首页 / 专利库 / 物理 / 电子回旋共振 / 具有破碎单元和离子存储设备的质谱仪装置

具有破碎单元和离子存储设备的质谱仪装置

阅读:995发布:2020-12-11

专利汇可以提供具有破碎单元和离子存储设备的质谱仪装置专利检索,专利查询,专利分析的服务。并且一种质谱测定方法,所述方法在第一循环中包括如下步骤:将样品离子存储到第一离子存储设备中;将所存储的离子喷射到第一离子存储设备之外并进入单独的离子选择设备;在离子选择设备内选择离子的子集;将在离子选择设备内选择的离子的子集喷射到 破碎 设备;引导离子从破碎设备回到第一离子存储设备,而不使它们穿过所述离子选择设备;将从第一离子存储设备中喷射出的至少一些离子或其衍 生物 回收到第一离子存储设备中;以及将接收到的离子存储在第一离子存储设备中。,下面是具有破碎单元和离子存储设备的质谱仪装置专利的具体信息内容。

1.一种质谱测定方法,所述方法在第一循环中包括如下步骤:
(a)将样品离子存储到第一离子存储设备中;
(b)将所存储的离子喷射到第一离子存储设备之外并进入单独的离子选择设备;
(c)在离子选择设备内选择离子的子集;
(d)将在离子选择设备内选择的离子的子集喷射到破碎设备;
(e)引导离子从破碎设备回到第一离子存储设备,而不使它们穿过所述离子选择设备;
(f)将从第一离子存储设备中喷射出的至少一些离子或其衍生物回收到第一离子存储设备中;以及
(g)将从步骤(f)所接收到的离子存储到第一离子存储设备中。
2.如权利要求1所述的方法,还包括:
在至少一个接下来的循环中重复步骤(a)-(g)。
3.如权利要求2所述的方法,其特征在于,
第一离子存储设备包括离子出射孔径以及在空间上分开的离子输运孔径,将离子喷射到第一离子存储设备之外的步骤(b)包括将离子喷射到离子出射孔径之外,以及
将离子回收到第一离子存储设备中的步骤(f)包括通过离子输运孔径来回收离子。
4.如权利要求2或3所述的方法,还包括:
在第一和/或接下来的循环中使离子在破碎设备中发生破碎。
5.如权利要求2所述的方法,还包括:
在多次循环的一个或多个循环期间:
按第一模式使离子穿过破碎单元而基本上不发生破碎;以及
按第二模式使离子在破碎单元中发生破碎;以及
根据所述第一模式或者所述第二模式操作所述破碎单元。
6.如权利要求2所述的方法,还包括:
在第一或接下来的循环中将从所述离子选择设备或所述破碎设备中喷射出的离子存储到第二离子存储设备中。
7.如权利要求6所述的方法,还包括,在多次循环的一个或多个循环期间:
按第一模式使离子穿过破碎单元而基本上不发生破碎;以及
按第二模式使离子在破碎单元中发生破碎;以及
根据所述第一模式或所述第二模式操作所述破碎单元;
在第一循环中,在破碎单元处接收来自离子选择设备的离子的第一子集,并且按第一模式将第一子集中的至少一部分离子转移到第二离子存储设备以便存储在那里,使得第二存储设备中所存储的离子基本上都是未发生破碎的;以及
在接下来的循环中,在破碎单元处接收来自离子选择设备的离子的第二子集,按第二模式使第二子集中的至少一部分离子发生破碎,并且将碎片离子往回转移到第一离子存储设备。
8.如权利要求1所述的方法,还包括:
在至少一个接下来的循环中,
将来自第一离子存储设备的离子喷射到第二离子存储设备;以及
使第二离子存储设备中所存储的至少一些离子返回到第一离子存储设备。
9.如权利要求1所述的方法,其特征在于,
所述第一离子存储设备还包括离子输入孔径,所述离子输入孔径在空间上与离子出射孔径和离子输运孔径是分开的。
10.如权利要求9所述的方法,还包括将来自第一离子存储设备的离子喷射到所述离子输入孔径外的破碎设备。
11.如权利要求10所述的方法,其特征在于,将从所述第一离子存储设备喷射出的至少一些离子回收到所述第一离子存储设备的步骤包括使离子通过离子输入孔径而返回。
12.如权利要求1所述的方法,还包括:
在第一循环之前的预备循环中,从离子源中产生样品离子并且将样品离子注入到第一离子存储设备中。
13.如权利要求12所述的方法,其特征在于,
从离子源中产生样品离子的步骤还包括从电喷涂离子源中产生连续的离子供应。
14.如权利要求12所述的方法,其特征在于,
从离子源中产生样品离子的步骤还包括从矩阵-辅助激光脱附离子化(MALDI)源中产生脉冲的离子供应。
15.如权利要求14所述的方法,其特征在于,所述第一离子存储设备还包括离子输入孔径,所述离子输入孔径在空间上与离子出射孔径和离子输运孔径是分开的,以及其中将样品离子注入到第一离子存储设备中的步骤包括通过离子输入孔径来注入样品离子。
16.如权利要求12所述的方法,还包括:
预先俘获从离子源中产生的样品离子,以及
将预先俘获的离子注入到第一离子存储设备中。
17.如权利要求1所述的方法,其特征在于,
离子选择设备是飞行时间、四极、磁扇区或任何离子阱类型的。
18.如权利要求1所述的方法,其特征在于,
在静电场中沿着静电阱(EST)内封闭或开放的路径,离子选择设备使用了多次离子方向变化,选择被注入到离子选择设备中的离子的步骤包括使离子在EST内的多个俘获电极之间进行反射,以便根据离子的质荷比m/z而将离子分开,之后,沿着与所选离子不同的路径引导不想要的离子。
19.如权利要求18所述的方法,其特征在于,
通过离子在EST内的反射而进行选择的步骤包括:在EST内实现多次反射,以便利用多次选择步骤使所选离子的质量范围连续地变窄。
20.如权利要求2所述的方法,还包括:
在所述接下来的循环中,
利用离子选择设备来选择不同的第二组离子,以及
将第二组离子存储到与第一离子存储设备分开的第二离子存储设备中。
21.如权利要求1或20所述的方法,还包括:对来自所述第一离子存储设备的离子进行质量分析。
22.如权利要求20所述的方法,还包括:
对来自第二离子存储设备的离子进行质量分析。
23.如权利要求22所述的方法,还包括与对来自所述第二离子存储设备的离子进行质量分析的步骤分开地对来自第一离子存储设备的离子进行质量分析。
24.如权利要求23所述的方法,还包括:
在接下来的循环中,
将第二离子存储设备中所存储的离子的第一子集中的至少一些转移到第一离子存储设备;以及
接下来执行步骤(a)-(f)。
25.如权利要求1所述的方法,还包括:
在第一或接下来的循环之后,对第一离子存储设备中所存储的离子进行质量分析。
26.如权利要求25所述的方法,其特征在于,对第一离子存储设备中的离子进行质量分析的步骤包括:将离子转移到与离子选择设备分开的质量分析器以便在那里进行质量分析。
27.如权利要求26所述的方法,其特征在于,质量分析器是“轨道阱”(orbitrap)或飞行时间或傅立叶变换离子回旋共振(FTICR)或EST类型的。
28.如权利要求24所述的方法,其特征在于,对第一离子存储设备中的离子进行质量分析的步骤包括:将离子转移到离子选择设备以便在那里进行质量分析。
29.如权利要求1所述的方法,还包括:
使第一检测器定位于第一离子存储设备的上游或下游;以及
从所述检测器的输出,估计出从第一离子存储设备中喷射出的离子的个数。
30.如权利要求25所述的方法,其特征在于,质量分析的步骤还包括:对质量分析器中的离子布居,实现自动增益控制。
31.如权利要求4所述的方法,其特征在于,
使离子在破碎单元中发生破碎的步骤包括通过下列技术中的一种或多种来使离子发生破碎:碰撞-诱发的离解(CID);电子俘获离解(ECD);电子转移离解(ETD);光诱发离解(PID);以及表面诱发离解(SID)。
32.如权利要求7所述的方法,还包括:
设置破碎设备的参数以便决定发生破碎的能量阈值
其中在该能量阈值之下的离子按第一模式仍然基本上未发生破碎,以及
其中在该能量阈值之上的离子按第二模式发生破碎。
33.如权利要求32所述的方法,其特征在于,
设置破碎单元的参数的步骤包括:控制破碎单元的DC偏压
34.如权利要求1所述的方法,还包括:通过与气体碰撞,使离子在第一离子存储设备内冷却。
35.如权利要求1所述的方法,其特征在于,将离子喷射到第一离子存储设备之外的步骤(b)包括沿着用于定义离子喷射方向的第一前进方向喷射离子,其中将离子回收到第一离子存储设备中的步骤(f)包括接收来自用于定义离子俘获方向的第二普通前进方向的离子,并且其中离子喷射方向与离子俘获方向不平行。
36.如权利要求35所述的方法,其特征在于,离子喷射方向与离子俘获方向大致正交
37.如权利要求35所述的方法,其特征在于,离子喷射方向与离子俘获方向成锐
38.一种质谱仪,包括:
(a)第一离子存储设备,被安排成存储离子;
(b)离子选择设备,被安排成接收第一离子存储设备中所存储的且从中喷射出的离子并且还选择所接收到的离子的子集;以及
(c)用于破碎或存储的设备,被安排成接收由离子选择设备所选择的离子中的至少一些;
其中用于破碎或存储的设备在使用过程中被配置成引导从离子选择设备中接收到的离子或其产物并使它们回到第一离子存储设备,而不使它们往回穿过离子选择设备。
39.如权利要求38所述的质谱仪,其特征在于,
第一离子存储设备包括离子出射孔径以及在空间上分开的离子输运孔径,离子出射孔径用于喷射第一离子存储设备中所存储的离子,离子输运孔径用于将离子回收到第一离子存储设备中。
40.如权利要求38或39所述的质谱仪,其特征在于,离子选择设备是一种静电阱(EST),它包括用于形成至少两个离子镜或扇区设备的多个电极。
41.如权利要求40所述的质谱仪,其特征在于,静电阱被配置成:通过在俘获电极之间的多次反射对质荷比不同的离子进行分离,从第一离子存储设备中选择被注入到其中的离子;然后,沿着与所选离子不同的路径,使不想要的离子发生偏移。
42.如权利要求38所述的质谱仪,其特征在于,用于破碎或存储的设备位于离子选择设备和第一离子存储设备之间。
43.如权利要求38所述的质谱仪,还包括:离子源,用于产生样品离子,第一离子存储设备被配置成通过所述离子存储设备内的孔径来接收样品离子。
44.如权利要求39所述的质谱仪,其特征在于,还包括安排成产生样品离子的离子源,第一离子存储设备配置成通过所述离子存储设备内的孔径接收所述样品离子;以及其中第一离子存储设备包括离子输入孔径,所述离子输入孔径在空间上与离子出射孔径和离子输运孔径是分开的,通过所述离子输入孔径将来自离子源的离子接收到离子存储设备中以供使用。
45.如权利要求43或44所述的质谱仪,其特征在于,用于破碎或存储的设备位于离子源和第一离子存储设备之间。
46.如权利要求44所述的质谱仪,其特征在于,
用于破碎或存储的设备位于离子源和第一离子存储设备之间,且其中在所述第一循环接下来的循环中,第一离子存储设备被配置成通过所述离子输入孔径向用于破碎或存储的设备喷射离子。
47.如权利要求46所述的质谱仪,其特征在于,
第一离子存储设备被进一步配置成:通过所述离子输入孔径,回收从用于破碎或存储的设备喷射出的离子。
48.如权利要求43所述的质谱仪,其特征在于,离子源是连续的离子源。
49.如权利要求43所述的质谱仪,其特征在于,离子源是脉冲的离子源。
50.如权利要求43所述的质谱仪,还包括位于离子源和第一离子存储设备之间的预阱,用于存储离子源所产生的离子并且将所存储的离子注入到第一离子存储设备中。
51.如权利要求50所述的质谱仪,其特征在于,预阱是一组分段式仅-RF的细长棒或孔径。
52.如权利要求38所述的质谱仪,其特征在于,
用于破碎或存储的设备可按第一模式操作,在第一模式中接收到的离子穿过用于破碎或存储的设备而基本上不发生破碎,并且用于破碎或存储的设备可按第二模式操作,在第二模式中接收到的离子在其中发生破碎。
53.如权利要求38所述的质谱仪,还包括:
辅助离子存储设备,
用于破碎或存储的设备被配置成相对于接收到的离子的第一子集而在第一模式中操作并将第一子集中的至少一些离子转移到辅助离子存储设备而基本上不发生破碎,用于破碎或存储的设备还被配置成相对于接收到的离子的第二子集而在第二模式中操作以使第二子集中的至少一些离子发生破碎。
54.如权利要求53所述的质谱仪,其特征在于,
辅助离子存储设备与第一离子存储设备相通,以及
其中辅助离子存储设备被配置成在用于破碎或存储的设备的第一操作模式中将从用于破碎或存储的设备中接收到的第一子集中的基本上未发生破碎的那些离子中的至少一些转移到所述第一离子存储设备以便用在接下来的循环中。
55.如权利要求38所述的质谱仪,还包括质量分析器,所述质量分析器与第一离子存储设备相通,并且被安排成允许在第一循环或接下来的循环之后对第一离子存储设备中所存储的离子进行质量分析。
56.如权利要求55所述的质谱仪,其特征在于,质量分析器是“轨道阱”(Orbitrap)质量分析器。
57.如权利要求38所述的质谱仪,其特征在于,第一离子存储设备是仅-RF的线性或弯曲四极。
58.如权利要求38所述的质谱仪,还包括第一检测器,所述第一检测器被安排在第一离子存储设备之前,用于估计从第一离子存储设备喷射到离子选择设备中的离子的个数。
59.如权利要求38所述的质谱仪,还包括位于离子选择设备的下游的第二检测器装置。
60.如权利要求59所述的质谱仪,其特征在于,第二检测器装置包括电子倍增器微通道板、微球体板和离子收集器中的一个或多个。
61.如权利要求55或56所述的质谱仪,其特征在于,质量分析器还包括用于自动增益控制(AGC)的检测器。
62.如权利要求52所述的质谱仪,其特征在于,
离子选择设备是一种静电阱(EST),它包括用于形成至少两个离子镜或扇区设备的多个电极,且其中EST被配置成从中喷射出在阱内发生预定次数的反射之后的、处于感兴趣的质量范围之外的离子,处于感兴趣的质量范围之外的离子构成了离子的第一子集以便通过用于破碎或存储的设备进行转移而基本上不发生破碎。
63.如权利要求62所述的质谱仪,其特征在于,
EST被配置成向破碎设备喷射经历多次反射之后的、处于感兴趣的质量范围中的离子的第二子集以便在那里发生破碎。
64.如权利要求38所述的质谱仪,其特征在于,
用于破碎或存储的设备被安排成沿着离子选择设备和第一离子存储设备之间的返回路径,由此离子选择设备所选择的离子进入用于破碎或存储的设备中且之后回到第一离子存储设备而没有再次通过离子选择设备而返回。
65.如权利要求38所述的质谱仪,其特征在于,
用于破碎或存储的设备被安排在从离子选择设备到第一离子存储设备的返回路径之外,使得在使用过程中所选的离子从离子选择设备返回到离子存储设备,并且从那儿被喷射到用于破碎或存储的设备且接下来返回到第一离子存储设备而并不穿过离子选择设备。

说明书全文

具有破碎单元和离子存储设备的质谱仪装置

技术领域

[0001] 本发明涉及一种质谱仪以及一种特别适于执行MSn实验的质谱测定法。

背景技术

[0002] 串联质谱测定法是公知的技术,通过这种技术,可以执行样品的轨迹分析和结构说明。在第一个步骤中,对父离子进行质量分析/过滤以选择感兴趣的质荷比的离子,并且在第二个步骤中,通过与氩这样的气体碰撞而使这些离子破碎。然后,通常通过产生质谱而对所得的碎片离子进行质量分析。
[0003] 已有人提出了用于实现多级质量分析或MSn的各种装置,并且已商用化,比如三元组四极质谱仪以及混合型四极/飞行时间质谱仪。在这种三元组四极质谱仪中,第一四极Q1通过滤除在选定质荷比范围之外的离子,而充当质量分析的第一级。第二四极Q2通常被安排成一个位于气体碰撞单元中的四极离子引导件。然后,通过在Q2下游的第三四极Q3,对Q2中碰撞所产生的碎片离子进行质量分析。在混合型装置中,可以用飞行时间(TOF)质谱仪来替代第二分析四极Q3。
[0004] 在每一种情况下,在碰撞单元之前和之后,使用了单独的分析仪。在GB-A-2,400,724中,描述了各种装置,其中使用了单个质量过滤器/分析器以在两个方向上实现过滤和分析。特别是,离子检测器被定位在质量过滤器/分析器的上游,并且离子穿过质量过滤器/分析器以待被存储到下游的离子阱中。然后,在被上游的离子检测器检测到之前,通过质量过滤器/分析器从下游的阱往回喷射这些离子。也描述了各种破碎过程,仍然使用了单个质量过滤器/分析器,这允许实现MS/MS实验。
[0005] WO-A-2004/001878(Verentchikov等人)中也显示出相似的装置。使离子从源穿行到TOF分析器,TOF分析器充当离子选择器,从这里将离子喷射到破碎单元。从n这里,它们往回穿过TOF分析器并且被检测。对于MS,碎片离子可以循环穿过质谱仪。
n
US-A-2004/0245455(Reinhold)实现了一种用于MS 的相似的过程,但是使用了高灵敏度线性阱来实现上述离子选择,而没有使用TOF分析器。JP-A-2001-143654涉及一种离子阱,它将离子喷射到圆形轨道上以便于质量分离,其后是检测。
[0006] 本发明对照这样的背景,提供了一种用于MSn的改进的方法和装置。

发明内容

[0007] 根据本发明的第一方面,提供了一种质谱测定方法,该方法在第一循环中包括:
[0008] 将样品离子存储到第一离子存储设备中;
[0009] 将所存储的离子喷射到第一离子存储设备之外并进入单独的离子选择设备;
[0010] 在离子选择设备内选择离子的子集;
[0011] 将在离子选择设备内选择的离子的子集喷射到破碎设备;
[0012] 引导离子从破碎设备回到第一离子存储设备,而不使它们穿过所述离子选择设备;
[0013] 将从第一离子存储设备中喷射出的至少一些离子或其衍生物回收到第一离子存储设备中;以及
[0014] 将接收到的离子存储在第一离子存储设备中。
[0015] 任选地,重复该循环多次,以便允许MSn。
[0016] 本发明由此使用循环装置,其中离子被俘获、冷却并且从出射孔径中将它们喷射出。这些离子的子集被选择,并且在破碎等处理之后,再返回到离子存储设备,其中它们重新进入该离子存储设备而不穿过离子选择设备。
[0017] 与上文引言部分所指出的技术相比(该技术使用了通过离子阱中的同一孔径的“往返”过程),这种循环装置提供了许多优点。首先,存储离子以及将离子注入到离子选择器中所必需的设备的个数达到最小(并且在较佳的实施方式中仅仅是一个设备)。现代存储和注入设备允许非常高的质量分辨率和动态范围,但制造成本昂贵且需要控制,使得本发明的装置与现有技术相比代表了显著的成本和控制方面的节省。其次,通过使用同一个(第一)离子存储设备将离子注入到外部离子选择设备并接收来自外部离子选择设备的离子,MS级的个数就减小了。这转而提高了与MS级的个数有关的离子输运效率。
[0018] 任选地,离子存储设备包括离子出射孔径以及在空间上分开的离子输运孔径。然后,将离子喷射到第一离子存储设备之外的步骤包括将离子喷射到离子出射孔径之外,并且将离子回收到第一离子存储设备中的步骤包括通过离子输运孔径来回收离子。
[0019] 通常,与离子存储设备所喷射出的离子相比,从外部离子选择器喷射出的离子具有非常不同的特征。通过专用的离子输入端口(第一离子输运孔径)将离子载入离子存储设备中,特别是当从外部破碎设备回到离子存储设备时,可以按良好控制方式来实现该过程。这使离子损失达到最少,这转而提高了该装置的离子输运效率。
[0020] 可以提供离子源,从而向离子存储设备提供连续的或脉冲的样品离子流。在一个较佳装置中,任选的破碎设备可以位于这样的离子源和离子存储设备之间。无论哪一种情n况,通过允许划分离子的子集(并且对这些子集进行单独分析),就可以实现复杂的MS 实验,其中这些离子可以直接来源于离子源或者从先前的MS循环中获得。这转而导致该仪器的占空比增大,并且也可以提高它的检测极限。
[0021] 尽管本发明的较佳实施方式可以使用任何离子选择设备,但是它特别适合与静电阱(EST)相结合。近年来,包括静电阱(EST)的质谱仪已变得越来越商业化。相比于四极质量分析器/过滤器,EST具有高很多的质量精确度(可达ppm级,即百万分之一),并且相比于四极正交加速TOF仪器,它们具有优越很多的占空比和动态范围。在这种应用的框架之内,EST被视为一般等级的离子光学设备,其中在静电场中移动的离子至少沿着一个方向多次改变其移动方向。如果这些多次反射都被限制在有限的体积之内,使得离子轨迹在它们自身上方缠绕,则所得的EST被称为“封闭”型。在US-A-3,226,543、DE-A-04408489以及US-A-5,886,346中,可以找到这种“封闭”型质谱仪的示例。或者,离子可以将一个方向上的多种变化组合起来,同时沿另一个方向移动,使得离子轨迹并不在它们自身上方缠绕。这种EST通常被称为“开放”型,并且在GB-A-2,080,021、SU-A-1,716,922、SU-A-1,725,289、WO-A-2005/001878以及US-A-20050103992图2中可以发现多个示例。
[0022] 在 静 电 阱 中, 比 如 US-A-6,300,625、US-A-2005/0,103,992 以 及WO-A-2005/001878中所描述的那些静电阱是从外部离子源进行填充的,并且将离子喷射到EST下游的外部检测器。US-A-5,886,346所描述的Orbitrap等其它静电阱使用了像图像电流检测这样的技术,以检测该阱内的离子从而无需喷射。
[0023] 静电阱可以被用于对外部注入的离子进行精确的质量选择(如US-A-6,872,938和US-A-6,013,913所述)。此处,通过施加与EST中的离子振荡相谐振的AC电压,来选择先驱离子。此处,通过引入碰撞气体、激光脉冲或其它方式,实现了EST内的破碎,并且接下来的激发步骤是实现所得碎片的检测所必需的(在US-A-6,872,938和US-A-6,013,913的装置中,这是通过图像电流检测而实现的)。
[0024] 然而,静电阱并非没有困难。例如,EST通常要求离子注入。例如,我们早期的专利申请WO-A-02/078046和WO05124821A2描述了线性阱(LT)的使用,实现了确保高度相干的束被注入到EST设备中所必需的各种标准的组合。针对这种高性能、高质量分辨率的设备,需要产生持续时间非常短的束(每一个束都包含大量的离子),这意味着,在这种离子注入设备中,最佳离子提取方向通常不同于有效的离子俘获的方向。
[0025] 其次,高级EST往往具有严格的真空要求以避免离子损耗,而它们可能与之相接的离子阱和破碎机通常都填充了气体,使得在这些设备和EST之间一般有至少5个数量级的压差异。为了避免离子提取期间的破碎,有必要使压力与气体厚度的乘积达到最小-3 -2(通常,使其保持低于10 ...10 mm*torr),而为了有效的离子俘获,需要使该乘积达到最大(通常要超过0.2...0.5mm*torr)。
[0026] 在离子选择设备是EST的情况下,因此,在本发明的较佳实施方式中,使用了具有不同的离子入口和出口的离子存储设备,从而允许同一个离子存储设备以合适的方式提供离子以便将离子注入到EST,但是还允许离子流或长脉冲通过破碎设备从EST再回来,以便按良好控制的方式通过第二或其它实施方式的第三离子输运孔径将它们往回载入到第一离子存储设备中。
[0027] 可以使用任何形式的静电阱,如果这是构成离子选择设备的设备。一种尤佳的装置包括这样一种EST,其中离子束横截面因EST的电极的聚焦效应而仍然受限,这提高了接下来从EST中喷射出离子的效率。可以使用开放或封闭型的EST。多次反射允许增大不同质荷比的离子之间的分离,使得可以选择感兴趣的特定质荷比,或者简单地,范围更窄的质荷比的离子被注入到离子选择设备中。通过用施加到专用电极的电脉冲使不想要的离子偏转,就可以完成选择过程,所述专用电极最好位于离子镜的飞行时间焦点平面之中。在封闭型EST中,可能要求偏转脉冲的大小能够提供逐渐变窄的m/z选择范围。
[0028] 有可能以两种模式来使用破碎设备:在第一种模式中,在破碎设备中按通常的方式可以使先驱离子破碎,在第二种模式中,通过控制离子能量,先驱离子可以穿过破碎设备n而不发生破碎。这允许实现MS 和离子丰度提高,两者一起或单独实现:一旦将来自第一离子存储设备的离子注入到离子选择设备中,则可控地从离子选择设备中喷射出特定低丰度先驱离子,并且将它们重新往回存储到第一离子存储设备中,而没有在破碎设备中发生破碎。通过使这些低丰度先驱离子以不足以引起破碎的能量穿过破碎设备,就可以实现上述这一点。对于给定的m/z,通过使用脉冲减速场(比如形成于两个带有孔径的平电极之间的间隙之中),就可以减小能量扩展。当离子在从质量选择器到第一离子存储设备的回归途中进入减速电场时,较高能量的离子超过较低能量的离子,由此移动到减速场中更深之处。在所有这种特定m/z的离子进入减速场之后,关闭该场。因此,与较低能量的离子相比,最初能量较高的离子相对于接地电势经历了更高的电势降,由此使它们的能量相等。通过在从质量选择器中出射之时使电势降匹配于能量扩展,可以实现能量扩展的显著减小。由此可以避免离子的破碎,或者,可以改善对破碎的控制。
[0029] 根据本发明的第二方面,提供了一种质谱仪,它包括:离子存储设备,用于存储离子;离子选择设备;以及破碎/存储设备。离子选择设备用于接收第一离子存储设备中所存储的且从中喷射出的离子,并且还用于选择所接收到的离子的子集。第二破碎/存储设备用于接收由离子选择设备所选择的离子中的至少一些。然后,第二破碎/存储设备在使用过程中被配置成引导从离子选择设备中接收到的离子或其产物并使它们回到第一离子存储设备,而不使它们往回穿过离子选择设备。
[0030] 离子存储设备任选地具有:离子出射孔径,用于在第一循环中喷射出所述离子存储设备中所存储的离子;以及在空间上分开的离子输运孔径,用于在第一循环中俘获那些返回到离子存储设备的离子。离子选择设备可以是分立的,并且在空间上与离子存储设备分开,但是两者是相通的。离子选择设备也可以被配置成:接收从离子存储设备中喷射出的离子;选择那些离子的子集;以及喷射所选的子集,以便通过所述空间上分开的离子输运孔径重新俘获那些离子或其衍生物中的至少一些并且将它们存储到离子存储设备之内。
[0031] 在本发明的另一个方面中,提供了一种用于提高质谱仪的检测极限的方法,包括:
[0032] 从离子源中产生样品离子;
[0033] 将样品离子存储到第一离子存储设备中;
[0034] 将所存储的离子喷射到离子选择设备中;
[0035] 选择具有所选质荷比的离子并且将这些离子喷射到离子选择设备之外;
[0036] 将从离子选择设备中喷射出的离子存储到第二离子存储设备中,而不使它们往回穿过离子选择设备;
[0037] 重复上述步骤,以便增多第二离子存储设备中所存储的、具所选质荷比的离子;以及
[0038] 将增多的具有所选质荷比的离子往回转移到第一离子存储设备以便于接下来的分析。
[0039] 该技术允许提高仪器的检测极限,此处,所选质荷比的离子在样品中的丰度很低。一旦这些低丰度先驱离子在第二离子存储设备中累积了足够多的量,就可以将它们往回注n
入到第一离子存储设备以便俘获在那里(再次绕过离子选择设备)并接下来进行MS 分析。
尽管离子最好通过第一离子输运孔径离开第一离子存储设备并且通过单独的第二离子输运孔径回到这里,但是这在本发明的这方面中不是至关重要的,并且通过相同的孔径进行喷射和俘获是可行的。
[0040] 任选地,在低丰度先驱离子正向第二离子存储设备移动以提高这些特定先驱离子的总数的同时,离子选择设备可以继续保留且进一步精细化其它期望的先驱离子的选择过程。当足够精细地选择时,可以从离子选择设备喷射出这些先驱离子,并且在破碎设备中使它们破碎从而产生碎片离子。然后,这些碎片离子可以被转移到第一离子存储设备,并且接n下来执行这些碎片离子的MS,或者它们可以被存储到第二离子存储设备中,使得接下来的循环可以按这种方式进一步增多所存储的离子的个数,以增大用于该特定碎片离子的仪器的检测极限。
[0041] 由此,在本发明的另一个方面中,提供了一种用于提高质谱仪的检测极限的方法,包括:
[0042] (a)从离子源中产生样品离子;
[0043] (b)将样品离子存储到第一离子存储设备中;
[0044] (c)将所存储的离子喷射到离子选择设备中;
[0045] (d)选择有分析兴趣的离子并且将这些离子喷射到离子选择设备之外;
[0046] (e)在破碎设备中使从离子选择设备中喷射出的离子破碎;
[0047] (f)将具有所选质荷比的碎片离子存储到第二离子存储设备中,而不使它们往回穿过离子选择设备;
[0048] (g)重复上述步骤(a)-(f),以便增多第二离子存储设备中所存储的、具所选质荷比的碎片离子;以及
[0049] (h)将增多的具有所选质荷比的碎片离子往回转移到第一离子存储设备以便于接下来的分析。
[0050] 如上所述,从第一离子存储设备喷射出离子以及将离子往回俘获到第一离子存储设备可以是通过单独的离子输运孔径实现的,或者可以是通过同一个孔径实现的。
[0051] 可以在单独的质量分析器(比如上述US-A-5,886,346所描述的Orbitrap)中对第一离子存储设备中的离子进行质量分析,或者可以将这些离子往回注入到离子选择设备中以便在那儿进行质量分析。
[0052] 根据本发明的另一方面,提供了一种质谱测定方法,包括:
[0053] 在离子阱中累积离子;
[0054] 将累积的离子注入到离子选择设备中;
[0055] 在离子选择设备中选择和喷射离子的子集;以及
[0056] 将所喷射的离子的子集直接往回存储到离子阱中,而没有中间的离子存储。
[0057] 根据较佳实施方式的描述,本发明的其它较佳实施方式和优点将变得很明显。附图说明
[0058] 本发明可以按照许多方式付诸实践,并且现在将通过一个示例且参照附图来描述一个较佳实施方式,其中:
[0059] 图1以框图形式显示出本发明的质谱仪的概况;
[0060] 图2显示出图1的质谱仪的较佳实现方式,其中包括静电阱和单独的破碎单元;
[0061] 图3显示出与图2的质谱仪一起使用的静电阱的一种特别适合的装置的示意图;
[0062] 图4显示出本发明的质谱仪的第一备选装置;
[0063] 图5显示出本发明的质谱仪的第二备选装置;
[0064] 图6显示出本发明的质谱仪的第三备选装置;
[0065] 图7显示出本发明的质谱仪的第四备选装置;
[0066] 图8显示出本发明的质谱仪的第五备选装置;
[0067] 图9显示出一种离子镜装置,用于在将离子注入到图1、2和4-8的破碎单元之前增大离子的能量分散;
[0068] 图10显示出离子减速装置的第一实施方式,用于在将离子注入到图1、2和4-8的破碎单元之前减小能量分散;
[0069] 图11显示出离子减速装置的第二实施方式,用于在将离子注入到图1、2和4-8的破碎单元之前减小能量分散;
[0070] 图12显示出离子的能量分散与加到图10和11的离子减速装置的电压的切换时间的函数关系图;以及
[0071] 图13显示出离子的空间分散与加到图10和11的离子减速装置的电压的切换时间的函数关系图。

具体实施方式

[0072] 首先参照图1,以框图形式显示出质谱仪10。质谱仪10包括离子源20,用于产生将要对其进行质量分析的离子。来自离子源20的离子被准入到离子阱30中,离子阱30可以是填充有气体的RF多极或弯曲四极,WO-A-05124821中对此进行了描述。这些离子被存储到离子阱30中,并且可能发生离子的碰撞冷却,我们的共同待批的申请GB0506287.2中对此进行了描述,其内容引用在此作为参考。
[0073] 然后,可以朝着离子选择设备脉冲喷射离子阱30中所存储的离子,该离子选择设备最好是静电阱40。脉冲喷射产生了较窄的离子束。这些在静电阱40中被俘获,并且在其中经历多次反射,下文特别结合图3对此进行描述。在每一次反射时,或者在许多次反射之后,不想要的离子被脉冲偏转到静电阱40之外,例如,被偏转到检测器75或破碎单元50。较佳地,离子检测器75位于离子镜的飞行时间焦点平面附近,其中离子束的持续时间处于最小值。由此,仅仅是那些有分析兴趣的离子被留在静电阱40中。此外,多次反射将继续以增大相邻质量之间的分离,使得可以实现选择窗口的进一步窄化。最终,其质荷比接近感兴趣的质荷比m/z的所有离子都被消除了。
[0074] 在完成选择过程之后,离子被转移到静电阱40之外,并进入破碎单元50,该破碎单元50在静电阱40之外。在选择过程结束时,仍然在静电阱40中的有分析兴趣的离子都以足够大的能量被喷射出去,以允许它们在破碎单元50之内发生破碎。
[0075] 在破碎单元中发生破碎之后,离子碎片被往回转移到离子阱30。此处,它们被存n储,使得在又一个循环中,可以实现下一级的MS。这样,可以实现MS/MS或MS。
[0076] 图1的装置的备选或附加的特征是,从静电阱中喷射出的离子(因为它们处于选择窗口之外)可以穿过破碎单元50而并不发生破碎。通常,这可以通过使这些离子以相对较低的能量减速而实现,使得它们不具有足够大的能量以至于无法在破碎单元中发生破碎。在给定的循环中,处于感兴趣的选择窗口之外的未发生破碎的离子可以被向前转移,从碰撞单元50转移到辅助的离子存储设备60。在接下来的循环中(比如当已经完成了碎片离子的进一步质谱测定分析时),在第一实例中,从静电阱40中喷射出的离子(因为它们处于先前感兴趣的选择窗口之外)可以从辅助的离子存储设备60转移到离子阱30以便进行单独分析。
[0077] 此外,辅助的离子存储设备60可以被用于增大那些具有特定质荷比的离子的个数,特别是当这些离子在待分析的样品中的丰度相对较低的时候。这可以通过下列操作实现:以非破碎模式使用破碎设备;以及设置静电阱以仅仅使感兴趣的具有特定质荷比的离子穿过,但这种离子丰度有限。这些离子被存储在辅助的离子存储设备60中,但是在接下来的循环中,使用相似的标准从静电阱40中选择并喷射出同一质荷比的附加离子从而增多这种离子。通过从阱40中喷射出若干种不同的m/z,多种m/z比例的离子可以被一起存储。
[0078] 当然,先前不想要的先驱离子或者感兴趣但在样品中的丰度较低且由此需要首先n增多其个数的先驱离子都可以是MS 的后续破碎过程的主体。在这种情况下,辅助的离子存储设备60可以首先将其内含物喷射到破碎单元50中,而非将其内容直接往回转移到离子阱30。
[0079] 离子的质量分析可以在各种位置处以各种方式进行。例如,在静电阱40中,可以对离子镜中所存储的离子进行质量分析(下文结合图2阐述了更多的细节)。或者,可以提供单独的质量分析器70,且它与离子阱30相通。
[0080] 现在参照图2,更详细地显示质谱仪10的较佳实施方式。图2所示离子源20是脉冲激光源(较佳地是矩阵-辅助激光脱附离子化(MALDI)源,其中通过脉冲激光源22的照射,产生了离子)。但是,也可以使用连续的离子源,比如大气压喷涂源。
[0081] 在离子阱30和离子源20之间,是预阱24,它可以是分段式仅-RF气体填充多极。一旦预阱被填充,则其中的离子就通过透镜装置26被转移到离子阱30,在较佳实施方式中,它是气体填充仅-RF线性四极。这些离子被存储到离子阱30中,直到RF被关闭且横跨这些棒施加DC电压。在我们共同待批的申请GB-A-2,415,541和WO-A-2005/124821中详细阐述了这种技术,其细节全部引用在此。
[0082] 所加的电压梯度使离子加速穿过离子光学系统32,该离子光学系统32可以包括用于检测电荷的栅格或电极34。电荷-检测栅格34允许对离子数目进行估计。对离子数目进行估计是令人期望的,因为若有太多的离子,则所得的质量移动变得很难补偿。由此,如果离子数目超过了预定的界限(如使用栅格34所估计的那样),则所有的离子都可以被丢掉并且预阱24中的离子累积过程可以重复进行,同时脉冲激光22的脉冲个数成比例地下降,和/或累积的持续时间成比例地缩短。用于控制所俘获的离子的个数的其它技术也是可以使用的,比如US-A-5,572,022中所描述的那些技术。
[0083] 在经离子光学系统32加速之后,每一种m/z的离子被聚焦成10-100ns长的短束,并且进入了质量选择器40。各种形式的离子选择设备都是可以使用的,如下文所明显看到的那样。如果离子选择设备是静电阱,则其具体细节对于本发明而言并不是关键的。例如,若使用静电阱,则静电阱可以是开放的或封闭的,具有两个或多个离子镜或电扇区,并且具有或不具有轨道运动。目前,图3显示出具体实施离子选择设备40的静电阱的简单且较佳的装置。这种简单的装置包括两个静电镜42、44以及两个调节器46、48,它们使离子保持在循环路径上或使它们偏移到该路径之外。这些镜子可以由圆形板或平行板构成。当这些镜子上的电压是静电的时候,可以使它们维持非常高的准确度,这有利于静电阱40之内的稳定性和质量准确度。
[0084] 调节器46、48通常是一对紧凑的开口,其上施加了脉冲的或静电的电压,通常两侧具有防护板以控制弥散场。对于先驱离子的高分辨率选择而言,最好使用上升和下降时间小于10-100ns(在峰值的10%-90%之间测得的)且幅值高达几百伏特的电压脉冲。较佳地,调制器46和48位于相应的镜子42、44的飞行时间聚焦的平面之中,这些镜子最好可以与静电阱40的中心相一致,但并非必然如此。通常,通过图像电流检测(它自身是公知的技术,因此不再进一步描述),来检测这些离子。
[0085] 再次回到图2,在静电阱40之内有足够多次反射和电压脉冲之后,仅仅是那些感兴趣的质量范围很窄的离子留在静电阱40之中,由此完成了先驱离子的选择。然后,EST40中所选的离子被偏转到一个与其输入路径不同的路径,并且该路径导向破碎单元50,或者这些离子可以到达检测器75。较佳地,通过减速透镜80,执行到破碎单元的转向,下文结合图9-13进一步对此进行详述。通过适当地偏置破碎单元50上的DC偏压,可以调节破碎单元50之内的最终碰撞能量。
[0086] 较佳地,破碎单元50是一种分段的仅-RF多极,同时沿着它的多个段产生轴向DC场。在破碎单元中的气体密度合适(下文详述)且能量也合适(通常介于30-50V/kDa之间)的情况下,通过该单元朝着离子阱30再次输运离子碎片。或者,离子可能被陷在破碎单元50之内,然后,使用其它类型的破碎过程使其发生破碎,比如电子转移离解(ETD)、电子俘获离解(ECD)、表面诱发离解(SID)、光诱发离解(PID)等等。
[0087] 一旦将离子再次存储到离子阱30之中,则它们已准备好朝着静电阱40向前传输n以便进行MS 的下一级,或者朝着静电阱40以便在那儿进行质量分析,或者朝着质量分析器70,它可以是一种飞行时间(TOF)质谱仪或RF离子阱或FT ICR或Orbitrap质谱仪,如图2所示那样。较佳地,质量分析器70具有其自己的自动增益控制(AGC)设施,以限制或调节空间电荷。在图2的实施方式中,这是通过Orbitrap70的入口处的静电计栅格90来实现的。
[0088] 任选的检测器75可以被放置在静电阱40的多条路径之一上。这可以用于多种目的。例如,检测器可以被用于准确控制预扫描期间的离子个数(即自动增益控制),同时离子直接来源于离子阱30。另外,利用检测器,可以检测感兴趣的质量窗口之外的那些离子(换句话说,即至少在该质量分析循环中来自离子源的不想要的离子)。作为另一个备选方案,在上述EST中的多次反射之后,以高分辨率来检测静电阱40中所选的质量范围。另一种修改可以包括:用合适的后加速级,来检测单独带电的大分子,比如蛋白质聚合物和DNA。仅作为示例,该检测器可以是具有单一离子灵敏度的电子倍增器或微通道/微球体板,并且可以被用于检测弱信号。或者,该检测器可以是一种收集器,并且可以测量非常强的信号
4
(有可能在幅值中多于10 个离子)。可以使用不止一个检测器,同时多个调制器根据先前的获取循环中所获得的谱信息将离子束引导至一个或另一个检测器。
[0089] 图4示出了一种大致与图2的装置相似的装置,尽管具有一些细节差异。这样,相同的标号表示图2和4的装置所共有的部分。
[0090] 图4的装置包括离子源20,它将离子提供给预阱,在图4的实施方式中,预阱是辅助的离子存储设备60。预阱/辅助的离子存储设备60的下游是离子阱30(在较佳的实施方式中它是弯曲的阱)以及破碎单元50。然而,与图2的装置相比,图4的装置将破碎单元置于离子阱30和辅助的离子存储设备60之间,即位于离子阱的“源”这一侧,而非位于离子阱和静电阱之间(图2是那样定位的)。
[0091] 在使用过程中,离子在离子阱30中得到累积,然后,通过离子光学系统32从离子阱向静电阱40正交地喷射出离子。在离子光学系统32的下游的第一调节器/偏转器100将来自离子阱30的离子引导至EST40。沿着EST40的轴反射这些离子,并且在离子选择过程之后,将它们往回喷射到离子阱30。为了辅助该过程中的离子引导,可以使用任选的电扇区(比如环形或圆柱形电容器)110。减速透镜位于电扇区110和进入离子阱30的返回路径之间。减速过程可能涉及到上述脉冲的电场。
[0092] 因为离子阱30中的压力很低,所以回到离子阱30中的离子飞过它并且在破碎单元50中发生破碎,破碎单元50位于该离子阱30和辅助的离子存储设备60之间(即在离子阱30的离子源那一侧)。然后,在离子阱30中俘获这些碎片。
[0093] 关于图2,在MSn的任一选中的级,使用Orbitrap质量分析器70,以允许对离子阱30中所喷射出的离子进行准确的质量分析。质量分析器70位于离子阱的下游(即像EST40那样在离子阱的同一侧),并且第二偏转器120对这些离子进行“选通”,使它们通过第一偏转器100到达EST40或到达质量分析器70。
[0094] 图4所示的其它组件是仅-RF输运多极,它充当该装置的各个级之间的界面,就如本领域的技术人员所理解的那样。在离子阱30和破碎单元50之间,也可以放置一个离子减速装置(参照图9-13)。
[0095] 图5显示出图2和4所示装置的备选装置,相同的组件再次被标上相同的标号。图5的装置与图2的装置的相似之处在于,离子是由离子源20产生的,然后,穿过(或绕过)预阱和辅助的离子存储设备60,再被存储到离子阱30中。通过离子光学系统32,从离子阱
30中正交地喷射出离子,并且第一调制器/偏转器100使离子偏转到EST40的轴上,就像图
4那样。
[0096] 然而,与图4相比,作为EST40中的离子选择过程的备选,调制器/偏转器100可以使离子偏转到电扇区110,并且通过离子减速装置80从那儿进入破碎单元50。由此,(与图4相比),破碎单元50不在离子阱30的源一侧。从破碎单元50喷射之后,离子穿过弯曲n的输运多极130,然后,穿过线性仅-RF输运多极140,回到离子阱30。在MS 的任一级,提供了Orbitrap或其它质量分析器70,以允许进行准确的质量分析。
[0097] 图6显示出另一个备选装置,它在概念上与图2的装置基本上完全一样,不同之处在于,EST40不是图3所示的“封闭”型的阱,而是像上文引言部分所提到的文献中所描述的开放型的阱。
[0098] 更具体地讲,图6的质谱仪包括离子源20,它将离子提供给预阱/辅助离子存储设备60(也显示出另一个离子光学系统,但图6中未予标记)。预阱/辅助离子存储设备60的下游是另一个离子存储设备,在图6的装置中,它是弯曲的离子阱30。通过离子光学系统32,在正交方向上朝着EST40′,从弯曲的阱30中喷射出离子,其中离子经历了多次反射。调制器/偏转器100′被定位成朝着EST40′的“出口”,并且这允许通过电扇区110和离子减速装置80使离子偏转到检测器150或破碎单元50。从这儿,再次通过入射孔径,可以再次将离子往回注入到离子阱30中,该入射孔径不同于出射孔径,离子通过该出射孔径穿行到EST40′。图6的装置也包括相关的离子光学系统,但是在该图中为了清晰没有显示出来。
[0099] 在一 种备选 方案 中,图6的 EST40′可 以使 用平 行的镜 子(参 照WO-A-2005/001878)或细长的电扇区(参照US-A-2005/0103992)。可以使用形状更复杂的轨迹或EST离子光学系统。
[0100] 图7显示出根据本发明的多个方面的质谱仪的又一个实施方式。就像图4那样,该质谱仪包括离子源20,它将离子提供给预阱,就像在图4的实施方式中,预阱是辅助的离子存储设备60。预阱/辅助的离子存储设备60的下游是离子阱30(在较佳的实施方式中它是弯曲的阱)以及破碎单元50。破碎单元50可以位于离子阱30的任一侧,尽管在图7的实施方式中,破碎单元50被显示在离子源20和离子阱30之间。就如先前的实施方式那样,离子减速装置80最好被定位于离子阱30和破碎单元50之间。
[0101] 在使用过程中,离子通过离子入射孔径28进入离子阱30,并且在离子阱30中得到累积。然后,通过出射孔径29,向静电阱40正交地喷射出离子,该出射孔径29与入射孔径28分开。在图7所示的装置中,在与离子喷射方向大致垂直的方向上,出射孔径是细长的(即出射孔径29是槽状的)。阱30内的离子位置受到控制,使得离子从出射孔径29的一侧(即图7所示左手一侧)出射。通过各种方式,可以实现离子在离子阱内的位置的控制,比如通过将不同的电压加到离子阱30的末端上的电极(未示出)。在一个特定的实施方式中,离子可以按紧凑的圆柱形分布从离子阱30的中间被喷射出来,同时作为大度尺寸的长圆柱形分布被重新俘获(这是系统内的扩展和像差所导致的)。
[0102] 经修改的离子光学系统32’位于离子阱30的出口的下游,并且再往下,第一调节器/偏转器100 ″将离子引导至EST40。沿着EST40的轴,反射这些离子。作为将离子阱30中的离子引导至EST40的备选方案,离子光学系统32′下游的偏转器100″使这些离子偏转到Orbitrap质量分析器70等。
[0103] 在图7的实施方式中,离子阱30充当减速器和离子选择器。在感兴趣的离子从EST40返回之后停留在离子阱30之内那一时刻,横跨离子阱30的提取(dc)电势被关闭,俘获(rf)电势被打开。为了注入到EST40中并且从EST40中喷射出,以脉冲方式关闭EST40(图3中有示出,且该EST40最接近于透镜)之内的镜子上的电压。在离子阱30中俘获感兴趣的离子之后,使这些离子朝着离子阱30任一侧的破碎单元50加速,其中碎片离子被产生且接下来被俘获。之后,碎片离子可以被再一次转移到离子阱30。
[0104] 通过从细长槽的第一侧喷射离子并且朝着该槽的第二侧往回俘获这些离子,从离子阱30喷射出来的路径不平行于重新俘获到该阱30中的路径。这转而允许以相对于EST40的纵轴的一角度将离子注入到EST40,就像图4和5的实施方式中那样。
[0105] 当然,尽管图7显示出单个槽状出射孔径29,同时离子朝着槽的第一侧面从中出射但通过该槽的另一侧从EST40往回接收,但是可以使用两个(或更多个)单独的但一般相邻的输运孔径(在与离子穿过它们的方向相正交的方向上,这些孔径可以是细长的或者不是细长的),同时离子通过这些输运孔径中的第一个孔径出射但通过相邻的输运孔径返回到离子阱30中。
[0106] 事实上,不仅图7的槽状出射孔径29可以被细分成多个单独的输运孔径(这些孔径在离子喷射和注入期间穿行方向的大致正交方向上是间隔开的),而且图7的弯曲的离子阱30自身也可以被细分成多个单独的段。图8显示出这样的装置。
[0107] 图8的装置非常相似于图7,该质谱仪包括离子源20,离子源20将离子提供给预阱,该预阱是辅助的离子存储设备60。预阱/辅助的离子存储设备60的下游是离子阱30′(下文进行描述)以及破碎单元50。就像图7的装置那样,图8的破碎单元50可以位于离子阱30′的任一侧,尽管在图8的实施方式中破碎单元50被显示成位于离子源20和离子阱30′之间,任选的离子减速装置80使离子阱30′和破碎单元50分开。
[0108] 离子阱30的下游是第一调制器/偏转器100″′,它引导离子从偏轴方向进入EST40。沿着EST40的轴,反射这些离子。为了将来自EST40的离子往回喷射到离子阱30中,在EST40中使用了第二调制器/偏转器100″。作为将离子阱30中的离子引导至EST40的备选方案,偏转器100′″使这些离子偏转到Orbitrap质量分析器70等。
[0109] 在图8的实施方式中,弯曲的离子阱30′包括三个相接的段36、37、38。第一和第三段36、38都具有离子输运孔径,使得通过第一段36中的第一输运孔径从离子阱30′中喷射出离子且使它们进入EST40,但通过第三段38中的第二(空间上分开的)输运孔径将这些离子收回到离子阱30′中。为了实现这一点,相同的RF电压可以被加到离子阱30’的每一段(使得离子阱30’充当单个阱,而不管若干个阱段36、37、38),但同时不同的DC偏压被加到每一段,使得这些离子没有中心地分布在弯曲的离子阱30′的轴向方向上。在使用过程中,离子被存储在离子阱30’中。通过恰当地调节加到离子阱段36、37、38上的DC电压,可使离子通过第一段36离开离子阱30′,以便偏轴注入到EST40。这些离子返回到离子阱30’并且通过第三段38中的孔径进入。
[0110] 当离子被重新俘获到EST40中时,通过使施加到第一和第二段36和37上的DC电压的幅值低于施加到第三段38的DC电压的幅值,可以使这些离子沿着离子阱30′的弯曲轴加速(比如按30-50ev/kDa加速),使得它们经历破碎过程。这样,离子阱30’可以充当一个阱以及一个破碎设备。
[0111] 可以使所得的碎片离子冷却,然后,通过相对于第一段36上的电压增大第二和第三段37、38上的DC偏置电压,将这些离子挤入第一段36中。
[0112] 对于最佳操作,破碎设备特别要求,被注入到破碎设备中的离子的能量扩展是受到良好控制的,并且被保持在大约10-20eV的范围中,因为更高的能量只会产生小质量的碎片,而更低的能量提供极少的破碎。另一方面,许多现存的质谱仪装置以及此处图1-7的实施方式所描述的新颖装置都使到达破碎单元的离子的能量扩展远超过期望的较窄的范围。例如,在图1-7的装置中,在离子阱30、30′中,这些离子可以在能量方面展宽,原因如下:该阱的空间扩展;EST40中的空间电荷效应(比如多次反射期间的库仑扩展);以及系统中偏离的累积效应。
[0113] 结果,某种能量补偿形式是令人期望的。图9-11显示出用于实现该目的的离子减速装置80的各部件的具体但示意性的示例,并且图12和13显示出施加到这种离子减速装置的各种不同参数的能量扩展减小和空间扩散。
[0114] 为了实现恰当的能量补偿平,通过使用上述各实施方式中的一些,期望增大离子能量分散程度。换句话说,假定的单能离子束的束厚度最好比两个这样的假定的单能离子束的分离要小一个期望的10-20eV的能量差,上文对此进行了解释。尽管通过使破碎单元50与离子阱30或EST40物理上分开一显著的距离就可以实现一定程度的能量分散(使得离子可以在时间上分散),但是这种装置不是最佳的,因为它增大了质谱仪的整体尺寸,需要附加的浦等。
[0115] 最好能包括一种特定的装置,它允许缓缓的能量分散,而没有过分地增大破碎单元50和其上游的质谱仪的组件(离子阱30或EST40)之间的距离。图9显示出一种合适的设备。在图9中,显示出离子镜装置200,用于形成图2-7的高度示意性表示的离子减速装置80的任选部分。离子镜装置200包括电极阵列210,它们终止于平镜电极220。将离子从EST40注入到离子镜装置中,并且平镜电极220反射这些离子,从而导致当它们从离子镜装置中出射并到达破碎单元50的时候离子的分散程度增大了。图11显示出引入能量分散的备选方法,下文进一步描述。
[0116] 一旦使用图9的离子镜装置200来增大能量分散程度,则接下来使离子减速。通常,这是通过将脉冲DC电压加到减速电极装置(比如图10所示且标记为250)而实现的。图10的减速电极装置250包括电极阵列,其中具有入射电极260和出射电极270,这两者之间夹着接地电极280。较佳地,入射和出射电极与差动泵浦部分组合起来,以便在其压力相对较低的(上游)离子镜装置200、压力中等的减速电极装置250、以及需要相对较高的压-8
力的(下游)破碎单元50之间逐渐地减小压力。离子镜装置200可以处于大约10 mBar的-5 -4
压力之下,减速电极装置250通过差动泵浦可以具有大约10 mBar~10 mBar的较低压力
3 -2
限值,而破碎单元50中的压力大约是10 ~10 mBar的范围中。为了在减速电极装置250的出口和破碎单元50之间提供泵浦,可以使用附加的仅-RF多极,比如八极RF设备最佳。
这在下文将要描述的图11中被示出。
[0117] 为了实现减速,透镜260、270之一或两者之上的DC电压被切换。发生这种情况的时间取决于具有感兴趣的离子的特定的质荷比。特别是,当离子进入减速电场时,较高能量的离子超过较低能量的离子,由此移动到减速场中更深之处。在所有这种特定m/z的离子进入减速场之后,关闭该场。因此,与较低能量的离子相比,最初能量较高的离子相对于接地电势经历了更高的电势降,由此使它们的能量相等。通过在从质量选择器中出射之时使电势降匹配于能量扩展,可以实现能量扩展的显著减小。
[0118] 应该理解,这允许对具有范围确定的质荷比的离子进行能量补偿,而不对具有不确定宽范围的不同质荷比的离子进行能量补偿。这是因为,在有限的减速透镜装置中,只有其质荷比在某一范围中的那些离子才经历一定量的减速,这种减速与它们的能量扩展相匹配。当切换减速透镜时,其质荷比与所选离子很不同的任何离子当然都在减速透镜之外,或者经历一定程度的减速,但因为质荷比很不同,所以初始能量扩展无法平衡减速的量,即更高能量离子的减速和穿透距离将不会匹配于更低能量离子的减速和穿透距离。然而,刚才所讲的使本领域的技术人员应该理解,这并不禁止将质荷比大不相同的多种离子引入离子减速装置80中,而仅仅是说,只有质荷比处于一特定范围中的感兴趣的那些离子才经历适度的能量补偿以使它们恰当地准备好进入破碎单元50。由此,可以在离子减速装置80的上游对这些离子进行过滤(使得在质谱仪的给定循环中只有感兴趣的单一质荷比的离子才进入),或者,在离子减速装置80的下游可以使用质量过滤器。事实上,有可能使用破碎单元50自身来丢弃那些不具有感兴趣的质荷比且已历经恰当的能量补偿的离子。
[0119] 图11显示出一种用于使离子减速且还使它们散焦的备选装置。此处,当具有感兴趣的质荷比的离子位于静电镜42、44附近时,通过将DC电压脉冲地施加到静电镜42、44(图3)上,在EST40(图11仅显示出其一部分)内实现了散焦(这是因EST40操作的方式而导致的,特定m/z的离子到达静电镜42、44的时间是已知的)。将合适的脉冲加到静电镜42或44可导致静电镜42、44使那些离子散焦,而非对那些离子产生聚焦效应。
[0120] 一旦散焦,通过将合适的偏转场加到偏转器100/100′/100″上,就可以从EST中喷射出那些离子。通过使初始能量扩展匹配于横穿减速电极装置300所限定的电场而产生的电势降,散焦的离子接下来朝着减速电极装置300前进,该装置300使具有所选m/z的离子减速,就像上文结合图10所描述的那样。
[0121] 最终,离子穿过终端电极310从减速电极装置300出射,并且穿过出射孔径320进入八极仅-RF设备330,以提供期望的泵浦。
[0122] 图12和13分别显示出特定质荷比的离子的能量扩展和空间扩展与加到离子减速电极上的DC电压的切换时间之间的函数关系图。
[0123] 从图12中可以看到,本发明的实施例所实现的能量扩展减小可以达到因子20,从而将具有+/-50eV扩展的束减小到具有+/-2.4eV扩展的束。在使用本文所描述的特定的减速器系统的情况下,较长的切换时间产生了较小的空间斑点尺寸,但是也产生了较大的最终能量扩展。此处给出的示例显示出,必须考虑除能量扩展以外的束特征,这并非意味着用于最佳最终能量扩展的减速总是使最终束的空间扩展增大。
[0124] 与其它能量散焦束一起使用的减速透镜的其它设计可以使能量扩展的大为减小。本领域的技术人员将意识到,本发明有许多潜在的应用。本发明特别适用于提高破碎过程中所产生的碎片离子的产量和类型。如上所述,为了使父离子有效地破碎,需要10-20eV的离子能量,并且很清楚,具有+/-50eV能量扩展的束中的大量离子远远处于该范围之外。占主导的是,高能离子破碎成低质量碎片,这使父离子的标识变得很难,而更高比例的低能离子根本不发生破碎。若没有能量补偿,则被引导至破碎单元的具有+/-50eV能量扩展的父离子束将产生高丰度的低质量碎片(若允许所有的束都进入破碎单元),或者,若只允许具有最高20eV能量的离子进入(通过在进入之前使用势垒),则大量的离子将丢失,并且该过程将非常无效。这种无效将取决于该束中的离子的能量分布,其中因为无效的离子能量,或许该束的90%都丢失了或无法破碎。
[0125] 通过使用上述技术,如果期望在质谱仪的给定循环中使离子穿过破碎单元50(或将它们存储在那儿)而完好无损,则可以避免离子在破碎单元中发生破碎。或者,当期望执n行MS/MS或MS 实验时,可以改进对破碎过程的控制。
[0126] 在其它离子处理技术中,可以找到所描述的离子减速技术的其它应用。许多离子光学设备只有针对那些处于有限的能量范围中的离子才能很好地起作用。各种示例包括:静电透镜,其中色差引起散焦;RF多极或四极质量过滤器,其中当离子穿过该设备的有限长度时离子所经历的RF循环的个数与离子能量有关;以及磁光学系统,它使质量和能量分散。反射器通常被设计成提供能量聚焦,以便补偿离子束能量的范围,但是更高阶的能量异常通常是存在的,并且经能量补偿的束(比如本发明所提供的)将减小这些异常散焦效应。
同样,本领域的技术人员将会认识到,这些仅仅是上述技术的诸多可能的应用中选出的一部分。
[0127] 现在返回到图2和4-8的装置,通常,这些图中所示的填有气体的单元的有效操作取决于碰撞条件的最佳选择,并且其特征是碰撞厚度P·D,其中P是气体压力,D是离子横穿的气体厚度(通常D是该单元的长度)。氮、氦或氩是碰撞气体的示例。在目前较佳的实施例中,期望大致地实现下列条件:
[0128] 在预阱24中,期望P·D>0.05mm·torr,但最好<0.2mm·torr。多次穿行可以被用于俘获离子,就像我们共同待批的专利申请GB0506287.2中所描述的那样。
[0129] 离子阱30最好具有介于0.02~0.1mm·torr的P·D,并且该设备可以广泛地使用多次穿行。
[0130] 破碎单元50(它使用碰撞-诱发的离解即CID)具有大于0.5mm·torr的P·D,并且最好大于1mm·torr。
[0131] 对于任何辅助的离子存储设备60,碰撞厚度P·D最好介于0.02~0.2mm·torr-8之间。相反,期望使静电阱40维持高度真空,较佳地为10 torr或优于该值。
[0132] 图2的装置中的典型分析时间如下:
[0133] 预阱24中的存储:通常是1-100ms;转移到弯曲的阱30中:通常是3-10ms;
[0134] EST40中的分析:通常是1-10ms,以便提供超过10,000的选择质量分辨率;
[0135] 破碎单元50中的破碎过程,之后离子往回转移到弯曲的阱30:通常是5-20ms;
[0136] 通过破碎单元50,转移到第二离子存储设备60(若使用该设备的话),其间没有发生破碎:通常是5-10ms;以及
[0137] Orbitrap型质量分析器70中的分析:通常是50-2,000ms。
[0138] 通常,具有相同m/z的离子的脉冲的持续时间应该远低于1ms,最好低于10微秒,而最佳的状态对应于比0.5微秒还要短的离子脉冲(其m/z介于大约400-2000之间)。另外对于其它m/z,所发射的脉冲的空间长度应该远低于10m,较佳地低于50mm,而最佳的状态对应于比5-10mm还要短的离子脉冲。当使用Orbitrap和多反射TOF分析器时,特别期望使用比5-10mm还要短的脉冲。
[0139] 尽管已经描述了一个特定的实施例,但是本领域的技术人员应该很容易理解,各种修改都是想得到的。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈