首页 / 专利库 / 物理 / 光子 / 用于血管成像的光学显微系统

用于血管成像的光学显微系统

阅读:759发布:2023-01-22

专利汇可以提供用于血管成像的光学显微系统专利检索,专利查询,专利分析的服务。并且本 发明 提供了一种用于血管成像的光学显微系统,光学显微系统包括 激光器 、二次谐波产生装置、双 光子 显微成像装置、时间相关单光子计数单元及处理器,二次谐波产生装置用于对激光器发出的激光的 频率 进行倍增,双光子显微成像装置用于获取样品的 荧光 激发图像,时间相关单光子计数单元用于根据荧光图像获得样品 荧光寿命 曲线,处理器用于对样品荧光寿命曲线进行处理;二次谐波产生装置包括依次设置于激光器的出射光路上的 相位 延迟片、非线性介质。本发明通过非线性介质对激光器发出的激光的频率进行倍增,从而获得具有较高血红蛋白自发荧 光激发 效率的短 波长 激光脉冲,提升了血管成像的 分辨率 和 信噪比 ,且在对血管成像时不需要外加对比剂。,下面是用于血管成像的光学显微系统专利的具体信息内容。

1.一种用于血管成像的光学显微系统,其特征在于,包括激光器、二次谐波产生装置、双光子显微成像装置、时间相关单光子计数单元及处理器,所述二次谐波产生装置用于对所述激光器发出的激光的频率进行倍增,所述双光子显微成像装置用于获取样品的荧光激发图像,所述时间相关单光子计数单元用于根据所述荧光激发图像获得样品荧光寿命曲线,所述处理器用于对所述样品荧光寿命曲线进行处理;所述二次谐波产生装置包括依次设置于所述激光器的出射光路上的相位延迟片、非线性介质。
2.根据权利要求1所述的光学显微系统,其特征在于,所述非线性介质的材质为三酸锂晶体、偏硼酸钡晶体、磷酸晶体中的一种,和/或所述非线性介质的厚度为0.5mm~
5mm。
3.根据权利要求1所述的光学显微系统,其特征在于,所述二次谐波产生装置还包括设置于所述激光器的出射光路上的第一聚焦透镜和第一准直透镜,所述第一聚焦透镜设置于所述相位延迟片与所述非线性介质之间,所述第一准直透镜设置于所述非线性介质与所述双光子显微成像装置之间;所述第一聚焦透镜的后焦平面与所述第一准直透镜的前焦平面重合,所述非线性介质位于所述第一聚焦透镜的后焦平面上。
4.根据权利要求1所述的光学显微系统,其特征在于,所述双光子显微成像装置包括反射器、分光器、显微成像结构、载物台及双光子荧光激发检测结构,所述反射器位于所述激光器的出射光路上,所述分光器位于所述反射器的反射光路上,所述显微成像结构、载物台依次位于所述分光器的透射光路上,所述双光子荧光激发检测结构位于所述分光器的反射光路上,或者所述显微成像结构、载物台依次位于所述分光器的反射光路上,所述双光子荧光激发检测结构位于所述分光器的透射光路上;所述双光子荧光激发检测结构与所述时间相关单光子计数单元连接。
5.根据权利要求4所述的光学显微系统,其特征在于,所述双光子荧光激发检测结构包括依次设置于所述分光器的反射光路上的第二聚焦透镜、滤光片及光电探测器,所述光电探测器位于所述第二聚焦透镜的后焦平面上,所述光电探测器与所述时间相关单光子计数单元连接。
6.根据权利要求4所述的光学显微系统,其特征在于,所述反射器为振镜,所述反射器与所述处理器连接。
7.根据权利要求4所述的光学显微系统,其特征在于,所述双光子显微成像装置还包括位于所述反射器的反射光路上的扩束结构,所述扩束结构包括第二准直透镜和第三聚焦透镜,所述第二准直透镜位于所述分光器与所述第三聚焦透镜之间;所述第三聚焦透镜的后焦平面与所述第二准直透镜的前焦平面重合。
8.根据权利要求4所述的光学显微系统,其特征在于,所述显微成像结构包括物镜和驱动器,所述物镜设于所述分光器与所述载物台之间,所述驱动器分别与所述物镜、处理器连接。
9.根据权利要求4所述的光学显微系统,其特征在于,所述分光器为二向色镜。
10.根据权利要求1~9任一项所述的光学显微系统,其特征在于,所述激光器为近红外模光纤激光器,所述近红外锁模光纤激光器的中心波长为1000nm~1100nm。

说明书全文

用于血管成像的光学显微系统

技术领域

[0001] 本发明涉及光学显微成像技术领域,尤其涉及一种用于血管成像的光学显微系统。

背景技术

[0002] 在自然状态下无侵入式观察毛细血管系统为了解微循环相关疾病的发生和发展提供了宝贵的信息,例如:科学家通过观测毛细血管的形态及功能特征,并进一步探索它们与周围细胞之间的内在联系和相互作用,理解肿瘤的发生和转移。由于毛细血管的内径平均只有约8微米,因此研究它需要借助较高分辨率的成像手段。
[0003] 现有的成像手段包括非光学血管成像技术、光学成像技术以及光学与超声学相结合的光声成像技术(PAT),非光学血管成像技术包括磁共振成像(MRI)、计算机断层扫描(CT)、电子发射断层扫描(PET)、超声成像等成像技术,这些成像技术的分辨率均在毫米量级,不能提供足够高的分辨率来解析毛细血管网络。光学成像技术包括正交偏振、激光散斑成像、普勒光学相干断层扫描(OCT)成像方法,正交偏振与激光散斑成像样品成像仅能对样品表面进行成像且分辨率不高;OCT成像方法主要借助于血液流动时多普勒效应或者红细胞流动引起的信号变化来进行成像,当遇到血液停滞或者淤积时,无法准确采集图像,而血液停滞或者淤积在肿瘤血管内又普遍存在。光学与超声学相结合的光声成像技术(PAT)包括声学分辨率的光声成像技术(AR-PAT)和光学分辨率的光声成像技术(OR-PAT),AR-PAT分辨率在几十微米甚至百微米量级,只能针对比较粗的大血管进行成像;OR-PAT虽然横向分辨率可以达到几个微米,但是在纵向组织层析能方面分辨率依旧存在不足。
[0004] 双光子荧光成像技术是一种非线性光学成像技术,具有非线性光学高分辨率的优点。双光子荧光成像技术一般使用红外激光作为激发光源,例如覆盖680nm~1020nm波段的宝石飞秒激光器,但是,血管内血液的主要成分血红蛋白在这个波段自发荧光激发效率很低,几乎不发光,现有的双光子血管成像技术,经常需要在血管内灌注荧光染料来进行观测,但染料在血管内停留的时间有限,不能对血管新生过程进行长时间连续观测。另外,由于需要外加对比剂,不可避免的会对肿瘤微环境产生干扰,从而影响最终结果的可靠性。
[0005] 因此,现有的血管成像技术均无法满足高分辨率的同时不需要外加对比剂。

发明内容

[0006] 为了解决现有技术的不足,本发明提供一种用于血管成像的光学显微系统,所述光学显微系统能够在满足高分辨率的同时不需要外加对比剂。
[0007] 本发明提出的具体技术方案为:提供一种用于血管成像的光学显微系统,所述光学显微系统包括激光器、二次谐波产生装置、双光子显微成像装置、时间相关单光子计数单元及处理器,所述二次谐波产生装置用于对所述激光器发出的激光的频率进行倍增,所述双光子显微成像装置用于获取样品的荧光激发图像,所述时间相关单光子计数单元用于根据所述荧光图像获得样品荧光寿命曲线,所述处理器用于对所述样品荧光寿命曲线进行处理;所述二次谐波产生装置包括依次设置于所述激光器的出射光路上的相位延迟片、非线性介质。
[0008] 进一步地,所述非线性介质的材质为三酸锂晶体、偏硼酸钡晶体、磷酸晶体中的一种,和/或所述非线性介质的厚度为0.5mm~5mm。
[0009] 进一步地,所述二次谐波产生装置还包括设置于所述激光器的出射光路上的第一聚焦透镜和第一准直透镜,所述第一聚焦透镜设置于所述相位延迟片与所述非线性介质之间,所述第一准直透镜设置于所述非线性介质与所述双光子显微成像装置之间;所述第一聚焦透镜的后焦平面与所述第一准直透镜的前焦平面重合,所述非线性介质位于所述第一聚焦透镜的后焦平面上。
[0010] 进一步地,所述双光子显微成像装置包括反射器、分光器、显微成像结构、载物台及双光子荧光激发检测结构,所述反射器位于所述激光器的出射光路上,所述分光器位于所述反射器的反射光路上,所述显微成像结构、载物台依次位于所述分光器的透射光路上,所述双光子荧光激发检测结构位于所述分光器的反射光路上,或者所述显微成像结构、载物台依次位于所述分光器的反射光路上,所述双光子荧光激发检测结构位于所述分光器的透射光路上;所述双光子荧光激发检测结构与所述时间相关单光子计数单元连接。
[0011] 进一步地,所述双光子荧光激发检测结构包括依次设置于所述分光器的反射光路上的第二聚焦透镜、滤光片及光电探测器,所述光电探测器位于所述第二聚焦透镜的后焦平面上,所述光电探测器与所述时间相关单光子计数单元连接。
[0012] 进一步地,所述反射器为振镜,所述反射器与所述处理器连接。
[0013] 进一步地,所述双光子显微成像装置还包括位于所述反射器的反射光路上的扩束结构,所述扩束结构包括第二准直透镜和第三聚焦透镜,所述第二准直透镜位于所述分光器与所述第三聚焦透镜之间;所述第三聚焦透镜的后焦平面与所述第二准直透镜的前焦平面重合。
[0014] 进一步地,所述显微成像结构包括物镜和驱动器,所述物镜设于所述分光器与所述载物台之间,所述驱动器分别与所述物镜、处理器连接。
[0015] 进一步地,所述分光器为二向色镜。
[0016] 进一步地,所述激光器为近红外模光纤激光器,所述近红外锁模光纤激光器的中心波长为1000nm~1100nm。
[0017] 本发明提供的光学显微系统包括激光器、二次谐波产生装置、双光子显微成像装置、处理器及时间相关单光子计数单元,所述二次谐波产生装置用于对所述激光器发出的激光的频率进行倍增,所述二次谐波产生装置包括依次设置于所述激光器的出射光路上的相位延迟片、非线性介质,通过非线性介质对所述激光器发出的激光的频率进行倍增,从而获得具有较高血红蛋白自发荧光激发效率的短波长激光脉冲,提升了成像分辨率和生物组织中血管信号的信噪比,且由于不同物质存在荧光寿命差异且血红蛋白自发荧光寿命短的特性,利用荧光寿命的来特异性来区分血管信号与其他信号,从而不需要外加对比剂。此外,本发明不需要采用结构复杂且价格昂贵的锁模钛蓝宝石激光器作为浦光源,降低了成本。附图说明
[0018] 下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
[0019] 图1为实施例一的双光子显微成像系统的结构示意图;
[0020] 图2为实施例一的双光子显微成像系统的另一结构示意图;
[0021] 图3为实施例二的双光子显微成像系统的结构示意图。

具体实施方式

[0022] 以下,将参照附图来详细描述本发明的实施例。然而,可以以许多不同的形式来实施本发明,并且本发明不应该被解释为限制于这里阐述的具体实施例。相反,提供这些实施例是为了解释本发明的原理及其实际应用,从而使本领域的其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改。在附图中,相同的标号将始终被用于表示相同的元件。
[0023] 本申请提供的用于血管成像的光学显微系统包括激光器、二次谐波产生装置、双光子显微成像装置、处理器及时间相关单光子计数单元,二次谐波产生装置用于对激光器发出的激光的频率进行倍增,以获得波长为激光器发出的激光的波长的一半的短波长激发脉冲。双光子显微成像装置用于获取样品在激光器的激发下产生的荧光图像,时间相关单光子计数单元用于根据荧光图像获得样品荧光寿命曲线,处理器用于对样品荧光寿命曲线进行处理。二次谐波产生装置包括依次设置于激光器的出射光路上的相位延迟片、非线性介质。相位延迟片用于调节激光器发出的激光的相位,以获得具有预定偏振方向的激光,非线性介质用于对具有预定偏振方向的激光进行频率倍增,产生波长为激光器发出的激光的波长的一半的短波长激发脉冲。
[0024] 本申请通过非线性介质对激光器发出的激光的频率进行倍增,从而获得具有较高血红蛋白自发荧光激发效率的短波长激光脉冲,提升了血管成像的分辨率和生物组织中血管信号的信噪比,且由于不同物质存在荧光寿命差异且血红蛋白自发荧光寿命短的特性,利用荧光寿命的特异性来区分血管信号与其他信号,从而不需要外加对比剂。此外,本发明不需要采用结构复杂且价格昂贵的锁模钛蓝宝石激光器作为泵浦光源,降低了成本。
[0025] 下面通过几个具体的实施例并结合附图来对本申请中的光学显微系统的结构进行详细的描述。
[0026] 实施例一
[0027] 参照图1、图2,本实施例中的光学显微系统包括激光器1、二次谐波产生装置2、双光子显微成像装置3、时间相关单光子计数单元4及处理器5。为了描述方便,以下将激光器1发出的激光简称为原始激光,二次谐波产生装置2位于激光器1与双光子显微成像装置3之间,用于对原始激光的频率进行倍增,以获得短波长激发脉冲,其中,短波长激发脉冲的波长为原始激光的波长的一半。双光子显微成像装置3用于获取样品的荧光激发图像,时间相关单光子计数单元4用于根据荧光激发图像获得样品荧光寿命曲线,处理器5用于对样品荧光寿命曲线进行处理。
[0028] 二次谐波产生装置2包括依次设置于激光器1的出射光路上的相位延迟片21、非线性介质22。相位延迟片21用于调节原始激光的相位,以获得具有预定偏振方向的激光,非线性介质22用于对具有预定偏振方向的激光进行频率倍增,以产生波长为原始激光的波长的一半的短波长激发脉冲。具体地,相位延迟片21为二分之一波片,线偏振光经过相位延迟片21后的激光与原始激光的相位差为180°,即当一束线偏振光以与二分之一波片的晶轴成α入射至二分之一波片后,从二分之一波片出射的线偏振光的偏振方向与原线偏振光的偏振方向之间的夹角为2α,入射光偏振态不变,通过改变二分之一波片的晶轴角度,从而得到具有预定偏振方向的激光。
[0029] 非线性介质22的材质为三硼酸锂(LBO)晶体、偏硼酸钡(BBO)晶体、磷酸钛氧钾(KTP)晶体中的一种,非线性介质22的厚度为0.5mm~5mm,当然,本实施例中的非线性介质22的材质也可以选择其他非线性光学晶体,这里不做限制。本实施例中可以根据非线性介质22的材质以及需要获得的短波长激发脉冲的中心波长的大小来确定非线性介质22的厚度及切割属性,例如,需要获得的短波长激发脉冲的中心波长的520nm,厚度为2mm的LBO晶体,其切割角为θ=90°,φ=0°。
[0030] 双光子显微成像装置3包括反射器31、分光器32、显微成像结构33、载物台34及双光子荧光激发检测结构35。反射器31位于激光器1的出射光路上,其用于将入射到其上的激光反射至分光器32上。分光器32位于反射器31的反射光路上。较佳地,分光器32为二向色镜,其根据波长对光束进行透射或反射。
[0031] 如图1所示,显微成像结构33、载物台34依次设置于分光器32的透射光路上,双光子荧光激发检测结构35设置于分光器32的反射光路上,双光子荧光激发检测结构35与时间相关单光子计数单元4连接。
[0032] 载物台34用于承载样品,原始激光通过二次谐波产生装置2后产生短波长激发脉冲并入射到反射器31,反射器31将其反射至分光器32上,分光器32对短波长激发脉冲进行透射并入射至显微成像结构33上,显微成像结构33将短波长激发脉冲聚焦至样品上并激发样品产生荧光,样品产生的荧光经过显微成像结构33后入射至分光器32上,分光器32将荧光反射至双光子荧光激发检测结构35。
[0033] 如图2所示,在本实施例的另一实施方式中,显微成像结构33、载物台34依次设置于分光器32的反射光路上,双光子荧光激发检测结构35设置于分光器32的透射光路上。
[0034] 原始激光通过二次谐波产生装置2后产生短波长激发脉冲并入射到反射器31,反射器31将其反射至分光器32上,分光器32对短波长激发脉冲反射至显微成像结构33上,显微成像结构33将短波长激发脉冲聚焦至样品上并激发样品产生荧光,样品产生的荧光经过显微成像结构33后入射至分光器32上,分光器32将荧光透射至双光子荧光激发检测结构35。
[0035] 本实施例中的双光子荧光激发检测结构35包括依次设置于分光器32的反射光路上的第二聚焦透镜351、滤光片352及光电探测器353,光电探测器353位于第二聚焦透镜351的后焦平面上,光电探测器353与时间相关单光子计数单元4连接。其中,滤光片352用于对荧光进行过滤,滤除分光器32反射的激发光和自然光。
[0036] 较佳地,光电探测器353为光电倍增管,第二聚焦透镜351用于将分光器32反射或透射的荧光聚焦至光电探测器353上,光电探测器353将接收的荧光所对应的光信号转换为电信号后发送给时间相关单光子计数单元4,这里的电信号即为荧光激发图像,时间相关单光子计数单元4对电信号进行处理获得样品荧光寿命曲线。
[0037] 本实施例中的时间相关单光子计数单元4还与激光器1连接,激光器1在发出原始激光的同时发出一个激光脉冲同步信号给时间相关单光子计数单元4,作为光信号接收的触发信号。时间相关单光子计数单元4包括光信号接收器、时域分析控制器(TAC)、模数(A/D)转换器、多通道分析器。光信号接收器记录样品所发射的第一个荧光光子到达的时间并发送给时域分析控制器(TAC),时域分析控制器(TAC)将此时间成比例的转化为相应的电压脉冲发送给A/D转换器,A/D转换器将电压脉冲对应的模拟信号转换为数字信号并将转换后的数字信号发送给多通道分析器,多通道分析器将这些数字信号依次送入各通道中累加贮存便获得与原始波形一致的直方图。由于在某一时段内检测到光子的几率与荧光发射强度成正比,重复多次测量便可以得到荧光强度衰变的规律即样品荧光寿命曲线。多通道分析器将样品荧光寿命曲线发送给处理器5,处理器5进行信息存储、计算。具体地,处理器5将样品荧光寿命曲线中荧光寿命低于荧光寿命阈值的信号提取出来作为血管信号,例如,荧光寿命阈值设为600皮秒,将长寿命的生物组织的样品荧光寿命曲线中荧光寿命低于600皮秒的信号作为血管信号。本实施例中,该荧光寿命阈值的大小可以根据实际情况做出具体调整。
[0038] 较佳地,本实施例中的反射器31为振镜,振镜包括X轴方向电机、Y轴方向电机以及两个反射镜,X轴方向电机、Y轴方向电机分别与其中一个反射镜连接,且X轴方向电机、Y轴方向电机分别与处理器5连接,通过处理器5控制X轴方向电机、Y轴方向电机转动来控制两个反射镜的偏转方向,从而实现短波长激发脉冲的偏转,以使得振镜以特定角度将短波长激发脉冲反射至分光器32上。
[0039] 较佳地,显微成像结构33包括物镜331和驱动器332,物镜331设于分光器32与载物台34之间。驱动器332分别与物镜331、处理器5连接,通过处理器5控制驱动器332的运动进而带动物镜331在轴向上移动,从而获得样品在不同成像深度上的荧光图像。
[0040] 本实施例中的反射器31为振镜以及显微成像结构33包括物镜331和驱动器332可以实现样本三维成像。具体地,通过处理器5控制X轴方向电机、Y轴方向电机转动来控制两个反射镜的偏转方向进行横向扫描,获得多个横向荧光图像,通过处理器5控制驱动器332来带动物镜331在轴向上移动,从而获得样品在不同成像深度上的多个轴向荧光图像,处理器5再将多个横向荧光图像和多个轴向荧光图像进行处理便可以获得样本的三维图像。
[0041] 本实施例中的激光器1为近红外锁模光纤激光器,较佳地,近红外锁模光纤激光器的中心波长为1000nm~1100nm,近红外锁模光纤激光器发出的激光通过二次谐波产生装置2倍频后产生中心波长位于绿光波段(500nm~550nm)的短波长激发脉冲,由于荧光强度随激发波长的降低而增强,因此,本实施例能够提升血管成像的分辨率,且不需要在血管中外加对比剂便可以对血管进行成像。此外,本发明不需要采用结构复杂且价格昂贵的锁模钛蓝宝石激光器作为泵浦光源,降低了成本。
[0042] 当然,本实施例中激光器1的波长不限于上面所列举的范围,也可以是中心波长为1100nm~1400nm的光纤激光器,例如,中心波长为1300nm或1310nm的锁模光纤激光器,也可以是中心波长为900nm~1000nm的光纤激光器,例如,中心波长为980nm或920nm的锁模光纤激光器。
[0043] 实施例二
[0044] 参照图3,本实施例与实施例一的不同之处在于,本实施例中的二次谐波产生装置2还包括设置于激光器1的出射光路上的第一聚焦透镜23和第一准直透镜24,第一聚焦透镜
23设置于相位延迟片21与非线性介质22之间,第一准直透镜24设置于非线性介质22与反射器31之间。第一聚焦透镜23的后焦平面与第一准直透镜24的前焦平面重合,非线性介质22位于第一聚焦透镜23的后焦平面上。第一聚焦透镜23用于将透过相位延迟片21的激光聚焦至非线性介质22上,第一准直透镜24用于将透过非线性介质22的激光进行准直,通过第一聚焦透镜23和第一准直透镜24可以对短波长激发脉冲进行扩束,增加短波长激发脉冲的光斑尺寸。
[0045] 本实施例中的双光子显微成像装置3还包括设于反射器31的反射光路上的扩束结构37,扩束结构37包括第二准直透镜371和第三聚焦透镜372,第二准直透镜371位于分光器32与第三聚焦透镜372之间,第三聚焦透镜372的后焦平面与第二准直透镜371的前焦平面重合。第三聚焦透镜372用于将反射器31反射的激光聚焦至第三聚焦透镜372的后焦平面,第一准直透镜24用于将从第三聚焦透镜372的后焦平面出射的激光进行准直后入射至分光器32上,通过第二准直透镜371和第三聚焦透镜372可以进一步对短波长激发脉冲进行扩束。
[0046] 以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈