首页 / 专利库 / 纳米技术 / 纳米晶 / 一种非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维电导的调控方法

一种非晶-还原性石墨烯-四氧化三钴包裹结构的复合纳米纤维电导的调控方法

阅读:509发布:2023-01-31

专利汇可以提供一种非晶-还原性石墨烯-四氧化三钴包裹结构的复合纳米纤维电导的调控方法专利检索,专利查询,专利分析的服务。并且本 发明 属于 纳米材料 技术领域,提供了一种非晶 碳 -还原性 氧 化 石墨 烯-四氧化三钴包裹结构的复合 纳米 纤维 电导的调控方法,通过该调控方法得到的非晶碳-还原氧化 石墨烯 与四氧化三钴复合纳米纤维所制备的气体 传感器 , 电阻 从几Ω到几十MΩ可调。本发明采用 静电纺丝 法以及Ar环境 烧结 获得非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维,通过在含有O2的Ar环境下处理实现非晶碳的剥离,获得的具有不同电导的非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维,化学性质稳定、对NH3气敏特性良好的、复合物的电导率可调。,下面是一种非晶-还原性石墨烯-四氧化三钴包裹结构的复合纳米纤维电导的调控方法专利的具体信息内容。

1.一种非晶-还原性石墨烯-四氧化三钴包裹结构的复合纳米纤维电导的调控方法,其特征在于,调控方法得到的非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维,包括非晶碳、还原性氧化石墨烯和四氧化三钴;非晶碳和还原性氧化石墨烯包裹在四氧化三钴上,非晶碳占复合纳米纤维的质量分数为0.1%~13%,还原性氧化石墨烯占复合纳米纤维的质量分数为1%;得到的非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维气体传感器电阻从几Ω到几十MΩ可调;
所述的非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维平均直径为
150nm-200nm;
所述的四氧化三钴呈颗粒状,平均粒径为20nm;
具体步骤如下:
步骤一,制备氧化石墨烯分散液:将1质量份的氧化石墨烯分散到2~3质量份的二甲基甲酰胺中,超声得到均匀的氧化石墨烯分散液;
步骤二,制备含有硝酸钴的混合液:将1质量份的Co(NO3)2·6H2O溶解到1质量份的乙醇中得到溶液a,将1质量份的聚乙烯吡咯烷溶解到1质量份的乙醇中得到溶液b,将溶液a与溶液b按照体积比1:1进行混合,通过磁搅拌混合至澄清,得到含有硝酸钴的混合液;
步骤三,制备静电纺丝前驱液:将步骤一得到的1质量份氧化石墨烯分散液加入到步骤二得到的1质量份硝酸钴的混合液中,通过磁力搅拌得到静电纺丝前驱液;
步骤四,制备非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维:将步骤三制备的静电纺丝前驱液装入带有针头的塑料注射器中,针头连在15kV-25kV直流电压上,通过注射器推进控制静电纺丝前驱液的进液速度,将箔纸放在针头指向处的接地电极板上,收集静电纺丝产生的纳米纤维;将该纳米纤维先在Ar环境进行烧结制备成非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维;
步骤五,调控非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维的电导:将步骤四制备的复合纳米纤维在含有O2的Ar环境下进行不同时间的处理,得到具有不同电导的非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维。
2.根据权利要求1所述的非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维电导的调控方法,其特征在于,
步骤四中复合纳米纤维先在Ar环境中400℃~600℃烧结3小时,然后在Ar环境中750℃~850℃下烧结30分钟。
3.根据权利要求1或2所述的非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维电导的调控方法,其特征在于,
步骤五中复合纳米纤维在含有体积分数为2-8%O2的Ar环境下,在100-450℃处理10s-
1000s。
4.根据权利要求1或2所述的非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维电导的调控方法,其特征在于,
步骤四中通过注射器推进泵使得静电纺丝前驱液的进液速度为0.1-0.5ml/h。
5.根据权利要求3所述的非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维电导的调控方法,其特征在于,
步骤四中通过注射器推进泵使得静电纺丝前驱液的进液速度为0.1-0.5ml/h。
6.根据权利要求1、2或5所述的非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维电导的调控方法,其特征在于,
步骤一中的超声机功率为250W,超声时间为0.5h~3h;
步骤三中的磁力搅拌时间为8h~24h;
步骤四中针头为N7号的不锈针头,铝箔纸放在不锈钢针头指向的10-18cm的位置处。
7.根据权利要求3所述的非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维电导的调控方法,其特征在于,
步骤一中的超声机功率为250W,超声时间为0.5h~3h;
步骤三中的磁力搅拌时间为8h~24h;
步骤四中针头为N7号的不锈钢针头,铝箔纸放在不锈钢针头指向的10-18cm的位置处。
8.根据权利要求4所述的非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维电导的调控方法,其特征在于,
步骤一中的超声机功率为250W,超声时间为0.5h~3h;
步骤三中的磁力搅拌时间为8h~24h;
步骤四中针头为N7号的不锈钢针头,铝箔纸放在不锈钢针头指向的10-18cm的位置处。
9.非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维电导的调控方法,用于制备气体传感器的气敏材料、锂电池电极材料、催化剂以及磁性材料。

说明书全文

一种非晶-还原性石墨烯-四氧化三钴包裹结构的复合

纳米纤维电导的调控方法

技术领域

[0001] 本发明属于纳米材料技术领域,具体涉及一种非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维电导的调控方法

背景技术

[0002] 非晶碳是内部结构短程有序长程无序的微晶碳。由碳原子形环状平面形成的层状结构零乱而不规则,晶体形成有缺陷,而且晶粒微小。
[0003] 还原性氧化石墨烯(rGO)是石墨烯的派生物之一,由氧化石墨烯还原处理后得到。而氧化石墨烯与石墨烯结构大体相同,是在单层二维结构基础上连有环氧基、羟基、羰基和羧基等功能性基团,这些功能性基团使得GO具有亲性、与一些聚合物兼容性的特点,但是层面内的π键有所断裂,因而部分失去了传导电子的能。而通过还原剂对GO进行还原处理,这些功能性基团部分会被除去,石墨烯的部分π键会得以恢复,即得到rGO。rGO上含有可以进一步功能化的官能团,用于合成与金属氧化物的复合物便于协同作用的发挥。
[0004] 四氧化三钴(Co3O4)是一种重要的正常尖晶石型结构的过渡金属氧化物,具有独特的光、电、磁、电化学、催化等性能,除应用于超硬材料、搪瓷陶瓷颜料等传统领域外、还广泛地应用于压敏气敏传感器、催化剂、超级电容器、平板显示器、磁性材料和锂离子电池正极材料等众多新领域。
[0005] 在复合材料领域,碳材料被越来越多的用于与金属及金属氧化物等形成复合材料,如碳纳米管、石墨烯、GO/rGO,Co3O4/石墨烯复合纳米材料的制备和性能研究一直是当前的热点之一,在锂电池电极材料、催化剂以及磁性材料已经取得了积极的进展。由于碳材料和Co3O4的含量相对固定,生成的复合材料一般来说电导值单一。即使通过改变碳材料和Co3O4的含量来调节,在某些情况下受制备条件及材料形貌的限制,电导的调节范围也很有限。因此,研发出一种工艺步骤简单,成本低,使得Co3O4/石墨烯复合纳米材料的电导可调成为本领域技术人员亟待解决的技术问题。

发明内容

[0006] 本发明的目的在于针对现有技术的不足,提供一种非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维电导的调控方法,本发明的非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维电导率可调,制得的非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维气体传感器电阻从几Ω到几十MΩ可调。同时本发明采用静电纺丝法获得氧化石墨烯与Co的硝酸盐先驱物等构成的纳米纤维,通过Ar环境烧结法实现非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的纳米纤维,通过在含O2的Ar环境中处理进行碳剥离,改变复合材料的电导,其制备工艺简单成本低,获得的非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的纳米纤维化学性质稳定、气敏特性良好。
[0007] 本发明的技术方案:
[0008] 一种非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维电导的调控方法,调控方法得到的非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维,包括非晶碳、还原性氧化石墨烯和四氧化三钴;非晶碳和还原性氧化石墨烯包裹在四氧化三钴上,非晶碳占复合纳米纤维的质量分数为0.1%~13%,还原性氧化石墨烯占复合纳米纤维的质量分数为1%;得到的非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维气体传感器电阻从几Ω到几十MΩ可调。
[0009] 所述的非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维平均直径为150nm-200nm。
[0010] 所述的四氧化三钴呈颗粒状,平均粒径为20nm。
[0011] 具体步骤如下:
[0012] 步骤一,制备氧化石墨烯分散液:将1质量份的氧化石墨烯分散到2~3质量份的二甲基甲酰胺中,超声得到均匀的氧化石墨烯分散液;
[0013] 步骤二,制备含有硝酸钴的混合液:将1质量份的Co(NO3)2·6H2O溶解到1质量份的乙醇中得到溶液a,将1质量份的聚乙烯吡咯烷溶解到1质量份的乙醇中得到溶液b,将溶液a与溶液b按照体积比1:1进行混合,通过磁力搅拌混合至澄清,得到含有硝酸钴的混合液;
[0014] 步骤三,制备静电纺丝前驱液:将步骤一得到的1质量份氧化石墨烯分散液加入到步骤二得到的1质量份硝酸钴的混合液中,通过磁力搅拌得到静电纺丝前驱液;
[0015] 步骤四,制备非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维:将步骤三制备的静电纺丝前驱液装入带有针头的塑料注射器中,针头连在15kV-25kV直流电压上,通过注射器推进控制静电纺丝前驱液的进液速度,将箔纸放在针头指向处的接地电极板上,收集静电纺丝产生的纳米纤维;将该纳米纤维先在Ar环境进行烧结制备成非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维;
[0016] 步骤五,调控非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维的电导:将步骤四制备的复合纳米纤维在含有O2的Ar环境下进行不同时间的处理,得到具有不同电导的非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维。
[0017] 步骤一中的超声机功率为250W,超声时间为0.5h~3h。
[0018] 步骤三中的磁力搅拌时间为8h~24h。
[0019] 步骤四中通过注射器推进泵使得静电纺丝前驱液的进液速度为0.1-0.5ml/h。
[0020] 步骤四中针头为N7号的不锈针头,铝箔纸放在不锈钢针头指向的10-18cm的位置处。
[0021] 步骤四中复合纳米纤维先在Ar环境中400℃~600℃烧结3小时,然后在Ar环境中750℃~850℃下烧结30分钟。
[0022] 步骤五中复合纳米纤维含有体积分数为2-8%O2的Ar环境下,在100-450℃处理10s-1000s。
[0023] 非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维电导的调控方法,用于制备气体传感器的气敏材料、锂电池电极材料、催化剂以及磁性材料。
[0024] 本发明的有益效果:
[0025] (1)本发明采用静电纺丝法获得氧化石墨烯与Co的硝酸盐先驱物等构成的纳米纤维,能够制备形貌和电导可控的纳米纤维,同时它还具有设备投资小、工艺流程简单的优点。
[0026] (2)本发明采用静电纺丝法获得氧化石墨烯与Co的硝酸盐先驱物等构成的纳米纤维,通过在Ar环境烧结法实现非晶碳-还原氧化石墨烯包裹Co3O4的纳米纤维,获得的具有包裹结构的非晶碳-还原氧化石墨烯与四氧化三钴复合纳米纤维化学性质稳定、对NH3气敏特性良好的、复合物的电导可调。
[0027] (3)本发明氧化石墨烯的还原,与实现非晶碳-还原氧化石墨烯包裹四氧化三钴复合,以及复合物电导的调控可以同时原位完成,制备步骤少且工艺更简单。
[0028] (4)本发明获得的具有包裹结构的非晶碳-还原氧化石墨烯与四氧化三钴复合纳米纤维气体传感器电阻从几Ω到几十MΩ可调。附图说明
[0029] 图1是本发明非晶碳-还原氧化石墨烯与四氧化三钴复合纳米纤维X射线衍射图,给出了制备的具有不同电导的非晶碳-还原氧化石墨烯与四氧化三钴复合纳米纤维的X射线衍射图,所制备的纳米纤维含有Co3O4。
[0030] 图2是本发明非晶碳-还原氧化石墨烯与四氧化三钴复合纳米纤维拉曼图谱,制备的具有不同电导的非晶碳-还原氧化石墨烯与四氧化三钴复合纳米纤维的拉曼图谱,所制备的石墨烯包裹四氧化三钴复合纳米纤维具有典型的还原性石墨烯的D峰和G峰。
[0031] 图3是本发明非晶碳-还原氧化石墨烯与四氧化三钴复合纳米纤维具有不同电导的样品的电子透射微观形貌图,(a)是在条件一下得到电阻为3Ω样品;(b)是在条件二下得到电阻为100Ω样品;(c)是在条件三下得到电阻为1kΩ样品;(d)是在条件四下得到电阻为10kΩ样品;(e)是在条件五下得到电阻为100kΩ样品;(f)是在条件六下得到电阻为1MΩ样品;(g)是在条件六下得到电阻为10MΩ样品,所制备的具有不同电导的非晶碳-还原氧化石墨烯与四氧化三钴复合纳米纤维具有典型的纳米纤维微观结构,以及不同的包裹度。

具体实施方式

[0032] 下面将结合实施例以及附图对本发明加以详细说明,需要指出的是,所描述的实施例仅旨在便于对本发明的理解,而对其不起任何限定作用。
[0033] 实施例1
[0034] 一种非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维电导的调控方法,包括非晶碳、还原性氧化石墨烯和四氧化三钴,非晶碳、还原性氧化石墨烯包裹在四氧化三钴上,获得的具有包裹结构的非晶碳-还原氧化石墨烯与四氧化三钴复合纳米纤维气体传感器电阻为100Ω。制备方法包括以下步骤:
[0035] 步骤一,制备氧化石墨烯分散液:将1质量份的氧化石墨烯分散到A~B质量份的二甲基甲酰胺中,经过在250W的超声机中超声1小时后,得到氧化石墨烯分散液;
[0036] 步骤二,制备含有硝酸钴的混合液:将0.5g的Co(NO3)2·6H2O溶解到1ml的乙醇中得到溶液a,将0.5g聚乙烯吡咯烷酮溶解到1ml的乙醇中得到溶液b,将溶液a与溶液b通过磁力搅拌混合至澄清,得到含有硝酸钴的混合液;
[0037] 步骤三,制备静电纺丝前驱液:将1质量份石墨烯分散液加入到含有硝酸钴的混合液中,通过磁力搅拌12小时得到静电纺丝前驱液;
[0038] 步骤四,制备非晶碳-还原氧化石墨烯与四氧化三钴复合纳米纤维:将步骤三制备的静电纺丝前驱液装入带有N7号不锈钢针头的塑料注射器中,针头连在19.5kV直流电压上,通过注射器推进泵输出静电纺丝前驱液,使得所述静电纺丝前驱液的输出速度为0.2ml/h,将铝箔纸放在所述不锈钢针头指向的13.5cm的位置处,收集静电纺丝产生的纳米纤维;将该纳米纤维先在Ar环境中550℃煅烧3小时烧结,然后在Ar环境中800℃下烧结30分钟。
[0039] 步骤五,调控非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维的电导:将步骤四制备的复合纳米纤维在含有O2的Ar环境下390℃热处理20s,得到具有电阻为100Ω的非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维气体传感器。
[0040] 实施例2
[0041] 一种非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维电导的调控方法,包括非晶碳、还原性氧化石墨烯和四氧化三钴,非晶碳、还原性氧化石墨烯包裹在四氧化三钴上,获得的具有包裹结构的非晶碳-还原氧化石墨烯与四氧化三钴复合纳米纤维气体传感器电阻为100kΩ。制备方法包括以下步骤:
[0042] 步骤一,制备氧化石墨烯分散液:将1质量份的氧化石墨烯分散到A~B质量份的二甲基甲酰胺中,经过在250W的超声机中超声1小时后,得到氧化石墨烯分散液;
[0043] 步骤二,制备含有硝酸钴的混合液:将0.5g的Co(NO3)2·6H2O溶解到1ml的乙醇中得到溶液a,将0.5g聚乙烯吡咯烷酮溶解到1ml的乙醇中得到溶液b,将溶液a与溶液b通过磁力搅拌混合至澄清,得到含有硝酸钴的混合液;
[0044] 步骤三,制备静电纺丝前驱液:将1质量份石墨烯分散液加入到含有硝酸钴的混合液中,通过磁力搅拌12小时得到静电纺丝前驱液;
[0045] 步骤四,制备非晶碳-还原氧化石墨烯与四氧化三钴复合纳米纤维:将步骤三制备的静电纺丝前驱液装入带有N7号不锈钢针头的塑料注射器中,针头连在19.5kV直流电压上,通过注射器推进泵输出静电纺丝前驱液,使得所述静电纺丝前驱液的输出速度为0.2ml/h,将铝箔纸放在所述不锈钢针头指向的13.5cm的位置处,收集静电纺丝产生的纳米纤维;将该纳米纤维先在Ar环境中550℃煅烧3小时烧结,然后在Ar环境中800℃下烧结30分钟。
[0046] 步骤五,调控非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维的电导:将步骤四制备的复合纳米纤维在含有O2的Ar环境下400℃热处理150s,得到具有电阻为100kΩ的非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维气体传感器。
[0047] 实施例3
[0048] 一种非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维电导的调控方法,包括非晶碳、还原性氧化石墨烯和四氧化三钴,非晶碳、还原性氧化石墨烯包裹在四氧化三钴上,获得的具有包裹结构的非晶碳-还原氧化石墨烯与四氧化三钴复合纳米纤维气体传感器电阻为1MΩ。制备方法包括以下步骤:
[0049] 步骤一,制备氧化石墨烯分散液:将1质量份的氧化石墨烯分散到A~B质量份的二甲基甲酰胺中,经过在250W的超声机中超声1小时后,得到氧化石墨烯分散液;
[0050] 步骤二,制备含有硝酸钴的混合液:将0.5g的Co(NO3)2·6H2O溶解到1ml的乙醇中得到溶液a,将0.5g聚乙烯吡咯烷酮溶解到1ml的乙醇中得到溶液b,将溶液a与溶液b通过磁力搅拌混合至澄清,得到含有硝酸钴的混合液;
[0051] 步骤三,制备静电纺丝前驱液:将1质量份石墨烯分散液加入到含有硝酸钴的混合液中,通过磁力搅拌12小时得到静电纺丝前驱液;
[0052] 步骤四,制备非晶碳-还原氧化石墨烯与四氧化三钴复合纳米纤维:将步骤三制备的静电纺丝前驱液装入带有N7号不锈钢针头的塑料注射器中,针头连在19.5kV直流电压上,通过注射器推进泵输出静电纺丝前驱液,使得所述静电纺丝前驱液的输出速度为0.2ml/h,将铝箔纸放在所述不锈钢针头指向的13.5cm的位置处,收集静电纺丝产生的纳米纤维;将该纳米纤维先在Ar环境中550℃煅烧3小时烧结,然后在Ar环境中800℃下烧结30分钟。
[0053] 步骤五,调控非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维的电导:将步骤四制备的复合纳米纤维在含有O2的Ar环境下等离子体中处理150s,得到具有电阻为1MΩ的非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维气体传感器。
[0054] 本发明采用静电纺丝法获得氧化石墨烯与Co的硝酸盐先驱物等构成的纳米纤维,通过在Ar环境烧结法实现非晶碳、还原氧化石墨烯包裹Co3O4的纳米纤维,550℃煅烧3小时热分解生成四氧化三钴,800℃下煅烧30分钟将氧化石墨烯还原为还原性氧化石墨烯,在Ar环境保护碳原子不被氧气氧化。在含有O2的Ar环境下处理10-1000s,得到具有不同电阻的非晶碳-还原性氧化石墨烯-四氧化三钴包裹结构的复合纳米纤维气体传感器。在含有O2的Ar环境可以剥离非晶碳,得到碳对四氧化三钴不同程度的包裹,最终获得的具有包裹结构的非晶碳-还原性氧化石墨烯-四氧化三钴复合纳米纤维,化学性质稳定、对NH3气敏特性良好的、复合物的电导可调。
[0055] 最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。
相关专利内容
标题 发布/更新时间 阅读量
一种纳米微晶板 2020-05-13 340
纳米晶体纳米乳剂 2020-05-13 614
药用纳米结晶罐 2020-05-11 732
纳米碳晶频谱发热板 2020-05-13 736
一种纳米超晶格加热壶 2020-05-12 195
纳米水晶药石 2020-05-11 604
一种纳米水晶膜 2020-05-11 156
纳米晶环形高频变压器 2020-05-13 152
一种纳米碳晶牙刷 2020-05-12 417
纯化纳米晶溶液的装置 2020-05-11 512
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈