首页 / 专利库 / 纳米技术 / 碳纳米管 / 单壁碳纳米管 / 具有高体积和重量能量密度的碱金属-硫电池

具有高体积和重量能量密度金属-硫电池

阅读:934发布:2022-01-16

专利汇可以提供具有高体积和重量能量密度金属-硫电池专利检索,专利查询,专利分析的服务。并且提供了一种 碱 金属‑硫 电池 ,该碱金属‑硫电池包括:(a) 阳极 ;(b) 阴极 ,该阴极具有(i)包含分散于 电解 质中的阴极活性材料的阴极活性材料浆料,和(ii)充当3D阴极集 流体 的导电多孔结构,该导电多孔结构具有按体积计至少70%的孔并且其中阴极活性材料浆料被布置在该导电多孔结构的孔中,其中该阴极活性材料选自硫、多硫化锂、多硫化钠、硫‑ 聚合物 复合材料 、硫‑ 碳 复合材料、硫‑ 石墨 烯复合材料、或其组合;以及(c)布置在该阳极与该阴极之间的隔膜;其中阴极厚度与阴极集流体厚度的比率是从0.8/1至1/0.8,和/或该阴极活性材料构成大于15mg/cm2的 电极 活性材料负载量,并且该3D多孔阴极集流体具有不小于200μm(优选地厚于500μm)的厚度。,下面是具有高体积和重量能量密度金属-硫电池专利的具体信息内容。

1.一种用于生产金属-硫电池的方法,其中所述碱金属选自锂(Li)和/或钠(Na),所述方法包括:
(a)制备第一导电多孔结构或第一导电泡沫层;
(b)制备第二导电多孔结构或第二导电泡沫层;
(c)将第一悬浮液注入或浸渍到所述第一导电多孔结构的孔中以形成阳极电极,其中所述第一悬浮液含有阳极活性材料、任选的导电添加剂、和第一液体或凝胶电解质,并且其中所述阳极电极和所述第一导电多孔结构的形状和尺寸是类似的或可比较的;
(d)将第二悬浮液注入或浸渍到所述第二导电多孔结构的孔中以形成阴极电极,其中所述第二悬浮液含有阴极活性材料、任选的导电添加剂、和第二液体或凝胶电解质,其中所述阴极活性材料选自硫、多硫化锂、多硫化钠、硫-聚合物复合材料、有机-硫化物、硫-复合材料、硫-石墨烯复合材料、或其组合;并且其中所述阴极电极和所述第二导电多孔结构的形状和尺寸是类似或可比较的;并且
(e)将所述阳极电极、隔膜和阴极电极组装成所述碱金属-硫电池。
2.如权利要求1所述的方法,其中所述步骤(a)、(b)、(c)、(d)和(e)按以下顺序进行:
(A)制备所述第一悬浮液和所述第二悬浮液;
(B)组装由作为多孔阳极集流体的所述第一导电多孔结构、作为多孔阴极集流体的所述第二导电多孔结构以及布置在所述多孔阳极集流体与所述多孔阴极集流体之间的多孔隔膜构成的多孔电池单元框架;其中所述多孔阳极集流体和/或所述多孔阴极集流体具有不小于200μm的厚度和按体积计至少70%的孔;并且
(C)将所述第一悬浮液注入所述阳极集流体的孔中以形成所述阳极电极并且将所述第二悬浮液注入所述阴极集流体的孔中以形成所述阴极电极,其程度为使得所述阳极活性材料在所述阳极电极中具有不小于10mg/cm2的材料质量负载量或者所述阴极活性材料在所述阴极电极中具有不小于15mg/cm2的材料质量负载量;
其中在所述注入或浸渍第一悬浮液或所述注入或浸渍第二悬浮液之前或之后,将所述阳极集流体、所述隔膜和所述阴极集流体组装在保护性外壳中。
3.如权利要求1所述的方法,其中所述步骤(a)、(b)、(c)、(d)和(e)按以下顺序进行:
a)制备一个或多个导电多孔层、一个或多个所述第一悬浮液的湿阳极层和一个或多个所述第二悬浮液的湿阴极层,其中所述导电多孔层含有互连的导电通路和按体积计至少
70%的孔;
b)按一定顺序堆叠并固结希望数量的所述多孔层和希望数量的所述湿阳极层以形成所述阳极电极,所述阳极电极具有不小于200μm的厚度;
c)将所述多孔隔膜层置于与所述阳极电极接触
d)按一定顺序堆叠并固结希望数量的所述多孔层和希望数量的所述湿阴极层以形成与所述多孔隔膜接触的所述阴极电极,其中所述阴极电极具有不小于200μm的厚度;并且e)将所述阳极电极、多孔隔膜和阴极电极组装并密封在外壳中以生产所述碱金属-硫电池;
2
其中所述阳极活性材料在所述阳极电极中具有不小于20mg/cm 的材料质量负载量和/或所述阴极活性材料在所述阴极电极中具有不小于10mg/cm2的材料质量负载量。
4.一种用于生产碱金属-硫电池的方法,其中所述碱金属选自锂(Li)和/或钠(Na),所述方法包括:
(a)组装由作为阴极集流体的第一导电多孔结构、阳极集流体以及布置在所述阳极集流体与所述阴极集流体之间的多孔隔膜构成的多孔电池单元框架;其中所述第一导电多孔结构具有不小于200μm的厚度和按体积计至少70%的孔,并且所述阳极集流体具有两个相反的主表面,并且这两个主表面中的至少一个含有钠或锂金属或合金的层,在所述合金中具有按重量计至少50%的钠或锂元素;
(b)制备分散在第一液体电解质中的阴极活性材料的第一悬浮液,其中所述阴极活性材料选自硫、多硫化锂、多硫化钠、硫-聚合物复合材料、有机-硫化物、硫-碳复合材料、硫-石墨烯复合材料、或其组合;并且
(c)将所述第一悬浮液注入所述第一导电多孔结构的孔中以形成阴极电极,其程度为使得所述阴极活性材料构成不小于7mg/cm2的电极活性材料负载量,并且其中在进行所述注入步骤之前或之后,将所述阳极、所述隔膜和所述阴极组装在保护性外壳中。
5.一种用于生产碱金属-硫电池的方法,其中所述碱金属选自锂(Li)和/或钠(Na),所述方法包括:
(a)制备至少一个或多个导电多孔结构、以及一个或多个与液体电解质混合的阴极活性材料和任选的导电添加剂的湿阴极层,其中所述阴极活性材料选自硫、多硫化锂、多硫化钠、硫-聚合物复合材料、有机-硫化物、硫-碳复合材料、硫-石墨烯复合材料、或其组合,并且其中所述导电多孔层含有互连的导电通路和按体积计至少80%的孔;
(b)制备具有阳极集流体的阳极电极,该阳极集流体具有两个相反的主表面,其中这两个主表面中的至少一个沉积有碱金属或碱金属合金层,在所述合金中具有按重量计至少
50%的Na和/或Li元素;
(c)将多孔隔膜层置于与所述阳极电极接触;
(d)按交替顺序堆叠并固结希望数量的所述多孔层和希望数量的所述湿阴极层以形成与所述多孔隔膜接触的阴极电极,其中所述阴极电极具有不小于200μm的厚度;
其中所述步骤(d)在步骤(b)之前或之后进行;并且
(e)将所述阳极电极、多孔隔膜和阴极电极组装并密封在外壳中以生产所述碱金属电池;
其中所述阴极活性材料在所述阴极电极中具有不小于10mg/cm2的材料质量负载量。
6.如权利要求1所述的方法,其中所述阴极活性材料选自结合至所述阴极集流体的孔壁的硫、结合至碳或石墨材料或受其限制的硫、结合至聚合物或受其限制的硫、硫-碳化合物、金属硫化物MxSy,其中x是从1至3的整数并且y是从1至10的整数,并且M是金属元素,该金属元素选自Li、Na、K、Mg、Ca、过渡金属、元素周期表从第13族至第17族的金属、及其组合。
7.如权利要求4所述的方法,其中所述阴极活性材料选自结合至所述阴极集流体的孔壁的硫、结合至碳或石墨材料或受其限制的硫、结合至聚合物或受其限制的硫、硫-碳化合物、金属硫化物MxSy,其中x是从1至3的整数并且y是从1至10的整数,并且M是金属元素,该金属元素选自Li、Na、K、Mg、Ca、过渡金属、元素周期表从第13族至第17族的金属、及其组合。
8.如权利要求5所述的方法,其中所述阴极活性材料选自结合至所述阴极集流体的孔壁的硫、结合至碳或石墨材料或受其限制的硫、结合至聚合物或受其限制的硫、硫-碳化合物、金属硫化物MxSy,其中x是从1至3的整数并且y是从1至10的整数,并且M是金属元素,该金属元素选自Li、Na、K、Mg、Ca、过渡金属、元素周期表从第13族至第17族的金属、及其组合。
9.如权利要求1所述的方法,其中所述导电多孔结构选自金属泡沫、金属网或丝网、基于穿孔金属片的结构、金属纤维毡、金属纳米线毡、导电聚合物纳米纤维毡、导电聚合物泡沫、导电聚合物涂覆的纤维泡沫、碳泡沫、石墨泡沫、碳气凝胶、碳干凝胶、石墨烯泡沫、化石墨烯泡沫、还原氧化石墨烯泡沫、碳纤维泡沫、石墨纤维泡沫、膨化石墨泡沫、及其组合。
10.如权利要求4所述的方法,其中所述导电多孔层选自金属泡沫、金属网或丝网、基于穿孔金属片的结构、金属纤维毡、金属纳米线毡、导电聚合物纳米纤维毡、导电聚合物泡沫、导电聚合物涂覆的纤维泡沫、碳泡沫、石墨泡沫、碳气凝胶、碳干凝胶、石墨烯泡沫、氧化石墨烯泡沫、还原氧化石墨烯泡沫、碳纤维泡沫、石墨纤维泡沫、膨化石墨泡沫、及其组合。
11.如权利要求5所述的方法,其中所述导电多孔层选自金属泡沫、金属网或丝网、基于穿孔金属片的结构、金属纤维毡、金属纳米线毡、导电聚合物纳米纤维毡、导电聚合物泡沫、导电聚合物涂覆的纤维泡沫、碳泡沫、石墨泡沫、碳气凝胶、碳干凝胶、石墨烯泡沫、氧化石墨烯泡沫、还原氧化石墨烯泡沫、碳纤维泡沫、石墨纤维泡沫、膨化石墨泡沫、及其组合。
12.如权利要求1所述的方法,其中阴极厚度与阴极集流体厚度的比率是从0.8/1至1/
0.8,和/或所述阴极活性材料构成大于15mg/cm2的电极活性材料负载量,并且所述阴极集流体具有不小于300μm的厚度。
13.如权利要求1所述的方法,其中所述阴极活性材料由选自下组的功能性材料或纳米结构材料所负载,该组由以下各项组成:
(a)选自软碳、硬碳、聚合碳或碳化树脂、中间相碳、焦炭、碳化沥青炭黑、活性碳、纳米蜂窝状碳泡沫或部分石墨化碳的颗粒的纳米结构的或多孔无序的碳材料;
(b)选自单层石墨烯片或多层石墨烯片晶的纳米石墨烯片晶;
(c)选自单壁碳纳米管或多壁碳纳米管的碳纳米管;
(d)碳纳米纤维、纳米线、金属氧化物纳米线或纤维、导电聚合物纳米纤维、或其组合;
(e)含羰基的有机或聚合分子;
(f)含可逆地捕获硫的羰基、羧基或胺基的功能材料;
及其组合。
14.如权利要求1所述的方法,其中所述阳极活性材料含有碱金属离子源,该碱金属离子源选自碱金属、碱金属合金、碱金属或碱金属合金与碱金属插层化合物的混合物、含碱金属元素的化合物、及其组合。
15.如权利要求1所述的方法,其中所述阳极活性材料含有选自以下各项的碱金属插层化合物:石油焦炭、炭黑、无定形碳、活性碳、硬碳、软碳、模板碳、空心碳纳米线、空心碳球、天然石墨、人造石墨、酸锂或钛酸钠、NaTi2(PO4)3、Na2Ti3O7、Na2C8H4O4、Na2TP、NaxTiO2(x=
0.2至1.0)、Na2C8H4O4、基于羧酸盐的材料、C8H4Na2O4、C8H6O4、C8H5NaO4、C8Na2F4O4、C10H2Na4O8、C14H4O6、C14H4Na4O8、及其组合。
16.如权利要求1所述的方法,其中所述阳极活性材料含有选自以下材料的组的碱金属插层化合物或含碱金属的化合物:
(a)掺杂锂或钠的(Si)、锗(Ge)、(Sn)、铅(Pb)、锑(Sb)、铋(Bi)、锌(Zn)、(Al)、钛(Ti)、钴(Co)、镍(Ni)、锰(Mn)、镉(Cd)、及其混合物;
(b)Si、Ge、Sn、Pb、Sb、Bi、Zn、Al、Ti、Co、Ni、Mn、Cd的含锂或含钠的合金或金属间化合物、及其混合物;
(c)Si、Ge、Sn、Pb、Sb、Bi、Zn、Al、Fe、Ti、Co、Ni、Mn、Cd的含锂或含钠的氧化物、碳化物、氮化物、硫化物、磷化物、硒化物、碲化物、或锑化物、及其混合物或复合物;
(d)锂盐或钠盐;以及
(e)预负载有锂或钠的石墨烯片。
17.如权利要求16所述的碱金属-硫电池,其中所述预负载有锂或钠的石墨烯片选自原生石墨烯、氧化石墨烯、还原氧化石墨烯、石墨烯氟化物、石墨烯氯化物、石墨烯溴化物、石墨烯碘化物、氢化石墨烯、氮化石墨烯、掺杂石墨烯、氮掺杂石墨烯、化学官能化石墨烯、其物理或化学活化或蚀刻型式、及其组合的预钠化或预锂化型式。
18.如权利要求1所述的方法,其中所述第一液体或凝胶电解质或所述第二液体或凝胶电解质选自性电解质、有机电解质、离子液体电解质、有机电解质和离子电解质的混合物、或其与聚合物的混合物。
19.如权利要求18所述的方法,其中所述水性电解质含有溶于水或水和醇的混合物中的钠盐或锂盐。
20.如权利要求19所述的方法,其中所述钠盐或锂盐选自Na2SO4、Li2SO4、其混合物、NaOH、LiOH、NaCl、LiCl、NaF、LiF、NaBr、LiBr、NaI、LiI、及其混合物。
21.如权利要求18所述的方法,其中所述有机电解质含有选自下组的液体有机溶剂,该组由以下各项组成:1,3-二氧戊环(DOL)、1,2-二甲氧基乙烷(DME)、四乙二醇二甲醚(TEGDME)、聚(乙二醇)二甲醚(PEGDME)、二乙二醇二丁醚(DEGDBE)、2-乙氧基乙基醚(EEE)、砜、环丁砜、碳酸乙烯酯(EC)、碳酸二甲酯(DMC)、碳酸甲乙酯(MEC)、碳酸二乙酯(DEC)、丙酸乙酯、丙酸甲酯、碳酸丙烯酯(PC)、γ-丁内酯(γ-BL)、乙腈(AN)、乙酸乙酯(EA)、甲酸丙酯(PF)、甲酸甲酯(MF)、甲苯、二甲苯、乙酸甲酯(MA)、碳酸氟代亚乙酯(FEC)、碳酸亚乙烯酯(VC)、碳酸烯丙基乙酯(AEC)、氢氟醚、及其组合。
22.如权利要求18所述的方法,其中所述有机电解质含有选自以下各项的碱金属盐:高氯酸锂(LiClO4)、六氟磷酸锂(LiPF6)、氟硼酸锂(LiBF4)、六氟砷化锂(LiAsF6)、三氟甲磺酸锂(LiCF3SO3)、双三氟甲基磺酰亚胺锂(LiN(CF3SO2)2)、双(草酸)硼酸锂(LiBOB)、草酰二氟硼酸锂(LiBF2C2O4)、草酰二氟硼酸锂(LiBF2C2O4)、硝酸锂(LiNO3)、氟烷基磷酸锂、双全氟乙基磺酰亚胺锂(LiBETI)、高氯酸钠(NaClO4)、高氯酸(KClO4)、六氟磷酸钠(NaPF6)、六氟磷酸钾(KPF6)、氟硼酸钠(NaBF4)、氟硼酸钾(KBF4)、六氟砷化钠、六氟砷化钾、三氟甲磺酸钠(NaCF3SO3)、三氟甲磺酸钾(KCF3SO3)、双三氟甲基磺酰亚胺钠(NaN(CF3SO2)2)、三氟甲烷磺酰亚胺钠(NaTFSI)、双三氟甲基磺酰亚胺钾(KN(CF3SO2)2)、及其组合。
23.如权利要求18所述的方法,其中所述离子液体电解质含有离子液体溶剂,该离子液体溶剂选自具有选自以下各项的阳离子的室温离子液体:四烷基铵、二-、三-或四-烷基咪唑鎓、烷基吡啶鎓、二烷基吡咯烷鎓、二烷基哌啶鎓、四烷基磷鎓、三烷基硫鎓、及其组合。
24.如权利要求23所述的方法,其中所述离子液体溶剂选自室温离子液体,该室温离子液体具有选自以下各项的阴离子:BF4-、B(CN)4-、CH3BF3-、CH2CHBF3-、CF3BF3-、C2F5BF3-、n-- - - - - - - -
C3F7BF3 、n-C4F9BF3 、PF6 、CF3CO2 、CF3SO3 、N(SO2CF3)2 、N(COCF3)(SO2CF3) 、N(SO2F)2、N(CN)2-、C(CN)3-、SCN-、SeCN-、CuCl2-、AlCl4-、F(HF)2.3-、及其组合。
25.一种碱金属-硫电池,包括:
(a)阳极,该阳极具有(i)包含分散于第一液体或凝胶电解质中的阳极活性材料和任选的导电添加剂的阳极活性材料浆料,和(ii)充当3D阳极集流体的导电多孔结构,其中所述导电多孔结构具有按体积计至少70%的孔并且其中所述阳极活性材料浆料被布置在所述导电多孔结构的孔中;
(b)阴极,该阴极具有(i)包含分散于第二液体或凝胶电解质中的阴极活性材料和任选的导电添加剂的阴极活性材料浆料,该第二液体或凝胶电解质与所述第一液体或凝胶电解质相同或不同,和(ii)充当3D阴极集流体的导电多孔结构,其中所述导电多孔结构具有按体积计至少70%的孔,并且其中阴极活性材料浆料被布置在所述导电多孔结构的孔中,其中所述阴极活性材料选自结合至所述阴极集流体的孔壁的硫、结合至碳或石墨材料或受其限制的硫、结合至聚合物或受其限制的硫、硫-碳化合物、金属硫化物MxSy,其中x是从1至3的整数并且y是从1至10的整数,并且M是金属元素,该金属元素选自Li、Na、K、Mg、Ca、过渡金属、元素周期表从第13族至第17族的金属、或其组合;以及
(c)布置在所述阳极与所述阴极之间的隔膜;
其中阳极厚度与阳极集流体厚度的比率是从0.8/1至1/0.8,和/或阴极厚度与阴极集流体厚度的比率是从0.8/1至1/0.8,所述3D多孔阳极集流体或阴极集流体具有不小于200μ
2
m的厚度,并且其中所述阴极活性材料构成大于10mg/cm 的电极活性材料负载量,和/或组合的所述阳极活性材料和所述阴极活性材料超过所述电池单元重量的按重量计40%。
26.一种碱金属-硫电池,包括:
(a)阳极,该阳极具有涂覆在阳极集流体上或与其物理接触的阳极活性材料,其中所述阳极活性材料与第一电解质处于离子接触;
(b)阴极,该阴极具有(i)包含分散于第二液体或凝胶电解质中的阴极活性材料和任选的导电添加剂的阴极活性材料浆料,该第二液体或凝胶电解质与所述第一液体或凝胶电解质相同或不同,和(ii)充当3D阴极集流体的导电多孔结构,其中所述导电多孔结构具有按体积计至少70%的孔并且其中阴极活性材料浆料被布置在所述导电多孔结构的孔中,其中所述阴极活性材料选自硫、多硫化锂、多硫化钠、硫-聚合物复合材料、有机-硫化物、硫-碳复合材料、硫-石墨烯复合材料、或其组合;以及
(c)布置在所述阳极与所述阴极之间的隔膜;
其中阴极厚度与阴极集流体厚度的比率是从0.8/1至1/0.8,和/或所述阴极活性材料构成大于15mg/cm2的电极活性材料负载量,并且所述3D阴极集流体具有不小于200μm的厚度。
27.如权利要求26所述的碱金属-硫电池,其中所述阳极集流体含有多孔泡沫结构。
28.如权利要求26所述的碱金属-硫电池,其中所述阴极活性材料由选自下组的功能性材料或纳米结构材料所负载,该组由以下各项组成:
a)选自软碳、硬碳、聚合碳或碳化树脂、中间相碳、焦炭、碳化沥青、炭黑、活性碳、纳米蜂窝状碳泡沫或部分石墨化碳的颗粒的纳米结构的或多孔无序的碳材料;
b)选自单层石墨烯片或多层石墨烯片晶的纳米石墨烯片晶;
c)选自单壁碳纳米管多壁碳纳米管的碳纳米管;
d)碳纳米纤维、纳米线、金属氧化物纳米线或纤维、导电聚合物纳米纤维、或其组合;
e)含羰基的有机或聚合分子;
f)含可逆地捕获硫的羰基、羧基或胺基的功能材料;
及其组合。
29.如权利要求26所述的碱金属-硫电池,其中所述阳极活性材料含有碱金属离子源,该碱金属离子源选自碱金属、碱金属合金、碱金属或碱金属合金与碱金属插层化合物的混合物、含碱金属元素的化合物、及其组合。
30.如权利要求25所述的碱金属-硫电池,其中所述阳极活性材料含有选自以下各项的碱金属插层化合物:石油焦炭、炭黑、无定形碳、活性碳、硬碳、软碳、模板碳、空心碳纳米线、空心碳球、天然石墨、人造石墨、钛酸锂或钛酸钠、NaTi2(PO4)3、Na2Ti3O7、Na2C8H4O4、Na2TP、NaxTiO2其中0.2≤x≤1.0、Na2C8H4O4、基于羧酸盐的材料、C8H4Na2O4、C8H6O4、C8H5NaO4、C8Na2F4O4、C10H2Na4O8、C14H4O6、C14H4Na4O8、及其组合。
31.如权利要求25所述的碱金属-硫电池,其中所述阳极活性材料含有选自以下材料的组的碱金属插层化合物或含碱金属的化合物:
a)掺杂锂或钠的硅(Si)、锗(Ge)、锡(Sn)、铅(Pb)、锑(Sb)、铋(Bi)、锌(Zn)、铝(Al)、钛(Ti)、钴(Co)、镍(Ni)、锰(Mn)、镉(Cd)、及其混合物;
b)Si、Ge、Sn、Pb、Sb、Bi、Zn、Al、Ti、Co、Ni、Mn、Cd的含锂或含钠的合金或金属间化合物、及其混合物;
c)Si、Ge、Sn、Pb、Sb、Bi、Zn、Al、Fe、Ti、Co、Ni、Mn、Cd的含锂或含钠的氧化物、碳化物、氮化物、硫化物、磷化物、硒化物、碲化物、或锑化物、及其混合物或复合物;
d)锂盐或钠盐;以及
e)预负载有锂或钠的石墨烯片。
32.如权利要求31所述的碱金属-硫电池,其中所述预负载有锂或钠的石墨烯片选自原生石墨烯、氧化石墨烯、还原氧化石墨烯、石墨烯氟化物、石墨烯氯化物、石墨烯溴化物、石墨烯碘化物、氢化石墨烯、氮化石墨烯、硼掺杂石墨烯、氮掺杂石墨烯、化学官能化石墨烯、其物理或化学活化或蚀刻型式、及其组合的预钠化或预锂化型式。
33.如权利要求26所述的碱金属-硫电池,其中所述第一电解质是凝胶电解质或固态电解质。
34.如权利要求25所述的碱金属-硫电池,其中所述第一液体或凝胶电解质或所述第二液体或凝胶电解质选自水性电解质、有机电解质、离子液体电解质、有机电解质和离子电解质的混合物、或其与聚合物的混合物。
35.如权利要求34所述的碱金属-硫电池,其中所述水性电解质含有溶于水或水和醇的混合物中的钠盐或钾盐
36.如权利要求35所述的碱金属-离子电池,其中所述钠盐或锂盐选自Na2SO4、Li2SO4、NaOH、LiOH、NaCl、LiCl、NaF、LiF、NaBr、LiBr、NaI、LiI、及其混合物。
37.如权利要求34所述的碱金属-硫电池,其中所述有机电解质含有选自下组的液体有机溶剂,该组由以下各项组成:1,3-二氧戊环(DOL)、1,2-二甲氧基乙烷(DME)、四乙二醇二甲醚(TEGDME)、聚(乙二醇)二甲醚(PEGDME)、二乙二醇二丁醚(DEGDBE)、2-乙氧基乙基醚(EEE)、砜、环丁砜、碳酸乙烯酯(EC)、碳酸二甲酯(DMC)、碳酸甲乙酯(MEC)、碳酸二乙酯(DEC)、丙酸乙酯、丙酸甲酯、碳酸丙烯酯(PC)、γ-丁内酯(γ-BL)、乙腈(AN)、乙酸乙酯(EA)、甲酸丙酯(PF)、甲酸甲酯(MF)、甲苯、二甲苯、乙酸甲酯(MA)、碳酸氟代亚乙酯(FEC)、碳酸亚乙烯酯(VC)、碳酸烯丙基乙酯(AEC)、氢氟醚、及其组合。
38.如权利要求34所述的碱金属-硫电池,其中所述有机电解质含有选自以下各项的碱金属盐:高氯酸锂(LiClO4)、六氟磷酸锂(LiPF6)、氟硼酸锂(LiBF4)、六氟砷化锂(LiAsF6)、三氟甲磺酸锂(LiCF3SO3)、双三氟甲基磺酰亚胺锂(LiN(CF3SO2)2)、双(草酸)硼酸锂(LiBOB)、草酰二氟硼酸锂(LiBF2C2O4)、草酰二氟硼酸锂(LiBF2C2O4)、硝酸锂(LiNO3)、氟烷基磷酸锂、双全氟乙基磺酰亚胺锂(LiBETI)、高氯酸钠(NaClO4)、高氯酸钾(KClO4)、六氟磷酸钠(NaPF6)、六氟磷酸钾(KPF6)、氟硼酸钠(NaBF4)、氟硼酸钾(KBF4)、六氟砷化钠、六氟砷化钾、三氟甲磺酸钠(NaCF3SO3)、三氟甲磺酸钾(KCF3SO3)、双三氟甲基磺酰亚胺钠(NaN(CF3SO2)2)、三氟甲烷磺酰亚胺钠(NaTFSI)、双三氟甲基磺酰亚胺钾(KN(CF3SO2)2)、及其组合。
39.如权利要求34所述的碱金属-硫电池,其中所述离子液体电解质含有离子液体溶剂,该离子液体溶剂选自具有选自以下各项的阳离子的室温离子液体:四烷基铵、二-、三-或四-烷基咪唑鎓、烷基吡啶鎓、二烷基吡咯烷鎓、二烷基哌啶鎓、四烷基磷鎓、三烷基硫鎓、及其组合。
40.如权利要求39所述的碱金属-硫电池,其中所述离子液体溶剂选自室温离子液体,- - - - -
该室温离子液体具有选自以下各项的阴离子:BF4 、B(CN)4 、CH3BF3 、CH2CHBF3 、CF3BF3 、C2F5BF3-、n-C3F7BF3-、n-C4F9BF3-、PF6-、CF3CO2-、CF3SO3-、N(SO2CF3)2-、N(COCF3)(SO2CF3)-、N(SO2F)2-、N(CN)2-、C(CN)3-、SCN-、SeCN-、CuCl2-、AlCl4-、F(HF)2.3-、及其组合。
41.如权利要求1所述的碱金属-硫电池,其中所述3D多孔阳极集流体或所述3D多孔阴极集流体含有具有不小于200μm的厚度、具有按体积计至少85%的孔的导电泡沫结构,和/或所述阳极活性材料具有不小于20mg/cm2的质量负载量、占该整个电池单元的按重量计或按体积计至少25%,和/或该阴极活性材料具有不小于20mg/cm2的质量负载量。
42.如权利要求1所述的碱金属-硫电池,其中所述3D多孔阳极集流体或所述3D多孔阴极集流体含有具有不小于300μm的厚度、按体积计至少90%的孔的导电泡沫结构,和/或所述阳极活性材料具有不小于25mg/cm2的质量负载量、占该整个电池单元的按重量计或按体积计至少30%,和/或该阴极活性材料具有不小于25mg/cm2的质量负载量。
43.如权利要求1所述的碱金属-硫电池,其中所述3D多孔阳极集流体或所述3D多孔阴极集流体含有具有不小于400μm的厚度、具有按体积计至少95%的孔的导电泡沫结构,和/或所述阳极活性材料具有不小于30mg/cm2的质量负载量、占该整个电池单元的按重量计或按体积计至少35%,和/或该阴极活性材料具有不小于30mg/cm2的质量负载量。
44.如权利要求1所述的碱金属-硫电池,其中所述3D多孔阳极集流体或3D多孔阴极集流体含有选自以下各项的导电泡沫结构:金属泡沫、金属网或丝网、基于穿孔金属片的3D结构、金属纤维毡、金属纳米线毡、导电聚合物纳米纤维毡、导电聚合物泡沫、导电聚合物涂覆的纤维泡沫、碳泡沫、石墨泡沫、碳气凝胶、碳干凝胶、石墨烯泡沫、氧化石墨烯泡沫、还原氧化石墨烯泡沫、碳纤维泡沫、石墨纤维泡沫、膨化石墨泡沫、及其组合。

说明书全文

具有高体积和重量能量密度金属-硫电池

[0001] 相关申请的交叉引用
[0002] 本申请要求都在2016年1月15日提交的美国专利申请号14/998,513和14/998,523的优先权,这些专利申请通过援引方式并入本文。

技术领域

[0003] 本发明针对具有高体积能量密度和高重量能量密度的二次(可再充电)锂-硫电池(包括Li-S和Li离子-S电池单元)或钠-硫电池(包括Na-S和Na离子-S电池单元)。

背景技术

[0004] 可再充电锂离子(Li-离子)和锂金属电池(包括Li-硫和Li金属-空气电池)被认为是用于电动车辆(EV)、混合电动车辆(HEV)和便携式电子装置,如膝上型计算机和手机的有前途的电源。与作为阳极活性材料的任何其他金属或金属插层化合物(除具有4,200mAh/g的比容量的Li4.4Si之外)相比,作为金属元素的锂具有最高容量(3,861mAh/g)。因此,通常,Li金属电池具有比锂离子电池显著更高的能量密度。
[0005] 历史上,使用具有相对高比容量的非锂化的化合物(诸如TiS2、MoS2、MnO2、CoO2、和V2O5)作为与锂金属阳极偶联的阴极活性材料来生产可再充电锂金属电池。当电池放电时,锂离子通过电解质从锂金属阳极转移到阴极,并且阴极变得锂化。不幸的是,在重复充电/放电时,锂金属导致阳极处形成枝晶,这些枝晶最终生长到穿透隔膜,引起内部短路和爆炸。由于与这一问题有关的一系列事故,在二十世纪九十年代早期停止了这些类型的二次电池的生产,取而代之的是锂离子电池。
[0006] 在锂离子电池中,质材料取代纯锂金属片或膜作为阳极。该碳质材料分别在锂离子电池运行的再充电阶段和放电阶段期间吸收锂(例如通过在石墨烯平面之间锂离子或原子的插层)和解吸锂离子。碳质材料可以主要包括可以用锂插层的石墨,并且所得石墨插层化合物可以表示为LixC6,其中x典型地小于1。
[0007] 虽然锂离子(Li-离子)电池是用于电驱动车辆的有前途的储能装置,但当今技术平的Li-离子电池尚未满足成本和性能目标。Li-离子电池单元典型地使用锂过渡金属化物或磷酸盐作为相对于碳负电极(阳极)在高电势下脱嵌/重新嵌入Li+的正电极(阴极)。基于锂过渡金属氧化物或磷酸盐的阴极活性材料的比容量典型地在140-170mAh/g的范围内。因此,可商购的Li-离子电池单元的比能量典型地在120-250Wh/kg的范围内,最典型地在150-220Wh/kg的范围内。这些比能量值比使电池供电的电动车辆被广泛接受所要求的比能量值低两到三倍。
[0008] 随着混合电动车辆(HEV)、插电式混合电动汽车(HEV)、和全电池电动汽车(EV)的快速发展,迫切需要提供具有显著更高比能量、更高能量密度、更高倍率能、长循环寿命、和安全性的可再充电电池的阳极和阴极材料。最有前途的储能装置之一是锂-硫(Li-S)电池单元,因为Li的理论容量是3,861mAh/g并且S的理论容量是1,675mAh/g。在其最简单的形式中,Li-S电池单元由元素硫作为正电极并且锂作为负电极组成。锂-硫电池单元用氧化还原对运行,通过反应 描述,该反应相对于Li+/Li°位于2.2V附近。此电化学电势是常规锂离子电池中的常规正电极(例如LiMnO4)所展示的电化学电势的大约2/
3。然而,这个缺点被Li和S两者非常高的理论容量所抵消。因此,与常规的基于插层的Li-离子电池相比,Li-S电池单元有机会提供显著更高的能量密度(容量和电压的乘积)。假设完全反应成Li2S,基于组合的Li和S重量或体积,能量密度值可以分别接近2,500Wh/kg和2,
800Wh/L。如果基于总电池单元重量或体积,则能量密度可以分别达到大约1,000Wh/kg和1,
100Wh/L。然而,硫阴极技术的行业领导者报道的目前的Li-硫电池单元具有的最大电池单元比能量为250Wh/kg-400Wh/kg和500Wh/L-650Wh/L(基于总电池单元重量或体积),其远远低于可能的比能量。
[0009] 总之,尽管其相当多的优点,但Li–S电池单元受到若干主要技术问题的困扰,这些问题到目前为止阻碍其广泛的商业化:
[0010] (1)常规锂金属电池单元仍具有枝晶形成和相关内部短路问题。
[0011] (2)硫或含硫有机化合物在电和离子两个方面都是高度绝缘的。为了在高电流密度或充电/放电倍率下实现可逆电化学反应,硫必须保持与导电添加剂紧密接触。为此目的已使用了各种碳-硫复合材料,但由于接触面积的有限规模,仅取得了有限的成功。典型报道的容量在中等倍率下是在300mAh/g与550mAh/g之间(基于阴极碳-硫复合材料重量)。
[0012] (3)电池单元在放电-充电循环期间倾向于展示出显著的容量衰减。这主要是由于在用于电解质的极性有机溶剂的放电和充电两个过程期间作为反应中间体形成的多硫化锂阴离子的高溶解度。在循环期间,多硫化锂阴离子可以通过隔膜迁移到Li负电极,在其上它们被还原成固体沉淀物(Li2S2和/或Li2S),从而引起活性质量损失。此外,在放电期间在正电极表面上沉淀的固体产物变为电化学不可逆的,这也有助于活性质量损失。
[0013] (4)更一般地说,含有包含元素硫、有机硫和碳-硫材料的阴极的电池单元的显著缺点涉及可溶性硫化物、多硫化物、有机硫化物、碳-硫化物和/或碳-多硫化物(以下称为阴离子还原产物)的溶解和从阴极过度向外扩散到电池单元的其余部分中。这种现象通常被称为穿梭效应。此过程导致若干问题:高自放电倍率、阴极容量损失、集流体和电引线的腐蚀导致与有源电池单元部件的电接触损失、阳极表面的污垢导致阳极故障、以及电池单元膜隔膜中的孔堵塞导致离子传输损失和电池单元中的内电阻的大幅增加。
[0014] 响应于这些挑战,已经开发了新的电解质、用于锂阳极的保护膜、和固体电解质。最近报道的一些令人关注的阴极发展含有多硫化锂;但是,它们的性能仍然达不到实际应用所要求的性能。
[0015] 例如,Ji等人报道了,基于纳米结构的硫/介孔碳材料的阴极可以在很大程度上克服这些挑战并且展示出稳定的、高的、可逆容量与良好的倍率特性和循环效率[Xiulei Ji,Kyu Tae Lee,&Linda F.Nazar“, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries[用于锂-硫电池的高度有序的纳米结构的碳-硫阴极],”Nature Materials[自然材料]8,500-506(2009)]。然而,所提出的高度有序的介孔碳结构的制造需要冗长且昂贵的模板辅助的方法。还具有挑战性的是使用物理气相沉积或溶液沉淀方法将大比例的硫负载到这些中尺度的孔中。
[0016] Zhang等人(美国公开号2014/0234702;08/21/2014)利用使S颗粒沉积在孤立的氧化石墨烯(GO)片的表面上的化学反应方法。但是,此方法不能在GO表面上产生大比例的S颗粒(即,典型地GO-S纳米复合材料组合物中的S<66%)。所得Li-S电池单元还展示出差的倍率能力;例如,在0.02C倍率下1,100mAh/g(基于S重量)的比容量降低至1.0C倍率下的<450mAh/g。可以注意到,最高可实现的比容量1,100mAh/g表示甚至在此种低充电/放电倍率下仅1,100/1,675=65.7%的硫利用效率(0.02C意指在1/0.02=50小时内完成充电或放电过程;1C=1小时,2C=1/2小时,并且3C=1/3小时等)。另外,此种基于S-GO纳米复合材料阴极的Li-S电池单元展示出非常差的循环寿命,其中容量典型地在少于40次充电/放电循环中降低至小于其初始容量的60%。此种短循环寿命使得此Li-S电池单元不可用于任何实际应用。另一种使S颗粒沉积在氧化石墨烯表面上的化学反应方法被Wang等人披露(美国公开号2013/0171339;07/04/2013)。此Li-S电池单元仍受制于同样的问题。
[0017] Liu等人(美国公开号2012/0088154;04/12/2012)披露用于制备用作Li-S电池单元中的阴极材料的石墨烯-硫纳米复合材料(具有吸附在GO表面上的硫颗粒)的溶液沉淀方法。该方法需要在溶剂(CS2)中混合GO片和S以形成悬浮液。然后蒸发该溶剂以产生固体纳米复合材料,然后将该固体纳米复合材料研磨以产生具有平均直径小于大约50nm的初级硫颗粒的纳米复合材料粉末。不幸地,此方法似乎不能生产小于40nm的S颗粒。所得Li-S电池单元展示出非常差的循环寿命(在仅50次循环之后容量衰减50%)。甚至当这些纳米复合材料颗粒被封装在聚合物中时,该Li-S电池单元在100次循环后仍保持小于其初始容量的80%。该电池单元还展示出差的倍率容量(在0.1C倍率下比容量为1,050mAh/g(S重量),在
1.0C倍率下降低至<580mAh/g)。再次,这暗示大比例的S无助于锂储存,从而导致低的S利用效率。
[0018] 尽管提出了用于制造高能量密度Li-S电池单元的各种方法,但仍需要阴极材料和生产方法,其改进电活性阴极材料的利用(S利用效率)并提供在许多次循环内具有高容量的可再充电Li-S电池单元。最重要的是,锂金属(包括纯锂、具有高锂含量的与其他金属元素的锂合金、或具有高锂含量的含锂化合物;例如按重量计>80%或优选地>90%的Li)与基本上所有其他阳极活性材料(除了纯之外,但硅具有粉碎问题)相比仍提供最高的阳极比容量。如果可以解决枝晶相关问题,则锂金属将是锂-硫二次电池中的理想阳极材料。
[0019] 钠金属(Na)和金属(K)具有与Li类似的化学特征并且室温钠-硫电池单元(RT Na-S电池)或钾-硫电池单元(K-S)中的硫阴极面临Li-S电池中观察到的相同问题,如:(i)低活性材料利用率,(ii)差的循环寿命,以及(iii)低库仑效率。再次,这些缺点主要由S的绝缘性质、液体电解质中的S和多硫化钠或多硫化钾中间体的溶解(和相关穿梭效应)、以及在充电/放电期间的大体积改变引起。
[0020] 可以注意到,在大多数公开文献报道(科学论文)和专利文献中,科学家或发明人选择基于单独的硫或多硫化锂重量(而不是总阴极复合材料重量)来表示阴极比容量,但不幸地,大比例的非活性材料(不能储存锂的那些材料,如导电添加剂和粘合剂)典型地用于他们的Li-S电池单元。出于实际使用目的,使用基于阴极复合材料重量的容量值更有意义。
[0021] 低容量的阳极或阴极活性材料不是与锂-硫或钠-硫电池相关的唯一问题。存在电池行业似乎没有意识到或者在很大程度上忽略了的严重的设计和制造问题。例如,尽管如在公开文献和专利文件中经常要求的电极水平上的看似高重量容量(基于单独的阳极或阴极活性材料重量),这些电极遗憾地不能在电池单元或电池组水平上提供具有高容量的电池(基于总电池单元重量或电池组重量)。这是由于以下观点:在这些报告中,电极的实际活性材料质量负载量太低。在大多数情况下,阳极的活性材料质量负载量(面密度)显著低于15mg/cm2并且主要地<8mg/cm2(面密度=沿着电极厚度方向的每个电极横截面积的活性材料的量)。在电池单元中阴极活性材料量典型地比阳极活性材料量高1.5-2.5倍。其结果是,Na离子-硫或Li离子-硫电池单元中阳极活性材料(例如,碳)的重量比例典型地为从15%至
20%,并且阴极活性材料的重量比例为从20%至35%(大多数<30%)。组合的阴极和阳极活性材料的重量分数典型地为从电池单元重量的35%至50%。
[0022] 低活性材料质量负载量主要是由于使用常规的浆料涂覆程序不能获得更厚的电极(厚于100-200μm)。这不是如人们可能认为的微不足道的任务,并且出于优化电芯性能的目的,实际上电极厚度不是可以任意地并且自由改变的设计参数。相反,较厚的样品倾向于变得非常脆或具有差的结构完整性,并且还将需要使用大量的粘合剂树脂。由于硫的低熔点和柔软特征,实际上不可能生产厚于100μm的硫阴极。此外,在实际电池制造工厂中,厚于150μm的涂覆的电极将需要长达100米的加热区以彻底干燥涂覆的浆料。这将显著增加设备成本并降低生产产量。低面密度和低体积密度(与薄电极和差填充密度有关)导致电池单元的相对较低的体积容量和较低的体积能量密度。
[0023] 随着对更紧凑和便携式能量储存系统的需求不断增长,对提高电池的体积的利用率有着浓厚的兴趣。能够实现高体积容量和高质量负载量的新颖的电极材料和设计对于实现提高的电池单元体积容量和能量密度是必要的。
[0024] 因此,本发明的目的是提供一种基于合理材料和电池设计的可再充电碱金属-硫电池单元,该电池单元克服或显著减少了通常与常规Li-S和Na-S电池单元相关的以下问题:(a)枝晶形成(内部短路);(b)硫的极低的电的和离子的电导率,需要大比例(典型地30%-55%)的无活性导电填料并且具有显著比例的不可接近或不可达的硫或碱金属多硫化物);(c)S和碱金属多硫化物在电解质中的溶解和多硫化物从阴极迁移至阳极(其在阳极处与Li或Na金属不可逆地反应),导致活性材料损失和容量衰减(穿梭效应);(d)短循环寿命;以及(e)阳极和阴极两者中的低活性质量负载量。
[0025] 本发明的具体目的是提供一种可再充电碱金属-硫电池(例如,主要为Li-S和室温Na-S电池),其展示出异常高的比能量或高的能量密度。本发明的一个具体技术目标是提供一种碱金属-硫或碱金属离子-硫电池单元,该电池单元具有大于400Wh/Kg、优选地大于500Wh/Kg、更优选地大于600Wh/Kg、并且最优选地大于700Wh/kg(全部基于总电池单元重量)的电池单元比能量。优选地,体积能量密度大于600Wh/L、进一步优选地大于800Wh/L、并且最优选地大于1,000Wh/L。
[0026] 本发明的另一个目的是提供一种碱金属-硫电池单元,该电池单元展示出高阴极比容量(基于硫重量高于1,200mAh/g、或者基于阴极复合材料重量(包括组合的硫、导电添加剂或基底、以及粘合剂重量,但不包括阴极集流体的重量)高于1,000mAh/g)。比容量优选地基于单独的硫重量高于1,400mAh/g,或者基于阴极复合材料重量高于1,200mAh/g。这一定伴随着高比能量、良好的抗枝晶形成性、以及长且稳定的循环寿命。

发明内容

[0027] 本发明提供了一种碱金属-硫电池,该电池具有先前从未实现的高阴极活性材料质量负载量、厚阴极、高硫阴极比容量、异常低的无贡献重量和体积(相对于活性材料质量和体积)、高重量能量密度、以及高体积能量密度。本发明包括锂金属-硫和室温钠金属-硫电池单元两者。
[0028] 锂-硫电池包括(a)锂金属-硫(Li-S电池单元),其使用Li金属或Li金属合金(例如Li箔)作为主要阳极活性材料并且使用硫、多硫化物、和/或硫-碳化合物作为主要阴极活性材料,和(b)锂离子-硫电池单元,其利用锂插层化合物(例如石墨和Si)作为主要阳极活性材料并利用硫、多硫化物、和/或硫-碳化合物作为主要阴极活性材料。钠-硫电池包括(a)钠金属-硫(Na-S电池单元),其使用Na金属或Na金属合金(例如Na箔)作为主要阳极活性材料并且使用硫、多硫化物、和/或硫-碳化合物作为主要阴极活性材料,和(b)钠离子-硫电池单元,其利用钠插层化合物(例如硬碳颗粒和Sn)作为主要阳极活性材料并利用硫、多硫化物、和/或硫-碳化合物作为主要阴极活性材料。
[0029] 在一个实施例中,本发明的电池包括:
[0030] (a)阳极,该阳极具有(i)包含分散于第一电解质中的阳极活性材料和任选的导电添加剂的阳极活性材料浆料(或悬浮液),和(ii)充当3D阳极集流体的导电多孔结构,其中该导电多孔结构具有按体积计至少70%的孔并且其中该阳极活性材料浆料被布置在该阳极导电多孔结构的孔中(术语“阳极导电多孔结构”和“3D阳极集流体”在本文中可互换使用);
[0031] (b)阴极,该阴极具有(i)包含分散于第二电解质(优选地为液体或凝胶电解质)中的阴极活性材料和任选的导电添加剂的阴极活性材料浆料,该第二电解质与该第一液体或凝胶电解质相同或不同,和(ii)充当3D阴极集流体的导电多孔结构,其中该导电多孔结构具有按体积计至少70%的孔并且其中该阴极活性材料浆料被布置在该阴极导电多孔结构的孔中(术语“阴极导电多孔结构”和“3D阴极集流体”在本文中可互换使用);
[0032] 该阴极活性材料选自结合至阴极集流体的孔壁的硫、结合至碳或石墨材料或受其限制的硫、结合至聚合物或受其限制的硫、硫-碳化合物、金属硫化物MxSy,其中x是从1至3的整数并且y是从1至10的整数,并且M是金属元素,该金属元素选自Li、Na、K、Mg、Ca、过渡金属、元素周期表从第13族至第17族的金属、或其组合;以及
[0033] (c)布置在该阳极与该阴极之间的隔膜。
[0034] 在此电池中,阳极厚度与阳极集流体厚度的比率为从0.8/1至1/0.8,和/或阴极厚度与阴极集流体厚度的比率为从0.8/1至1/0.8。该3D多孔阳极集流体或阴极集流体具有不小于200μm的厚度,阴极活性材料构成大于10mg/cm2的电极活性材料负载量,和/或组合的阳极活性材料和阴极活性材料超过总电池单元重量的按重量计40%。
[0035] 这种碱金属-硫电池可以通过包括以下项的方法(作为实例)生产:
[0036] (a)组装由作为3D阳极集流体的第一导电多孔结构(例如导电泡沫或电子传导路径的互连3D网络)、作为3D阴极集流体的第二导电多孔结构(例如导电泡沫)以及布置在该第一导电多孔结构与第二导电多孔结构之间的多孔隔膜构成的多孔电池单元框架;其中该第一和/或第二导电泡沫结构具有不小于200μm(优选大于300μm、更优选大于400μm、进一步优选大于500μm、并且最优选大于600μm)的厚度以及按体积计至少70%的孔(优选至少80%、更优选至少90%、并且最优选至少95%的孔隙率;这些孔体积是指在浸渍有电极活性材料浆料或悬浮液之前的孔量);
[0037] (b)制备分散在第一液体或凝胶电解质中的阳极活性材料和任选的导电添加剂的第一悬浮液和分散在第二液体或凝胶电解质中的阴极活性材料和任选的导电添加剂的第二悬浮液;以及
[0038] (c)用该第一悬浮液浸渍该第一导电多孔结构的孔(例如将该第一悬浮液注入该第一导电多孔结构的孔中)以形成阳极并用该第二悬浮液浸渍该第二导电多孔结构的孔(例如将该第二悬浮液注入该第二导电泡沫结构的孔中)以形成阴极,其程度为使得优选地该阳极活性材料在该阳极中具有不小于20mg/cm2的材料质量负载量或该阴极活性材料在该阴极中具有不小于15mg/cm2的材料质量负载量。
[0039] 在该第一悬浮液的注入(或浸渍)和/或该第二悬浮液的注入(或浸渍)之前、期间或之后,将该阳极集流体、该隔膜和该阴极集流体组装在保护性外壳中。
[0040] 本发明的另一个实施例是一种碱金属-硫电池,该电池包括:
[0041] a)阳极,该阳极具有涂覆在阳极集流体上或与其物理接触的阳极活性材料,其中该阳极活性材料与第一电解质处于离子接触;
[0042] b)阴极,该阴极具有(i)包含分散于第二液体或凝胶电解质中的阴极活性材料和任选的导电添加剂的阴极活性材料浆料或悬浮液,该第二液体或凝胶电解质与该第一液体或凝胶电解质相同或不同,和(ii)充当3D阴极集流体的导电多孔结构,其中该导电多孔结构具有按体积计至少70%的孔(优选地至少80%并且更优选地至少90%)并且其中该阴极活性材料浆料被布置在该阴极导电多孔结构的孔中,其中该阴极活性材料选自硫、多硫化锂、多硫化钠、硫-聚合物复合材料、有机硫化物、硫-碳复合材料、硫-石墨烯复合材料、或其组合;以及
[0043] c)布置在所述阳极与所述阴极之间的隔膜;
[0044] 其中该阴极厚度与阴极集流体厚度的比率为从0.8/1至1/0.8,和/或该阴极活性材料构成大于15mg/cm2的电极活性材料负载量,并且该3D阴极集流体具有不小于200μm(优选地大于300μm、更优选地大于400μm、进一步优选地大于500μm、并且最优选地大于600μm)的厚度。对导电多孔结构的厚度没有理论限制。较厚的多孔结构(或多孔集流体)暗示较大量的电极活性材料。给定相同的隔膜层和大约相同的封装封套和其他非活性组分,此较厚的电极还暗示相对较高比例的活性材料并且,因此,较高的能量密度。
[0045] 在碱金属-硫电池(例如其中阳极活性材料是Li箔或Na箔)中,阳极集流体可以含有多孔泡沫结构。在碱金属-硫电池中,第一电解质可以是凝胶电解质或固态电解质。
[0046] 在某些实施例中,阴极活性材料由选自下组的功能性材料或纳米结构材料所负载,该组由以下各项组成:(a)选自软碳、硬碳、聚合碳或碳化树脂、中间相碳、焦炭、碳化沥青炭黑、活性碳、纳米蜂窝状碳泡沫或部分石墨化碳的颗粒的纳米结构的或多孔无序的碳材料;(b)选自单层石墨烯片或多层石墨烯片晶的纳米石墨烯片晶;(c)选自单壁碳纳米管或多壁碳纳米管的碳纳米管;(d)碳纳米纤维纳米线、金属氧化物纳米线或纤维、导电聚合物纳米纤维、或其组合;(e)含羰基的有机或聚合分子;(f)含可逆地捕获硫的羰基、羧基或胺基的功能材料;及其组合。
[0047] 在某些实施例中,阳极活性材料含有碱金属离子源,该碱金属离子源选自碱金属、碱金属合金、碱金属或碱金属合金与碱金属插层化合物的混合物、含碱金属元素的化合物、或其组合。
[0048] 在一些实施例(例如Li离子-硫或钠离子-硫电池单元)中,阳极活性材料含有选自以下各项的碱金属插层化合物:石油焦炭、炭黑、无定形碳、活性碳、硬碳、软碳、模板碳、空心碳纳米线、空心碳球、天然石墨、人造石墨、酸锂或钛酸钠、NaTi2(PO4)3、Na2Ti3O7、Na2C8H4O4、Na2TP、NaxTiO2(x=0.2至1.0)、Na2C8H4O4、基于羧酸盐的材料、C8H4Na2O4、C8H6O4、C8H5NaO4、C8Na2F4O4、C10H2Na4O8、C14H4O6、C14H4Na4O8、或其组合。
[0049] 在一些实施例中,该阳极活性材料含有选自以下材料的组的碱金属插层化合物或含碱金属的化合物:(A)掺杂锂或钠的硅(Si)、锗(Ge)、(Sn)、铅(Pb)、锑(Sb)、铋(Bi)、锌(Zn)、(Al)、钛(Ti)、钴(Co)、镍(Ni)、锰(Mn)、镉(Cd)、及其混合物;(B)Si、Ge、Sn、Pb、Sb、Bi、Zn、Al、Ti、Co、Ni、Mn、Cd的含锂或含钠的合金或金属间化合物、及其混合物;(C)Si、Ge、Sn、Pb、Sb、Bi、Zn、Al、Fe、Ti、Co、Ni、Mn、Cd的含锂或含钠的氧化物、碳化物、氮化物、硫化物、磷化物、硒化物、碲化物、或锑化物、及其混合物或复合物;(D)锂盐或钠盐;以及(E)预负载有锂或钠的石墨烯片。
[0050] 预负载有锂或钠的石墨烯片可以选自原生石墨烯、氧化石墨烯、还原氧化石墨烯、石墨烯氟化物、石墨烯氯化物、石墨烯溴化物、石墨烯碘化物、氢化石墨烯、氮化石墨烯、掺杂石墨烯、氮掺杂石墨烯、化学官能化石墨烯、其物理或化学活化或蚀刻型式、或其组合的预钠化或预锂化型式。
[0051] 第一或第二电解质可以选自水性电解质、有机电解质、离子液体电解质、有机电解质和离子电解质的混合物、或其与聚合物的混合物。在实施例中,水性电解质含有溶于水或水和醇的混合物中的钠盐或钾盐。该钠盐或锂盐可以选自Na2SO4、Li2SO4、NaOH、LiOH、NaCl、LiCl、NaF、LiF、NaBr、LiBr、NaI、LiI、或其混合物。
[0052] 碱金属-硫电池可以含有具有选自下组的液体有机溶剂的有机电解质,该组由以下各项组成:1,3-二氧戊环(DOL)、1,2-二甲氧基乙烷(DME)、四乙二醇二甲醚(TEGDME)、聚(乙二醇)二甲醚(PEGDME)、二乙二醇二丁醚(DEGDBE)、2-乙氧基乙基醚(EEE)、砜、环丁砜、碳酸乙烯酯(EC)、碳酸二甲酯(DMC)、碳酸甲乙酯(MEC)、碳酸二乙酯(DEC)、丙酸乙酯、丙酸甲酯、碳酸丙烯酯(PC)、γ-丁内酯(γ-BL)、乙腈(AN)、乙酸乙酯(EA)、甲酸丙酯(PF)、甲酸甲酯(MF)、甲苯、二甲苯、乙酸甲酯(MA)、碳酸氟代亚乙酯(FEC)、碳酸亚乙烯酯(VC)、碳酸烯丙基乙酯(AEC)、氢氟醚、及其组合。
[0053] 碱金属-硫电池中的电解质可以含有选自以下各项的碱金属盐:高氯酸锂(LiClO4)、六氟磷酸锂(LiPF6)、氟硼酸锂(LiBF4)、六氟砷化锂(LiAsF6)、三氟甲磺酸锂(LiCF3SO3)、双三氟甲基磺酰亚胺锂(LiN(CF3SO2)2)、双(草酸)硼酸锂(LiBOB)、草酰二氟硼酸锂(LiBF2C2O4)、草酰二氟硼酸锂(LiBF2C2O4)、硝酸锂(LiNO3)、氟烷基磷酸锂(LiPF3(CF2CF3)3)、双全氟乙基磺酰亚胺锂(LiBETI)、高氯酸钠(NaClO4)、高氯酸钾(KClO4)、六氟磷酸钠(NaPF6)、六氟磷酸钾(KPF6)、氟硼酸钠(NaBF4)、氟硼酸钾(KBF4)、六氟砷化钠、六氟砷化钾、三氟甲磺酸钠(NaCF3SO3)、三氟甲磺酸钾(KCF3SO3)、双三氟甲基磺酰亚胺钠(NaN(CF3SO2)2)、三氟甲烷磺酰亚胺钠(NaTFSI)、双三氟甲基磺酰亚胺钾(KN(CF3SO2)2)、或其组合。
[0054] 碱金属-硫电池可以含有离子液体电解质,该离子液体电解质含有选自室温离子液体的离子液体溶剂,该室温离子液体具有选自四烷基铵、二-、三-或四-烷基咪唑鎓、烷基吡啶鎓、二烷基吡咯烷鎓、二烷基哌啶鎓、四烷基磷鎓、三烷基硫鎓、或其组合的阳离子。该离子液体溶剂可以选自室温离子液体,该室温离子液体具有选自以下各项的阴离子:BF4-、B(CN)4-、CH3BF3-、CH2CHBF3-、CF3BF3-、C2F5BF3-、n-C3F7BF3-、n-C4F9BF3-、PF6-、CF3CO2-、CF3SO3-、N(SO2CF3)2-、N(COCF3)(SO2CF3)-、N(SO2F)2-、N(CN)2-、C(CN)3-、SCN-、SeCN-、CuCl2-、AlCl4-、F(HF)2.3-、或其组合。
[0055] 导电多孔结构可以是包含电子传导路径的互连2D或3D网络的泡沫结构。这可以是例如端部连接的2D毡、网、丝织网状金属丝网等,如图2所示的。这也可以是金属泡沫、导电聚合物泡沫、石墨泡沫、碳泡沫或石墨烯泡沫等,其中孔壁含有导电材料。
[0056] 在优选的实施例中,如图1(C)或图1(D)所示,3D多孔阳极集流体一直延伸到多孔隔膜层的边缘并与其物理接触。3D多孔导电阴极集流体也可以一直延伸到多孔隔膜的相反边缘并与其物理接触。换句话说,阳极集流体的孔壁覆盖整个阳极层,和/或阴极集流体的孔壁覆盖整个阴极层。在这些构造中,集流体厚度/活性材料层厚度的比率约为1/1,并且电极厚度与集流体厚度基本相同(阴极厚度与阴极集流体厚度的比率约为1并且阳极厚度与阳极集流体厚度的比率约为1)。在这些情况下,导电孔壁紧邻每个阳极活性材料颗粒或每个阴极活性材料颗粒。
[0057] 在某些实施例中,集流体厚度/活性材料层厚度的比率可以从约0.8/1.0至1.0/0.8。以可替代方式表达,阴极厚度与阴极集流体厚度的比率为从0.8/1至1/0.8,或者阳极厚度与阳极集流体厚度的比率为从0.8/1至1/0.8。可以注意到,在常规的锂离子电池或钠离子电池中(如图1(A)和图1(B)示意性示出的),阳极(或阴极)集流体典型地是8-12μm厚的Cu箔(或Al箔)。涂覆在Cu箔表面上的阳极活性材料层典型地为80-100μm。如此,阳极集流体厚度/阳极活性材料层厚度的比率典型地为8/100-12/80。常规Li-离子或Na-离子电池单元的阴极侧的集流体厚度与活性材料层厚度的比率也大约为1/12.5-1/6.7。相比之下,在本发明的电池中,该比率是从0.8/1至1/0.8、更希望的是0.9/1至1/0.9、进一步更希望的是
0.95/1至1/0.95、并且最希望的并且典型的是1/1。
[0058] 发泡集流体的孔体积(例如>70%)是确保集流体中容纳大比例的活性材料的关键重要条件。基于这一标准,由天然和/或合成纤维制成的常规纸或纺织品不能满足这一要求,因为它们没有足够量的适当大小的孔。
[0059] 第一和/或第二导电多孔结构中的孔径优选在从10nm至100μm、更优选从100nm至50μm、进一步优选从500nm至20μm、并且甚至更优选从1μm至10μm、并且最优选从1μm至5μm的范围内。这些孔径范围被设计成适应具有的一次或二次粒度典型地为从10nm至20μm、并且最典型地为从50nm至10μm、进一步典型地为从100nm至5μm、并且最典型地为从200nm至3μm直径的阳极活性材料(如碳颗粒)和阴极活性材料(如硫/石墨烯复合材料颗粒)。
[0060] 然而,更重要的是,由于孔中的所有活性材料颗粒(例如孔径为5μm)平均在距3D泡沫结构中的孔壁2.5μm的距离内,因此可以容易地从阳极活性材料颗粒收集电子并且Na或Li离子不必经历长距离固态扩散。这与以下观点形成对比:现有技术的锂离子或钠离子电池的常规厚电极(例如,其中厚度100μm的石墨颗粒层被涂覆到10μm厚的固体Cu箔集流体的表面上)中的一些电子必须行进至少50μm以被集流体收集(意味着更大的内电阻和降低的递送更高功率的能力)。
[0061] 通常,第一液体电解质和第二液体电解质在电池中是相同的,但是它们的组成可以不同。液体电解质可以是水性液体、有机液体、离子液体(熔融温度低于100℃、优选低于室温25℃的离子盐),或比率为从1/100至100/1的离子液体和有机液体的混合物。有机液体是希望的,但离子液体是优选的。也可以使用凝胶电解质,只要该电解质具有一定的流动性以能够注入。0.1%至10%的某一较小量可以结合到液体电解质中。
[0062] 在某些实施例中,3D多孔阳极集流体或3D多孔阴极集流体含有具有不小于200μm的厚度、具有按体积计至少85%的孔的导电泡沫结构,和/或阳极活性材料具有不小于20mg/cm2的质量负载量、占整个电池单元的按重量计或按体积计至少25%,和/或阴极活性材料具有不小于20mg/cm2的质量负载量。
[0063] 在一些优选的实施例中,3D多孔阳极集流体或3D多孔阴极集流体含有具有不小于300μm的厚度、按体积计至少90%的孔的导电泡沫结构,和/或阳极活性材料具有不小于
25mg/cm2的质量负载量、占整个电池单元的按重量计或按体积计至少30%,和/或阴极活性材料具有不小于25mg/cm2的质量负载量。
[0064] 在一些另外优选的实施例中,3D多孔阳极集流体或3D多孔阴极集流体含有具有不小于400μm的厚度、具有按体积计至少95%的孔的导电泡沫结构,和/或阳极活性材料具有不小于30mg/cm2的质量负载量、占整个电池单元的按重量计或按体积计至少35%,和/或阴极活性材料具有不小于30mg/cm2的质量负载量。
[0065] 3D多孔阳极集流体或3D多孔阴极集流体可以含有选自以下各项的导电泡沫结构:金属泡沫、金属网或丝网、基于穿孔金属片的3D结构、金属纤维毡、金属纳米线毡、导电聚合物纳米纤维毡、导电聚合物泡沫、导电聚合物涂覆的纤维泡沫、碳泡沫、石墨泡沫、碳气凝胶、碳干凝胶、石墨烯泡沫、氧化石墨烯泡沫、还原氧化石墨烯泡沫、碳纤维泡沫、石墨纤维泡沫、膨化石墨泡沫、或其组合。
附图说明
[0066] 图1(A)由阳极集流体、阳极电极(例如,Li箔或薄Sn涂层)、多孔隔膜、阴极电极和阴极集流体构成的现有技术的Li-S或Na-S电池单元的示意图;
[0067] 图1(B)现有技术的钠离子电池的示意图,其中电极层由活性材料的离散颗粒(例如,阳极层中的硬碳颗粒或阴极层中的多硫化物颗粒)构成。
[0068] 图1(C)本发明的锂-硫或钠-硫电池单元的示意图,该电池单元包括呈高度多孔泡沫形式的阳极集流体、多孔隔膜和呈高度多孔泡沫形式的阴极集流体。将悬浮液注入或浸渍到这两个集流体的孔中。为了说明的目的,一半的孔已经被填满。
[0069] 图1(D)本发明的Na离子-硫或Li离子-硫电池单元的示意图,该电池单元包括呈高度导电多孔泡沫形式的阳极集流体、多孔隔膜和呈高度多孔泡沫形式的阴极集流体。这两个发泡集流体的孔已经用其对应的悬浮液浸渍。
[0070] 图1(E)本发明的Na金属-硫或Li金属-硫电池单元的示意图,该电池单元包括含有沉积在其上的Na或Li金属或合金层的阳极集流体、多孔隔膜和呈高度多孔泡沫形式的阴极集流体。该发泡集流体的孔已经用阴极-电解质悬浮液浸渍。
[0071] 图2发泡或多孔集流体的示意图,作为实例,该集流体由5片高度多孔的2D网(例如铁丝织网状的薄2D结构)构成,这些网的端部连接以形成极(电端子)。
[0072] 图3(A)导电多孔层的实例:金属网格/格网和碳纳米纤维毡。
[0073] 图3(B)导电多孔层的实例:石墨烯泡沫和碳泡沫。
[0074] 图3(C)导电多孔层的实例:石墨泡沫和Ni泡沫。
[0075] 图3(D)导电性多孔层的实例:Cu泡沫和不锈泡沫。
[0076] 图4(A)用于生产膨化石墨、膨胀石墨薄片(厚度>100nm)和石墨烯片(厚度<100nm、更典型地<10nm,并且可以薄至0.34nm)的常用方法的示意图。
[0077] 图4(B)说明用于生产膨化石墨、膨胀石墨薄片和石墨烯片的方法的示意图。
[0078] 图5含有硬碳颗粒作为阳极活性材料和碳/多硫化钠颗粒作为阴极活性材料的Na离子-硫电池单元的Ragone曲线图(重量和体积功率密度相对于能量密度)。4条数据曲线中的两条是针对根据本发明的实施例制备的电池单元,而另外两条是通过常规的电极浆料涂覆(辊涂)。
[0079] 图6两个Na-S电池单元的Ragone曲线图(重量和体积功率密度二者相对于重量和体积能量密度),两个电池单元都含有石墨烯包围的Na纳米颗粒作为阳极活性材料和石墨烯片上涂覆的硫作为阴极活性材料。数据是针对通过本发明的方法制备的钠离子电池单元和通过常规的电极浆料涂覆制备的钠离子电池单元二者。
[0080] 图7含有锂箔作为阳极活性材料、石墨烯片负载的硫作为阴极活性材料和锂盐(LiPF6)-PC/DEC作为有机液体电解质的Li-S电池的Ragone曲线图。数据是针对通过本发明的方法制备的锂金属-硫电池单元和通过常规的电极浆料涂覆制备的那些二者。
[0081] 图8通过常规浆料涂覆方法制备的一系列Li离子-S电池单元(石墨烯包裹的Si纳米颗粒)的Ragone曲线图和通过本发明方法制备的相应电池单元的Ragone曲线图。
[0082] 图9在通过常规方法制备的S/RGO阴极(没有分层和开裂)和通过本发明的方法制备的那些的可实现的阴极厚度范围内绘制的Li离子-S电池单元(预锂化石墨阳极+石墨烯负载的S阴极)的电池单元水平的重量能量密度(Wh/kg)和体积能量密度(Wh/L)。

具体实施方式

[0083] 本发明是针对一种碱金属-硫电池(Li-S或室温Na-S),该碱金属-硫电池展示出异常高的体积能量密度(对于相同类型的电池以前从未实现过的)。这不包括必须在高于电解质熔点(典型地>350℃)且高于硫熔点的温度下操作的所谓高温Na-S电池单元。这种碱金属电池可以是一次电池,但优选为选自碱金属-离子电池(例如使用Li或Na插层化合物,如硬碳颗粒)或碱金属二次电池(例如使用Na或Li金属箔作为阳极活性材料)的二次电池。电池基于水性电解质、有机电解质、凝胶电解质、离子液体电解质、或有机和离子液体的混合物。碱金属电池的形状可以是圆柱形、正方形、纽扣状等。本发明不限于任何电池形状或构造。
[0084] 如图1(A)和图1(B)所示,常规锂离子、钠离子、Li-S或Na-S电池单元典型地由阳极集流体(例如Cu箔)、阳极电极(阳极活性材料层)、多孔隔膜和/或电解质组分、阴极电极(阴极活性材料层)和阴极集流体(例如Al箔)构成。在更常用的电池单元构造(图1(B))中,阳极层由阳极活性材料颗粒(例如硬碳颗粒)、导电添加剂(例如膨胀石墨薄片)和树脂粘合剂(例如SBR或PVDF)构成。阴极层由阴极活性材料颗粒(例如Na-离子电池单元中的NaFePO4颗粒或Li-S电池单元中的S-碳复合材料颗粒)、导电添加剂(例如炭黑颗粒)和树脂粘合剂(例如PVDF)构成。阳极层和阴极层二者典型地为60-100μm厚(典型地显著薄于200μm),以产生每单位电极面积大概足够的电流量。使用100μm的活性材料层厚度和10μm的固体(Cu或Al箔)集流体层厚度作为实例,所得的电池构造具有对于常规电池单元为10/100或者1/10的集流体厚度与活性材料层厚度比率。
[0085] 基于当前的浆料涂覆方法(活性材料-粘合剂-添加剂混合物浆料的辊涂),这种60-100μm的厚度范围被认为是电池设计者通常工作所处于的行业接受的约束。这种厚度约束是由于若干原因造成的:(a)现有的电池电极涂覆机器未被配备用于涂覆过薄或过厚的电极层;(b)基于考虑减少的锂离子扩散路径长度,优选较薄的层;但太薄(例如<60μm)的层不含有足够量的活性碱金属离子储存材料(因此,电流输出不足);(c)较厚的电极在浆料辊涂后干燥或处理时倾向于分层或开裂;以及(d)较厚涂层需要过长的加热区(具有长于100米的加热区不是不同寻常的,使得制造设备非常昂贵)。这种约束使得不能自由地增加活性材料(负责储存Na或Li离子的那些活性材料)的量而不增加所有非活性材料(例如集流体和隔膜)的量以便获得最小的无贡献重量和最大的钠储存容量以及因此最大的能量密度(电池单元的Wk/kg或Wh/L)。
[0086] 在较不常用的电池单元构造中,如图1(A)所示,使用溅射将阳极活性材料(例如NaTi2(PO4)3或Na膜)或阴极活性材料(例如Li-离子电池单元中的锂过渡金属氧化物或者Li-S电池单元中的硫/碳混合物)以薄膜形式直接沉积在集流体如箔片或Al箔片上。然而,具有非常小的厚度方向尺寸(典型地远小于500nm、经常必须薄于100nm)的此种薄膜结构意味着只有少量的活性材料可以被结合到电极中(给定相同的电极或集流体表面积),提供了每单位电极表面积低的总Na或Li储存容量。此种薄膜必须具有小于100nm的厚度以更能抵抗循环引发的开裂(对于阳极)或者有利于充分利用阴极活性材料。此种约束进一步减少了总Na或Li储存容量和每单位电极表面积的钠或锂储存容量。此种薄膜电池具有非常有限的应用范围。
[0087] 在阳极侧,已发现厚于100nm的溅射NaTi2(PO4)3层在电池充电/放电循环期间展示出较差的抗开裂性。但是,需要几个循环来变成碎片。在阴极侧,厚于100nm的硫层不允许锂或钠离子充分渗透并到达阴极层的全体,导致差的阴极活性材料利用率。希望的电极厚度为至少100μm(不是100nm),其中单个活性材料颗粒具有希望地小于100nm的尺寸。因此,直接沉积在集流体上的这些薄膜电极(厚度<100nm)低于所需厚度三(3)个数量级。作为另一个问题,所有的阴极活性材料都不能很好地传导电子和钠/锂离子二者。大的层厚度意味着过高的内阻和差的活性材料利用率。
[0088] 换句话说,当涉及阴极或阳极活性材料的就材料类型、尺寸、电极层厚度和活性材料质量负载量而言的设计和选择时,有几个相矛盾的因素必须同时考虑。到目前为止,任何现有技术的传授内容都尚未提供对于这些经常相矛盾的问题的有效的解决方案。我们已经通过开发如在此披露的生产碱金属-硫电池的新方法来解决这些已经困扰电池设计者和电化学家超过30年的具有挑战性的问题。
[0089] 现有技术的钠或锂电池单元典型地通过包括以下步骤的方法来制造:(a)第一步是在溶剂(例如NMP)中混合阳极活性材料颗粒(例如硬碳颗粒)、导电填料(例如膨胀石墨薄片)、树脂粘合剂(例如PVDF)以形成阳极浆料。在单独的基础上,将阴极活性材料颗粒(例如用于Na离子电池单元的钠金属磷酸盐颗粒和用于Li离子电池单元的LFP颗粒)、导电填料(例如乙炔黑)、树脂粘合剂(例如PVDF)混合并分散在溶剂(例如NMP)中以形成阴极浆料。(b)第二步包括将阳极浆料涂覆到阳极集流体(例如Cu箔)的一个或两个主表面上,通过蒸发溶剂(例如NMP)干燥涂覆的层以形成涂覆在Cu箔上的干燥的阳极电极。类似地,将阴极浆料涂覆并干燥以形成涂覆在Al箔上的干燥的阴极电极。浆料涂覆通常在实际制造情况下以辊对辊方式进行;(c)第三步包括将阳极/Cu箔片、多孔隔膜层和阴极/Al箔片层压在一起以形成3层或5层组件,将该组件切割并切成所希望的尺寸并堆叠以形成矩形结构(作为形状的例子)或者卷成圆柱形电池单元结构。(d)然后将矩形或圆柱形层压结构包封在铝塑层压封套或钢制外壳中。(e)然后将液体电解质注入到层压结构中以制造钠离子或锂电池单元。
[0090] 存在与该方法和所得的钠离子电池单元和锂离子电池单元(或Li-S和Na-S电池单元)相关的若干严重问题:
[0091] 1)生产比100μm厚的电极层(阳极层或阴极层)是非常困难的,更不用说200μm。出现这种情况存在若干原因。厚度为100μm的电极典型地需要在浆料涂覆设施中长30-100米的加热区,这太耗时、太耗能、并且不具有成本效益。对于一些电极活性材料,如金属氧化物颗粒或硫,在实际制造环境中在连续基础上生产厚于100μm的具有良好结构完整性的电极是不可能的。所得的电极非常脆弱和易碎。较厚的电极具有高的分层和开裂倾向。
[0092] 2)采用常规的方法,如图1(A)所描绘,电极的实际质量负载量和活性材料的表观密度太低而不能实现高能量密度。在大多数情况下,电极的阳极活性材料质量负载量(面密度)显著低于15mg/cm2,并且即使对于相对大的石墨颗粒,活性材料的表观体积密度或振实密度典型地小于1.2g/cm3。对于硫阴极而言,电极的阴极活性材料质量负载量(面密度)显2
著低于10mg/cm 。此外,存在如此多其他非活性材料(例如传导添加剂和树脂粘合剂)以致于增加了电极的附加重量和体积,而没有对电芯容量作出贡献。这些低面密度和低体积密度导致相对较低的重量能量密度和较低的体积能量密度。
[0093] 3)常规方法需要将电极活性材料(阳极活性材料和阴极活性材料)分散在液体溶剂(例如NMP)中以制造浆料,并且在涂覆到集流体表面上时,必须除去液体溶剂以干燥电极层。一旦将阳极层和阴极层连同隔膜层层压在一起并封装在外壳中以制造超级电容器电池单元,然后将液体电解质(使用溶解在不同于NMP的溶剂中的盐)注入电池单元中。实际上,使这两个电极湿润,然后使电极干燥,并且最后使它们再次湿润。此种湿-干-湿方法根本不是良好的方法。另外,最常用的溶剂(NMP)是众所周知的不期望的溶剂(例如,已知会导致天生缺陷)。
[0094] 4)目前的Li-S和Na-S电池仍然受制于相对低的重量能量密度和低的体积能量密度。因此,Li-S电池和室温Na-S电池两者都没有进入市场。
[0095] 在文献中,基于单独的活性材料重量或电极重量报告的能量密度数据不能直接转化为实际电池单元或装置的能量密度。其他装置组分(粘合剂、传导添加剂、集流体、隔膜、电解质和封装)的“无贡献(overhead)重量”或重量也必须考虑在内。常规生产方法导致钠离子电池中的阳极活性材料(例如碳颗粒)的重量比例典型地为从15%至20%,并且阴极活性材料(例如钠过渡金属氧化物)的重量比例为从20%至30%。
[0096] 本发明提供了一种用于生产具有高电极厚度(含有电极活性材料的电极的厚度,不包括任何不含活性材料的集流体层的厚度,如果存在的话)、高活性材料质量负载量、低无贡献重量和体积、高体积容量和高体积能量密度的Li-S或Na-S电池单元的方法。在一个实施例中,如图1(C)和图1(D)所示,本发明的方法包括:
[0097] (A)组装由作为阳极集流体的第一导电多孔或泡沫结构236、作为阴极集流体的第二导电多孔或泡沫结构238以及布置在该第一导电多孔结构与第二导电多孔结构之间的多孔隔膜240构成的多孔电池单元框架;
[0098] a.该第一和/或第二导电多孔结构具有不小于100μm(优选大于200μm、更优选大于300μm、进一步优选大于400μm、并且最优选大于500μm)的厚度以及按体积计至少70%的孔(优选至少80%、更优选至少90%、并且最优选至少95%的孔隙率);
[0099] b.这些导电多孔结构基本上具有70%-99%的孔隙率水平,并且剩余的1%-30%是孔壁(例如金属或石墨骨架)。这些孔用于容纳活性材料(例如阳极中的碳颗粒+任选的导电添加剂)和液体电解质的混合物。
[0100] (B)制备分散在第一液体电解质中的阳极活性材料和任选的导电添加剂的第一悬浮液(或浆料)和分散在第二液体电解质中的阴极活性材料和任选的导电添加剂的第二悬浮液(浆料);以及
[0101] (C)将该第一悬浮液注入或浸渍到该第一导电多孔结构的孔中以形成阳极并将该第二悬浮液注入或浸渍到该第二导电泡沫结构的孔中以形成阴极,其程度为使得该阳极活2 2 2
性材料在该阳极中构成不小于20mg/cm(优选不小于25mg/cm并且更优选不小于30mg/cm)的电极活性材料负载量,或该阴极活性材料构成不小于10mg/cm2(优选大于15mg/cm2并且更优选大于20mg/cm2)(对于基于硫的阴极活性材料而言)的电极活性材料质量负载量,其中将该阳极、该隔膜和该阴极组装在保护性外壳中。
[0102] a.优选地,基本上所有的孔都填充有电极(阳极或阴极)活性材料、任选的导电添加剂和液体电解质(不需要粘合剂树脂)。
[0103] b.由于相对于孔壁(1%-30%)有大量孔(70%-99%),所以极少的空间被浪费(“被浪费”意味着不被电极活性材料和电解质占据),产生大量的电极活性材料-电解质区(高活性材料负载质量)。
[0104] c.图1(C)示出了一种情况,其中阳极的导电多孔结构(3D阳极集流体236)已部分地填充有第一悬浮液(分散在液体电解质中的阳极活性材料和任选的导电添加剂)。阳极集流体泡沫236的顶部部分240保持空的,但下部部分244已经填充有阳极悬浮液。类似地,阴极集流体泡沫238的顶部部分242保持空的,并且下部部分246已经填充有阴极悬浮液(分散在液体电解质中的阴极活性材料)。四个箭头表示悬浮液注入方向。
[0105] 图1(D)示出了一种情况,其中阳极集流体泡沫和阴极集流体泡沫二者均已填充有其各自的悬浮液。作为实例,放大图中的泡沫孔250填充有含有硬碳颗粒252(阳极活性材料)和液体电解质254的阳极悬浮液。类似地,放大图中的泡沫孔260填充有含有碳涂覆的硫或多硫化物颗粒262(阴极活性材料)和液体电解质264的阴极悬浮液。
[0106] 如图1(E)中示意性示出的替代构造是本发明的钠金属或锂金属电池单元,其包括含有沉积在其上的Na或Li金属282层或Na/Li金属合金层的阳极集流体280、多孔隔膜和呈高度多孔泡沫形式的阴极集流体。该发泡集流体的孔270已用阴极活性材料272和液体电解质274的悬浮液浸渍。
[0107] 在这样的构造中(图1(C)至图1(E)),在电子被集流体(孔壁)收集之前,电子仅必须行进短的距离(平均地孔径的一半;例如几微米),因为贯穿整个集流体(还有整个阳极层)的任何地方都存在孔壁。另外,在每种悬浮液中,所有的电极活性材料颗粒均预分散在液体电解质中(无电解质润湿性问题),消除了通过湿法涂覆、干燥、包装和电解质注入的常规方法制备的电极中通常存在的干燥袋的存在。因此,本发明的方法产生优于常规的电池单元生产方法的完全意想不到的优势。
[0108] 在优选的实施例中,该阳极活性材料是选自原生石墨烯、氧化石墨烯、还原氧化石墨烯、石墨烯氟化物、石墨烯氯化物、石墨烯溴化物、石墨烯碘化物、氢化石墨烯、氮化石墨烯、化学官能化石墨烯或其组合的石墨烯片的预钠化或预锂化型式。用于生产上述石墨烯材料中的任一种的起始石墨材料可以选自天然石墨、人造石墨、中相碳、中相沥青、中间相碳微球、软碳、硬碳、焦炭、碳纤维、碳纳米纤维、碳纳米管或其组合。石墨烯材料也是用于碱金属电池的阳极和阴极活性材料的良好导电添加剂。
[0109] 天然或人造石墨颗粒中的石墨微晶的构成石墨烯平面可被膨化并提取或分离,以获得单原子厚的六方碳原子的单个石墨烯片,前提是能够克服平面间范德华力。碳原子的分离的、单个石墨烯平面通常被称为单层石墨烯。具有大约0.3354nm的石墨烯平面间的间距的在厚度方向上通过范德华力结合的多个石墨烯平面的堆叠体通常被称为多层石墨烯。多层石墨烯片晶具有最高达300层石墨烯平面(在厚度上<100nm)、但更典型地最高达30个石墨烯平面(在厚度上<10nm)、甚至更典型地最高达20个石墨烯平面(在厚度上<7nm)、并且最典型地最高达10个石墨烯平面(在科学界通常被称为少层石墨烯)。单层石墨烯片和多层石墨烯片被统称为“纳米石墨烯片晶”(NGP)。石墨烯片/片晶(统称为NGP)是与0-D富勒烯
1-D CNT或CNF和3-D石墨不同的一类新的碳纳米材料(2-D纳米碳)。为了限定权利要求的目的并且如本领域中通常理解的,石墨烯材料(分离的石墨烯片)不是(并且不包括)碳纳米管(CNT)或碳纳米纤维(CNF)。
[0110] 在一种方法中,石墨烯材料是通过用强酸和/或氧化剂对天然石墨颗粒进行插层以获得石墨插层化合物(GIC)或氧化石墨(GO)而获得的,如图4(A)和图4(B)所示(示意图)。GIC或GO中石墨烯平面之间的间隙空间中化学物种或官能团的存在用于增加石墨烯间间距(d002,通过X射线衍射确定的),由此显著降低了否则将石墨烯平面沿着c-轴方向保持在一起的范德华力。GIC或GO最经常通过将天然石墨粉(图4(B)中的100)浸入硫酸、硝酸(氧化剂)和另一种氧化剂(例如高锰酸钾或高氯酸钠)的混合物中来生产。如果在插层程序期间存在氧化剂,则所得到的GIC(102)实际上是某种类型的氧化石墨(GO)颗粒。然后将该GIC或GO在水中反复地洗涤和冲洗以除去过量的酸,从而产生氧化石墨悬浮液或分散体,该悬浮液或分散体含有分散在水中的离散的且视觉上可辨识的氧化石墨颗粒。为了生产石墨烯材料,可以在该冲洗步骤之后遵循两个加工路线之一,简要描述如下:
[0111] 路线1涉及从悬浮液中去除水以获得“可膨胀石墨”,其实质上是大量的干燥GIC或干燥氧化石墨颗粒。在可膨胀石墨暴露于在典型地800℃-1,050℃范围内的温度持续约30秒到2分钟时,GIC经受30-300倍的快速体积膨胀以形成“石墨蠕虫”(104),这些石墨蠕虫各自是膨化的、但仍然互连的大部分未分离的石墨薄片的集合体。
[0112] 在路线1A中,可以将这些石墨蠕虫(膨化石墨或“互连的/未分离的石墨薄片的网络”)再压缩以获得柔性石墨片或箔(106),其典型地具有在0.1mm(100μm)-0.5mm(500μm)范围内的厚度。可替代地,为了生产所谓的“膨胀石墨薄片”(108)的目的,可以选择使用低强度空气磨机或剪切机以简单地分解石墨蠕虫,这些膨胀石墨薄片主要包含比100nm厚的石墨薄片或片晶(因此,按照定义不是纳米材料)。
[0113] 在路线1B中,使膨化石墨经受高强度机械剪切(例如使用超声发生器、高剪切混合器、高强度空气喷射磨机或高能量球磨机)以形成分离的单层和多层石墨烯片(统称为NGP,112),如在我们的美国申请号10/858,814(06/03/2004)中所披露的。单层石墨烯可以薄至
0.34nm,而多层石墨烯可以具有最高达100nm、但是更典型地小于10nm(通常被称为少层石墨烯)的厚度。可以使用造纸工艺将多个石墨烯片或片晶制成NGP纸片。该NGP纸片是本发明方法中使用的多孔石墨烯结构层的实例。
[0114] 路线2要求对氧化石墨悬浮液(例如分散在水中的氧化石墨颗粒)进行超声处理,为了从氧化石墨颗粒分开/分离单个氧化石墨烯片的目的。这是基于如下观点:石墨烯平面间的间隔已从天然石墨中的0.3354nm增加至高度氧化的氧化石墨中的0.6-1.1nm,显著地减弱了将邻近平面保持在一起的范德华力。超声功率可足以进一步分离石墨烯平面片以形成完全分开的、分离的或离散的氧化石墨烯(GO)片。然后可以将这些氧化石墨烯片化学或热还原以获得“还原的氧化石墨烯”(RGO),其典型地具有按重量计0.001%-10%的氧含量、更典型地按重量计0.01%-5%、最典型地且优选地按重量计小于2%的氧。
[0115] 为了限定本申请的权利要求的目的,NGP或石墨烯材料包括单层和多层(典型地小于10层)的原生石墨烯、氧化石墨烯、还原氧化石墨烯(RGO)、石墨烯氟化物、石墨烯氯化物、石墨烯溴化物、石墨烯碘化物、氢化石墨烯、氮化石墨烯、化学官能化石墨烯、掺杂石墨烯(例如被B或N掺杂)的离散的片/片晶。原生石墨烯具有基本上0%的氧。RGO典型地具有按重量计0.001%-5%的氧含量。氧化石墨烯(包括RGO)可以具有按重量计0.001%-50%的氧。除原生石墨烯之外,所有石墨烯材料都具有按重量计0.001%-50%的非碳元素(例如O、H、N、B、F、Cl、Br、I等)。这些材料在此被称为非原生石墨烯材料。
[0116] 原生石墨烯(呈较小的离散石墨烯片(典型地0.3μm至10μm))可以通过石墨颗粒的直接超声处理(也称为液相膨化或生产)或超临界流体膨化来生产。这些方法在本领域中是众所周知的。
[0117] 氧化石墨烯(GO)可以通过将起始石墨材料的粉末或长丝(例如天然石墨粉末)在反应容器中在所希望的温度下浸入氧化液体介质(例如硫酸、硝酸和高锰酸钾的混合物)中持续一段时间(典型地从0.5至96小时,取决于起始材料的性质和所使用的氧化剂的类型)而获得。如以上前面所述,然后可以使所得的氧化石墨颗粒经受热膨化或声波引发的膨化,以产生分离的GO片。然后可以通过用其他化学基团(例如-Br、NH2等)取代-OH基团将这些GO片转化成各种石墨烯材料。
[0118] 在此使用氟化石墨烯或石墨烯氟化物作为卤化石墨烯材料组的实例。存在两种不同的方法,已经遵循这些方法来生产氟化石墨烯:(1)预合成石墨烯的氟化:这种方法需要用氟化剂如XeF2或F基等离子体处理通过机械膨化或通过CVD生长制备的石墨烯;(2)多层氟化石墨的膨化:可以容易地实现氟化石墨的机械膨化和液相膨化二者。
[0119] F2与石墨在高温下的相互作用导致共价氟化石墨(CF)n或(C2F)n,而在低温下形成石墨插层化合物(GIC)CxF(2≤x≤24)。在(CF)n中碳原子是sp3杂化的并且因此氟碳化合物层是波纹状的,由反式连接的环己烷椅组成。在(C2F)n中,只有一半的C原子被氟化,并且每对相邻的碳片通过共价C-C键连接在一起。对氟化反应的系统研究表明,所得到的F/C比率在很大程度上取决于氟化温度、氟化气体中氟的分压和石墨前体的物理特性,包括石墨化度、粒度和比表面积。除了氟(F2)之外,可以使用其他氟化剂,尽管大多数现有文献涉及用F2气体进行氟化(有时在氟化物的存在下)。
[0120] 为了将层状前体材料膨化成单个层或几个层的状态,必须克服相邻层之间的吸引力并进一步稳定这些层。这可以通过官能团共价修饰石墨烯表面或通过使用特定溶剂、表面活性剂、聚合物或供体-受体芳香族分子的非共价修饰来实现。液相膨化的过程包括在液体介质中对氟化石墨进行超声处理。
[0121] 石墨烯的氮化可以通过在高温(200-400℃)下将石墨烯材料(例如氧化石墨烯)暴露于来进行。氮化石墨烯还可以通过水热法在较低温度下形成;例如通过将GO和氨密封在高压釜中并且然后升温至150-250℃。合成氮掺杂的石墨烯的其他方法包括在石墨烯上进行氮气等离子体处理、在氨存在下石墨电极之间的电弧放电、在CVD条件下氧化石墨烯的氨解以及在不同温度下氧化石墨烯和尿素的水热处理
[0122] 上述特征将进一步详细描述和解释如下:如图4(B)中所示,石墨颗粒(例如100)典型地由多个石墨微晶或晶粒构成。石墨微晶由碳原子的六边形网络的层平面构成。这些六边形排列的碳原子的层平面是基本上平坦的并且是取向或有序的,以便在特定的微晶中是相互基本上平行和等距的。通常被称为石墨烯层或基面的这些六方结构碳原子层通过弱范德华力在其厚度方向(晶体学c-轴方向)上弱结合在一起,并且多组这些石墨烯层排列在微晶中。通常以两个轴或方向来表征石墨微晶结构:c-轴方向和a-轴(或b-轴)方向。c-轴是垂直于基面的方向。a-轴或b-轴是平行于基面的方向(垂直于c-轴方向)。
[0123] 由于保持平行石墨烯层的弱范德华力,可对天然石墨进行处理,使得可将石墨烯层之间的间距明显打开以便提供在c-轴方向上的显著膨胀,并且从而形成膨胀石墨结构,其中碳层的层状特征基本上被保留。制造柔性石墨的方法在本领域中是众所周知的。通常,将天然石墨薄片(例如图4(B)中的100)在酸溶液中插层以生产石墨插层化合物(GIC,102)。将GIC洗涤、干燥、并且然后通过暴露于高温持续短的时间段而膨化。这导致薄片在石墨的c-轴方向上膨胀或膨化高达其原始尺寸的80-300倍。膨化石墨薄片在外观上是蠕虫状的,并且因此通常被称为石墨蠕虫104。能够在不使用粘合剂的情况下将已极大膨胀的这些石墨薄片蠕虫成形为内聚或一体化的膨胀石墨片,例如对于大多数应用典型密度为约0.04-
2.0g/cm3的网、纸、条、带、箔、毡等(典型地称为“柔性石墨”106)。
[0124] 酸(例如硫酸)不是渗入石墨烯平面之间的空间中获得GIC的唯一类型的插层试剂(插层剂)。可以使用许多其他类型的插层试剂,例如碱金属(Li、K、Na、Cs、以及它们的合金或低共熔体)以将石墨插层为阶段1、阶段2、阶段3等。阶段n意味着对于每n个石墨烯平面一个插层剂层。例如,阶段1钾插层的GIC意味着对于每个石墨烯平面有一个K层;或者可以在G/K/G/K/G/KG…序列中找到插入在两个相邻石墨烯平面之间的一个K原子层,其中G是石墨烯平面并且K是钾原子平面。阶段2GIC将具有GG/K/GG/K/GG/K/GG…序列,并且阶段3GIC将具有GGG/K/GGG/K/GGG…序列等。然后可使这些GIC与水或水-醇混合物接触以产生膨化石墨和/或分离/孤立的石墨烯片。
[0125] 可以使用高强度空气喷射磨机、高强度球磨机或超声装置使膨化石墨蠕虫经受高强度机械剪切/分离处理以生产分离的纳米石墨烯片晶(NGP),所有的石墨烯片晶均薄于100nm,大多数薄于10nm并且在许多情况下是单层石墨烯(也如图4(B)中112所示)。NGP由石墨烯片或多个石墨烯片构成,其中每个片是碳原子的二维、六方结构。可以使用制膜或造纸工艺将大量的多个NGP(包括单层和/或少层石墨烯或氧化石墨烯的离散片/片晶)制成石墨烯膜/纸(图4(B)中的114)。可替代地,在低强度剪切下,石墨蠕虫倾向于分离成所谓的膨胀石墨薄片(图4(B)中的108,具有>100nm的厚度)。这些薄片可以在有或没有树脂粘合剂的情况下使用造纸或制毡工艺形成为石墨纸或毡106。膨胀石墨薄片可以用作电池中的导电填料。分离的NGP(单独的单层或多层石墨烯片)可以用作阳极活性材料或用作碱金属-硫电池的阴极中的负载导电材料。
[0126] 对可用于实践本发明的阳极活性材料或阴极活性材料的类型没有限制。在一个优选的实施例中,该阳极活性材料选自下组,该组由以下各项组成:(a)掺杂钠或锂的硅(Si)、锗(Ge)、锡(Sn)、铅(Pb)、锑(Sb)、铋(Bi)、锌(Zn)、铝(Al)、钛(Ti)、钴(Co)、镍(Ni)、锰(Mn)、镉(Cd)、及其混合物;(b)Si、Ge、Sn、Pb、Sb、Bi、Zn、Al、Ti、Co、Ni、Mn、Cd的含钠或含锂的合金或金属间化合物、及其混合物;(c)Si、Ge、Sn、Pb、Sb、Bi、Zn、Al、Fe、Ti、Co、Ni、Mn、Cd的含钠或含锂的氧化物、碳化物、氮化物、硫化物、磷化物、硒化物、碲化物、或锑化物、及其混合物或复合物;(d)钠盐或锂盐;以及(e)预负载或预附着有钠或锂的石墨烯片(在此称为预钠化或预锂化石墨烯片)。
[0127] 在可再充电碱金属-硫电池中,阳极可以含有碱金属离子源,该碱金属离子源选自碱金属、碱金属合金、碱金属或碱金属合金与碱金属插层化合物的混合物、含碱金属元素的化合物、或其组合。特别希望的是以下的阳极活性材料,该阳极活性材料含有选自以下各项的碱金属插层化合物:石油焦炭、炭黑、无定形碳、硬碳、模板碳、空心碳纳米线、空心碳球、天然石墨、人造石墨、钛酸锂或钛酸钠、NaTi2(PO4)3、Na2Ti3O7(钛酸钠)、Na2C8H4O4(对苯二甲酸二钠)、Na2TP(对苯二甲酸钠)、TiO2、NaxTiO2(x=0.2至1.0)、基于羧酸盐的材料、C8H4Na2O4、C8H6O4、C8H5NaO4、C8Na2F4O4、C10H2Na4O8、C14H4O6、C14H4Na4O8、或其组合。在实施例中,阳极可以含有2种或3种类型的阳极活性材料的混合物(例如活性碳+NaTi2(PO4)3的混合颗粒或Li颗粒和石墨颗粒的混合物)。
[0128] 本发明的方法或电池中的第一或第二液体电解质可以选自水性电解质、有机电解质、离子液体电解质、有机电解质和离子电解质的混合物、或其与聚合物的混合物。在一些实施例中,水性电解质含有溶于水或水和醇的混合物中的钠盐或钾盐。在一些实施例中,钠盐或钾盐选自Na2SO4、K2SO4、其混合物、NaOH、LiOH、NaCl、LiCl、NaF、LiF、NaBr、LiBr、NaI、LiI、或其混合物。
[0129] 有机溶剂可以含有选自由以下各项组成的组的液体溶剂:1,3-二氧戊环(DOL)、1,2-二甲氧基乙烷(DME)、四乙二醇二甲醚(TEGDME)、聚(乙二醇)二甲醚(PEGDME)、二乙二醇二丁醚(DEGDBE)、2-乙氧基乙基醚(EEE)、砜、环丁砜、碳酸乙烯酯(EC)、碳酸二甲酯(DMC)、碳酸甲乙酯(MEC)、碳酸二乙酯(DEC)、丙酸乙酯、丙酸甲酯、碳酸丙烯酯(PC)、γ-丁内酯(γ-BL)、乙腈(AN)、乙酸乙酯(EA)、甲酸丙酯(PF)、甲酸甲酯(MF)、甲苯、二甲苯、乙酸甲酯(MA)、碳酸氟代亚乙酯(FEC)、碳酸亚乙烯酯(VC)、碳酸烯丙基乙酯(AEC)、氢氟醚(例如甲基全氟丁基醚,MFE,或乙基全氟丁基醚,EFE)、及其组合。
[0130] 有机电解质可以含有优选选自以下各项的碱金属盐:高氯酸钠(NaClO4)、高氯酸钾(KClO4)、六氟磷酸钠(NaPF6)、六氟磷酸钾(KPF6)、氟硼酸钠(NaBF4)、氟硼酸钾(KBF4)、六氟砷化钠、六氟砷化钾、三氟甲磺酸钠(NaCF3SO3)、三氟甲磺酸钾(KCF3SO3)、双三氟甲基磺酰亚胺钠(NaN(CF3SO2)2)、双三氟甲基磺酰亚胺钾(KN(CF3SO2)2)、离子液体盐、或其组合。
[0131] 该电解质可以含有选自以下各项的锂盐:高氯酸锂(LiClO4)、六氟磷酸锂(LiPF6)、氟硼酸锂(LiBF4)、六氟砷化锂(LiAsF6)、三氟甲磺酸锂(LiCF3SO3)、双三氟甲基磺酰亚胺锂(LiN(CF3SO2)2)、双(草酸)硼酸锂(LiBOB)、草酰二氟硼酸锂(LiBF2C2O4)、草酰二氟硼酸锂(LiBF2C2O4)、硝酸锂(LiNO3)、氟烷基磷酸锂(LiPF3(CF2CF3)3)、双全氟乙基磺酰亚胺锂(LiBETI)、双(三氟甲磺酰基)亚胺锂、双(氟磺酰基)亚胺锂、三氟甲磺酰亚胺锂(LiTFSI)、离子液体锂盐、或其组合。
[0132] 离子液体仅由离子构成。离子液体是低熔点盐,当高于所希望的温度时,它们呈熔融态或液态。例如,如果离子盐的熔点低于100℃,则它被认为是离子液体。如果熔融温度等于或低于室温(25℃),则该盐被称为室温离子液体(RTIL)。由于大阳离子和电荷离域阴离子的组合,基于IL的锂盐的特征在于弱相互作用。这导致由于柔性(阴离子)和不对称(阳离子)的低结晶倾向。
[0133] 一些IL可以用作与本发明的第一有机溶剂一起作用的助溶剂(不是作为盐)。典型的且众所周知的离子液体是通过1-乙基-3-甲基咪唑鎓(EMI)阳离子和N,N-双(三氟甲烷)磺酰胺(TFSI)阴离子的组合形成的。这种组合产生了流体,该流体具有与许多有机电解质溶液可比较的离子电导率、高达约300℃-400℃的低分解倾向和低蒸气压。这意味着通常低挥发性和不可燃性,以及因此对于电池来说安全得多的电解质溶剂。
[0134] 离子液体基本上由有机或无机离子构成,由于其各种组分的制备容易性,离子液体具有无限数量的结构变化。因此,可以使用各种盐来设计对于给定应用具有所希望特性的离子液体。这些尤其包括作为阳离子的咪唑鎓、吡咯烷鎓和季铵盐和作为阴离子的双(三氟甲烷磺酰基)酰亚胺、双(氟磺酰基)酰亚胺和六氟磷酸根。有用的基于离子液体的钠盐(不是溶剂)可以由作为阳离子的钠离子和作为阴离子的双(三氟甲烷磺酰基)酰亚胺、双(氟磺酰基)酰亚胺或六氟磷酸根构成。例如,三氟甲烷磺酰亚胺钠(NaTFSI)是特别有用的钠盐。
[0135] 基于它们的组成,离子液体有不同的类别,包括三种基本类型:非质子、质子和两性离子类型,每一种都适用于特定应用。室温离子液体(RTIL)的常见阳离子包括但不限于四烷基铵,二-、三-和四-烷基咪唑鎓、烷基吡啶鎓、二烷基吡咯烷鎓、二烷基哌啶鎓、四烷基磷鎓和三烷基硫鎓。RTIL的常见阴离子包括但不限于BF4-、B(CN)4-、CH3BF3-、CH2CHBF3-、CF3BF3-、C2F5BF3-、n-C3F7BF3-、n-C4F9BF3-、PF6-、CF3CO2-、CF3SO3-、N(SO2CF3)2-、N(COCF3)(SO2CF3)-、N(SO2F)2-、N(CN)2-、C(CN)3-、SCN-、SeCN-、CuCl2-、AlCl4-、F(HF)2.3-等。相对而言,基于咪唑鎓或硫鎓的阳离子和络合卤化物阴离子例如AlCl4-、BF4-、CF3CO2-、CF3SO3-、NTf2-、N(SO2F)2-或F(HF)2.3-的组合产生具有良好工作电导率的RTIL。
[0136] RTIL可具有典型的特性,例如高固有离子电导率、高热稳定性、低挥发性、低(几乎零)蒸气压、不可燃性、在高于和低于室温的宽范围温度内保持为液体的能力、高极性、高粘度和宽电化学窗口。当涉及在可再充电锂电池单元中使用RTIL作为电解质助溶剂时,除了高粘度之外,这些特性是希望的属性。
[0137] Li-S电池单元或Na-S电池单元的比容量和比能量取决于在阴极活性层中可以实施的实际的硫量(相对于其他非活性成分,如粘合剂树脂和导电填料)和此硫量的利用率(即,阴极活性材料的利用效率或主动参与储存和释放锂离子的S的实际比例)。高容量和高能量Li-S或Na-S电池单元需要阴极活性层中的高S量(即相对于非活性材料的量,所述非活性材料如粘合剂树脂、导电添加剂和其他改性或负载材料)和高S利用效率)。本发明提供此种阴极活性层和生产此种阴性活性层(例如预硫化活性阴极层)的方法。作为预负载硫程序的实例,此方法包括以下四个步骤(a)-(d):
[0138] a)制备具有大量石墨烯表面的多孔石墨烯结构层,其具有大于100m2/g的比表面积(这些表面必须是电解质可达的)。该多孔石墨烯结构具有优选地>500m2/g并且更优选地>700m2/g并且最优选地>1,000m2/g的比表面积。
[0139] b)制备包含溶剂(非水溶剂,如有机溶剂和或离子液体)和溶解或分散于该溶剂中的硫源的电解质;
[0140] c)制备阳极;
[0141] d)使多孔石墨烯结构的一体化层和阳极与电解质处于离子接触(例如通过在预期Li-S电池单元外部的室中浸渍所有这些组分或者将这三种组分包封在Li-S电池单元内部)并且在该阳极与该多孔石墨烯结构的一体化层(用作阴极)之间以足够的电流密度施加电流持续足够的时间段,以将纳米尺寸硫颗粒或涂层电化学沉积在石墨烯表面上以形成预硫化石墨烯层;
[0142] e)将此预硫化层粉碎以产生孤立的S涂覆的石墨烯片。这些片可以注入或浸渍到阴极集流体泡沫(多孔导电结构)的孔中以制成阴极。
[0143] 步骤(a)中所述的多孔石墨烯结构层含有石墨烯材料或膨化石墨材料,其中该石墨烯材料选自原生石墨烯、氧化石墨烯、还原氧化石墨烯、石墨烯氟化物、石墨烯氯化物、石墨烯溴化物、石墨烯碘化物、氢化石墨烯、氮化石墨烯、硼掺杂石墨烯、氮掺杂石墨烯、化学官能化石墨烯、或其组合,并且其中该膨化石墨材料选自膨化石墨蠕虫、膨胀石墨薄片、或再压缩的石墨蠕虫或薄片(仍必需展示出电解质可达的>>100m2/g的高比表面积)。令人惊讶地发现,多个石墨烯片可以堆积在一起以形成具有结构完整性的基于硫的电极层而无需粘合剂树脂,并且此种层可以在所得Li-S电池单元的重复充电和放电期间保持其形状和功能。
[0144] S颗粒或涂层具有小于20nm(优选<10nm、更优选<5nm并且进一步优选<3nm)的厚度或直径并且其中基于组合的硫颗粒或涂层和石墨烯材料的总重量,纳米尺寸硫颗粒或涂层占至少70%(优选>80%、更优选>90%、并且最优选>95%)的重量分数。有利的是,沉积尽可能多的S但仍维持超薄厚度或直径的S涂层或颗粒(例如>80%和<3nm;>90%和<5nm;并且>95%和<10nm等)。
[0145] 一旦制备了多孔石墨烯结构层,此层就可以浸渍在电解质(优选液体电解质)中,该电解质包含溶剂和溶解或分散于该溶剂中的硫源。此层基本上在外部电化学沉积室中用作阴极。
[0146] 随后,阳极层也在该室中浸渍。任何导电材料可以用作阳极材料,但优选地该层含有一些锂或钠。在此种布置中,多孔石墨烯结构层和阳极与电解质处于离子接触。然后在该阳极与该多孔石墨烯结构的一体化层(用作阴极)之间以足够电流密度供应电流持续足够的时间段,以将纳米尺寸硫颗粒或涂层电化学沉积在石墨烯表面上以形成预硫化活性阴极层。所需的电流密度取决于希望的沉积速度和沉积的材料的均匀性。
[0147] 此电流密度可以容易地调整以沉积具有的厚度或直径小于20nm(优选<10nm、更优选<5nm、并且进一步优选<3nm)的S颗粒或涂层。基于组合的硫颗粒或涂层和石墨烯材料的总重量,所得纳米尺寸硫颗粒或涂层占至少70%(优选>80%、更优选>90%、并且最优选>95%)的重量分数。
[0148] 在一个优选的实施例中,硫源选自MxSy,其中x是从1至3的整数并且y是从1至10的整数,并且M是金属元素,该金属元素选自碱金属、选自Mg或Ca的碱土金属、过渡金属、元素周期表从第13族至第17族的金属、或其组合。在希望的实施例中,金属元素M选自Li、Na、K、Mg、Zn、Cu、Ti、Ni、Co、Fe、或Al。在特别希望的实施例中,MxSy选自Li2S6、Li2S7、Li2S8、Li2S9、Li2S10、Na2S6、Na2S7、Na2S8、Na2S9、Na2S10、K2S6、K2S7、K2S8、K2S9、或K2S10。
[0149] 在一个实施例中,阳极包含选自碱金属、碱土金属、过渡金属、元素周期表从第13族至第17族的金属、或其组合的阳极活性材料。此阳极可以是旨在包括在Li-S电池单元中的同一个阳极。
[0150] 在电化学沉积室中使用的溶剂和锂盐或钠盐可以选自以上对于锂-硫或钠-硫电池给出的清单中的任何溶剂或盐。
[0151] 在广泛和深入研究工作后,我们认识到,此种预硫化令人惊讶地解决了与当前Li-S或Na-S电池单元相关的若干最关键的问题。例如,此方法使得硫能够以薄涂层或超细颗粒形式沉积,由此提供超短锂离子扩散路径,并且因此提供用于快速电池充电和放电的超快反应时间。实现此情况同时维持相对高比例的硫(负责储存锂的活性材料)并且因此就高比容量而言的所得阴极活性层的高锂储存比容量(mAh/g,基于阴极层的总重量,包括活性材料S、负载石墨烯片、粘合剂树脂和导电填料的质量)。
[0152] 重要的是注意到,能够使用现有技术程序沉积小的S颗粒,但不能沉积高的S比例,或实现高比例但仅以大颗粒或厚膜形式。但是,现有技术程序未能同时实现这两者。这就是为什么获得高硫负载量并且还同时维持硫的超薄/小厚度/直径是如此出乎意料且非常有利的事情的原因。在任何现有技术硫负载技术的情况下,这是不可能的。例如,我们能够沉积纳米尺寸硫颗粒或涂层,其占阴极层的>90%重量分数,并且还维持<3nm的涂层厚度或颗粒直径。这在锂-硫电池领域中是相当成功的。作为另一个实例,我们在4.8-7nm的平均S涂层厚度下实现了>95%的S负载量。
[0153] 在Li-S电池领域中电化学家或材料科学家预期,阴极活性层中较大量的高度导电石墨烯片或石墨薄片(因此,较小量的S)将导致更好的S利用,特别是在高充电/放电倍率条件下。与这些预期相反,我们观察到实现高S利用效率的关键在于使S涂层或粒度最小化并且这独立于负载到阴极中的S的量,只要S涂层或颗粒厚度/直径是足够小的(例如<10nm,或甚至更好如果<5nm)。本文中的问题在于如果S高于按重量计50%则不能维持薄S涂层或小的粒度。在此,我们还令人惊讶地观察到,在高倍率条件下在阴极处实现高比容量的关键在于维持高S负载量并且仍将S涂层或粒度保持尽可能小,并且这通过使用本发明的预硫化方法得以实现。
[0154] 来自或通过外部负载或电路离开的电子必须穿过导电添加剂(在常规硫阴极)或导电框架(例如如本文所披露的导电石墨烯片的膨化石墨介孔结构或纳米结构)以到达阴极活性材料。由于阴极活性材料(例如硫或多硫化锂)是差的电子导体,所以活性材料颗粒或涂层必须尽可能薄以减小所需电子行进距离。
[0155] 此外,常规Li-S电池单元中的阴极在由硫和导电添加剂/载体构成的复合阴极中典型地具有按重量计小于70%的硫。甚至当现有技术复合阴极中的硫含量达到或超过按重量计70%时,该复合阴极的比容量典型地显著低于基于理论预测而预期的比容量。例如,硫的理论比容量是1,675mAh/g。由70%硫(S)和30%炭黑(CB)而没有任何粘合剂构成的复合阴极应该能够储存高达1,675x 70%=1,172mAh/g。不幸的是,所观察到的比容量典型地小于可以达到的比容量的75%或879mAh/g(在此实例中经常小于50%或586mAh/g)。换句话说,活性材料利用率典型地小于75%(或甚至<50%)。这一直是Li-S电池单元领域中的主要问题并且此问题还没有解决方案。最令人惊讶地,与多孔石墨烯结构相关的大量石墨烯表面作为硫或多硫化锂的导电负载材料的实施使得可以实现典型地>>80%、更经常地大于90%、并且在许多情况下接近于95%-99%的活性材料利用率。
[0156] 可替代地,阴极活性材料(S或多硫化物)可以沉积于功能性材料或纳米结构材料上或被其结合。该功能材料或纳米结构材料可以选自由以下各项组成的组:(a)选自软碳、硬碳、聚合碳或碳化树脂、中间相碳、焦炭、碳化沥青、炭黑、活性碳、纳米蜂窝状碳泡沫或部分石墨化碳的纳米结构的或多孔无序的碳材料;(b)选自单层石墨烯片或多层石墨烯片晶的纳米石墨烯片晶;(c)选自单壁碳纳米管多壁碳纳米管的碳纳米管;(d)碳纳米纤维、纳米线、金属氧化物纳米线或纤维、导电聚合物纳米纤维、或其组合;(e)含羰基的有机或聚合分子;(f)含羰基、羧基或胺基的功能材料;及其组合。在优选实施例中,该功能材料或纳米2 2
结构材料具有至少500m/g、优选至少1,000m/g的比表面积。
[0157] 典型地,阴极活性材料不导电。因此,在一个实施例中,可以将阴极活性材料与导电填料混合,如炭黑(CB)、乙炔黑(AB)、石墨颗粒、膨胀石墨颗粒、活性碳、介孔碳、中间相碳微球(MCMB)、碳纳米管(CNT)、碳纳米纤维(CNF)、石墨烯片(也称为纳米石墨烯片晶,NGP)、碳纤维或其组合。这些含有硫或多硫化物的碳/石墨/石墨烯材料可以被制成细颗粒作为本发明Li-S或Na-S电池单元中的阴极活性材料。
[0158] 在优选的实施例中,纳米尺寸的长丝(例如CNT、CNF和/或NGP)形成为多孔纳米结构,该多孔纳米结构含有大量表面以负载阳极活性材料(例如Na或Li涂层)或阴极活性材料(例如S)。多孔纳米结构应具有孔径优选为从2nm至50nm、优选2nm至10nm的孔。这些孔被适当地确定尺寸,以在阴极侧容纳电解质并在重复充电/放电期间使阴极活性材料保持在孔中。可以在阳极侧实施相同类型的纳米结构以支撑阳极活性材料。
[0159] 在阳极侧,当碱金属用作碱金属电池单元中唯一的阳极活性材料时,担心会形成枝晶,枝晶可能导致内部短路和热失控。在此,我们已经使用了两种方法(分别地或组合地)以解决这一枝晶形成问题:一种涉及使用高浓度电解质,并且另一种使用由导电纳米丝构成的纳米结构来在阳极处支撑碱金属。纳米长丝可以选自例如碳纳米纤维(CNF)、石墨纳米纤维(GNF)、碳纳米管(CNT)、金属纳米线(MNW)、通过电纺丝获得的导电纳米纤维、导电电纺复合纳米纤维、纳米尺寸石墨烯片晶(NGP)、或其组合。纳米长丝可以通过选自聚合物、焦油沥青、石油沥青、中间相沥青、焦炭或其衍生物的粘合剂材料粘合。
[0160] 出人意料地且显著地,纳米结构提供了有利于在电池再充电期间均匀沉积碱金属离子的环境,达到了在大量循环之后在阳极中没有发现几何尖锐结构或枝晶的程度。不希望受任何理论束缚,但申请人设想了高导电纳米丝的3D网络提供了在再充电期间将碱金属离子基本上均匀地吸引回到丝表面上。此外,由于丝的纳米尺寸,每单位体积或每单位重量的纳米丝具有大量的表面积。这种超高比表面积为碱金属离子提供了在丝表面均匀沉积薄涂层的机会。高表面积容易接受液体电解质中的大量碱金属离子,从而使得能够实现碱金属二次电池的高再充电速率。
[0161] 实例
[0162] 在下面讨论的实例中,除非另有说明,否则诸如硅、锗、铋、锑、锌、铁、镍、钛、钴和锡等原料是从萨诸塞州沃德希尔的阿法埃莎公司(Alfa Aesar)、威斯康星州密尔沃基的奥德里奇化学公司(Aldrich Chemical Company)或加利福尼亚州伯克利的加铝金属粉末公司(Alcan Metal Powders)获得。使用装配有铜靶X射线管和衍射光束单色器的衍射仪收集X射线衍射图。对于所研究的每种合金样品观察峰的特征图案的存在或不存在。例如,当X射线衍射图不存在或缺乏尖锐的、明确定义的峰时,认为相是无定形的。在若干情况下,使用扫描电子显微镜法(SEM)和透射电子显微镜法(TEM)来表征混杂材料样品的结构和形态。
[0163] 在下文中,我们提供了几种不同类型的阳极活性材料、阴极活性材料和多孔集流体材料(例如石墨泡沫、石墨烯泡沫和金属泡沫)的一些实例以说明实践本发明的最佳模式。这些说明性实例以及本说明书和附图的其他部分单独地或组合地远足以使本领域的普通技术人员能够实践本发明。然而,这些实例不应被解释为限制本发明的范围。
[0164] 实例1:导电多孔层(发泡集流体)的说明性实例
[0165] 不同类型的金属泡沫和细金属网/丝网是可商购的;例如Ni泡沫、Cu泡沫、Al泡沫、Ti泡沫、Ni格网/网、不锈钢纤维网等。这些导电泡沫结构在本发明研究中用作阳极或阴极导电多孔层(泡沫集流体)。此外,金属涂覆的聚合物泡沫和碳泡沫也用作集流体,如图3(A)、图3(B)、图3(C)和图3(D)所示。
[0166] 实例2:Ni泡沫和在Ni泡沫模板上的基于CVD石墨烯泡沫的集流体(导电多孔层)[0167] 用于生产CVD石墨烯泡沫的程序改编自公开文献:Chen,Z等人“Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapor deposition[通过化学气相沉积生长的三维柔性和导电互连的石墨烯网络]”Nature Materials[自然材料],10,424-428(2011)中所披露的程序。选择镍泡沫(具有相互连接的3D镍支架的多孔结构)作为石墨烯泡沫生长的模板。简言之,通过在环境压力下在1,000℃下分解CH4将碳引入镍泡沫中,并且然后将石墨烯膜沉积在镍泡沫的表面上。由于镍与石墨烯之间的热膨胀系数的差异,在石墨烯膜上形成波纹和皱纹。在这个实例中制造的四种类型的泡沫在本发明的锂电池中用作集流体:Ni泡沫、CVD石墨烯涂覆的Ni泡沫、CVD石墨烯泡沫(Ni被蚀刻掉)和导电聚合物粘合的CVD石墨烯泡沫。
[0168] 为了从支撑Ni泡沫中回收(分离)石墨烯泡沫,将Ni框架蚀刻掉。在Chen等人提出的程序中,在通过热HCl(或FeCl3)溶液蚀刻掉镍骨架之前,在石墨烯膜的表面上沉积聚(甲基丙烯酸甲酯)(PMMA)薄层作为支撑件以在镍蚀刻期间防止石墨烯网络塌陷。在通过热丙小心除去PMMA层后,得到易碎的石墨烯泡沫样品。PMMA支撑层的使用被认为对制备石墨烯泡沫的独立式膜是关键的。相反,我们使用导电聚合物作为粘合剂树脂以在蚀刻掉Ni的同时将石墨烯保持在一起。可以注意到,在此使用的CVD石墨烯泡沫旨在作为用于容纳分散在液体电解质中的活性材料的悬浮液的发泡集流体。例如,硬碳纳米颗粒与液体电解质一起注入阳极中并且石墨烯负载的硫纳米颗粒与液体电解质一起注入阴极中。
[0169] 实例3:来自基于沥青的碳泡沫的基于石墨泡沫的集流体
[0170] 将沥青粉末、颗粒或球粒放置在具有希望的最终泡沫形状的铝模具中。使用Mitsubishi ARA-24中间相沥青。将样品抽空到小于1托并且然后加热到约300℃的温度。此时,将真空释放到氮气层并且然后施加最高达1,000psi的压力。然后将系统的温度升高至
800℃。这以2℃/min的速率进行。将温度保持至少15分钟以实现浸泡并且然后关闭炉电源并以大约1.5℃/分钟的速率冷却至室温,以约2psi/min的速率释放压力。最终的泡沫温度是630℃和800℃。在冷却循环期间,将压力逐渐释放到大气条件。然后将泡沫在氮气层下热处理至1050℃(碳化)并且然后在石墨坩埚中在单独的操作中在氩气中热处理至2500℃和
2800℃(石墨化)。
[0171] 实例4:所使用的电解质的一些实例
[0172] 优选的非锂碱金属盐包括:高氯酸钠(NaClO4)、高氯酸钾(KClO4)、六氟磷酸钠(NaPF6)、六氟磷酸钾(KPF6)、氟硼酸钠(NaBF4)、氟硼酸钾(KBF4)、六氟砷化钠、六氟砷化钾、三氟甲磺酸钠(NaCF3SO3)、三氟甲磺酸钾(KCF3SO3)、双三氟甲基磺酰亚胺钠(NaN(CF3SO2)2)和双三氟甲基磺酰亚胺钾[KN(CF3SO2)2]。
[0173] 对于水性电解质,钠盐或钾盐优选选自Na2SO4、K2SO4、其混合物、NaOH、KOH、NaCl、KCl、NaF、KF、NaBr、KBr、NaI、KI、或其混合物。本研究中使用的盐浓度为从0.3M至3.0M(最经常为0.5M至2.0M)。
[0174] 在本发明研究中使用溶解在有机液体溶剂(单独或与另一有机液体或离子液体的混合物)中的宽范围的锂盐。我们观察到以下锂盐可以很好地溶解在所选有机或离子液体溶剂中:氟硼酸锂(LiBF4)、三氟甲磺酸锂(LiCF3SO3)、双三氟甲基磺酰亚胺锂(LiN(CF3SO2)2或LITFSI)、双(草酸)硼酸锂(LiBOB)、草酰二氟硼酸锂(LiBF2C2O4)、以及双全氟乙基磺酰亚胺锂(LiBETI)。用于帮助稳定Li金属的良好电解质添加剂是LiNO3。特别有用的基于离子液体的锂盐包括:双(三氟甲烷磺酰基)亚胺锂(LiTFSI)。
[0175] 优选的有机液体溶剂包括:碳酸亚乙酯(EC)、碳酸二甲酯(DMC)、碳酸甲乙酯(MEC)、碳酸二乙酯(DEC)、碳酸丙烯酯(PC)、乙腈(AN)、碳酸亚乙烯酯(VC)、碳酸烯丙基乙酯(AEC)、1,3-二氧戊环(DOL)、1,2-二甲氧基乙烷(DME)、四乙二醇二甲醚(TEGDME)、聚(乙二醇)二甲醚(PEGDME)、二乙二醇二丁醚(DEGDBE)、2-乙氧基乙基醚(EEE)、氢氟醚(例如TPTP)、砜和环丁砜。
[0176] 优选的离子液体溶剂可以选自具有选自以下各项的阳离子的室温离子液体(RTIL):四烷基铵、二烷基咪唑鎓、烷基吡啶鎓、二烷基吡咯烷鎓、或二烷基哌啶鎓。抗衡阴离子优选选自BF4-、B(CN)4-、CF3CO2-、CF3SO3-、N(SO2CF3)2-、N(COCF3)(SO2CF3)-、或N(SO2F)2-。
特别有用的基于离子液体的溶剂包括N-正丁基-N-乙基吡咯烷鎓双(三氟甲烷磺酰基)酰亚胺(BEPyTFSI)、N-甲基-N-丙基哌啶鎓双(三氟甲基磺酰基)酰亚胺(PP13TFSI)和N,N-二乙基-N-甲基-N-(2-甲氧基乙基)铵双(三氟甲基磺酰基)酰亚胺。
[0177] 实例4:从天然石墨粉末制备氧化石墨烯(GO)和还原氧化石墨烯(RGO)纳米片
[0178] 将标称尺寸为45μm、由斯博瑞制碳公司(Asbury Carbons)(美国阿斯伯里市旧主街405号,NJ 08802(405Old Main St.,Asbury,NJ 08802,USA))提供的天然石墨研磨以将尺寸减小至大约14μm,将其用作起始材料。GO是通过遵循众所周知的修改的Hummers方法获得的,该方法涉及两个氧化阶段。在典型的程序中,在下列条件下实现第一次氧化:将1100mg石墨置于1000mL长颈烧瓶中。然后,在烧瓶中加入20g的K2S2O8、20g的P2O5和400mL的浓H2SO4水溶液(96%)。将混合物在回流下加热6小时并且然后在室温下无扰动静置20小时。
将氧化石墨过滤并用大量蒸馏水冲洗直至中性pH。在第一次氧化结束时回收湿饼状材料。
[0179] 对于第二次氧化过程,将之前收集的湿饼置于含有69mL浓H2SO4水溶液(96%)的长颈烧瓶中。将烧瓶保持在浴中,同时缓慢加入9gKMnO4。注意避免过热。将所得混合物在35℃下搅拌2小时(样品颜色变成深绿色),然后加入140mL水。15分钟后,通过加入420mL水和15mL 30wt%H2O2的水溶液来停止反应。在这个阶段样品的颜色变成亮黄色。为了除去金属离子,将混合物过滤并用1:10的HCl水溶液冲洗。将收集的材料在2700g下温和离心并用去离子水冲洗。最终产品是含有1.4wt%GO(从干提取物估计的)的湿饼。随后,通过轻度超声处理在去离子水中稀释的湿饼材料获得GO片晶的液体分散体。
[0180] 表面活性剂稳定的RGO(RGO-BS)是通过将湿饼稀释在表面活性剂的水溶液而不是纯水中获得的。使用由西格玛奥德里奇公司(Sigma Aldrich)提供的可商购的胆酸钠(50wt.%)和脱氧胆酸钠(50wt.%)盐的混合物。表面活性剂重量分数为0.5wt.%。对于所有样品该分数保持恒定。使用配备有13mm步进破碎(disruptor horn)和3mm锥形微尖端、以20kHz频率操作的Branson Sonifier S-250A进行超声处理。例如,将10mL含有
0.1wt.%GO的水溶液超声处理10分钟并且随后在2700g下离心30分钟以除去任何未溶解的大颗粒、聚集体和杂质。化学还原获得原样的GO以产生RGO是通过遵循以下方法进行的,该方法涉及将10mL的0.1wt.%GO水溶液置于50mL的长颈烧瓶中。然后,将10μL的35wt.%N2H4(肼)水溶液和70mL的28wt.%NH4OH(氨)水溶液加入到混合物中,通过表面活性剂使其稳定。将该溶液加热至90℃并回流1小时。反应后测得的pH值为大约9。在还原反应过程中样品的颜色变成深黑色。
[0181] 在本发明的某些碱金属电池中,RGO被用作阳极和阴极中的任一者或两者的导电添加剂。在选定的钠-硫电池单元中,预钠化的RGO(例如,RGO+钠颗粒或预先沉积有钠涂层的RGO)也用作阳极活性材料。还将预锂化RGO膜用作Li-S电池单元的阳极活性材料。
[0182] 为了比较的目的,进行浆料涂覆和干燥程序以生产常规电极。然后组装电极和布置在两个电极之间的隔膜,并将其包封在铝塑层压封装封套中,随后注入液体电解质以形成钠或钾电池单元。
[0183] 实例5:原生石墨烯片(0%氧)的制备
[0184] 认识到GO片中高缺陷数量起作用降低单个石墨烯平面的传导性的可能性,我们决定研究使用原生石墨烯片(非氧化和无氧,非卤化和无卤素等)是否可导致具有高导电性和导热性的导电添加剂。预钠化原生石墨烯也被用作阳极活性材料。原生石墨烯片通过使用直接超声处理或液相生产工艺来生产。
[0185] 在典型的程序中,将磨碎至约20μm或更小尺寸的5克石墨薄片分散在1,000mL去离子水(含有按重量计0.1%的分散剂,来自杜邦公司(DuPont)的 FSO)中以获得悬浮液。使用85W的超声能量水平(Branson S450超声发生器)用于石墨烯片的膨化、分离和尺寸减小持续15分钟至2小时的时间段。所得石墨烯片是从未被氧化并且是无氧的和相对没有缺陷的原生石墨烯。原生石墨烯基本上不含任何非碳元素。
[0186] 然后将原生石墨烯片作为导电添加剂连同阳极活性材料(或阴极中的阴极活性材料)使用本发明的将浆料注入到泡沫孔中的程序和常规的浆料涂覆、干燥和层压程序二者结合到电池中。研究了碱金属离子电池和碱金属电池(仅注入到阴极中)二者。在后一种电池(一次电池或二次电池)中,阳极是由石墨烯片支撑的Na箔或K片。
[0187] 实例6:作为钠-硫电池的阳极活性材料的预钠化石墨烯氟化物片的制备
[0188] 我们已经使用了若干方法来生产石墨烯氟化物(GF),但是在这里作为实例只描述了一种方法。在典型的程序中,高度膨化的石墨(HEG)由插层化合物С2F·xClF3制备。HEG被三氟化氯蒸气进一步氟化以产生氟化的高度膨化的石墨(FHEG)。预先冷却的特氟隆反应器填充有20-30mL液体预先冷却的ClF3,将反应器关闭并冷却至液氮温度。然后,将不超过1g的HEG放入容器中,该容器具有用于ClF3气体进入反应器并位于反应器内的孔。在7-10天内形成了具有近似式C2F的灰米色产物。
[0189] 随后,将少量FHEG(约0.5mg)与20-30mL有机溶剂(单独地甲醇和乙醇)混合并使其经受超声处理(280W)持续30分钟,导致形成均匀的淡黄色分散体。在除去溶剂后,分散体变成褐色粉末。将石墨烯氟化物粉末与钠片在液体电解质中混合,使得在注入到阳极集流体的孔中之前或之后发生预钠化。
[0190] 实例7:氮化石墨烯纳米片和多孔石墨烯结构的制备
[0191] 将实例1中合成的氧化石墨烯(GO)用不同比例的脲精细研磨,并将造粒的混合物在微波反应器中加热(900W)30s。产物用去离子水洗涤数次并真空干燥。在这种方法中,氧化石墨烯被同时还原并掺杂有氮。将所获得的具有1:0.5、1:1和1:2的石墨烯:脲质量比的产物分别命名为NGO-1、NGO-2和NGO-3,并且如通过元素分析发现这些样品的氮含量分别为14.7、18.2和17.5wt.%。这些氮化石墨烯片保持分散在水中。然后制备两种类型的分散体。
一种分散体涉及将水溶性聚合物(例如聚氧化乙烯)添加到氮化石墨烯片-水分散体中以产生基于水的悬浮液。另一种分散体涉及干燥氮化石墨烯片-水分散体以回收氮化石墨烯片,然后将其添加到前体聚合物-溶剂溶液中以获得基于有机溶剂的悬浮液。
[0192] 然后将所得悬浮液浇铸、干燥、碳化并石墨化以产生多孔石墨烯结构。用于对比样品的碳化温度是900℃-1,350℃。石墨化温度是从2,200℃至2,950℃。将多孔石墨烯层用作Li-S电池单元的阳极和阴极二者的多孔集流体。
[0193] 实例8:来自电纺丝PAA原纤维的长丝的导电网作为阳极的支撑层
[0194] 通过在四氢呋喃/甲醇的混合溶剂(THF/MeOH,按重量计8/2)中将苯四甲酸二酐(奥德里奇公司(Aldrich))和4,4′-氧基二苯胺(奥德里奇公司)共聚来制备用于纺丝的聚(酰胺酸)(PAA)前体。使用静电纺丝装置将PAA溶液纺成纤维网。该装置由装备有从其挤出聚合物溶液的带正电荷毛细管和用于收集纤维的带负电荷卷筒的15kV d.c.电源组成。通过在空气流下在40℃下12h、100℃下1h、250℃下2h并且350℃下1h进行逐步加热处理来同时进行从PAA去除溶剂和亚胺化。将热固化的聚酰亚胺(PI)网状样品在1,000℃下碳化以获得具有67nm平均原纤维直径的碳化纳米纤维。此种网可以用作阳极活性材料的导电基底。我们观察到在Li-S电池单元的阳极处实施导电纳米长丝网络可以有效地抑制否则可能导致内部短路的锂枝晶的引发和生长。
[0195] 实例9:S在用于Li-S和Na-S电池的不同网或纸结构上的电化学沉积(外部电化学沉积)
[0196] 可以在将阴极活性层结合到碱金属-硫电池单元(Li-S或Na-S电池单元)中之前进行电化学沉积。在此方法中,将阳极、电解质、和多孔石墨烯结构的一体化层(用作阴极层)置于锂-硫电池单元外部的外部容器中。所需的设备类似于本领域熟知的电系统。
[0197] 在典型的程序中,将金属多硫化物(MxSy)溶解在溶剂(例如DOL/DME以从1:3至3:1的体积比的混合物)中以形成电解质溶液。可以任选地添加一定量的锂盐,但这不是外部电化学沉积所必需的。为此目的可以使用各种溶剂,并且对于可以使用的溶剂类型没有理论限制;可以使用任何溶剂,只要金属多硫化物在此希望的溶剂中具有一定溶解度。溶解度越大将意味着可以从电解质溶液中获得更大量的硫。
[0198] 然后将电解质溶液在干燥和受控的气氛条件(例如He气或氮气)下倒入腔室或反应器中。可以将金属箔用作阳极并且多孔石墨烯结构的层用作阴极;将两者均浸入电解质溶液中。此构型构成电化学沉积系统。基于多孔石墨烯结构的层重量,优选以1mA/g至10A/g范围内的电流密度进行将纳米尺寸硫颗粒或涂层电化学沉积在石墨烯表面上的步骤。
[0199] 在此反应器中发生的化学反应可以由以下等式表示:MxSy→MxSy-z+zS(典型地z=1-4)。非常令人惊讶的是,沉淀的S优先地在大量的石墨烯表面上成核并生长以形成纳米尺寸涂层或纳米颗粒。可以通过比表面积、电化学反应电流密度、温度和时间来控制涂层厚度或颗粒直径以及S涂层/颗粒的量。通常,较低的电流密度和较低的反应温度导致S更均匀的分布,并且反应更容易控制。较长的反应时间导致较大量的S沉积在石墨烯表面上,并且当硫源被消耗时或当希望量的S被沉积时停止反应。然后将这些S-涂覆的纸或网结构粉碎成细颗粒以用作Li-S或Na-S电池单元的阴极活性材料。
[0200] 实例10:在阴极层制备之前硫颗粒在孤立的石墨烯片上的化学反应诱导的沉积[0201] 在此使用现有技术化学沉积方法以从孤立的氧化石墨烯片(即在将S化学沉积在GO片的表面上之前这些GO片未堆积成多孔石墨烯的一体化结构)制备S-石墨烯复合材料。该程序开始于将0.58g Na2S添加到已填充有25ml蒸馏水的烧瓶中以形成Na2S溶液。然后,将
0.72g元素S悬浮在该Na2S溶液中并且用磁力搅拌器在室温下搅拌约2小时。随着硫溶解,溶液的颜色缓慢变成橙-黄色。在硫溶解之后,获得多硫化钠(Na2Sx)溶液(x=4-10)。
[0202] 随后,通过化学沉积方法在水溶液中制备氧化石墨烯-硫(GO-S)复合材料。首先,将180mg氧化石墨悬浮在180ml超纯水中并且然后在50℃下超声处理5小时以形成稳定的氧化石墨烯(GO)分散体。随后,在5wt%表面活性剂十六烷基三甲基溴化铵(CTAB)存在下,将Na2Sx溶液添加到以上制备的GO分散体中,将制备原样的GO/Na2Sx共混溶液再超声处理2小时并且然后以30-40滴/分钟的速率滴定到100ml的2mol/L HCOOH溶液中并且搅拌2小时。最后,过滤沉淀物并且用丙酮和蒸馏水洗涤若干次以去除盐和杂质。在过滤之后,将沉淀物在干燥箱中在50℃下干燥48小时。该反应可以由以下反应表示:Sx2-+2H+→(x-1)S+H2S。
[0203] 实例11:在阴极层制备之前硫颗粒在孤立的石墨烯片上的氧化还原化学反应诱导的沉积
[0204] 在此基于化学反应的沉积方法中,将硫代硫酸钠(Na2S2O3)用作硫源并且将HCl用作反应物。制备GO-水悬浮液并且然后将两种反应物(HCl和Na2S2O3)倒入此悬浮液中。使该反应在25℃-75℃下进行1-3小时,使得S颗粒的沉淀物沉积在GO片表面上。该反应可以由以下反应表示:
[0205] 2HCl+Na2S2O3→2NaCl+S↓+SO2↑+H2O。
[0206] 实例12:通过溶液沉积制备S/GO纳米复合材料
[0207] 将GO片和S混合并分散在溶剂(CS2)中以形成悬浮液。在彻底搅拌之后,将溶剂蒸发以产生固体纳米复合材料,然后将其研磨以产生纳米复合材料粉末。这些纳米复合材料颗粒中的初级硫颗粒具有大约40-50nm的平均直径。
[0208] 实例13:不同电池单元的制备和电化学测试
[0209] 对于所研究的大多数的阳极和阴极活性材料,我们使用本发明的方法和常规方法二者制备碱金属-硫电池单元或碱金属离子-硫电池单元。
[0210] 采用常规方法,典型的阳极组合物包含溶解在N-甲基-2-吡咯烷酮(NMP)中的85wt.%的活性材料(例如,用于Na离子-硫阳极的Sn-或Na2C8H4O4-涂覆的石墨烯片;用于Li离子-硫阳极的石墨或Si颗粒)、7wt.%的乙炔黑(Super-P)和8wt.%的聚偏二氟乙烯粘合剂(PVDF,5wt.%固体含量)。在铜箔上涂覆浆料后,将电极在120℃下在真空中干燥2小时以除去溶剂。以类似的方式(使用Al箔作为阴极集流体)制造阴极层。然后将阳极层、隔膜层(例如Celgard 2400膜)和阴极层层压在一起并容纳在塑料-Al封套中。然后向电池单元中注入溶解在碳酸亚乙酯(EC)和碳酸二乙酯(DEC)的混合物(EC-DEC,1:1v/v)中的1M LiPF6或NaPF6电解质溶液。在一些电池单元中,使用离子液体作为液体电解质。电池单元组件是在充满氩气的手套箱中制成的。
[0211] 在本发明的方法中,在某些实例中,在注入(或浸渍)第一悬浮液和/或注入(或浸渍)该第二悬浮液之前或之后,将该阳极集流体(用于阳极的导电多孔结构)、该隔膜和该阴极集流体(用于阴极侧的导电多孔结构)组装在保护性外壳中。在一些实例中,我们将空的发泡阳极集流体、多孔隔膜层和空的发泡集流体组装在一起以形成容纳在袋(由Al-尼龙双层膜制成)中的组件。然后将第一悬浮液注入到阳极集流体中,并将第二悬浮液注入到阴极集流体中。然后将袋密封。在其他实例中,我们用第一悬浮液浸渍发泡阳极集流体以形成阳极层,并且分开地用第二悬浮液浸渍发泡阴极集流体以形成阴极层。然后将阳极层、多孔隔膜层和阴极层组装并容纳在袋中以形成电池单元。使用本发明方法,典型地不需要或不使用粘合剂树脂,节省8%重量(减少量的非活性材料)。
[0212] 循环伏安(CV)测量使用Arbin电化学工作站以1mV/s的典型扫描速率进行。此外,不同电池单元的电化学性能还通过在从50mA/g至10A/g的电流密度下的恒电流充电/放电循环来评估。对于长期循环测试,使用由LAND制造的多通道电池测试器。可以注意到的是,在锂离子电池行业中,常见的做法是将电池的循环寿命定义为基于在所希望的电化学形成之后测量的初始容量,电池经历20%容量衰减的充电-放电循环次数。在此遵循了Li-S或室温Na-S电池单元的循环寿命的相同定义。
[0213] 实例14:代表性测试结果
[0214] 对于每个样品,施加若干种电流密度(表示充电/放电倍率)以确定电化学响应,允许计算构造Ragone曲线图(功率密度相对于能量密度)所要求的能量密度和功率密度值。图5示出了含有硬碳颗粒作为阳极活性材料和活性碳/硫复合材料颗粒作为阴极活性材料的Na-离子电池单元的Ragone曲线图(重量和体积功率密度相对于能量密度)。4条数据曲线中的两条是针对根据本发明的实施例制备的电池单元,并且另外两条是通过常规的电极浆料涂覆(浆料辊涂)制备的电池单元。从这些数据可以进行若干重要的观察:
[0215] 通过本发明的方法(在附图图例中表示为“本发明”)制备的钠离子-S电池单元的重量和体积能量密度以及功率密度二者均显著高于通过常规辊涂方法(表示为“常规”)制备的其对应物的那些。从150μm的阳极厚度(涂覆在平坦的固体Cu箔上)到225μm的厚度(全部容纳在具有85%孔隙率的Ni泡沫的孔中)的变化和阴极的相应变化以维持平衡的容量比导致重量能量密度从155Wh/kg增加到187Wh/kg。甚至更令人惊讶地,体积能量密度从232Wh/L增加到318Wh/L。
[0216] 这些显著的差异不能简单地归因于电极厚度和质量负载量的增加。这些差异可能是由于与本发明的电池单元相关的显著更高的活性材料质量负载量(相对于其他材料),相对于活性材料重量/体积的无贡献(非活性)组分的比例减少,不需要具有粘合剂树脂,电极活性材料的令人惊讶地更好的利用率(大部分的,如果不是全部,硬碳颗粒和C/S颗粒有助于钠离子储存容量;在电极中没有干燥袋或无效斑点,特别是在高的充电/放电倍率条件下),以及本发明的方法将活性材料颗粒更有效地填充在发泡集流体的孔中的令人惊讶的能力。
[0217] 图6示出了两个电池单元的Ragone曲线图(重量和体积功率密度二者相对于重量和体积能量密度),两个电池单元都含有石墨烯包围的Na纳米颗粒作为阳极活性材料和S-涂覆的石墨烯片作为阴极活性材料。实验数据是从通过本发明的方法制备的电池单元和通过常规的电极浆料涂覆制备的电池单元获得的。
[0218] 这些数据表明,通过本发明的方法制备的电池单元的重量和体积能量密度以及功率密度均显著高于通过常规方法制备的其对应物的重量和体积能量密度以及功率密度。再次,差异是巨大的。常规制造的电池单元展示出215Wh/kg的重量能量密度和323Wh/L的体积能量密度,但本发明的电池单元分别给予334Wh/kg和601Wh/L。以前用任何可再充电钠电池从未实现601Wh/L的电池单元水平体积能量密度。高达1432W/kg和2,578W/L的功率密度对于典型地较高能量的锂离子电池也是无前例的,更不用说对于钠离子电池。
[0219] 这些能量密度和功率密度的差异主要是由于与本发明的电池单元相关的高活性材料质量负载量(在阳极中>25mg/cm2以及在阴极中>35mg/cm2),相对于活性材料重量/体积的无贡献(非活性)组分的比例减少,不需要具有粘合剂树脂,本发明的方法更好地利用活性材料颗粒(所有颗粒是液体电解质以及快速离子和电子动力学可达的)、以及将活性材料颗粒更有效地填充在发泡集流体的孔中的能力。
[0220] 图7中示出了含有锂箔作为阳极活性材料、S涂覆的石墨烯片作为阴极活性材料和锂盐(LiaPF6)-PC/DEC作为有机液体电解质的Li-S电池的Ragone曲线图。数据是针对通过本发明的方法制备的钠金属电池单元和通过常规的电极浆料涂覆制备的钠金属电池单元二者。这些数据表明,通过本发明的方法制备的钠金属电池单元的重量和体积能量密度以及功率密度均显著高于通过常规方法制备的其对应物的重量和体积能量密度以及功率密度。再次,这些差异是巨大的并且可能是由于与本发明的电池单元相关的显著更高的活性材料质量负载量,相对于活性材料重量/体积的无贡献(非活性)组分的比例减少,不需要具有粘合剂树脂,电极活性材料的令人惊讶地更好的利用率(大部分的,如果不是全部,活性材料有助于钠离子储存容量;在电极中没有干燥袋或无效斑点,特别是在高的充电/放电倍率条件下),以及本发明的方法将活性材料颗粒更有效地填充在发泡集流体的孔中的令人惊讶的能力。
[0221] 相当值得注意的和出乎意外的是以下观察结果:本发明的Li-S电池单元的电池单元水平的重量能量密度高达624Wh/kg,高于曾经报道的所有可再充电的锂金属或锂离子电池的那些(回想起目前的锂离子电池基于总电池单元重量典型地储存150-250Wh/kg和每电池单元体积500-650Wh/L)。此外,对于基于硫阴极活性材料的锂电池,1,185Wh/L的体积能量密度、2,457W/kg的重量功率密度和4,668W/L的体积功率密度是不可想象的。
[0222] 具有重要意义的是指出,如许多研究人员所做的那样,单独在Ragone曲线图上报告每重量活性材料的能量和功率密度可能不能给出组装的电池单元的性能的真实写照。其他装置部件的重量也必须考虑在内。这些无贡献组分(包括集流体、电解质、隔膜、粘合剂、连接器和封装)是非活性材料并且不会有助于电荷储存量。它们仅仅增加装置的重量和体积。因此,令人希望的是减少无贡献组分重量的相对比例并增加活性材料比例。然而,使用常规的电池生产方法尚不可能实现这个目标。本发明克服了锂电池领域中这个长期存在的最严重的问题。
[0223] 在具有150μm的电极厚度的商业锂离子电池中,锂离子电池中的阳极活性材料(例如石墨或碳)的重量比例典型地为从12%至17%,以及阴极活性材料的重量比例(对于无机材料,例如LiMn2O4)为从22%至41%,或者对于有机或聚合物材料为从10%至15%。预期Na离子电池中的相应的重量分数非常相似,因为阳极活性材料和阴极活性材料在两种类型的电池之间具有相似的物理密度,并且阴极比容量与阳极比容量的比率也相似。因此,可以使用3至4的因子来从基于单独的活性材料重量的特性外推装置(电池)的能量或功率密度。在大多数科学论文中,报道的特性典型地基于单独的活性材料重量,并且电极典型地非常薄(<<100μm,并且主要地<<50μm)。活性材料重量典型地为总装置重量的从5%至10%,这意味着实际的电芯(装置)能量或功率密度可以通过将相应的基于活性材料重量的值除以10至20的因子来获得。考虑到这个因子后,这些论文中报告的特性实际上看起来并不比商业电池的特性更好。因此,在阅读和解释科学论文和专利申请中报告的电池的性能数据时必须非常小心。
[0224] 图8示出了通过常规浆料涂覆方法制备的一系列Li离子-S电池单元(石墨烯包裹的Si纳米颗粒、或预锂化的Si纳米颗粒)的Ragone曲线图和通过本发明方法制备的相应电池单元的Ragone曲线图。这些数据再次证明了本发明的方法赋予Li-S电池单元意想不到的高能量密度(重量和体积二者)的有效性。
[0225] 实例15:可实现的电极厚度及其对锂电池单元的电化学性能的影响
[0226] 人们可能倾向于认为碱金属电池的电极厚度是可以自由调整以优化装置性能的设计参数。与这种看法相反,实际上,碱金属电池电极厚度受制造限制,并且不能在真实的工业制造环境(例如辊对辊涂覆设施)中生产超过特定厚度水平的具有良好结构完整性的电极。常规的电池电极设计是基于在平坦的金属集流体上涂覆电极层,这具有几个主要问题:(a)铜箔或铝箔上的厚涂层需要长的干燥时间(需要30-100米长的加热区)。(b)在干燥和后续处理时,厚电极倾向于分层或开裂,并且即使树脂粘合剂比例高达15%-20%以有希望改善电极完整性,这个问题仍然是主要限制因素。因此,在固体平坦集流体上辊涂浆料的这种工业实践不允许高活性材料质量负载量。(c)通过涂覆、干燥和压缩制备的厚电极使得电解质(在电池单元制成后注入到电池单元中)难以渗透通过电极,并且因此厚电极将意味着许多干燥袋或斑点不被电解质润湿。这将意味着活性材料的较差利用率。本发明解决了这些与碱金属电池相关的长期存在的、至关重要的问题。
[0227] 图9示出了在通过常规方法制备的S/RGO阴极(没有分层和开裂)和通过本发明的方法制备的那些的可实现的阴极厚度范围内绘制的Li离子-S电池单元(预锂化石墨阳极+RGO-负载的S阴极)的电池单元水平的重量能量密度(Wh/kg)和体积能量密度(Wh/L)。
[0228] 使用常规的浆料涂覆方法可以制造最高达100-200μm的厚度的电极。然而,相比之下,用本发明的方法可以达到的电极厚度没有理论极限。典型地,实际电极厚度为从10μm至1000μm、更典型地从100μm至800μm、并且最典型地从200μm至600μm。
[0229] 这些数据进一步证实了本发明的方法在生产以前不能实现的超厚锂或钠电池电极中的令人惊讶的有效性。钠金属电池中的这些超厚电极导致异常高的硫阴极活性材料质量负载量,典型地显著>15mg/cm2(更典型地>20mg/cm2、进一步典型地>30mg/cm2、经常>40mg/cm2、并且甚至>50mg/cm2)。用通过浆料涂覆方法制成的常规碱金属-硫电池不可能获得这些高活性材料质量负载量。这些高活性材料质量负载量产生在给定相同的电池系统的情况下以其他方式以前未曾实现的异常高的重量和体积能量密度。
[0230] 通过使用本发明的发泡集流体策略还解决了与Li、Na和K金属二次电池单元通常相关的枝晶问题。已经研究了数百个电池单元,并且没有发现具有发泡阳极集流体的那些电池单元由于枝晶穿透隔膜而发生故障。对来自本发明的钠和钾电池单元的样品的SEM检查证实,在多孔阳极集流体中的孔壁上重新沉积的碱金属表面看起来光滑且均匀,没有展示出如用在阳极处具有固体集流体(Cu箔)的相应电池经常观察到的尖锐金属沉积物或树状特征的迹象。这可能是由于与阳极处发泡集流体的高比表面积相关的交换电流密度降低,以及在重复再充电程序期间驱动碱金属沉积的这种发泡结构中的更均匀的局部电场
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈