首页 / 专利库 / 燃料种类 / 辛烷值 / 多产高辛烷值汽油的催化转化方法

多产高辛烷值汽油的催化转化方法

阅读:212发布:2020-05-14

专利汇可以提供多产高辛烷值汽油的催化转化方法专利检索,专利查询,专利分析的服务。并且多产高 辛烷值 汽油 的催化转化方法,优质原料油与活性较低的热再生催化剂在反应器的下部 接触 发生裂化反应,生成的油气和含炭的催化剂上行在一定的反应环境下发生选择性的氢转移反应和异构化反应,分离反应产物,待生催化剂经 汽提 、再生后循环使用;将反应产物中的柴油馏分切割为柴油轻馏分和柴油重馏分,柴油轻馏分返回本反应器或/和其他反应器进行进一步反应。该方法同时提高汽油产率和汽油辛烷值。,下面是多产高辛烷值汽油的催化转化方法专利的具体信息内容。

1.多产高辛烷值汽油的催化转化方法,其特征在于优质原料油与活性较低的热再生催化剂在反应器的下部接触发生裂化反应,生成的油气和含炭的催化剂上行在一定的反应环境下发生选择性的氢转移反应和异构化反应,分离反应产物,待生催化剂经汽提、再生后循环使用;将反应产物中的柴油馏分切割为柴油轻馏分和柴油重馏分,柴油轻馏分返回本反应器或/和其他反应器进行进一步反应;所述活性较低的热再生催化剂活性为35~55;所述裂化反应条件为:反应温度490℃~620℃,反应时间0.5秒~2.0秒,催化剂与原料油的重量比3~15∶1;所述氢转移反应和异构化反应条件为:反应温度420℃~550℃,反应时间为2秒~30秒。
2.按照权利要求1的方法,其特征在于所述优质原料油选自常压塔顶油、汽油、柴油、直馏蜡油、加氢蜡油中的一种或多种。
3.按照权利要求2的方法,其特征在于所述汽油为催化汽油。
4.按照权利要求1的方法,其特征在于所述活性较低的热再生催化剂活性为40~50。
5.按照权利要求1的方法,其特征在于所述裂化反应条件为:反应温度500℃~
600℃,反应时间0.8秒~1.5秒,催化剂与原料油的重量比3~12∶1。
6.按照权利要求1的方法,其特征在于所述氢转移反应和异构化反应条件为:反应温度460℃~500℃,反应时间为3秒~15秒。
7.按照权利要求1的方法,其特征在于所述裂化反应、氢转移反应和异构化反应的压均为130kPa~450kPa,蒸汽与原料油的重量比为0.03~0.3∶1。
8.按照权利要求1的方法,其特征在于所述反应器选自等直径提升管、等线速提升管、流化床或变径提升管中之一,或者是由等直径提升管和流化床构成的复合反应器。
9.按照权利要求8的方法,其特征在于所述变径提升管沿垂直方向从下至上依次为互为同轴的预提升段、第一反应区、直径扩大了的第二反应区、直径缩小了的出口区,在出口区末端连有一段水平管,其中第二反应区的直径与第一反应区的直径之比为1.5~
5.0∶1。
10.按照权利要求1的方法,其特征在于所述柴油轻馏分馏程中95%点温度不大于
310℃。
11.按照权利要求10的方法,其特征在于所述柴油轻馏分馏程中95%点温度不大于
280℃。

说明书全文

多产高辛烷值汽油的催化转化方法

技术领域

[0001] 本发明属于在不存在氢的情况下石油类的催化转化方法,更具体地说,是属于提高汽油辛烷值桶的催化转化方法。

背景技术

[0002] 常规的催化裂化工艺主要用于生产汽油,汽油产率高达50重%以上。八十年代初,汽油无铅化迫使催化裂化技术向生产高辛烷值汽油的方向发展,为此,催化裂化的工艺条件和催化剂类型发生了很大变化。在工艺方面,主要是提高反应温度、缩短反应时间、提高反应苛刻度、抑制氢转移反应和过裂化反应和改善提升管底部油气和催化剂的接触效率;在催化剂方面,开发了USY型沸石结合惰性基质或活性基质的催化剂以及不同类型的沸石复合的催化剂。
[0003] 催化裂化技术虽已取得上述进展,满足了汽油无铅化的要求,提高了汽油的辛烷值,但无论是通过改变工艺条件,还是使用新型的沸石催化剂来提高汽油辛烷值,都是以提高汽油组分中的烯烃含量来增加汽油的辛烷值,目前汽油组分中烯烃含量为35~65重%,这与新配方汽油对烯烃含量的要求相差甚远。液化气组成中烯烃含量更高,大约在70重%左右,其中丁烯是异丁烷的数倍,难以作为烷基化原料。
[0004] ZL99105904.2公开了一种制取异丁烷和富含异构烷烃汽油的催化转化方法,是将预热后的原料油进入一个包括两个反应区的反应器内,与热的裂化催化剂接触,第一反应区的温度为530~620℃、反应时间为0.5~2.0秒;第二反应区的温度为460~530℃、反应时间为2~30秒,分离反应产物,待生催化剂经汽提进入再生器烧焦后循环使用。采用本发明提供的方法制取的液化气中异丁烷含量为20~40重%,汽油族组成中的异构烷烃含量为30~45重%,烯烃含量降低到30重%以下,其研究法辛烷值为90~93,达法辛烷值为80~84。
[0005] ZL99105905.0公开了一种制取丙烯、异丁烷和富含异构烷烃汽油的催化转化方法,是将预热后的原料油进入一个包括两个反应区的反应器内,与热的裂化催化剂接触,第一反应区的温度为550~650℃、反应时间为0.5~2.5秒;第二反应区的温度为480~550℃、反应时间为2~30秒,分离反应产物,待生催化剂经汽提进入再生器烧焦后循环使用。采用本发明提供的方法制取的液化气产率可达25~40重%,其中丙烯含量为30重%左右,异丁烷含量为20~40重%,汽油的产率可达35~50重%,汽油组成中的异构烷烃为30~45重%。
[0006] ZL99105903.4公开了一种用于流化催化转化的提升管反应器,沿垂直方向从下至上依次为互为同轴的预提升段、第一反应区、直径扩大了的第二反应区、直径缩小了的出口区,在出口区末端有一平管。该反应器既可以控制第一反应区和第二反应区的工艺条件不同,又可以使不同性能的原料油进行分段裂化,得到所需目的产品。
[0007] 正是这些专利,构成了多产异构烷烃的催化裂化工艺(MIP)的基础专利,并得到广泛的应用,目前已应用到近50套催化裂化装置,取得巨大的经济效益和社会效益。尽管现有技术可以得到富含异丁烷的液化气和富含异构烷烃汽油,但对处理优质的催化裂化原料油,尤其是加氢蜡油,造成汽油烯烃含量偏低,液化气中的异丁烯含量偏低,产物分布不够优化,石油资源未充分利用。
[0008] CN101362960A认为不同馏程柴油的单环芳烃含量不同,大体上单环芳烃含量随着馏程的增加逐渐减少。柴油轻馏分中含有大量带侧链的单环芳烃,因此柴油轻馏分可用于生产高辛烷值汽油的催化裂化原料,即可以通过催化裂化反应将芳烃中的侧键断裂,使柴油轻馏分中的烃裂化为汽油馏分的烃类达到增产汽油的目的。另外汽油馏分中芳烃具有高研究法辛烷值和马达法辛烷值的特点,因此也可以实现增加汽油研究法辛烷值和马达法辛烷值的目的。

发明内容

[0009] 本发明的目的是提供多产高辛烷值汽油的催化转化方法,以同时提高汽油收率及其辛烷值。
[0010] 本发明提供的方法是:优质原料油与活性较低的热再生催化剂在反应器的下部接触发生裂化反应,生成的油气和含炭的催化剂上行在一定的反应环境下发生选择性的氢转移反应和异构化反应,分离反应产物,待生催化剂经汽提、再生后循环使用;将反应产物中的柴油馏分切割为柴油轻馏分和柴油重馏分,柴油轻馏分返回本反应器或/和其他反应器进行进一步反应。
[0011] 本发明提供的方法是在一个包括实现两类不同反应的反应器内进行,该反应器选自等直径提升管、等线速提升管、变径提升管、流化床中的一种,也可以是由等直径提升管和流化床构成的复合反应器。
[0012] 本发明提供的方法是这样具体实施的:
[0013] (1)、预热的优质原料油进入反应器与活性为35~55优选40~50的热再生催化剂接触,在反应温度490℃~620℃优选500℃~600℃,反应时间0.5秒~2.0秒优选0.8秒~1.5秒,催化剂与原料油的重量比(以下简称剂油比)3~15∶1优选3~12∶1的条件下发生裂化反应;
[0014] (2)、生成的油气和用过的催化剂上行,在反应温度420℃~550℃优选460℃~500℃,反应时间为2秒~30秒优选3秒~15秒的条件下发生选择性的氢转移反应和异构化反应;
[0015] (3)、分离反应产物得到富含异丁烯的液化气和烯烃含量适中的汽油及其它产品,待生催化剂经汽提进入再生器烧焦再生后循环使用;
[0016] (4)反应产物中的柴油馏分切割为轻柴油馏分和重柴油馏分,柴油轻馏分返回本反应器或/和其他反应器进行进一步反应。
[0017] 所述柴油轻馏分和重馏分的切割过程可以单独进行也可以直接在分馏塔中完成。
[0018] 所述柴油轻馏分馏程中95%点温度不大于310℃。
[0019] 所述柴油轻馏分馏程中95%点温度不大于280℃。
[0020] 步骤(1)所述裂化反应、步骤(2)所述氢转移反应和异构化反应的压均为130kPa~450kPa,水蒸汽与原料油的重量比(以下简称水油比)为0.03~0.3∶1,最好
为0.05~0.3∶1。
[0021] 该方法适用的反应器可以是选自等直径提升管、等线速提升管、流化床或变径提升管中之一,也可以是由等直径提升管和流化床构成的复合反应器。
[0022] 本发明提供的方法可以在等直径提升管、等线速提升管或流化床反应器中进行,其中等直径提升管与炼厂常规的催化裂化反应器相同,等线速提升管中流体的线速基本相同。等直径提升管、等线速提升管反应器从下至上依次为预提升段、第一反应区、第二反应区,流化床反应器从下至上依次为第一反应区、第二反应区,第一反应区、第二反应区的高度之比为10~40∶90~60。当使用等直径提升管、等线速提升管或流化床反应器时,在第二反应区底部设一个或多个冷激介质入口,和/或在第二反应区内设置取热器,取热器的高度占第二反应区高度的50%~90%。分别控制每个反应区的温度和反应时间。冷激介质是选自冷激剂、冷却的再生催化剂和冷却的半再生催化剂中的一种或一种以上的任意比例的混合物。其中冷激剂是选自液化气、粗汽油、稳定汽油、柴油、重柴油或水中的一种或一种以上的任意比例的混合物;冷却的再生催化剂和冷却的半再生催化剂是待生催化剂分别经两段再生和一段再生后冷却得到的,再生催化剂含量为0.1重%以下,最好为0.05重%以下,半再生催化剂碳含量为0.1重%~0.9重%,最好碳含量为0.15重%~0.7重%。
[0023] 本发明提供的方法也可以在由等直径提升管和流化床构成的复合反应器中进行,下部的等直径提升管为第一反应区,上部的流化床为第二反应区,分别控制每个反应区的温度和反应时间。在流化床的底部设一个或多个冷激介质入口,和/或在第二反应区内设置取热器,取热器的高度占第二反应区高度的50%~90%。分别控制每个反应区的温度和反应时间。冷激介质是选自冷激剂、冷却的再生催化剂和冷却的半再生催化剂中的一种或一种以上的任意比例的混合物。其中冷激剂是选自液化气、粗汽油、稳定汽油、柴油、重柴油或水中的一种或一种以上的任意比例的混合物;冷却的再生催化剂和冷却的半再生催化剂是待生催化剂分别经两段再生和一段再生后冷却得到的,再生催化剂碳含量为0.1重%以下,最好为0.05重%以下,半再生催化剂碳含量为0.1重%~0.9重%,最好碳含量为0.15重%~0.7重%。
[0024] 本发明提供的方法还可以在变径提升管反应器(参见ZL99105903.4)中进行,该反应器的结构特征如图1所示:提升管反应器沿垂直方向从下至上依次为互为同轴的预提升段a、第一反应区b、直径扩大了的第二反应区c、直径缩小了的出口区d,在出口区末端连有一段水平管e。第一、二反应区的结合部位为圆台形,其纵剖面等腰梯形的顶α为30°~80°;第二反应区与出口区的结合部位为圆台形,其纵剖面等腰梯形的底角β为
45°~85°。
[0025] 该反应器的预提升段、第一反应区、第二反应区、出口区的高度之和为反应器的总高度,一般为10米~60米。
[0026] 预提升段的直径与常规的等直径提升管反应器相同,一般为0.02米~5米,其高度占反应器总高度的5%~10%。预提升段的作用是在预提升介质的存在下使再生催化剂向上运动并加速,所用的预提升介质与常规的等直径提升管反应器所用的相同,选自水蒸汽或干气。
[0027] 第一反应区的结构类似于常规的等直径提升管反应器,其直径可与预提升段相同,也可较预提升段稍大,第一反应区的直径与预提升段的直径之比为1.0~2.0∶1,其高度占反应器总高度的10%~30%。原料油和催化剂在该区混合后,在较高的反应温度和剂油比、较短的停留时间(一般为0.5秒~2.5秒)下,主要发生裂化反应。
[0028] 第二反应区比第一反应区要粗,其直径与第一反应区的直径之比为1.5~5.0∶1,其高度占反应器总高度的30%~60%。其作用是降低油气和催化剂的流速和反应温度。降低该区反应温度的方法,可以从该区与第一反应区的结合部位注入冷激介质,和/或通过在该区设置取热器,取走部分热量以降低该区反应温度,从而达到抑制二次裂化反应、增加异构化反应和氢转移反应的目的。冷激介质是选自冷激剂、冷却的再生催化剂和冷却的半再生催化剂中的一种或一种以上的任意比例的混合物。其中冷激剂是选自液化气、粗汽油、稳定汽油、柴油、重柴油或水中的一种或一种以上的任意比例的混合物;冷却的再生催化剂和冷却的半再生催化剂是待生催化剂分别经两段再生和一段再生后冷却得到的,再生催化剂碳含量为0.1重%以下,最好为0.05重%以下,半再生催化剂碳含量为0.1重%~0.9重%,最好碳含量为0.15重%~0.7重%。若设置取热器,则其高度占第二反应区高度的50%~90%。物流在该反应区停留时间可以较长,为2秒~30秒。
[0029] 出口区的结构类似于常规的等直径提升管反应器顶部出口部分,其直径与第一反应区的直径之比为0.8~1.5∶1,其高度占反应器总高度的0~20%。物流可在该区停留一定时间,以抑制过裂化反应和热裂化反应,提高流体流速。
[0030] 水平管的一端与出口区相连,另一端与沉降器相连;当出口区的高度为0即提升管反应器没有出口区时,水平管的一端与第二反应区相连,另一端与沉降器相连。水平管的作用是将反应生成的产物与待生催化剂输送至分离系统进行气固分离。其直径由本领域技术人员根据具体情况确定。预提升段的作用是在预提升介质的存在下,将再生后的催化剂进行提升,进入第一反应区。
[0031] 该方法适用的优质原料油可以是不同沸程的石油馏份。具体地说,优质原料油选自常压塔顶油、汽油、催化汽油、柴油、直馏蜡油、加氢蜡油中的一种或多种。
[0032] 该方法中的两个反应区可以适用所有同一类型的催化剂,既可以是无定型催化剂,也可以是沸石催化剂,沸石催化剂的活性组分选自Y型沸石、HY型沸石、超稳Y型沸石、ZSM-5系列沸石或具有五元环结构的高硅沸石、镁沸石中的一种或一种以上的任意比例的混合物,该沸石可以含稀土和/或磷,也可以不含稀土和磷。
[0033] 该方法中的两个反应区也可以适用不同类型催化剂,不同类型催化剂可以是颗粒大小不同的催化剂和/或表观堆积密度不同的催化剂。颗粒大小不同的催化剂和/或表观堆积密度不同的催化剂上活性组分分别选用不同类型沸石,沸石选自Y型沸石、HY型沸石、超稳Y型沸石、ZSM-5系列沸石或具有五元环结构的高硅沸石、镁碱沸石中的一种或一种以上的任意比例的混合物,该沸石可以含稀土和/或磷,也可以不含稀土和磷。大小不同颗粒的催化剂和/或高低表观堆积密度的催化剂可以分别进入不同的反应区,例如,含有超稳Y型沸石的大颗粒的催化剂进入第一反应区,增加裂化反应,含有稀土Y型沸石的小颗粒的催化剂进入第二反应区,增加氢转移反应,颗粒大小不同的催化剂在同一汽提器汽提和同一再生器再生,然后分离出大颗粒和小颗粒催化剂,小颗粒催化剂经冷却进入第二反应区。颗粒大小不同的催化剂是以30~40微米之间分界,表观堆积密度不同的催化剂是以3
0.6~0.7g/cm 之间分界。
[0034] 该方法适用的活性较低的催化剂是指催化剂活性在35~55,优选40~50。其可通过现有技术中的测量方法测量:企业标准RIPP 92-90--催化裂化的微反活性试验法《石油化工分析方法(RIPP试验方法)》,杨翠定等人,1990,下文简称为RIPP 92-90。所述催化剂活性是由轻油微反活性(MA)表示,其计算公式为MA=(产物中低于204℃的汽油产量+气体产量+焦炭产量)/进料总量*100%=产物中低于204℃的汽油产率+气体产率+焦炭产率。轻油微反装置(参照RIPP 92-90)的评价条件是:将催化剂破碎成直径为420~
841微米的颗粒,装量为5克,反应原料是馏程为235~337℃的直馏轻柴油,反应温度为-1
460℃,重量空速为16小时 ,剂油比为3.2。
[0035] 本发明的优点在于:
[0036] 1、如果采用常规的等直径提升管或流化床反应器来实施本发明,只需降低处理量,延长反应时间就可以实施。
[0037] 2、如果采用变径提升管反应器,该反应器的优点是既保留常规提升管反应器底部较高的反应温度和剂油比来增加一次裂化反应,同时抑制顶部的过裂化和热裂化反应,又在反应器中上部在较低的反应温度下延长反应时间,增加烯烃的异构化反应、氢转移反应。
[0038] 3、用本发明提供的方法可以增加汽油产率,提高汽油辛烷值。附图说明
[0039] 图1为新型提升管反应器的示意图,图中的a、b、c、d、e分别代表预提升段、第一反应区、第二反应区、出口区、水平管。
[0040] 图2是本发明的最佳实施方式的流程示意图。附图中各编号说明如下:
[0041] 1、3、4、6、11、13、17、18、20、21、22、23、24、25、26、27、28、29、30、31均代表管线;2为提升管的预提升段;5、7分别为提升管的第一反应区、第二反应区;8为提升管的出口区;9为沉降器,10为旋分离器,12为汽提器,14为待生斜管,15为再生器,16为再生斜管、19为分离系统。

具体实施方式

[0042] 本发明具有不同的实施方式。
[0043] 实施方式之一:
[0044] 在常规等直径提升管反应器的底部,预热的原料油与活性较低的热再生催化剂接触发生裂化反应,生成的油气和用过的催化剂上行与注入冷却的再生催化剂接触,随之发生异构化反应和氢转移反应,反应后流出物进入沉降器;分离反应产物,待生催化剂经汽提、再生后分为两部分,其中一部分进入该反应器底部,另一部分经降温后进入该反应器中下部。将反应产物中的柴油馏分切割为柴油轻馏分和柴油重馏分,柴油轻馏分返回本反应器或/和其他反应器进行进一步反应。
[0045] 实施方式之二:
[0046] 在常规等直径提升管反应器的底部,预热的原料油与活性较低的热再生催化剂接触发生裂化反应,生成的油气和用过的催化剂上行与注入冷激剂和冷却的半再生催化剂接触,随之发生异构化反应和氢转移反应,反应后流出物进入沉降器;分离反应产物,待生催化剂经汽提后,进入两段再生器中烧焦,从第一段再生器中出来的半再生催化剂经降温后进入该反应器中下部,从第二段再生器中出来的再生催化剂不经降温直接返回该反应器底部。将反应产物中的柴油馏分切割为柴油轻馏分和柴油重馏分,柴油轻馏分返回本反应器或/和其他反应器进行进一步反应。
[0047] 实施方式之三:
[0048] 对于具有常规提升管-流化床反应器的催化裂化装置,预热后的常规裂化原料从提升管的下部进入与活性较低的热再生催化剂接触,反应后生成的油气上行至提升管的顶部,与降温后的催化剂接触继续进行反应,反应后流出物进入沉降器;分离反应产物,待生催化剂经汽提、再生后分为两部分,其中一部分进入提升管的下部,另一部分经降温后进入提升管的顶部。将反应产物中的柴油馏分切割为柴油轻馏分和柴油重馏分,柴油轻馏分返回本反应器或/和其他反应器进行进一步反应。
[0049] 实施方式之四:
[0050] 该实施方式为本发明的最佳实施方式。
[0051] 对于具有新型变径提升管反应器的催化裂化装置,预热后的常规裂化原料从反应器的第一反应区下部进入与活性较低的热再生催化剂接触,发生裂化反应,反应后生成的油气上行至反应器的第二反应区下部与降温后的催化剂接触进行氢转移反应和异构化反应,反应后流出物进入沉降器;分离反应产物,待生催化剂经汽提、再生然后进入第二反应区下部。将反应产物中的柴油馏分切割为柴油轻馏分和柴油重馏分,柴油轻馏分返回本反应器或/和其他反应器进行进一步反应。
[0052] 本发明提供的方法并不局限于此。
[0053] 下面结合附图进一步说明本发明所提供的方法,但本发明并不因此而受到任何限制。
[0054] 图2是采用变径提升管反应器,提高液化气中的异丁烯和汽油烯烃含量的催化转化方法的流程,设备和管线的形状、尺寸不受附图的限制,而是根据具体情况确定。
[0055] 预提升蒸汽经管线1从提升管预提升段2进入,活性较低的热再生催化剂经再生斜管16进入提升管预提升段由预提升蒸汽进行提升。预热后的原料油经管线4与来自管线3的雾化蒸汽按一定比例从提升管预提升段进入,与热催化剂混合后进入第一反应区5内,在一定的条件下进行裂化反应。反应物流与来自管线6的冷激剂和/或冷却的催化剂(图中未标出)混合进入第二反应区7,进行二次反应,反应后的物流进入出口区8,该反应区提高物流的线速,使反应物流快速进入气固分离系统中的沉降器9、旋风分离器10,反应产物经管线11去分离系统19分离,得到干气经管线20引出,液化气经管线21引出,汽油馏分经管线22引出,柴油重馏分经管线24引出,回炼油馏分经管线25引出,油浆馏分经管线26引出,柴油轻馏分可依次经管线23、27引出。反应后带炭的待生催化剂进入汽提器12,经来自管线13的水蒸汽汽提后由待生斜管14进入再生器15,待生催化剂在来自管线17的空气中烧焦再生,烟气经管线18出再生器,热的再生催化剂经再生斜管16返回提升管底部循环使用。其中柴油轻馏分全部或部分依次经管线23、28和29与来自管线30的雾化蒸汽按一定比例注入提升管,或/和经管线32与来自管线33的雾化蒸汽按一定比例注入提升管,或/和经管线31和管线4与原料油共同注入提升管。
[0056] 下面的实施例将对本发明予以进一步说明,但并不因此而限制本发明。实施例、对比例中所使用的原料油和催化剂的性质分别列于表1和表2。表2中的催化剂均由中国石油化工集团公司齐鲁催化剂厂生产。表2中的ZCM-7催化剂经800℃,100%水蒸汽老化30小时,得到活性水平为45的ZCM-7;同样,表2中的CGP-1催化剂经800℃,100%水蒸汽老化30小时,得到活性水平为50的CGP-1。
[0057] 实施例1
[0058] 本实施例说明采用本发明提供的方法,采用不同活性水平的催化剂,在中型变径提升管反应器上提高液化气中异丁烯含量和汽油烯烃含量的情况。
[0059] 反应器的预提升段、第一反应区、第二反应区、出口区总高度为15米,预提升段直径为0.025米,其高度为1.5米;第一反应区直径为0.025米,其高度为4米;第二反应区直径为0.1米,其高度为6.5米;出口区的直径为0.025米,其高度为3米;第一、二反应区结合部位的纵剖面等腰梯形的顶角为45°;第二反应区与出口区结合部位的纵剖面等腰梯形的底角为60°。
[0060] 预热的表1所列的原料油A进入该反应器内,在水蒸汽存在下,与热的表2所列的催化剂ZCM-7接触反应,ZCM-7催化剂活性为45,分离反应产物得到液化气和汽油及其它产品,其中柴油轻馏分95%点为290℃,这部分馏分经图2中管线29注入提升管,雾化水蒸汽量为10%(占柴油轻馏分),待生催化剂经汽提进入再生器,再生催化剂经烧焦后循环使用。
[0061] 试验的操作条件、产品分布和汽油的性质列于表3。
[0062] 对比例1
[0063] 采用反应器类型和操作条件与实施例1完全相同,所用的原料油也是表1所列的原料油A,催化剂也是表2所列的催化剂ZCM-7,催化剂活性为45,只是此时柴油馏分不经切割直接作为产品引出。试验的操作条件、产品分布和汽油的性质列于表3。
[0064] 从表3可以看出,相对于无柴油轻馏分再裂化模式,采用柴油轻馏分再裂化模式(实施例1模式)时,汽油产率增加2.3个单位,研究法辛烷值(RON)增加了0.3个单位,马达法辛烷值(MON)增加了0.2个单位。
[0065] 实施例2
[0066] 本实施例说明采用本发明提供的方法,采用不同活性水平的催化剂,在中型变径提升管反应器上提高液化气中异丁烯含量和汽油烯烃含量的情况。
[0067] 反应器的预提升段、第一反应区、第二反应区、出口区总高度为15米,预提升段直径为0.025米,其高度为1.5米;第一反应区直径为0.025米,其高度为4米;第二反应区直径为0.1米,其高度为6.5米;出口区的直径为0.025米,其高度为3米;第一、二反应区结合部位的纵剖面等腰梯形的顶角为45°;第二反应区与出口区结合部位的纵剖面等腰梯形的底角为60°。
[0068] 预热的表1所列的原料油A进入该反应器内,在水蒸汽存在下,与热的表2所列的催化剂CGP-1接触反应,CGP-1催化剂活性为50,分离反应产物得到液化气和汽油及其它产品,其中柴油轻馏分95%点为270℃,这部分馏分经图2中管线29注入提升管,雾化水蒸汽量为10%(占柴油轻馏分),待生催化剂经汽提进入再生器,再生催化剂经烧焦后循环使用。
[0069] 试验的操作条件、产品分布和汽油的性质列于表4。
[0070] 对比例2
[0071] 采用反应器类型和操作条件与实施例2完全相同,所用的原料油也是表1所列的原料油A,催化剂也是表2所列的催化剂CGP-1,催化剂活性为50,只是此时柴油馏分不经切割直接作为产品引出。试验的操作条件、产品分布和汽油的性质列于表4。
[0072] 从表4可以看出,相对于无柴油轻馏分再裂化模式,采用柴油轻馏分再裂化模式(实施例2模式)时,汽油产率增加2.5个单位,RON增加了0.4个单位,MON增加了0.5个单位。
[0073] 表1
[0074]原料油编号 A
原料油名称 加氢蜡油
密度(20℃),千克/米3 899.3
运动粘度,毫米2/秒
80℃ 16.22
100℃ 9.29
残炭,重% 0.30
凝点,℃ 44
碱性氮,ppm 293
总氮,重% 0.08
硫,重% 0.12
碳,重% 87.01
氢,重% 12.85
馏程,℃
初馏点 284
10% 394
30% 433
50% 463
70% 495
90% /
终馏点 /
[0075] 表2
[0076]催化剂编号 A B
商品牌号 ZCM-7 CGP-1
沸石类型 USY REY-USY-ZRP
化学组成,重%
化铝 46.4 52.0
氧化钠 0.22 0.14
氧化 0.32 0.30
表观密度,千克/米3 600 740
孔体积,毫升/克 0.32 0.37
比表面积,米2/克 217 263
筛分组成,重%
0~40微米 16.1 20.3
40~80微米 54.1 /
>80微米 29.8 /
[0077] 表3
[0078]实施例1 对比例1
ZCM-7催化剂活性 45 45
反应温度,℃
第一反应区 550 550
第二反应区 500 500
停留时间,秒 5.5 5.5
第一反应区 2.0 2.0
第二反应区 3.5 3.5
剂油比 5.0 5.0
水油比 0.1 0.1
产品分布,重%
干气 1.5 1.4
液化气 17.6 17.3
其中异丁烯 2.0 2.0
汽油 57.3 55.0
柴油 14.9 17.8
重油 6.1 6.0
焦炭 2.6 2.5
合计 100.0 100.0
液体收率,重% 89.8 90.1
辛烷值
RON 91.3 91.0
MON 80.9 80.7
馏程,℃
初馏点~干点 38~200 38~200
族组成,重%
烷烃 39.8 40.5
环烷烃 7.5 7.3
烯烃 28.7 29.3
芳烃 24.0 22.9
[0079] 表4
[0080]实施例3 对比例2
CGP-1催化剂活性 50 50
反应温度,℃
第一反应区 550 550
第二反应区 504 505
剂油比 6.0 6.0
反应时间,秒 6.0 6.0
其中第一反应区 1.3 1.3
第二反应区 4.7 4.7
水油比 0.1 0.1
产品分布,重%
干气 1.9 1.8
液化气 28.9 28.5
其中丙烯 10.7 10.6
异丁烯 4.1 4.1
汽油 45.4 42.9
柴油 14.8 18.0
重油 6.5 6.5
焦炭 2.5 2.3
液体收率,重% 89.1 89.4
汽油辛烷值
RON 93.9 93.5
MON 82.0 81.5
馏程,℃
初馏点~干点 38~200 38~200
汽油族组成,重%
烷烃 34.8 35.9
环烷烃 7.7 7.6
烯烃 27.1 27.9
芳烃 30.4 28.6
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈