首页 / 专利库 / 纳米技术 / 微流体技术 / 一种基于芯片实验室微流体技术气控微阀装置及其控制方法

一种基于芯片实验室流体技术气控微装置及其控制方法

阅读:946发布:2020-05-12

专利汇可以提供一种基于芯片实验室流体技术气控微装置及其控制方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种基于 芯片实验室 微 流体 技术 气控微 阀 装置及其控制方法。本发明空气 压缩机 通过气管依次连接过滤装置、压 力 调节阀、恒压 泵 ,恒压泵、 显微镜 分别通过数据线连接PC机,气控微阀芯片放置在显微镜下观察,恒压泵将气体通过气体入口输送给控制通道和样品容器Ⅱ,样品容器Ⅱ通过液体入口连接液体通道,液体通道经液体出口连接样品容器Ⅰ,PDMS材料粘接在玻璃基片上,PDMS材料内部网络通道设有液体通道和控制通道,液体通道位于控制通道的上方,控制通道与液体通道呈十字交叉排布,液体通道和控制通道之间的PDMS材料制作成的阀膜用于控制液体的流通。本发明能有效地控制液体通道的开启与闭合。,下面是一种基于芯片实验室流体技术气控微装置及其控制方法专利的具体信息内容。

1.一种基于芯片实验室流体技术气控微装置,其特征在于:包括样品容器Ⅰ(1)、气控微阀芯片(2)、显微镜(3)、PC机(4)、数据线(5)、恒压(6)、压调节阀(7)、气源过滤装置(8)、气管(9)、空气压缩机(10)和样品容器Ⅱ(11),所述气控微阀芯片(2)包括玻璃基片(2-1)、PDMS材料(2-2)、液体出口(2-3)、阀膜(2-4)、气体入口(2-5)、液体通道(2-6)、液体入口(2-7)和控制通道(2-8);
所述空气压缩机(10)通过气管(9)依次连接过滤装置(8)、压力调节阀(7)、恒压泵(6),恒压泵(6)、显微镜(3)分别通过数据线(5)连接PC机(4),气控微阀芯片(2)放置在显微镜(3)下观察,恒压泵(6)将气体通过气体入口(2-5)输送给控制通道(2-8)和样品容器Ⅱ(11),样品容器Ⅱ(11)通过液体入口(2-7)连接液体通道(2-6),液体通道(2-6)经液体出口(2-3)连接样品容器Ⅰ(1),PDMS材料(2-2)粘接在玻璃基片(2-1)上,PDMS材料(2-2)内部网络通道设有液体通道(2-6)和控制通道(2-8),液体通道(2-6)位于控制通道(2-8)的上方,控制通道(2-8)与液体通道(2-6)呈十字交叉排布,液体通道(2-6)和控制通道(2-8)之间的PDMS材料制作成的阀膜(2-4)用于控制液体的流通。
2.根据权利要求1所述的基于芯片实验室微流体技术气控微阀装置,其特征在于:所述液体通道(2-6)内壁为呈现梯度的粗糙表面。
3.根据权利要求1所述的基于芯片实验室微流体技术气控微阀装置,其特征在于:所述阀膜(2-4)的长度与液体通道(2-6)的拱高比例为10:1。
4.一种控制权利要求1所述的基于芯片实验室微流体技术气控微阀装置的方法,其特征在于:
气控微阀芯片(2)放置在显微镜(3)下观察,通过空气压缩机(10)将气体压缩之后由气管(9)输送给气源过滤装置(8)进行气源过滤,过滤之后的空气通过气管(9)流经压力调节阀(7)进而进入恒压泵(6)中,恒压泵(6)将气体以一定的压力分别输送给控制通道(2-8)和样品容器Ⅱ(11),样品容器Ⅱ(11)中的样品通过液体入口(2-7)进入液体通道(2-6)从而进入到气控微阀芯片(2)中,通过控制气体由控制通道(2-8)进入气控微阀芯片(2)中的压力大小来控制阀膜(2-4)的变形从而控制液体的流通,流经气控微阀芯片(2)的液体通道(2-
6)的样品从液体出口(2-3)流出被收集到样品容器Ⅰ(1)中。
5.根据权利要求4所述的方法,其特征在于:当液体入口(2-7)的压力为0.1-0.2MPa的条件下,气体入口(2-5)的供气压力需要达到0.25-0.35MPa才能使阀膜(2-4)将液体通道(2-6)完全封闭。

说明书全文

一种基于芯片实验室流体技术气控微装置及其控制方法

技术领域

[0001] 本发明涉及一种基于芯片实验室微流体技术气控微阀装置及其控制方法,属于精密设备技术领域。

背景技术

[0002] 微流体器件广泛用于集成电子、精密仪器、医疗设备和生物制药等领域,微流体器件适合各种流量控制系统的开发,其控制技术包括光、电、气、磁、热、气相变化等,其中气动驱动是最常用的也是最便捷的一钟方法,因为气体便于获取还不容易损坏微阀。目前广泛用于实验室流体处理的玻璃基板上的芯片液体通道结构是光滑的,采用光滑的液体通道封闭效果不好,对于一些稀有样品检测会造成浪费。

发明内容

[0003] 本发明提供了一种基于芯片实验室微流体技术气控微阀装置及其控制方法,以用于实现微阀开启和关闭的功能。
[0004] 本发明的技术方案是:一种基于芯片实验室微流体技术气控微阀装置,包括样品容器Ⅰ1、气控微阀芯片2、显微镜3、PC机4、数据线5、恒压6、压调节阀7、气源过滤装置8、气管9、空气压缩机10和样品容器Ⅱ11,所述气控微阀芯片2包括玻璃基片2-1、PDMS材料2-2、液体出口2-3、阀膜2-4、气体入口2-5、液体通道2-6、液体入口2-7和控制通道2-8;
所述空气压缩机10通过气管9依次连接过滤装置8、压力调节阀7、恒压泵6,恒压泵6、显微镜3分别通过数据线5连接PC机4,气控微阀芯片2放置在显微镜3下观察,恒压泵6将气体通过气体入口2-5输送给控制通道2-8和样品容器Ⅱ11,样品容器Ⅱ11通过液体入口2-7连接液体通道2-6,液体通道2-6经液体出口2-3连接样品容器Ⅰ1,PDMS材料2-2粘接在玻璃基片2-1上,PDMS材料2-2内部网络通道设有液体通道2-6和控制通道2-8,液体通道2-6位于控制通道2-8的上方,控制通道2-8与液体通道2-6呈十字交叉排布,液体通道2-6和控制通道
2-8之间的PDMS材料制作成的阀膜2-4用于控制液体的流通。
[0005] 所述液体通道2-6内壁为呈现梯度的粗糙表面。
[0006] 所述阀膜2-4的长度与液体通道2-6的拱高比例为10:1。
[0007] 一种基于芯片实验室微流体技术气控微阀装置的控制方法,气控微阀芯片2放置在显微镜3下观察,通过空气压缩机10将气体压缩之后由气管9输送给气源过滤装置8进行气源过滤,过滤之后的空气通过气管9流经压力调节阀7进而进入恒压泵6中,恒压泵6将气体以一定的压力分别输送给控制通道2-8和样品容器Ⅱ11,样品容器Ⅱ11中的样品通过液体入口2-7进入液体通道2-6从而进入到气控微阀芯片2中,通过控制气体由控制通道2-8进入气控微阀芯片2中的压力大小来控制阀膜2-4的变形从而控制液体的流通,流经气控微阀芯片2的液体通道2-6的样品从液体出口2-3流出被收集到样品容器Ⅰ1中。
[0008] 当液体入口2-7的压力为0.1-0.2MPa的条件下,气体入口2-5的供气压力需要达到0.25-0.35MPa才能使阀膜2-4将液体通道2-6完全封闭。
[0009] 本发明的有益效果是:1.通过控制气体的进口压力的大小来控制液体通道的开启与闭合。
[0010] 2.使用PDMS(聚二甲基烷)材料制作阀体,材料透光性好、生物相容性佳以及良好的化学惰性,该材料韧性比较高,弹性好。
[0011] 3.液体通道内壁是粗糙的,能够降低供气压力,减少功耗,节省能源,达到的效果更佳。
[0012] 4.该装置使用简单,成本低,是一种广泛应用于微流控等领域的聚合物材料。
[0013] 5.液体通道使用粗糙内壁达到关闭阀的效果更佳,泄漏量更低,封闭性更好,使得我们利用该结构做成的试验芯片更佳方便和快捷。附图说明
[0014] 图1为本发明实验原理图;图2为本发明中气控微阀芯片的整体结构示意图;
图3为本发明中气控微阀芯片的局部放大示意图;
图4为本发明中图3的A-A剖视图;
图5为本发明中图4的B-B剖视图;
图6为本发明装置供气时的示意图;
图中各标号为:1-样品容器Ⅰ、2-气控微阀芯片、2-1-玻璃基片、2-2-PDMS材料、2-3-液体出口、2-4-阀膜、2-5-气体入口、2-6-液体通道、2-7-液体入口、2-8-控制通道、3-显微镜、
4-PC机、5-数据线、6-恒压泵、7-压力调节阀、8-气源过滤装置、9-气管、10-空气压缩机、11-样品容器Ⅱ。

具体实施方式

[0015] 实施例1:如图1-6所示,一种基于芯片实验室微流体技术气控微阀装置,包括样品容器Ⅰ1、气控微阀芯片2、显微镜3、PC机4、数据线5、恒压泵6、压力调节阀7、气源过滤装置8、气管9、空气压缩机10和样品容器Ⅱ11,所述气控微阀芯片2包括玻璃基片2-1、PDMS材料2-2、液体出口2-3、阀膜2-4、气体入口2-5、液体通道2-6、液体入口2-7和控制通道2-8;
所述空气压缩机10通过气管9依次连接过滤装置8、压力调节阀7、恒压泵6,恒压泵6、显微镜3分别通过数据线5连接PC机4,气控微阀芯片2放置在显微镜3下观察,恒压泵6将气体通过气体入口2-5输送给控制通道2-8和样品容器Ⅱ11,样品容器Ⅱ11通过液体入口2-7连接液体通道2-6,液体通道2-6经液体出口2-3连接样品容器Ⅰ1,PDMS材料2-2粘接在玻璃基片2-1上,PDMS材料2-2内部网络通道设有液体通道2-6和控制通道2-8,液体通道2-6位于控制通道2-8的上方,控制通道2-8与液体通道2-6呈十字交叉排布,液体通道2-6和控制通道
2-8之间的PDMS材料制作成的阀膜2-4用于控制液体的流通。
[0016] 进一步地,可以设置所述液体通道2-6内壁为呈现梯度的粗糙表面(如设置粗糙度Ra=12.5)。
[0017] 进一步地,可以设置所述阀膜2-4的长度b与液体通道2-6的拱高a比例为10:1(如长度0.5mm与拱高0.05mm,阀膜为0.5x0.5mm2,a、b如图5所示)。
[0018] 一种基于芯片实验室微流体技术气控微阀装置的控制方法,气控微阀芯片2放置在显微镜3下观察,通过空气压缩机10将气体压缩之后由气管9输送给气源过滤装置8进行气源过滤,过滤之后的空气通过气管9流经压力调节阀7进而进入恒压泵6中,恒压泵6将气体以一定的压力分别输送给控制通道2-8和样品容器Ⅱ11,样品容器Ⅱ11中的样品通过液体入口2-7进入液体通道2-6从而进入到气控微阀芯片2中,通过控制气体由控制通道2-8进入气控微阀芯片2中的压力大小来控制阀膜2-4的变形从而控制液体的流通,流经气控微阀芯片2的液体通道2-6的样品从液体出口2-3流出被收集到样品容器Ⅰ1中。
[0019] 进一步地,可以设置当液体入口2-7的压力为0.1-0.2MPa的条件下,气体入口2-5的供气压力需要达到0.25-0.35MPa才能使阀膜2-4将液体通道2-6完全封闭。(与光滑的液体通道相比,光滑的液体通道输入口的压力为0.2MPa的条件下同时气体进口的供气压力需要达到0.5MPa才能使阀膜将液体通道完全封闭。而本发明,当液体入口2-7的压力为0.2MPa的条件下,气体入口2-5的供气压力只需要达到0.35MPa就能使阀膜2-4将液体通道2-6完全封闭。此外,可以设置液体入口2-7的压力为0.1MPa,气体入口2-5的供气压力达到0.25MPa来实现封闭,也可以是其他适当的取值)。
[0020] 上面结合附图对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈