征在于,所述磁珠中,GR含量为0.0001–20wt%。
5.权利要求2-4任一项所述的TiO2磁珠在光催化领域中的应用。

说明书全文

一种TiO2磁珠及其应用

技术领域

[0001] 本发明涉及纳米材料和光催化领域,特别涉及一种TiO2磁珠及其应用。

背景技术

[0002] TiO2属于n型半导体,作为催化剂材料主要应用于光催化领域。由于其成本低、无毒、化学稳定性强以及光催化活性高等优点,可应用于光催化降解有机物、杀菌、光动治疗等。
[0003] TiO2的禁带宽度较大(3.2eV),仅在紫外光照射下才能引发光催化反应,而紫外光能量仅占太阳光能量的3-5%,这就大大限制了它在光催化领域特别是液相光催化中的使用效率。为了充分利用太阳光,使TiO2改性从而在可见光(约占太阳光能量的45%)照射下发生光催化反应成为研究的重点。目前,TiO2改性的方法有金属掺杂、非金属掺杂、染料敏化、半导体复合等。奎等制备了CeO2/TiO2介孔复合材料,并用于光催化降解甲基橙模拟染料研究,发现:稀土金属元素Ce的引入降低了TiO2的带隙能级,扩大了光响应范围,使复合产物的吸收带边发生了红移,有效吸光范围拓展到了470nm附近的可见光区,复合产物投入量为2g/L时在5h内对40mL质量浓度为20mg·L-1的甲基橙溶液脱色率可达90%(牛奎,梁力曼,耿浩,张建平,赵莹,赵永光,河北科技师范学院学报,2015,29,1:39-44)。当前,开发新的可见光响应型TiO2复合材料是实际应用向TiO2光催化提出的一个重要问题,是研发的重要方向并且有很大的开发空间。
[0004] 另一方面,在液相光催化中,TiO2面临的另一问题是使用完后如何分离和回收,以提高其利用率,并使环境免遭二次污染。引入磁性是最直接的一种方法;通过引入磁性物质与TiO2结合,使TiO2改性后具有磁性,在外加磁场的作用下,吸出TiO2从而加以再生和重复利用。可作磁性材料的物质有Ni、Fe、Co、Fe3O4、Co3O4、酸盐等。当前,开发新型磁性TiO2复合材料也是实际应用向TiO2光催化提出的一个重要问题。
[0005] 因此,开发新型TiO2光催化材料时,可从如何提高其可见光响应性和如何引入磁性两要素入手综合考虑。
[0006] 石墨烯(Graphene,GR)是一种由原子堆积构成的二维晶体材料,具有优异的化学稳定性和电子传输能力,在非金属掺杂改进TiO2的可见光响应性方面具有潜在的应用价值。磁性物质中,铁酸盐CoFe2O4具有良好的磁响应性,在开发磁性TiO2光催化材料方面具有较高价值。在高分子材料领域,海藻酸盐(Alginate,ALG)是一种天然高分子阴离子聚电解质,具有很好的吸附能力,壳聚糖(Chitosan,CS)是一种天然线性高分子阳离子聚合物,也具有很好的吸附能力,并且ALG能通过静电组装作用链接CS;若两者共同包覆TiO2,有利于增强TiO2对所处理物质的吸附作用,从而提高其催化活性。基于上述综合分析和考虑,本发明针对光催化提出了一种新颖的TiO2磁珠光催化材料。
[0007] 经过对现有技术的文献检索发现,专利201410187192.1公开了一种用于处理染料废水和含油废水的磁性纳米光催化剂ZnFe2O4/TiO2,其虽能磁性分离,但由于CoFe2O4和TiO2两者直接接触易使内核遭受光腐蚀。H.A.Hamad等通过控制异丙醇水解和缩合制备了核壳结构的CoFe2O4/SiO2/TiO2纳米复合物,并用于光催化降解DCPIP染料,其虽在CoFe2O4和TiO2之间引入SiO2来抑制光腐蚀,但裸露外层TiO2的可见光响应能力和吸附能力有限(H.A. Hamad,Mona Mahmoud Abd El-Latif,Abdelhady Kashyout,Mohamed Feteha,New Journal of Chemistry,39,4:3116-3128)。Y Murata等报道了海藻酸盐漂浮珠的制备,并利用海藻酸盐的吸附特征包覆甲硝唑用于胃给药,但未涉及与复合型TiO2无机材料共同组合进行有机—无机复合制备,也未涉及光催化应用(Y Murata,N Sasaki,E Miyamoto,S Kawashima,European Journal of Pharmaceutics and Biopharmaceutics,2000,50,2:221-226)。

发明内容

[0008] 为了克服上述不足,本发明旨在提供一种能响应可见光、可用磁分离技术进行分离和回收的TiO2磁珠光催化材料及其应用。
[0009] 为了实现上述目的,本发明采用如下技术方案:
[0010] 一种TiO2磁珠,所述TiO2磁珠的结构式为CoFe2O4@SiO2@GR–TiO2@ALG–Ca–CS。
[0011] 优选的,所述CoFe2O4微粒直径为0-100nm、尖晶石相、外观近似球形。
[0012] 优选的,所述磁珠中,GR含量为0.0001–20wt%。
[0013] 本发明还提供了一种TiO2磁珠的制备方法,以磁性纳米CoFe2O4为内核,在其表面依次包覆SiO2、GR–TiO2及ALG–Ca–CS,形成磁珠。
[0014] 优选的,所述包覆SiO2的具体步骤为:称取磁性纳米CoFe2O4,先加入一定体积正丁醇,再滴加正丁醇和正酸乙酯混合液,超声处理一段时间,于连续搅拌条件下滴加水,反应完毕,磁力沉降,水洗,醇洗,干燥,即得CoFe2O4@SiO2。
[0015] 优选的,所述包覆GR–TiO2的具体步骤为:将石墨烯粉体加入无水乙醇中,超声处理至清亮,得氧化石墨烯分散液,添加CoFe2O4@SiO2,超声处理,持续搅拌条件下,依次加入钛酸丁酯、醋酸,逐滴滴加蒸馏水,搅拌,将混合物于一定温度下反应数小时,反应完毕,分离产物,水洗,醇洗,干燥,即得CoFe2O4@SiO2@GR–TiO2。
[0016] 优选的,所述包覆ALG–Ca–CS的具体步骤为:
[0017] 将CoFe2O4@SiO2@GR–TiO2与海藻酸钠溶胶均匀混合后,将其逐滴滴至CaCl2溶液中,然后,所得磁珠经水洗转至壳聚糖的醋酸溶液中,取出后浸泡在戊二中,浸泡完毕,分离,真空干燥,即得。
[0018] 优选的,所述包覆ALG–Ca–CS的具体步骤为:
[0019] 将CoFe2O4@SiO2@GR–TiO2与海藻酸钠溶胶均匀混合后,将其逐滴滴至CaCl2和壳聚糖溶液中,取出磁珠后在戊二醛中浸泡,浸泡完毕,分离,真空干燥,即得。
[0020] 更优选的,所述TiO2磁珠,其采用四步法制备,具有核结构和壳结构,以磁性纳米CoFe2O4为内核,SiO2、GR–TiO2及ALG–Ca–CS依次包覆在其表面形成磁珠,CoFe2O4微粒直径 0-100nm、尖晶石相、外观近似球形,GR含量0–20wt%。
[0021] 所述TiO2磁珠可应用于光催化领域。
[0022] 所述TiO2磁珠,其制备过程包括以下四个步骤:
[0023] (1)按Co(Ⅱ)和Fe(Ⅲ)摩尔比1:2分别称取钴盐和铁盐,用蒸馏水配成混合溶液,机械搅拌并滴加NaOH溶液,直至反应体系pH值为8.5-12。反应结束后,继续搅拌10min。分离出沉淀物,先后用蒸馏水和乙醇洗涤数次,干燥,300-900℃焙烧。将其加入到柠檬酸溶液中,超声分散均匀,离心并用乙醇洗涤数次,真空干燥。
[0024] (2)称取步骤(1)制得的产物,先加入一定体积正丁醇,再滴加正丁醇和正硅酸乙酯混合液,超声处理一段时间,于连续搅拌条件下滴加氨水,反应完毕,磁力沉降,水洗,醇洗,干燥。
[0025] (3)将氧化石墨烯粉体加入无水乙醇中,超声处理至清亮,得氧化石墨烯分散液,添加步骤(2)制得的产物,超声处理,持续搅拌条件下,依次加入钛酸丁酯、冰醋酸,逐滴滴加蒸馏水,搅拌,将混合物置于聚乙烯内胆反应釜中在一定温度下反应数小时,反应完毕,分离产物,水洗,醇洗,干燥。
[0026] (4)方式一:将步骤(3)制得的产物与海藻酸钠溶胶均匀混合后,将其逐滴滴至CaCl2溶液中,然后,所得磁珠经水洗转至壳聚糖的醋酸溶液中,取出后浸泡在戊二醛中,浸泡完毕,分离,真空干燥。方式二:将步骤(3)制得的产物与海藻酸钠溶胶均匀混合后,将其逐滴滴至CaCl2和壳聚糖溶液中,取出磁珠后在戊二醛中浸泡,浸泡完毕,分离,真空干燥。
[0027] 本发明还提供了任一项上述的方法制备的TiO2磁珠。
[0028] 本发明还提供了任一项上述的TiO2磁珠在光催化领域中的应用。
[0029] 本发明的有益效果
[0030] (1)所述TiO2磁珠克服了纯TiO2难以响应可见光、难分离和回收等问题。该材料不仅通过掺杂高导电性非金属GR实现了TiO2的可见光响应性、促进了电子与空穴分离、一定程度上增强了催化活性,而且还可以借助外界磁场实现催化剂快速分离和回收再利用。另外,该 TiO2磁珠表层由于包裹了官能团丰富的强吸附能力的ALG–Ca–CS高分子双膜,可显著增强对被处理物质的吸附,从而进一步提高其催化活性。可应用于光催化领域,如降解有机物、杀菌和光动力治疗等。
[0031] (2)本发明制备方法简单、效率高、实用性强,易于推广。

具体实施方式

[0032] 下面结合实施例进一步对本发明进行说明,应当理解,这些描述只是为了进一步说明本发明的特征和优点,并非对本发明的限制。
[0033] 实施例1:TiO2磁珠的制备
[0034] (1)配制0.1mol·L-1氯化钴和0.2mol·L-1氯化铁混合溶液,机械搅拌并滴加NaOH溶液,直至反应体系pH值为11。反应结束后,继续搅拌10min。分离出沉淀物,先后用蒸馏水和乙醇洗涤3次,60℃干燥,600℃焙烧。将其加入到0.05–0.35mol·L-1柠檬酸溶液中,超声分散均匀,离心并用乙醇洗涤数次,真空干燥。
[0035] (2)将1g步骤(1)制得的产物,先加入40mL正丁醇,再滴加正丁醇和正硅酸乙酯混合液100mL,超声处理10min,于连续搅拌条件下滴加9mL浓氨水,反应完毕,磁力沉降,水洗,醇洗,100℃干燥。
[0036] (3)将20mg氧化石墨烯粉体加入20mL无水乙醇中,超声处理数小时至清亮,得氧化石墨烯分散液,添加20mg步骤(2)制得的产物,超声处理5min,持续搅拌条件下,依次加入1mL钛酸丁酯、0.1mL冰醋酸,逐滴滴加1.5mL蒸馏水,搅拌,将混合物置于聚乙烯内胆反应釜中在175℃反应9h,反应完毕,分离产物,水洗,醇洗,90℃干燥。
[0037] (4)方式一:将步骤(3)制得的产物与0.5–3wt%海藻酸钠溶胶均匀混合后,将其逐滴滴至0.5–3wt%CaCl2溶液中并孵育20h,然后,所得磁珠经水洗转至0.5–3wt%壳聚糖的醋酸溶液中并搅拌20h,取出后浸泡在戊二醛中20h,浸泡完毕,分离,30℃真空干燥。
[0038] 方式二:将步骤(3)制得的产物与0.5–3wt%海藻酸钠溶胶均匀混合后,将其逐滴滴至 CaCl2和壳聚糖溶液中,取出磁珠后在戊二醛中浸泡,浸泡完毕,分离,真空干燥。
[0039] 实施例2:
[0040] 将实施例1所得TiO2磁珠用作催化剂应用于光催化降解含亚甲基蓝有机污水,具体实施过程:反应在光催化反应器内进行,反应液中亚甲基蓝初始浓度为10mg/L,体积为100mL,光催化剂用量为1g/L,溶液温度恒定在室温,避光30min,用300W氙灯作为光源直接照射溶液反应,光距20cm,每隔一定时间取样,于最大吸收波长处用UV-2102PC紫外可见分光光度计测定吸光度,利用η=(A0-At)/A0×100%计算亚甲基蓝降解率,式中A0及At分别为亚甲基蓝溶液的初始吸光度和t时刻的吸光度。为作对比,纯TiO2在同等条件下进行对比实验。实验结果表明:同等条件下反应相同时间,当TiO2磁珠催化剂对亚甲基蓝降解率为80%时,纯TiO2仅71%,TiO2磁珠的催化活性优于单纯TiO2,具有增强的光催化效能;此外,反应完毕,借助外界磁场可使磁珠催化剂从溶液里快速分离和回收,重复使用3次后,其活性仅小幅下降,仍保持较好的催化活性。
[0041] 实施例3:
[0042] 将实施例1所得TiO2磁珠用作催化剂应用于光催化杀菌,具体实施过程:杀菌实验在无菌洁净工作台中进行。工作台上所用器皿及实验装置在配备的紫外灯照射下灭菌操作0.5h,实验所用培养基在蒸汽灭菌器中121℃湿热灭菌20min。选用大肠杆菌(E.Coli)菌种为受试菌,将大肠杆菌细胞常规预处理后得菌悬液。
[0043] 将5mL菌液注入细胞培养板内,3组实验菌液浓度均为1×106cfu/mL,加入一定量的TiO2磁珠催化剂,使其浓度分别为0.1、0.5、1g/L,每组分别在氙灯下进行光催化反应。用氙灯光源照射时,光源功率300W,在距离样品40cm高的位置进行光照;每隔15min采样一次。空白对照组:(1)菌悬液中不加催化剂,无光照(为光源和催化剂在无光下杀菌作参比);(2)菌悬液不加催化剂,光照相同时间(为催化剂光催化杀菌作参比)。本实验通过平板菌落计数法测定光催化材料的杀菌率以评价其抗菌性能,杀菌率计算公式为:杀菌率=(空白对照组菌落数-实验组菌落数)/空白对照组菌落数×100%,还将结果同时与纯TiO2在相同实验条件下的光催化实验结果做比较。根据对照分析、时间因素分析及催化剂浓度因素分析结果,得出:未加TiO2磁珠催化剂时,单独光照虽然会杀灭细菌,但对细菌的杀灭率较小,而加入TiO2磁珠光催化剂光照后细菌的存活率急剧下降;三个时间点各自对应的TiO2磁珠光催化活性均优于纯TiO2,且与作用时间成正比,还与本实验所用的催化剂浓度呈正比。
[0044] 以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
相关专利内容
标题 发布/更新时间 阅读量
磁珠纯化系统 2020-05-11 856
一种TiO2磁珠及其应用 2020-05-12 42
一种内镜下治疗用磁珠 2020-05-12 317
叠层片式磁珠 2020-05-11 129
磁珠片 2020-05-11 946
一种磁珠避孕套 2020-05-11 203
磁珠建模方法 2020-05-11 632
细胞磁珠流式分选装置 2020-05-13 293
磁性珠宝饰物 2020-05-12 167
一种电感用叠层式磁珠 2020-05-13 456
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈