首页 / 专利库 / 铁路轨道 / 道砟 / 一种针对铁路振动源的减隔振模型试验装置

一种针对路振动源的减隔振模型试验装置

阅读:528发布:2021-12-07

专利汇可以提供一种针对路振动源的减隔振模型试验装置专利检索,专利查询,专利分析的服务。并且本 发明 提供了一种针对 铁 路振动源的减隔振模型试验装置,包括试验箱、箱内土体、隔振屏障、 数据采集 装置、荷载施加装置,隔振屏障设置在土体内部及表面,用于评价隔振效果;数据采集装置设置在土体内部及表面,用于采集振动 信号 ,并将采集的数据传输至荷载施加装置;荷载施加装置包括模拟振动装置以及控制装置,模拟振动装置设置在土体上方,用于实现移动荷载的模拟,控制装置设置在 箱体 外部,用于控 制模 拟振动装置动作,显示并储存收集到的数据。本发明采用闭环PID控制,可以精确控制激振 力 的输出;采用电磁式激振器作为激励装置,可提供较宽 频率 范围的振动 激励信号 ;使用无线振动 传感器 ,测量土体内部振动时可避免线路对试验的影响。,下面是一种针对路振动源的减隔振模型试验装置专利的具体信息内容。

1.一种针对路振动源的减隔振模型试验装置,其特征在于:包括试验箱、箱内土体、隔振屏障、数据采集装置、以及荷载施加装置,
所述隔振屏障设置在土体内部及表面,用于评价隔振效果;
所述数据采集装置设置在土体内部及表面,用于采集振动信号,并将采集的数据传输至荷载施加装置;
所述荷载施加装置包括模拟振动装置以及控制装置,模拟振动装置设置在土体上方,用于实现移动荷载的模拟,控制装置设置在箱体外部,用于控制模拟振动装置动作,显示并储存收集到的数据。
2.根据权利要求1所述的一种针对铁路振动源的减隔振模型试验装置,其特征在于:所述试验箱包括外部箱体、内部箱体、弹簧系统和橡胶衬垫,所述内部箱体通过弹簧系统和外部箱体连接,所述外部箱体坐落在橡胶衬垫上。
3.根据权利要求2所述的一种针对铁路振动源的减隔振模型试验装置,其特征在于:所述内部箱体是由四片内箱侧板和一片内箱底板组成无盖箱体,材质为泡沫板材,所述外部箱体由外箱侧板、外箱底板和外箱肋板组成无盖箱体,材质为,所述外箱底板尺寸大于所述外箱侧板的轮廓,所述外箱肋板与底板和侧板均垂直。
4.根据权利要求2所述的一种针对铁路振动源的减隔振模型试验装置,其特征在于:所述弹簧系统包括数量众多的弹簧单元体,所述弹簧单元体均匀分布在内部箱体与外部箱体相对应的四个侧面空间和一个底面空间内。
5.根据权利要求4所述的一种针对铁路振动源的减隔振模型试验装置,其特征在于:所述弹簧单元体包括橡胶顶座、弹簧和弹簧螺栓,所述橡胶顶座设置在所述内部箱体与所述弹簧之间,所述弹簧通过所述弹簧螺栓固定在外部箱体上,弹簧与内部箱体之间的连接为普通接触
6.根据权利要求1所述的一种针对铁路振动源的减隔振模型试验装置,其特征在于:所述荷载施加装置包括电脑、控制机柜和激振模,所述电脑连接所述控制机柜,控制所述激振模块产生振动模拟列车振动,采用多组激振模块顺次激振来实现移动荷载的模拟,通过采用闭环控制和电磁式激振器的方法来实现激振和激振频率的双控。
7.根据权利要求6所述的一种针对铁路振动源的减隔振模型试验装置,其特征在于:所述激振模块包括电磁激振器、盒式力传感器、加载横梁和轨道;
所述电磁激振器外壳侧壁开有两个相对的螺栓孔;
所述轨道包括铁轨、轨枕、扣件和道砟
所述加载横梁包括一只加载梁横板、两只加载梁竖板和四只防脱套板,所述两只竖板相互平行,位于加载梁横板上表面,所述竖板垂直于横板并关于横板中心对称,所述加载梁竖板侧壁开孔,设有固定螺栓,可以与电磁激振器外壳上的螺栓孔连接来固定电磁激振器,所述四只防脱套板两两相对,位于加载梁横板下表面两端,所述防脱套版内侧与铁轨侧面形状相吻合,可以夹持两条铁轨使加载横梁座落在铁轨上,所述防脱套侧面开孔设有定位螺栓,起加载横梁在铁轨上的定位作用;
所述盒式力传感器置于电磁激振器的触头圆盘和加载梁横板之间,固定在加载梁横板上用来采集激振力的大小。
8.根据权利要求6所述的一种针对铁路振动源的减隔振模型试验装置,其特征在于:所述控制机柜内部集成并连接伺服控制器、功率放大器、电荷放大器和动态电阻应变仪,所述伺服控制器为PLC,采用PID控制。
9.根据权利要求6所述的一种针对铁路振动源的减隔振模型试验装置,其特征在于:所述数据采集装置包括无线振动传感器和通讯连接器,所述通讯连接器位于控制机柜内部,所述无线振动传感器可布设与土体表面也可以布置在土体内部,可以实现对XYZ三的方向振动信号的采集;所述无线振动传感器采集到振动信号后,通过LORA传输方式将信号传递给所述通讯连接器,所述通讯连接器将信号处理后传递给电脑进行显示和储存。
10.一种针对铁路振动源的减隔振模型试验方法,其特征在于:包括如下步骤:
(1)根据试验要求预先设置所需埋设的传感器的位置和数量、屏障的位置数量以及轨道位置所需激振器的数量;
(2)在试验箱内部从下往上依次填土,填土过程中埋设土体内部振动传感器和隔振屏障,待箱内土体填到表层后,布置表层振动传感器并组装符合试验需求的轨道和电磁激振器;
(3)打开荷载加载装置,设定激振力大小、频率和相邻激振器的起振间隔,待激振力输出稳定后,启动数据采集装置,通过振动传感器收集土体中各位置处的振动信号,采集完成后,储存实验数据,关闭加载和采集装置;
(4)更改屏障及土体工况设置,重复上一步采集并储存试验数据,直至完成所有工况;
(5)回收电磁激振器、轨道及土体表层及内部的振动传感器,回收模型屏障,回收箱内土体,试验完成。

说明书全文

一种针对路振动源的减隔振模型试验装置

技术领域

[0001] 本发明属于土工模型试验装置领域,尤其是涉及一种针对铁路振动源的减隔振模型试验装置。

背景技术

[0002] 我国正处于轨道交通快速发展的时期,尤其是以高速铁路为代表的中国轨道交通建设正在如火如荼的开展中。然而,伴随着轨道交通基础设施的建设和运营,由列车运行引
起的环境振动问题也日益凸显。
[0003] 从岩土工程的专业度来看,针对上述工程问题有如下三种研究方法:有限元方法、现场试验法及模型试验法。其中,有限元方法存在参数选取可靠程度对计算结果影响巨
大的问题,而现场试验所需人物力及试验费用较高。因此,亟需一套完整的室内模型试验
装置来完成相关科研任务。
[0004] 所谓完整的室内模型试验装置,应该包含如下几个部分:振动荷载加载装置、振动数据采集装置、试验用土体和隔振屏障模型、试验箱。同时,需解决以下几方面的问题:(1)
振动荷载移动施荷的实现;(2)振动荷载同时实现精确控制激振力和高频率施荷;(3)试验
箱体对振动波的边界效应;(4)土体内部振动数据的精确采集。
[0005] 上述构件组成的设计和关键技术问题的解决对于针对振动铁路振动源的减隔振模型试验装置来说就有重大意义。

发明内容

[0006] 有鉴于此,本发明旨在提出采用闭环控制和无线振动采集的室内模型试验装置。该装置可对激振力的大小和频率实现双控,可模拟列车移动荷载,可有效解决土体边界反
射问题,同时可准确采集土体表面及内部的振动数据。
[0007] 为达到上述目的,本发明的技术方案是这样实现的:
[0008] 一种针对铁路振动源的减隔振模型试验装置,包括试验箱、箱内土体、隔振屏障、数据采集装置、以及荷载施加装置,
[0009] 所述隔振屏障设置在土体内部及表面,用于评价隔振效果;
[0010] 所述数据采集装置设置在土体内部及表面,用于采集振动信号,并将采集的数据传输至荷载施加装置;
[0011] 所述荷载施加装置包括模拟振动装置以及控制装置,模拟振动装置设置在土体上方,用于实现移动荷载的模拟,控制装置设置在箱体外部,用于控制模拟振动装置动作,显
示并储存收集到的数据。
[0012] 进一步的,所述试验箱包括外部箱体、内部箱体、弹簧系统和橡胶衬垫,所述内部箱体通过弹簧系统和外部箱体连接,所述外部箱体坐落在橡胶衬垫上。
[0013] 进一步的,所述内部箱体是由四片内箱侧板和一片内箱底板组成无盖箱体,材质为泡沫板材,所述外部箱体由外箱侧板、外箱底板和外箱肋板组成无盖箱体,材质为
所述外箱底板尺寸大于所述外箱侧板的轮廓,所述外箱肋板与底板和侧板均垂直。
[0014] 进一步的,所述弹簧系统包括数量众多的弹簧单元体,所述弹簧单元体均匀分布在内部箱体与外部箱体相对应的四个侧面空间和一个底面空间内。
[0015] 进一步的,所述弹簧单元体包括橡胶顶座、弹簧和弹簧螺栓,所述橡胶顶座设置在所述内部箱体与所述弹簧之间,所述弹簧通过所述弹簧螺栓固定在外部箱体上,弹簧与内
部箱体之间的连接为普通接触
[0016] 进一步的,所述荷载施加装置包括电脑、控制机柜和激振模,所述电脑连接所述控制机柜,控制所述激振模块产生振动模拟列车振动,采用多组激振模块顺次激振来实现
移动荷载的模拟,通过采用闭环控制和电磁式激振器的方法来实现激振力和激振频率的双
控。
[0017] 进一步的,所述激振模块包括电磁激振器、盒式力传感器、加载横梁和轨道;
[0018] 所述电磁激振器外壳侧壁开有两个相对的螺栓孔;
[0019] 所述轨道包括铁轨、轨枕、扣件和道砟
[0020] 所述加载横梁包括一只加载梁横板、两只加载梁竖板和四只防脱套板,所述两只竖板相互平行,位于加载梁横板上表面,所述竖板垂直于横板并关于横板中心对称,所述加
载梁竖板侧壁开孔,设有固定螺栓,可以与电磁激振器外壳上的螺栓孔连接来固定电磁激
振器,所述四只防脱套板两两相对,位于加载梁横板下表面两端,所述防脱套版内侧与铁轨
侧面形状相吻合,可以夹持两条铁轨使加载横梁座落在铁轨上,所述防脱套侧面开孔设有
定位螺栓,起加载横梁在铁轨上的定位作用;
[0021] 所述盒式力传感器置于电磁激振器的触头圆盘和加载梁横板之间,固定在加载梁横板上用来采集激振力的大小。
[0022] 进一步的,所述轨道用来模拟真实的铁路轨道,尺寸由缩尺比例确定,根据试验需要,可在同一条轨道上设置多组激振器和加载横梁,通过设定不同的起振时间来模拟列车
移动荷载。
[0023] 进一步的,所述控制机柜内部集成并连接伺服控制器、功率放大器、电荷放大器和动态电阻应变仪,所述伺服控制器为PLC,采用PID控制。
[0024] 进一步的,所述数据采集装置包括无线振动传感器和通讯连接器,所述通讯连接器位于控制机柜内部,所述无线振动传感器可布设与土体表面也可以布置在土体内部,可
以实现对XYZ三的方向振动信号的采集;所述无线振动传感器采集到振动信号后,通过LORA
传输方式将信号传递给所述通讯连接器,所述通讯连接器将信号处理后传递给电脑进行显
示和储存。
[0025] 本发明的另一目的在于提出一种针对铁路振动源的减隔振模型试验方法,包括如下步骤:
[0026] (1)根据试验要求预先设置所需埋设的传感器的位置和数量、屏障的位置数量以及轨道位置所需激振器的数量;
[0027] (2)在试验箱内部从下往上依次填土,填土过程中埋设土体内部振动传感器和隔振屏障,待箱内土体填到表层后,布置表层振动传感器并组装符合试验需求的轨道和电磁
激振器;
[0028] (3)打开荷载加载装置,设定激振力大小、频率和相邻激振器的起振间隔,待激振力输出稳定后,启动数据采集装置,通过振动传感器收集土体中各位置处的振动信号,采集
完成后,储存实验数据,关闭加载和采集装置;
[0029] (4)更改屏障及土体工况设置,重复上一步采集并储存试验数据,直至完成所有工况;
[0030] (5)回收电磁激振器、轨道及土体表层及内部的振动传感器,回收模型屏障,回收箱内土体,试验完成。
[0031] 相对于现有技术,本发明所述的一种针对铁路振动源的减隔振模型试验装置具有以下优势:
[0032] (1)本发明采用闭环PID控制,可以精确控制激振力的输出。
[0033] (2)本发明采用电磁式激振器作为激励装置,可提供包括中低高频在内的较宽频率范围的振动激励信号
[0034] (3)本发明可以实现列车移动荷载的模拟。
[0035] (4)本发明试验箱为减振吸能试验箱,可有效避免普通试验箱边界效应问题。
[0036] (5)本发明使用无线振动传感器,测量土体内部振动时可避免线路对试验的影响。附图说明
[0037] 构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
[0038] 图1为本发明实施例所述的试验装置整体示意图;
[0039] 图2为本发明实施例所述的试验箱的示意图;
[0040] 图3为本发明实施例所述的试验箱剖面示意图;
[0041] 图4为本发明实施例所述的试验箱弹簧系统的示意图;
[0042] 图5为本发明实施例所述的隔振屏障的示意图;
[0043] 图6为本发明实施例所述的荷载加载装置和数据采集装置的示意图;
[0044] 图7为本发明实施例所述的单位激振模块的示意图;
[0045] 图8为本发明实施例所述的加载梁构造示意图;
[0046] 图9为本发明实施例所述的电磁激振器构造示意图;
[0047] 图10为本发明实施例所述的电磁激振器工作原理示意图;
[0048] 图11为本发明实施例所述的移动荷载模拟示意图;
[0049] 图12为本发明实施例所述的原理逻辑关系图;
[0050] 图13为本发明实施例所述的试验布局样例示意图;
[0051] 图14为本发明实施例所述的轨道结构示意图。
[0052] 附图标记说明:
[0053] 1-试验箱;11-外部箱体;12-内部箱体;13-弹簧系统;14-橡胶衬垫;111-外箱侧板;112-外箱底板;113-外箱肋板;121-内箱侧板;122-内箱底板;131-橡胶顶座;132-弹簧;
133-弹簧螺栓;134-弹簧单元体;2-箱内土体;3-隔振屏障;31-波阻块;32-板墙;33-方截面桩;34-圆截面桩;35-环截面空心桩;4-数据采集装置;41-无线振动传感器;42-通讯连接
器;5-荷载施加装置;51-电脑;52-控制机柜;521-伺服控制器;522-功率放大器;523-电荷
放大器;524-动态电阻应变仪;53-激振模块;531-电磁激振器;532-盒式力传感器;533-加
载横梁;534-轨道;5311-触头圆盘;5312-连杆;5313-衔铁;5314-激振器外壳;5315-复位弹簧;5316-铁芯;5317-线圈;5318-整流原件;5319-激振器封底;5320-螺栓孔;5331-加载梁
横板;5332-加载梁竖板;5333-固定螺栓;5334-防脱套板;5335-定位螺栓;5341-铁轨;
5342-轨枕;5343-扣件;5344-道砟。

具体实施方式

[0054] 需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
[0055] 在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对
本发明的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”
的含义是两个或两个以上。
[0056] 在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语
在本发明中的具体含义。
[0057] 下面将参考附图并结合实施例来详细说明本发明。
[0058] 如图1-14所示,本实施例包括试验箱1、箱内土体2、隔振屏障3、数据采集装置4和荷载施加装置5,模型试验的缩尺比例、箱内土体类别、隔振屏障的型号等参数根据试验需
求确定。
[0059] 具体的,试验箱1由外部箱体11、内部箱体12、弹簧系统13和橡胶衬垫14组成,内部箱体12通过弹簧系统13和外部箱体11连接,外部箱体11坐落在橡胶衬垫14上。
[0060] 具体的,内部箱体12是由四片内箱侧板121和一片内箱底板122组成无盖箱体。为了防止土体边界的振动反射,箱体材料使用具有减振吸能功效的泡沫铝板材。为了使内部
箱体具有一定的承载力,泡沫铝板材应具有一定的厚度。
[0061] 具体的,外部箱体11由外箱侧板111、外箱底板112和外箱肋板113组成的无盖钢制箱体。外箱底板112尺寸大于四片外箱侧板111的轮廓尺寸,外箱肋板113与底板和侧板均垂
直,肋板数量取决于箱体尺寸。
[0062] 具体的,外部箱体11与内部箱体12连接所使用的弹簧系统13由数量众多的弹簧单元体134组成。弹簧单元体134均匀分布在内箱与外箱相对应的四个侧面空间和一个底面空
间内,且每个空间内设置的弹簧单元体的数量应通过计算确定。通常来讲,底面空间内应使
用强力弹簧,以确保内部箱体12内填满试验用土体2后底部弹簧单元体依然具备弹性活动
能力。
[0063] 具体的,弹簧单元体134由橡胶顶座131、弹簧132和弹簧螺栓133组成。橡胶顶座131设置在内部箱体12与弹簧132之间,用来扩散应力,防止弹簧损坏泡沫铝板材。弹簧132
通过弹簧螺栓133固定在外部箱体11上,弹簧132与内部箱体12之间为普通接触。
[0064] 具体的,橡胶衬垫14的平面尺寸大于外箱底板112,橡胶衬垫14应具备一定的厚度,材料选用氯丁橡胶。橡胶衬垫14的作用是:减振吸能和防滑缓冲。
[0065] 具体的,箱内土体2根据试验需求确定。土的种类可以是普通土,如砂土、黏土、粉质黏土等,也可以是不良地质土体,如盐渍土、高原冻土等;土的物理化学性质,如含水率、
密度、含盐量等依据试验工况确定;土层可以是均匀土,也可以是分层土,分界面的形式根
据试验要求的不同而存在差异。
[0066] 具体的,常见的工程隔振屏障的类型有:波阻块31、板墙32、方截面桩33、圆截面桩34以及环截面空心桩35等。
[0067] 具体的,荷载施加装置5由电脑51、控制机柜52和激振模块53组成。由电脑51连接控制机柜52控制激振模块53产生振动模拟列车振动,采用多组激振模块53顺次激振来实现
移动荷载的模拟,通过采用闭环控制和电磁式激振器的方法来实现激振力和激振频率的双
控。
[0068] 具体的,电脑51的作用是显示、存储和控制,电脑51通过编程语言开发应用程序发出工作指令,同时显示并储存收集到的数据。
[0069] 具体的,激振模块53由电磁激振器531、盒式力传感器532、加载横梁533和轨道534组成。
[0070] 具体的,电磁激振器531可以输出包括低、中、高频在内的较宽频率范围的振动,通过使用电磁激振器531可以实现激振频率的控制。
[0071] 具体的,电磁激振器531由激振器外壳5314、激振器封底5319、触头圆盘5311、连杆5312、衔铁5313、复位弹簧5313、铁芯5316、线圈5317和整流元件5318组成。激振器外壳5314
具有较大质量,为圆柱形空心无底形状,侧壁开有两个相对的螺栓孔5320。激振器封底5319
为中心开孔的圆盘,位于激振器外壳5314底部内壁处。连杆5312穿过激振器封底5319的中
心孔,分别连接位于激振器外部的触头圆盘5311和位于激振器内部的衔铁5313。触头圆盘
5311是激振器施加激振力的作用器件。在激振器内部,衔铁5313通过复位弹簧5315与激振
器外壳5314连接。铁芯5316固定在激振器外壳顶盖内侧,位于衔铁5313上方。导线穿过激振
器外壳顶盖,缠绕在铁芯5316上形成线圈5317,构成电磁铁。电磁式激振器531通过到导线
接通电源,通过整流原件5318调制信号。
[0072] 具体的,激振器工作原理见图10。当电源接通后,电流经整流原件5318整流,只有正半周电流通过,此时在铁芯与衔铁之间产生一个脉冲电磁力,衔铁、连杆和触头圆盘整体
向上移动,弹簧被压缩。而在负半周时,电磁力消失,衔铁、连杆和触头圆盘整体向下移动复
位。周而复始,圆盘触头5311就可实现上下垂直运动,实现激振力的施加。
[0073] 具体的,加载横梁由一只加载梁横板5331、两只加载梁竖板5332和四只防脱套板5334组成。两只竖板相互平行,位于加载梁横板上表面。竖板垂直于横板,并关于横板中心
对称。加载梁竖板5332侧壁开孔,设有固定螺栓5333。两只固定螺栓与激振器外壳5314上的
螺栓孔5320连接,使激振器固定在加载横梁上。四只防脱套板5334两两相对,位于加载梁横
板下表面两端。防脱套版5334内侧与铁轨侧面形状相吻合,可以夹持两条铁轨使加载横梁
533座落在铁轨上。防脱套板5334侧面开孔设有定位螺栓5335,起加载横梁在铁轨上的定位
作用。
[0074] 具体的,轨道534由铁轨5341、轨枕5342、扣件5343和道砟5344组成。轨道534用来模拟真实的铁路轨道,尺寸由缩尺比例确定。根据试验需要,可在同一条轨道上设置多组激
振器和加载横梁,通过设定不同的起振时间来模拟列车移动荷载。
[0075] 具体的,盒式力传感器532的型号为ZNHM-7-5T。盒式力传感器置于激振器触头圆盘5311和加载梁横板5331之间,固定在加载梁横板上用来采集激振力的大小。
[0076] 具体的,控制机柜52内部集成并连接了伺服控制器521、功率放大器522、电荷放大器523和动态电阻应变仪524。伺服控制器521为PLC,采用PID控制。以上各部分元器件是进
行PID控制实现稳定激振力输出的必备组成成分,各部分元件之间用以实现PID控制的逻辑
关系见图12。
[0077] 本发明实现PID闭环控制的流程为:将需要设定的激振力的大小和频率的数值输入控制程序,控制程序通过伺服控制器产生控制信号,控制信号经过功率放大器得到足够
驱动线圈的控制电流,激振器触头圆盘往复运动冲击加载横梁产生激振力,力传感器检测
到激振力信号后,通过电荷放大器将激振力信号进行放大和调制,通过动态电阻应变仪将
信号反馈给伺服控制器,伺服控制器将反馈信号与原始输出信号进行对比,如果信号发生
激振力幅值损失则进行相应补偿,产生新的控制信号,由此完成PID闭环控制,实现激振力
的稳定控制与输出。
[0078] 本发明实现PID闭环控制的原理为:
[0079]
[0080] 公式(1)中u(t)是被控对象的输入值;e(t)是设定值和实际输出值的差值,也就是控制偏差;Kp是比例系数;Ti是积分系数;Td是微分系数。(P)比例环节Kp×e(t)的作用是对
偏差瞬间做出反应。偏差一旦产生,控制器立即产生控制作用,是控制量向减少偏差的方向
变化。比例系数越大,控制作用越强。(I)积分环节 的作用是消除系统偏差。积
分常数越大,积分的累积效应越弱,有利于消除系统产生的震荡,提高系统的稳定性。(D)微
分环节 的作用是根据偏差的变化趋势预先给出适当的纠正,阻止偏差的变
化。偏差变化越快,微分部分的输出就越大,使偏差值在变大之前进行修正。微分常数越大,
抑制偏差变化的作用越强。
[0081] 具体的,数据采集装置4由无线振动传感器41和通讯连接器42组成。无线振动传感器的型号为ZD-710-1,通讯连接器的型号为ZD-860D。通讯连接器42位于控制机柜52内部。
无线振动传感器41可布设与土体表面也可以布置在土体内部,可以实现对XYZ三的方向振
动信号的采集。由于使用无线信号传输,当布置在土体内部时可有效避免传感器导线对试
验的影响。如图1、6所示,无线振动传感器41采集到振动信号后,通过LORA传输方式将信号
传递给通讯连接器42,通讯连接器将信号处理后传递给电脑进行显示和储存。
[0082] 上述针对铁路振动源的使用过程如下:
[0083] (1)首先需确定开展模型试验的缩尺比例,依据缩尺比例确定模型屏障的尺寸并制作模型屏障。
[0084] (2)依据试验工况,准备试验用土。如果涉及土层分层,提前规划分界面形式和位置。
[0085] (3)设计试验布局,如图13样例所示,提前规划所需埋设的传感器位置和数量、屏障的位置数量以及轨道位置所需激振器的数量。
[0086] (4)在试验箱内部从下往上依次填土,注意控制填土密度、含水量等参数。填土过程中,根据土层分布和传感器预设位置,填土的同时埋设土体内部传感器和隔振屏障。待箱
内土体填到表层后,布置表层传感器并组装符合试验需求的轨道和激振器。
[0087] (5)打开荷载加载装置,设定激振力大小、频率和相邻激振器的起振间隔。待激振力输出稳定后,启动数据采集装置,通过振动传感器收集土体中各位置处的振动信号。采集
完成后,储存实验数据,关闭加载和采集装置。
[0088] (6)依据或者根据实验设计,更改屏障及土体工况设置,重复上一步采集并储存试验数据,直至完成所有工况。
[0089] (7)回收激振器、轨道及土体表层及内部的振动传感器,回收模型屏障,回收箱内土体。试验完成。
[0090] 以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
相关专利内容
标题 发布/更新时间 阅读量
一种无砟轨道板模具 2020-05-13 550
无砟轨道板 2020-05-11 738
铁路道砟清扫机 2020-05-11 924
无砟轨道连块式轨枕 2020-05-14 106
一种道砟垫与道砟摩擦系数测定装置 2020-05-12 307
整体式无砟轨道 2020-05-11 757
一种无砟轨道板连接件及无砟轨道 2020-05-12 158
阻尘道砟覆盖层 2020-05-12 282
无砟轨道构造 2020-05-12 631
道砟挖掘耙齿 2020-05-12 714
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈