首页 / 专利库 / 物理 / 能量状态 / 一种化工工业过程鲁棒学习控制方法

一种化工工业过程鲁棒学习控制方法

阅读:344发布:2023-03-13

专利汇可以提供一种化工工业过程鲁棒学习控制方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种化工批次过程鲁棒学习控制方法,包括如下步骤:步骤1、建立以预测值形式表示的 闭环系统 模型;步骤2、设计被控对象的批次处理 控制器 。该方法首先根据给定的系统模型设计鲁棒学习控制量,然后通过引入状态误差和输出误差,将系统的原始模型转 化成 以预测值形式表示的闭环系统模型,进一步根据设计的最优化性能指标和李雅普诺夫 稳定性 理论,给出了线性矩阵不等式表示的闭环系统鲁棒渐进稳定的充分条件和最优控制律表达形式。不同于传统的控制方法,本方法设计了无限时域的性能指标,使系统能够在不超过给定值的情况下克服由最小状态 能量 和输入增量引起的最大扰动。,下面是一种化工工业过程鲁棒学习控制方法专利的具体信息内容。

1.一种化工批次过程鲁棒学习控制方法,包括如下步骤:
步骤1、建立以预测值形式表示的闭环系统模型;
步骤2、设计被控对象的批次处理控制器
2.如权利要求1所述的化工批次过程鲁棒学习控制方法,其特征在于:
步骤1具体如下:
1-1.建立具有不确定参数扰动的离散时间模型,形式如下:
其中,t和k分别是运行时刻和运行周期,x0,k是第k周期批次处理运行的初始条件,u(t,k)和y(t,k)分别是t时刻第k周期系统的输入和输出,x(t,k)、x(t+1,k)分别是t时刻、t+1时刻第k周期的系统状态,w(t,k)是t时刻第k周期未知的外部干扰, B、C是具有适当维数的常数矩阵;
1-2.结合步骤1-1,引入鲁棒学习控制量:
u(t,k)=u(t,k-1)+r(t,k) u(t,0)=0,t=0,1,2,…
其中,u(t,0)是t时刻系统的初始输入,u(t,k)、u(t,k-1)分别是t时刻第k周期、第k-1周期的系统输入,r(t,k)是t时刻第k周期的更新律;
1-3.定义输出跟踪误差和误差的批次方向函数:
e(t,k)=y(t,k)-yr(t)
δf(t,k)=f(t,k)-f(t,k-1)
其中,yr(t)是输出的参考值,e(t,k)是t时刻第k周期的输出跟踪误差,f(t,k)是t时刻第k周期的系统状态、输出变量或未知的外部干扰,f(t,k-1)是t时刻第k-1周期的系统状态、输出变量或未知的外部干扰,δf(t,k)是t时刻第k周期误差的批次方向函数;
1-4.结合步骤1-1至步骤1-3,得到:
其中,δx(t,k)、δx(t+1,k)是t时刻、t+1时刻第k周期批次方向的系统状态误差,是t时刻第k周期批次方向的外部干扰误差且 ΔA(t,k)是
不确定的系统矩阵,x(t,k-1)是t时刻第k-1周期的系统状态,δw(t,k)是t时刻第k周期的外部干扰,e(t+1,k)是t+1时刻第k周期的输出跟踪误差,e(t+1,k-1)是t+1时刻第k-1周期的输出跟踪误差;
1-5.得到鲁棒渐进稳定的系统模型,形式如下:
其中, C1=[C 0],
z(t+1,k)、z(t,k)是t+1时
刻、t时刻第k周期综合批次方向的系统状态误差和输出跟踪误差的扩展状态,z(t+1,k-1)是t+1时刻第k-1周期综合批次方向的系统状态误差和输出跟踪误差的扩展状态,δy(t,k)是t时刻第k周期批次方向的输出误差,A、I、E、F是适当维度的常量矩阵,G(t,k)是t时刻第k周期的常量矩阵;
1-6.以预测值形式表示的闭环渐进稳定系统模型,形式如下:
其中,j是预测值,H1、H2是对应的更新律增益,z(t+j+1|t,k)、z(t+j+1|t,k-1)分别是t时刻到t+j+1时刻第k周期、第k-1周期的预测状态,z(t+j|t,k)是t时刻到t+j时刻第k周期的预测状态, 是t时刻到t+j时刻第k周期批次方向的外部干扰误差,δx(t+j|t,k)、δy(t+j|t,k)分别是t时刻到t+j时刻第k周期批次方向的系统状态误差、输出误差。
3.如权利要求2所述的化工批次过程鲁棒学习控制方法,其特征在于:
步骤2具体如下:
2-1.基于步骤1,鲁棒性能保证控制下的更新律形式如下:
2-2.在重复性和非重复性扰动下,均可得到增益矩阵控制律的形式如下所示:
H1=γ-1Y1P,H2=γ-1Y2P
其中,P是满足系统渐进稳定的对称正定矩阵,Y1,Y2是满足系统条件的矩阵,γ-1>0是满足系统条件的系数。结合步骤1-2至步骤2-1即可得到最优系统输入u(t,k);
2-3.在下一时刻,重复步骤1-6到2-2得到新的最优系统输入u(t,k),再将其作用于控制对象,并依次循环。

说明书全文

一种化工工业过程鲁棒学习控制方法

技术领域

[0001] 本发明属于自动化工业过程控制领域,涉及到一种化工批次过程鲁棒学习控制方法。

背景技术

[0002] 在现代制造业中,批次处理作为重要的生产模式已广泛应用于小规模高附加值产品制造,与此同时,对于批次处理的理论研究也取得了巨大的突破。在批次处理的一些常规程序中,会表现出明显的重复性和不确定性,而导致系统不能稳定的运行。为了优化实际生产过程中的重复性和不确定性,特别是系统内部参数扰动和外部干扰,结合复合的鲁棒学习控制策略,提高系统的鲁棒性,使系统运行更加稳定。

发明内容

[0003] 本发明的目的是优化批次处理过程中产生的重复性和不确定性。该方法首先根据给定的系统模型设计鲁棒学习控制量,然后通过引入状态误差和输出误差,将系统的原始模型转化成以预测值形式表示的闭环系统模型,进一步根据设计的最优化性能指标和李雅普诺夫稳定性理论,给出了线性矩阵不等式表示的闭环系统鲁棒渐进稳定的充分条件和最优控制律表达形式。不同于传统的控制方法,本方法设计了无限时域的性能指标,使系统能够在不超过给定值的情况下克服由最小状态能量和输入增量引起的最大扰动。
[0004] 本发明的技术方案是通过模型建立、控制器设计、算法设计、优化等手段,提出了一种化工批次过程鲁棒学习控制方法,有效的弥补了传统批次处理中稳定性的不足,满足了实际工业过程的需求。
[0005] 本发明的方法步骤包括:
[0006] 步骤1、建立以预测值形式表示的闭环系统模型,具体步骤是:
[0007] 1-1.建立具有不确定参数扰动的离散时间模型,形式如下:
[0008]
[0009] 其中,t和k分别是运行时刻和运行周期,x0,k是第k周期批次处理运行的初始条件,[0010] u(t,k)和y(t,k)分别是t时刻第k周期系统的输入和输出,x(t,k)、x(t+1,k)分别是t时刻、 t+1时刻第k周期的系统状态,w(t,k)是t时刻第k周期未知的外部干扰, B、[0011] C是具有适当维数的常数矩阵。
[0012] 1-2.结合步骤1-1,引入鲁棒学习控制量:
[0013] u(t,k)=u(t,k-1)+r(t,k)u(t,0)=0,t=0,1,2,…
[0014] 其中,u(t,0)是t时刻系统的初始输入,u(t,k)、u(t,k-1)分别是t时刻第k周期、第 k-1周期的系统输入,r(t,k)是t时刻第k周期的更新律。
[0015] 1-3.定义输出跟踪误差和误差的批次方向函数:
[0016] e(t,k)=y(t,k)-yr(t)
[0017] δf(t,k)=f(t,k)-f(t,k-1)
[0018] 其中,yr(t)是输出的参考值,e(t,k)是t时刻第k周期的输出跟踪误差,f(t,k)是 t时刻第k周期的系统状态、输出变量或未知的外部干扰,f(t,k-1)是t时刻第k-1周期的系统状态、输出变量或未知的外部干扰,δf(t,k)是t时刻第k周期误差的批次方向函数。
[0019] 1-4.结合步骤1-1至步骤1-3,可以得到:
[0020]
[0021]
[0022] 其中,δx(t,k)、δx(t+1,k)是t时刻、t+1时刻第k周期批次方向的系统状态误差,δw(t,k)是t时刻第k周期批次方向的外部干扰误差且是不确定的系统矩阵,x(t,k-1)是t时刻第k-1周期的系统状态,δw(t,k)是t时刻第k周期的外部干扰,e(t+1,k)是t+1时刻第k周期的输出跟踪误差,e(t+1,k-1)是 t+1时刻第k-1周期的输出跟踪误差。
[0023] 1-5.得到鲁棒渐进稳定的系统模型,形式如下:
[0024]
[0025] 其中,z(t+1,k)、z(t,k)是 t+1时
刻、t时刻第k周期综合批次方向的系统状态误差和输出跟踪误差的扩展状态, z(t+1,k-1)是t+1时刻第k-1周期综合批次方向的系统状态误差和输出跟踪误差的扩展状态,δy(t,k)是t时刻第k周期批次方向的输出误差,A、I、E、F是适当维度的常量矩阵,G(t,k)是t时刻第k周期的常量矩阵。
[0026] 1-6.以预测值形式表示的闭环渐进稳定系统模型,形式如下:
[0027]
[0028] 其中,j是预测值,H1、H2是对应的更新律增益,z(t+j+1|t,k)、 z(t+j+1|t,k-1)分别是t时刻到t+j+1时刻第k周期、第k-1周期的预测状态, z(t+j|t,k)是t时刻到t+j时刻第k周期的预测状态, 是t时刻到t+j时刻第k周期批次方向的外部干扰误差,δx(t+j|t,k)、δy(t+j|t,k)分别是t时刻到t+j时刻第k周期批次方向的系统状态误差、输出误差[0029] 步骤2、设计被控对象的批次处理控制器,具体是:
[0030] 2-1.基于步骤1,鲁棒性能保证控制下的更新律形式如下:
[0031]
[0032] 2-2.在重复性和非重复性扰动下,均可得到增益矩阵控制律的形式如下所示:
[0033] H1=γ-1Y1P,H2=γ-1Y2P
[0034] 其中,P是满足系统渐进稳定的对称正定矩阵,Y1,Y2是满足系统条件的矩阵,γ-1>0是满足系统条件的系数。结合步骤1-2至步骤2-1即可得到最优系统输入u(t,k)。
[0035] 2-3.在下一时刻,重复步骤1-6到2-2得到新的最优系统输入u(t,k),再将其作用于控制对象,并依次循环。

具体实施方式

[0036] 以注塑成型工艺为例:
[0037] 这里以注塑成型过程中喷嘴控制为例加以描述,调节手段是控制比例的阀开度。
[0038] 步骤1、建立以预测值形式表示注塑成型的闭环系统模型,具体步骤是:
[0039] 1-1.建立注塑成型不确定参数扰动的离散时间模型,形式如下:
[0040]
[0041] 其中,t和k分别是注塑成型运行时刻和运行周期,x0,k是第k周期注塑成型批次处理运行的初始条件,u(t,k)和y(t,k)分别是t时刻第k周期注塑成型的阀门开度和喷嘴压力,x(t,k)、x(t+1,k)分别是t时刻、t+1时刻第k周期注塑成型的系统状态,w(t,k)是 t时刻第k周期注塑成型外部干扰, B、C是具有适当维数的常数矩阵。
[0042] 1-2.结合步骤1-1,首先设计注塑成型过程比例阀的阀门开度:
[0043] u(t,k)=u(t,k-1)+r(t,k)u(t,0)=0,t=0,1,2,…)
[0044] 其中,u(t,0)是t时刻比例阀的阀门开度的初始值,u(t,k)、u(t,k-1)分别是t时刻第k周期、第k-1周期比例阀的阀门开度,r(t,k)是t时刻第k周期的更新律。
[0045] 1-3.定义注塑成型过程的输出跟踪误差和误差的批次方向函数:
[0046] e(t,k)=y(t,k)-yr(t)
[0047] δf(t,k)=f(t,k)-f(t,k-1)
[0048] 其中,yr(t)是输出喷嘴压力的参考值,e(t,k)是t时刻第k周期注塑成型过的输出跟踪误差,f(t,k)是t时刻第k周期注塑成型的系统状态、输出变量或未知的外部干扰, f(t,k-1)是t时刻第k-1周期注塑成型的系统状态、输出变量或未知的外部干扰,δf(t,k)是t时刻第k周期注塑成型误差的批次方向函数。
[0049] 1-4.结合步骤1-1至步骤1-3,可以得到:
[0050]
[0051]
[0052] 其中,δx(t,k)、δx(t+1,k)是t时刻、t+1时刻第k周期注塑成型的批次方向系统状态误差, 是t时刻第k周期注塑成型的批次方向外部干扰误差且ΔA(t,k)是不确定的系统矩阵,x(t,k-1)是t时刻第 k-1
周期注塑成型的系统状态,δw(t,k)是t时刻第k周期注塑成型的外部干扰, e(t+1,k)是t+1时刻第k周期注塑成型的输出跟踪误差,e(t+1,k-1)是t+1时刻第 k-1周期注塑成型的输出跟踪误差。
[0053] 1-5.得到注塑成型鲁棒渐进稳定的系统模型,形式如下:
[0054]
[0055] 其中, C1=[C 0],是恒等于,z(t+1,k)、 z
(t,k)是t+1时刻、t时刻第k周期注塑成型综合批次方向的系统状态误差和输出跟踪误差的扩展状态,z(t+1,k-1)是t+1时刻第k-1周期注塑成型综合批次方向的系统状态误差和输出跟踪误差的扩展状态,δy(t,k)是t时刻第k周期注塑成型批次方向的输出误差, A、I、E、F是适当维度的常量矩阵,G(t,k)是t时刻第k周期的常量矩阵。
[0056] 1-6.以预测值形式表示的注塑成型闭环渐进稳定系统模型,形式如下:
[0057]
[0058] 其中,j是预测值,H1、H2是对应的更新律增益,z(t+j+1|t,k)、 z(t+j+1|t,k-1)分别是t时刻到t+j+1时刻第k周期、第k-1周期注塑成型的预测状态, z(t+j|t,k)是t时刻到t+j时刻第k周期注塑成型的预测状态, 是t时刻到 t+j时刻第k周期注塑成型的批次方向外部干扰误差,δx(t+j|t,k)、δy(t+j|t,k)分别是t时刻到t+j时刻第k周期注塑成型的批次方向系统状态误差、输出误差。
[0059] 步骤2、设计喷嘴压力的注塑成型过程控制器,具体是:
[0060] 2-1.基于步骤1,鲁棒性能保证控制下的注塑成型过程的更新律形式如下:
[0061]
[0062] 2-2.在重复性和非重复性扰动下,均可得到注塑成型过程的增益矩阵控制律的形式如下所示:
[0063] H1=γ-1Y1P,H2=γ-1Y2P
[0064] 其中,P是满足系统渐进稳定的对称正定矩阵,Y1,Y2是满足系统条件的矩阵,γ-1>0是满足系统条件的系数。结合步骤1-2和步骤2-1即可得到最优系统输入u(t,k)。
[0065] 2-3.在下一时刻,重复步骤1.6到2.2得到比例阀的阀门开度u(t,k),再将其作用于喷嘴压力,并依次循环。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈