首页 / 专利库 / 引擎 / 发动机扭矩 / 具有DCT的混合动力车辆的换挡控制方法

具有DCT的混合动车辆的换挡控制方法

阅读:596发布:2023-03-09

专利汇可以提供具有DCT的混合动车辆的换挡控制方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种具有双离合 变速器 (DCT)的混合动 力 车辆的换挡控制方法,该方法涉及在DCT的 离合器 过热 时通过借助 双离合器 控制车辆的行驶来提高车辆的驾驶性能的技术。该种具有DCT的混合动力车辆的换挡控制方法,特别是,当在DCT的离合器中的一个离合器过热的情况下期望执行换挡时,使用非过热离合器和 发动机 离合器来执行双离合器换挡而不使用过热离合器,从而凭借换挡期间的较小 传动比 差而减少了不和谐的换挡,并且改善了换挡和驾驶性能。,下面是具有DCT的混合动车辆的换挡控制方法专利的具体信息内容。

1.一种具有DCT的混合动车辆的换挡控制方法,所述方法包括以下步骤:
通过控制器预测DCT的第一离合器和第二离合器的各自温度,以检测所述第一离合器和第二离合器当中的过热离合器;
当所述第一离合器和第二离合器中的一个离合器过热时,并且当由控制器接收到从与过热离合器相关联的挡位切换到与非过热离合器相关联的另一挡位的换挡指令时,通过所述控制器控制发动机离合器分离;
当由换挡齿轮形成的当前挡位与所述过热离合器相关联时,通过控制器控制该换挡齿轮分离;
在所述发动机离合器接合时,通过控制器控制所述非过热离合器接合。
2.根据权利要求1所述的换挡控制方法,其中,在控制所述发动机离合器的步骤之后,所述过热离合器被控制为保持在接合状态。
3.根据权利要求1所述的换挡控制方法,其中,在控制所述非过热离合器的步骤中,将所述发动机离合器的扭矩的增大梯度控制为大于所述非过热离合器的扭矩的增大梯度。
4.根据权利要求1所述的换挡控制方法,其中,
所述换挡指令是通过踩踏加速踏板而切换到高挡位或者低挡位的动力接通升挡指令或者动力接通降挡指令;
在控制所述发动机离合器的步骤中,限制驱动源的驱动扭矩;
在控制所述非过热离合器的步骤中,将对所述驱动源的驱动扭矩的限制控制为解除,以使得该驱动扭矩增大。
5.根据权利要求4所述的换挡控制方法,其中,在控制所述非过热离合器的步骤中,将所述驱动扭矩的增大梯度控制为在动力接通升挡中等于或小于所述非过热离合器的扭矩的增大梯度。
6.根据权利要求4所述的换挡控制方法,其中,控制所述非过热离合器的步骤包括:
将所述驱动扭矩的初始增大梯度控制为在动力接通降挡中大于所述非过热离合器的扭矩的增大梯度,并且等于或小于的所述发动机离合器的扭矩的增大梯度;
在控制所述驱动扭矩的初始增大梯度之后,控制驱动扭矩的增大梯度以跟随所述非过热离合器的扭矩的增大梯度。

说明书全文

具有DCT的混合动车辆的换挡控制方法

技术领域

[0001] 本发明涉及一种提高车辆的驾驶性能的用于具有双离合变速器(dual clutch transmission,DCT)的混合动力车辆的换挡控制方法。

背景技术

[0002] 本节中的陈述仅提供与本发明相关的背景信息,而并不构成现有技术
[0003] 与使用液力变矩器和湿式多片离合器的典型自动变速器不同,由于DCT使用干式离合器来传输发动机扭矩,所以在由离合器打滑所引起的加热期间,DCT难以被空气冷却。
[0004] 因此,当DCT的温度升高时,由于摩擦材料的摩擦性能显著地下降,DCT无法有效地传输动力。在这种情况下,当离合器打滑持续发生时,DCT的离合器很容易磨损(即损坏),从而可能发生离合器的故障。
[0005] 在相关技术中,已经使用了所谓的跛行(limp-home)控制来防止离合器过热。在跛行模式中,预测离合器的温度以确定离合器的过热。当确定离合器过热时,执行“奇数到奇数”或“偶数到偶数”的驱动控制,即单离合器驱动。这种单离合器驱动并不控制提供有过热离合器的输入轴中的挡位。
[0006] 但是,人们发现,在跛行控制下的驾驶模式中,在切换到高挡位或低挡位期间,由于以较大的传动比换挡,因此单离合器驱动引起较大动力的切断,使得由单离合器驱动的驱动性能远远低于由使用两个离合器一起执行换挡的双离合器驱动所提供的驱动性能。人们进一步发现,在奇数到奇数的换挡过程中,单离合器驱动将不会提供反向驱动。

发明内容

[0007] 本发明提出了一种用于配备有DCT的混合动力车辆的换挡控制方法,以便在离合器DCT过热的情况下也能通过双离合器而非单离合器的方式来正常地控制车辆的行驶,从而提高了车辆的驾驶性能。
[0008] 在本发明的一个方面中,一种用于具有DCT的混合动力车辆的换挡控制方法可以包括以下步骤:通过控制器预测DCT的第一离合器和第二离合器的各自温度,以检测第一离合器和第二离合器当中的过热离合器;当所述第一离合器和所述第二离合器中的一个离合器过热时,并且当由控制器接收到从与过热离合器相关联的挡位切换到与非过热离合器相关联的另一挡位的换挡指令时,通过所述控制器来控制发动机离合器分离;当由换挡齿轮形成的当前挡位与所述过热离合器相关联时,通过所述控制器控制所述换挡齿轮的分离;并且在所述发动机离合器接合的时候通过控制器控制所述非过热离合器接合。
[0009] 在控制所述发动机离合器的步骤之后,可以控制过热离合器以使其保持在接合状态。
[0010] 在控制所述非过热离合器的步骤中,所述发动机离合器的扭矩的增大梯度可以被控制为大于非过热离合器的扭矩的增大梯度。
[0011] 换挡指令可以是通过踩踏加速踏板切换到高挡位或低挡位的动力接通升挡指令或动力接通降挡指令,在控制所述发动机离合器的步骤中可以限制驱动源的驱动扭矩,并且在控制所述非过热离合器的步骤中,可以控制解除对驱动源的驱动扭矩的限制,从而增大该驱动扭矩。
[0012] 在控制所述非过热离合器的步骤中,在动力接通升挡时驱动扭矩的增大梯度可以被控制为等于或小于非过热离合器的扭矩的增大梯度。
[0013] 控制所述非过热离合器的步骤可以包括:在动力接通降挡时将驱动扭矩的初始增大梯度控制为大于非过热离合器的扭矩的增大梯度并且等于或小于发动机离合器的扭矩的增大梯度,并且在控制所述驱动扭矩的初始增大梯度之后,控制所述驱动扭矩的增大梯度以跟随所述非过热离合器的扭矩的增大梯度。
[0014] 从上面的描述可以明显看出,当在DCT的两个离合器中的一个离合器过热的状态下而期望执行换挡时,使用非过热离合器和发动机离合器进行双离合器换挡而不使用过热离合器,由此凭借换挡期间的较小传动比差来减少不和谐的换挡。因此,本发明具有改善换挡和驾驶性能的效果,并且有利的是,即使在偶数侧离合器过热而无法将扭矩传递到倒挡齿轮的情况下也能够实施倒挡。此外,根据本文提供的描述,适用的领域将变得显而易见。应该理解的是,说明书和具体示例仅用于说明的目的,而并不旨在限制本发明的范围。
附图说明
[0015] 为了能够很好地理解本发明,现在将参考附图通过举例的方式给出其中各种形式的描述,其中:
[0016] 图1为示出了适用于本发明的具有DCT的混合动力车辆的动力传动系的结构示意图;
[0017] 图2为用于说明本发明的一种形式的具有DCT的混合动力车辆的换挡控制方法的流程图
[0018] 图3为用于说明本发明的一种形式的在动力接通升挡期间的驱动源和离合器的操作状态的示意图;以及
[0019] 图4为用于说明本发明的一种形式的在动力接通降挡期间的驱动源和离合器的操作状态的示意图。
[0020] 本文所描述的附图仅用于说明的目的,而并不旨在以任何方式限制本发明的范围。

具体实施方式

[0021] 以下描述本质上仅是示例性的,而并不旨在限制本发明、应用或用途。应该理解的是,在整个附图中,相应的附图标记表示相同或相应的部分和特征。
[0022] 如图1所示,本发明适用于具有DCT的混合动力车辆。
[0023] 参照图1,该种具有DCT的车辆可以包括:DCT的奇数侧离合器CL1和偶数侧离合器CL2;用于使离合器接合和分离的奇数侧离合器执行器CLA1和偶数侧离合器执行器CLA2;设置有奇数侧离合器的输入轴INPUT1;和设置有偶数侧离合器的输入轴INPUT2。
[0024] 另外,所述车辆还可以包括:分别由附图标记GA1和GA2表示的奇数侧齿轮执行器和偶数侧齿轮执行器,所述奇数侧齿轮执行器用于接合和分离奇数侧齿轮;所述偶数侧齿轮执行器用于接合和分离偶数侧齿轮。
[0025] 在本发明的一种形式中,一种具有DCT的混合动力车辆的换挡控制方法可以包括:过热离合器检测步骤、发动机离合器分离步骤、齿轮分离步骤和离合器接合步骤。
[0026] 下面将参照图2详细描述该种换挡控制方法。首先,在过热离合器检测步骤中,控制器可以预测DCT的两个离合器的温度,以检测这两个离合器中的过热离合器。控制器可以通过由设定程序操作的至少一个处理器来实现,其中,所述设定程序包括用于执行将在下面描述的根据本发明的控制方法中所包括的每个步骤的一系列指令。
[0027] 可以使用在车辆行驶的时候输入到发动机、变速器和其它的车辆控制器的信号来预测离合器的温度,并且特别是可以使用用于计算离合器的温度变化的各种因素来预测离合器的温度,所述因素例如为车辆速度、打滑量、打滑的变化、打滑的累积时间以及离合器热容量。
[0028] 在发动机离合器分离步骤中,当两个离合器CL1、CL2中的一个离合器过热时,并且当接收到用于将扭矩从过热离合器转换至非过热离合器的切换指令时,控制器可以控制发动机离合器分离。当离合器的温度超过参考过热温度时,则确定离合器过热。
[0029] 更详细地说,当形成当前具体挡位的一个离合器处于过热状态并且期望通过非过热离合器执行换挡到比当前具体挡位高一挡或者低一挡的挡位时,可通过离合器执行器(所述离合器执行器操作发动机离合器)的操作来减小发动机离合器扭矩,从而使发动机离合器分离。
[0030] 在这种情况下,在发动机离合器分离步骤之后,过热离合器被控制为保持在接合状态,从而抑制过热离合器的打滑的发生,并且由此防止过热离合器的温度的额外增大。
[0031] 在齿轮分离步骤中,控制器可以控制通过过热离合器形成当前挡位的换挡齿轮分离。
[0032] 例如,在过热离合器是奇数侧的离合器并且由过热离合器形成的当前挡位为第三挡位的情况下,通过奇数侧的齿轮执行器的操作可以使第三挡位分离。在这种情况下,期望的挡位可以是第二挡位或第四挡位,并且在当前的挡位分离之前,期望的挡位可以根据先前的挡位接合的控制而处于已经接合的状态。
[0033] 在离合器接合步骤中,控制器控制将要接合的非过热离合器,同时接合发动机离合器。
[0034] 例如,在离合器接合步骤中,发动机离合器的扭矩的增大梯度(即,以一定程度增大的斜率)可以被控制成大于非过热离合器的增大梯度,以使得发动机离合器比非过热离合器接合得更快。
[0035] 同时,发动机离合器分离步骤中的换挡指令可以是通过踩下加速器踏板而切换到高挡的动力接通升挡指令,或者是通过踩下加速器踏板而切换到低挡的动力接通降挡指令。
[0036] 因此,当根据驾驶员的加速意图而期望切换到高挡或低挡时,可以在发动机离合器分离步骤中将驱动源的驱动扭矩控制为受限。
[0037] 例如,在本发明中,在驱动源中可以使用发动机和电机,并且因此可以将发动机扭矩和电机扭矩控制为受限。
[0038] 另外,当在加速期间期望换挡时,通过在离合器接合步骤中解除对驱动扭矩的限制,可以控制驱动源的驱动扭矩增大。也就是说,可以通过增大发动机扭矩或电机扭矩来增大驱动扭矩。
[0039] 同时,在动力接通升挡的情况下,驱动扭矩的增大梯度可以被控制为等于或小于离合器接合步骤中的非过热离合器的扭矩的增大梯度。
[0040] 也就是说,通过将驱动扭矩的增大梯度控制为等于或小于偶数侧离合器的扭矩的增大梯度,可以将发动机的转速控制为同步成快于实际换挡区段中的偶数侧离合器的转速,从而改善了换挡响应,如图3所示。
[0041] 另外,离合器接合步骤可以包括第一驱动扭矩控制步骤和第二驱动扭矩控制步骤,在所述第一驱动扭矩控制步骤中,在动力接通升挡期间,驱动扭矩的初始增大梯度被控制为大于非过热离合器的扭矩的增大梯度,并且等于或者小于发动机离合器的扭矩的增大梯度,在所述第二驱动扭矩控制步骤中,驱动扭矩的增大梯度被控制为跟随非过热离合器的扭矩的增大梯度。
[0042] 也就是说,通过将驱动扭矩的增大梯度控制为等于或大于非过热离合器的扭矩的增大梯度,可以将发动机的转速控制为瞬间增大并且同步为比实际换挡的初始区段中的偶数侧离合器的转速更快,从而改善了换挡响应,如图4所示。
[0043] 然而,驱动扭矩的初始增大梯度被控制为等于或小于发动机离合器的扭矩的增大梯度,以便根据实际换挡的初始区段中的发动机离合器的接合来减小冲击。
[0044] 在实际换挡的初始区段之后的区段中,将驱动扭矩的增大梯度控制为逐渐跟随非过热离合器的扭矩的增大梯度,结果是发动机的转速被控制为与实际换挡区段结束时的偶数侧离合器的转速平稳地同步,从而抑制车辆的换挡冲击。
[0045] 以下将参照图2和图3来描述根据本发明的形式的动力接通升挡的控制过程。在该控制过程中,在车辆行驶期间预测和计算连接到DCT的两个输入轴的各个离合器的温度(S10)。
[0046] 当根据上述预测来确定奇数侧离合器高于参考过热温度并且处于过热状态(S20),并且在该状态下,根据驾驶者的加速意图输入了从作为奇数挡位的N挡位动力接通升挡到作为偶数挡位的N+1挡位的换挡指令时(S30),使发动机离合器分离同时限制发动机扭矩和电机扭矩(S40)。
[0047] 接下来,确定发动机扭矩和电机扭矩是否达到零(即“0”)Nm(S50),并且当它们达到0Nm时,使N挡位分离(S60)。在这种情况下,奇数侧离合器保持在接合状态,而不分离。
[0048] 在作为非过热离合器的偶数侧离合器接合的时候,发动机离合器接合,从而挡位切换到N+1挡位。同时,解除对发动机和电机扭矩的限制,以使得将驱动扭矩经由偶数侧离合器和N+1挡位传输到输出轴(S70)。
[0049] 以下将参照图2和图4来描述根据本发明的形式的动力接通降挡的控制过程。在该控制过程中,在车辆行驶期间预测和计算连接到DCT的两个输入轴的各个离合器的温度(S10)。
[0050] 当根据上述预测确定奇数侧离合器高于参考过热温度并处于过热状态时(S20),并且在该状态下,根据驾驶者的加速意图输入了从作为奇数挡位的N挡位动力接通降挡到作为偶数挡位的N-1挡位的换挡指令时(S30),使发动机离合器分离同时限制发动机扭矩和电机扭矩(S40)。
[0051] 接下来,确定发动机扭矩和电机扭矩是否达到0Nm(S50),并且当它们达到0Nm时,使N挡位分离(S60)。在这种情况下,奇数侧离合器保持在接合状态,而不分离。
[0052] 在作为非过热离合器的偶数侧离合器接合的时候,发动机离合器接合,从而挡位切换到N-1挡位。同时,解除对发动机和电机扭矩的限制,以使得将驱动扭矩经由偶数侧离合器和N-1挡位传输到输出轴(S70)。
[0053] 如上所述,当在DCT的两个离合器中的一个离合器过热的状态下期望执行换挡时,使用非过热离合器和发动机离合器进行双离合器换挡而不使用过热离合器,由此凭借换挡期间的较小传动比差来减少不和谐的换挡,并因此改善了换挡和驾驶性能。
[0054] 另外,本发明的优点在于,即使在偶数侧离合器过热而无法将扭矩传递到倒挡齿轮的情况下也能够实施倒挡。
[0055] 虽然出于说明的目的已经公开了本发明的示例性形式,但是本领域技术人员应当理解,在不脱离本发明的范围和精神的情况下,可以进行各种修改、添加和替换。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈