首页 / 专利库 / 心理学与精神病学 / 感知 / 具有真深度感知的3D自动立体视法显示器

具有真深度感知的3D自动立体视法显示器

阅读:618发布:2021-06-08

专利汇可以提供具有真深度感知的3D自动立体视法显示器专利检索,专利查询,专利分析的服务。并且自动立体视法显示器通过投影位于不同距离的物体深度 片段 图像来提供对3D景象的真实自然的 感知 ,所以在每个 视频 帧 的过程中,景象被分为5个或更多不同深度并且通过对于每个深度正确的立体不同和明显的图像距离连续显示每个不同深度。,下面是具有真深度感知的3D自动立体视法显示器专利的具体信息内容。

1.一种双目3D投影系统,包括:两个投影仪,每个投影仪动态地创建完全包括3D景象的一系列深度片段,其中每对所述深度片段具有立体偏移,并且以一对图像的形式在距观察者选定的明显距离处显示,所述立体不同和明显距离的参数是要对观察者双目显示的物体距离的参数。
2.根据权利要求1所述的投影系统,其中,每个投影仪包括液晶(LC)显示器、可变形薄膜镜、投影光学器件和深度片段驱动器电子设备。
3.根据权利要求2所述的投影系统,其中,每个所述投影仪的光学器件包括倒置远摄透镜,所述远摄透镜具有足够的后焦点释放以装配所述LC显示器和所述薄膜镜。
4.根据权利要求3所述的投影仪,具有长距离出瞳释放以配合所述观察者的眼瞳。
5.根据权利要求2所述的投影仪,其中出瞳直径足够大以形成直径最少为7mm的眼框。
6.根据权利要求2所述的投影仪,还包括在往返所述可变形镜的光路上的消色差双合透镜。
7.一种双目3D投影系统,包括:
双图像投影仪,每个所述投影仪包括图像显示器、可变功率的光学元件、电子驱动器、所述驱动器连续地生成3D输入景象的图像段,每个所述图像段表示所述3D输入景象的深度片段,解析为深度片段距所述观察者的不同距离,并且操作所述驱动器使得可变功率的光学元件改变它的总功率,使得每个所述深度片段显示为具有距观察者恰当的明显距离的图像形式。
8.根据权利要求7所述的投影系统,还包括用于所述两个投影仪的3D图像输出的立体对的源,所述源产生与具有每个所述对的观察者位置明显距离一致的立体不同。
9.根据权利要求7所述的投影系统,其中,可变功率的光学元件是可变形的薄膜镜。
10.根据权利要求7所述的投影系统,其中,可变功率的光学元件是多个电可切换的液晶菲涅透镜。
11.根据权利要求7所述的投影系统,其中,可变功率的光学元件是多个电可切换的液晶菲涅尔波带片透镜。
12.根据权利要求7所述的投影系统,还包括以所述可变功率的光学元件合作的光学元件,用于对每个所述深度片段产生距观察者恰当的明显距离。
13.根据权利要求12所述的投影系统,其中光学器件包括在从可变功率的光学元件到观察者位置的光路上的倒置远摄透镜。
14.根据权利要求12所述的投影系统,其中,可变功率的光学元件是可变形凹镜,并且所述光学元件还包括所述可变形镜附近的消色差双合透镜。
15.根据权利要求7所述的投影系统,其中每个投影仪的出瞳直径大于观察者眼睛的瞳孔的直径。
16.一种3D投影系统,包括:
显示器;
光学系统,包括可变光学功率的元件,该可变光学功率的元件被布置以形成距根据可变光学功率的元件的功率的观察点明显距离的观察点可见的显示器的图像;以及驱动器,可操作以控制显示器和可变光学功率的元件,从而以足够快能由正常人类的视觉感知为具有深度的单个图像的速率在距观察点不同的明显距离处产生多个所述可视图像。
17.根据权利要求16所述的3D投影系统,还包括第二显示器和第二光学系统,第一和第二光学系统被定位以形成在观察点的人类观察者的双眼可见的第一和第二显示器的各自图像,并且其中驱动器可操作以向显示器提供具有立体偏移的图像对,并且同步显示器和可变光学功率的元件的功率,使得每个图像在与它的立体偏移一致的距观察点的明显距离处可见。
18.根据权利要求17所述的3D投影系统,还包括具有立体偏移的所述图像对的集合的源,每个集合包括当在与立体偏移一致的距观察点的所述明显距离处显示时组合以形成自我一致的3D图像的图像对。

说明书全文

具有真深度感知的3D自动立体视法显示器

[0001] 相关申请的交叉引用
[0002] 本申请主张2009年8月7日提交的美国临时专利申请No.61/273,743的权益,其全部内容通过参考合并于此。

背景技术

[0003] 通过人的视觉感知3D景象基本基于两个相互作用的视觉适应过程-立体视法和眼睛对于物体距离的焦点调适。因为通常眼睛分开大约60mm,对于不同距离的物体的定影给出了眼睛的轴之间的不同收敛,已知为“立体视觉”效应或“立体偏移”。尽管通常是无意识的,该收敛角仅由脑记录并且有助于物体距离的感知。为了提供不同距离的物体的高精度成像,眼睛调节晶状体的形状并且由此调节光功率,使其能够精确地聚焦选定距离的物体,该现象被称作“调适”。这两个过程协作并且产生了精确的深度感知。对于物体的自然观看,观看者的眼睛的收敛和调适对于到物体的距离都是正确的。
[0004] 存在一些类型的立体显示器,其使用立体效果来仿真3D视觉的感知。在美国专利4,734,756中,立体视觉系统在平面上产生两个颜色的景象的立体偏移的图像。该观察者佩戴了具有两种不同颜色镜片的眼镜,并且使用一只眼尽可以看到两个图像中的一个。两个图像在脑中的混合产生了单色立体视觉感知。这个方法通常被称作立体影片技术。美国专利5,537,144、5,594,843、5,745,164公开了具有垂直对齐的偏光透镜的玻璃,用于分别将立体偏移的图像传递到左右眼。在美国专利5,821,989中,在时间顺序上重复生成用于左右眼的立体偏移的图像,并且液晶玻璃用于在各自图像的时间对每个眼曝光。美国专利5,886,675公开了一种自动立体视法显示器,其不需要使用特殊玻璃。两个投影仪在在全息平面上生成图像,将一个投影仪的出瞳与观察者的左眼的瞳孔结合,并且第二投影仪的出瞳与右眼的瞳孔结合。
[0005] 然而,在所有的技术中,观察者观看的实际图像位于距观察者的固定单一距离上,使得在假定不同距离的“物体”时间上均位于眼睛的晶体的相同调适的焦点上。该产生了不自然的3D景象感知,该3D景象保护不同假定位置的多个物体,例如具有在景背景签名的接近物体的景象。真正的3D显示不仅提供在不同假定位置立体偏移仿真的物体的成像,而且还表示距观察者眼睛一定距离的物体的可视(通常视觉)图像,该距离充分地仿真至物体的假定距离,使得观察者的眼睛可以使用两个视觉适应过程-立体视觉和距离调适。
[0006] 美国专利5,956,180公开了使用位于距观察者不同距离的若干屏幕,该屏幕具有用于3D景象仿真的光束组合器。问题是距离“片”的数目实际上被限制为2,并且这样的布置具有近和远景象组合在一起的仿真的问题。换句话说,距离仿真的动态范围非常有限。用于综合3D景象仿真的另一个方法可以在使用可变计算机生成的全息图的显示器中发现,如在美国专利申请2006/0187297中公开的。该全息方法可以提供综合3D景象感知,但是由于其非常高的计算负担以及与RGB投影和图像精度相关的限制存在动态景象的问题。
[0007] 本发明提高了自动立体视法动态景象投影,其与现有技术相比具有改善的深度感知。

发明内容

[0008] 当前提出的自动立体视法显示器的实施例将具有两个景象投影仪。一个投影仪的出瞳与观察者的左右的瞳孔配合,第二投影仪的出瞳和观察者的右眼的瞳孔配合。投影仪瞳孔直径超过眼睛瞳孔直径以提供合理尺寸的“眼框(eye box)”,在眼框内,眼睛必须被定位以完全看到投影的图像。这提供了舒服的视觉,通过允许眼睛的某些移动而不丢失图像的视图。两个投影仪向观察者眼睛传送具有立体偏移的3D景象的2D“深度片段(depth slice)”图像。
[0009] 在一个实施例中,可变曲率薄膜微型机械加工的镜被并入到投影机制中,从而通过对于3D景象的片段中的物体在距观察者正确距离处生成3D景象的每个“片段”的图像来提供恰当的实时图像距离仿真。可选实施例使用执行类似功能的多层眼睛透镜。片段图像对被生成以对于片段距离具有对应的立体偏移。观察者可以将其眼睛聚焦到选定的景象“片段”,并且聚焦适应可以与立体偏移引起的收敛一致。由此可以实现一致的距离感知。
[0010] 通过现有技术,在每个图像过程中可投影至少五个深度“片段”。最小的帧刷新时间通常大约30毫秒,或者30cps,以避免可视闪烁,然而,可以提供多于五个深度片段,只要对于每个“图像”片段存在足够亮度以为每个片段提供足够的光通量,以及只要系统的图像生成和聚焦元件可以足够快地从片段到片段改变。对于典型的观察者能够处理的片段数目没有实际限制。这个新的方法可以具有许多应用,包括:更现实的3D游戏、军事和民间仿真、眼科测试等。
[0011] 在实施例中,消色差双合透镜位于往返所述可变形镜的光路上。选择双合透镜来对于期望的明显片段距离偏移可变形镜的光路的需要范围,使得在该镜的正常操作过程中该镜总是凹的,优选地包括在它的范围的一端的平坦位置。
[0012] 本发明的方面还可以提供显示3D图像的方法,包括提供与距观察者不同距离的景象的部分相对应的片段图像;并且使用可变功率光学元件的不同设置依次显示每个片段图像,从而在距观察者位置的恰当明显距离处产生每个片段图像的明显图像。
[0013] 在一个实施例中,该方法包括将不同图像显示给观察者的每只眼睛,并且立体偏移显示给不同眼睛的片段图像以给出与不同片段的明显距离一致的视差和眼睛汇聚。附图说明
[0014] 根据结合下列附图以及以下更加特定描述,本发明的以上和其它方面、特征和优点将变得明显,其中:
[0015] 图1是投影仪的第一实施例的光学布局的示意性侧视图。
[0016] 图2是图1所示的投影仪的实体模型的透视图。
[0017] 图3是当显示无穷远处的物体时用于图1的投影仪的MTF图。
[0018] 图4是用于与图3相同条件的点图。
[0019] 图5是当显示距眼睛1.1米处的物体时用于图1的投影仪的MTF图。
[0020] 图6是与图5相同条件的点图。
[0021] 图7是投影仪的第二实施例的光学布局的示意性侧视图。
[0022] 图8是当显示处于无穷远处的物体时并且当观察者的眼睛位于眼框的中央时用于图7的投影仪的MTF图。
[0023] 图9是当显示处于无穷远处的物体时并且当观察者的眼睛位于眼框的边缘时用于图7的投影仪的MTF图。
[0024] 图10示出了整个双目系统。
[0025] 图11是双目系统的实施例中电子处理的流程图

具体实施方式

[0026] 通过参照下列对本发明实施方式的详细描述以及阐述了运用本发明各种原则的示范性实施方式的附图,可以获得对本发明各种特征和优点的更好理解。
[0027] 参考附图,并且初始地参考图1至6,用于具有两个眼的观察者的自动立体视法显示器的实施例具有两个景象投影仪。在图1中示出一个投影仪的光学布局,其显示了投影仪100的侧视图,包括:液晶(LC)显示器101、偏振分光器102、四分之一波长板103、消色差双合透镜104、可变形薄膜镜105以及倒置远摄透镜列106。投影仪100的输出由眼睛107观看。图2示出了相同投影仪100的透视图,其中单个光学表面通过光到达它的顺序进行编号。利用偏振分光器和四分之一波长板假定准直LC输出的典型线性偏振,并且它们减轻通常的50-50分光器的通常4∶1的通量减少。
[0028] 通过图10的例子所示,显示器可能包括并排的两个投影仪100。这些投影仪可以是相同结构,或者彼此镜像图像,并且为了简洁的目的仅示出和描述一个投影仪100。在使用中,一个投影仪的出瞳和观察者的左眼的瞳孔配合(conjugate),而第二个投影仪的出瞳与观察者的右眼的同行配合。投影仪瞳孔的尺寸的直径超过了观察者的眼睛瞳孔直径,该观察者在本实施例中是有代表性的成年人。观察者看到3D景象的图像的2D“片断”。两个投影仪将片段展现给观察者的眼睛,该片段具有立体偏移并且距观察者具有可变的明显距离。
[0029] 表1使用图2的标签列出了用于图1和图2所示的优选实施例的光学处方表面列表。为了清楚起见,分别列出了眼睛瞳孔作为孔径光阑以及眼睛的晶体作为透镜,尽管它们实质上处于相同的位置。
[0030] 表1
[0031]
[0032]
[0033] 图1所示的投影仪的图像源(在表1中的表面0)(在表1的例子中的“物体”)是紧凑的LC显示器101。显示器101具有150Hz的帧率或者通常的LC显示器的五倍的帧率,并且五倍投影仪的帧率作为整体。在分配给每个视频帧的时间(1/30秒)内,LC显示器101产生五个“片段帧”,每个片段帧描述输入图像的一个深度片段的图像,并且提醒帧是黑色的。这是这里公开的涉及方法固有的五至一亮度减小(与投影2D图像的类似系统相关)的源。
[0034] 分光器102(表1中的表面1)将LCD输出引导到由Flexible Optics公司制造的负消色差双合透镜104(由表面2、3和4界定)和微型机械薄膜可变形镜(MMDM)105(表面5)的组件,或者来自另一个制造商等效元件。该镜可以以非常快的速率1000Hz产生不同弯曲,这超过了投影仪要求。每个弯曲对应于特定的深度片段。镜105与LC显示器101同步,使得来自LCD显示器的每个片段帧以正确的镜弯曲由MMD镜105反射,从而产生片段的恰当的图像位置。
[0035] 在薄膜镜105反射之后,每个深度片段返回通过消色差双合透镜104(表面6、7和8是表面4、3和2反过来)和分光器(不活动的表面9),并且通过倒置远摄透镜(表面10到23)被投影到眼睛。可选地,表1的不活动的表面16是倒置远摄透镜106的孔径光阑,并且为了方便分开列举。投影透镜106的出瞳的位置与观察者的眼睛瞳孔配合。投影仪出瞳的直径超过了眼睛107的瞳孔直径,从而容纳观察者头部位置的小的偏移,并且还使得两个投影仪之间的距离不需要对于每个观察者都太精确地调节。倒置远摄透镜106被计算为具有足够的后焦点,释放以装配薄膜镜105和LC显示器101,并且具有足够长距离出瞳,释放以配合距透镜106的最后一个光学表面100mm的观察者眼睛瞳孔。
[0036] 在图1的投影仪中,薄膜镜105(表1的表面5)具有6mm通光孔径,并且可以将其弯曲半径从无穷(平的)改变为150mm凹陷。该消色差双合透镜104偏移动态范围,使得使用从不需要澳门的镜能够实现图像位置的期望范围。凹陷的薄膜镜105与倒置远摄透镜106组合产生LCD源101的承载图像的输出光的虚拟图像。该虚拟图像(未显示)将位于距出瞳107一定位置处,通过改变薄膜镜105的曲率来控制该出瞳107。五个曲率半径值每个用于视频帧的五分之一,假定虚拟图像的正确深度定位。
[0037] 光学系统100被涉及为四个配置,如在下面的图2中列出。尺寸是以毫米为单位。在配置1、2和3中,镜105的曲率半径是150mm(在表1中曲率=0.006666)并且眼睛位置侧向(Y方向)位于中央或者偏离中央1毫米。在该镜曲率半径值处,透镜组件106使用平坦的波阵面(即从无穷,处于深度片段#1)投影LCD源101的图像。该设计假定通常人眼聚焦于无穷远时的焦距是17mm。
[0038] 表2
[0039]表面 参数 配置1 配置2 配置3 配置4
5 曲率 6.666E-3 6.666E-3 6.666E-3 0
24 Y轴离心 1 0 -1 0
25 焦距 17 17 17 16.75
[0040] 图1的系统100对于三个眼睛位置优化:中央(配置2)、以及侧面偏移±1mm(即配置1和3)。图3示出了用于配置2的图像质量的调制偏移函数(MTF)图30,其中观察者的眼睛位于轴上并聚焦到无穷远处。任何图像模可以被解构成空间sin波形正交集合,并且任何光学系统可以由其MTF完全表征,其中调制是从0(空白域)到1(具有整个暗槽的空间sin波形)改变的参数。任何光学系统的MTF是使用100%调制由输入图像生成的输出图像调制。MTF是sin波形的空间频率的函数,并且对于系统的最高空间频率,对于空白域总是从单位1单调下降到0。
[0041] 正常人类视网膜可以记录每mm 200个线对,或者2.5微米分辨率,大约为视网膜中视锥细胞的尺寸。然而,在该最高的所有视网膜空间频率上仅100%调制是可见的,并且没有不连贯的光学系统可以传递该100%调制。
[0042] 在图3中,MTF图30包括用于每毫米周期(或线对)为单位的空间频率的水平轴31和用于从0到1的范围内的MTF的垂直轴32。最上面的MTF曲线33描述了理论上完美的透镜,被称为与图1中相同尺寸的衍射极限。曲线34是用于图1的瞬态场的中央MTF,而曲线35是用于瞬态观察的场的边缘,对应于距物体(表面0)的中心2.5mm的源点。示出了正切(T)和径向(S)曲线,尽管对于曲线33和34,S和T曲线当然是相同的。点划线36是可见性的中央凹调制阈值的示意性草图,该阈值上所有的光栅调制是可见的(G.Smith,D.Atchison“The eye and visual optical Instruments”Cambridge,1977)。在中间的空间频率,眼镜可以记录非常低的调制等级,如由曲线36所表示。线36与MTF曲线34或35交叉的点指示在视网膜的实际系统性能。
[0043] 图4示出了用于轴上眼睛的视网膜点集群40和41,并且分别用于瞬时观看的场的中央和场的边缘,其位于视网膜的0.5mm高度。图框42指示用于辨别三个波长的点的符号,三个波长是0.4(蓝)、0.55(绿)和0.7微米(红)。20μm视网膜距离的标尺条43示出了极好的色差校正,通过该色差校正用于不同颜色的点群集40和41的尺寸几乎相同,并且在边缘群集41中的用于不同颜色的点几乎一致。
[0044] 图5和图6描述了配置4的性能,当柔性镜是平的,并且充分容纳眼睛。实际上,图6的距离标尺63仅是10微米,是图4的标尺的一半,指示了更好的性能。容纳的眼睛的焦距是16.75mm。这意味着用于准直入射光的眼睛内的图像距离是17mm减去16.75mm,2
或者0.25mm。从顿的等式可知,距正确聚焦于视网膜的物体的距离是(16.75)/0.25=
1100mm。如果图像是从距离1.1米(大约43英寸)的明显物体投影的,那么该图像将正确聚焦到视网膜上。
[0045] 表3中示出了适合的投影仪的第二实施例的光学情况,其具有延伸的视角和较大的眼框。
[0046] 表3
[0047]
[0048]
[0049] 图7所示的投影仪700的图像源(在表3的例子中的“物体”)是与第一实施例中相同的紧凑传输液晶显示器701。分光器702(在表3中的表面1)将显示器输出引导到由Flexible Optics公司制造的负消色差双合透镜703(由表面2、3和4界定)和微型机械薄膜镜704(表面5)的组件,或者来自另一个制造商等效元件。在薄膜镜反射之后,2D图像“片段”返回通过消色差双合透镜703(表面6、7和8)和分光器702(不活动的表面9),并且通过倒置远摄透镜705(表面10到23)被投影到眼睛。可选地,不活动的表面16是倒置远摄透镜的孔径光阑,并且为了方便分开列举。投影透镜的出瞳的位置与观察者的眼睛瞳孔配合。投影仪出瞳的直径超过了眼睛的瞳孔直径,使得观察者在头部位置有一些灵活度,并且还使得两个投影仪之间的距离不需要对于每个观察者都太精确地调节。
[0050] 具有10mm通光孔径的薄膜镜704(表面5)可以将其曲率半径从无穷改变为150mm。弯曲的薄膜镜与倒置远摄透镜组合在距出瞳一定距离处产生显示器输出的虚拟图像,该距离是通过改变薄膜镜的曲率而可控的。
[0051] 下面的表4中列出了光学系统被设计为四种配置。
[0052] 表4
[0053]表面 参数 配置1 配置2 配置3 配置4
5 曲率 6.666E-3 6.666E-3 6.666E-3 0
24 Y轴离心 2.5 0 2.5 0
25 焦距 17 17 17 16.75
[0054] 在配置1、2和3中,镜的曲率半径是150mm,或者曲率是表1中的0.006666。当薄膜镜具有150mm的曲率半径时,从无穷远处投影图像,并且焦距于无穷远处物体的典型的人眼将17mm的焦距。使用该系统,眼睛可以观察到具有6度视场的图像场,该视场可以在经一步的研发中增加。对于三个眼睛位置优化该系统:中央(配置2)、以及侧面偏移±2.5mm(即配置1和3)并且用于波段0.45-0.65微米。
[0055] 在第二实施例中,MMDM操作于10mm的通光孔径。具有10mm通光孔径和150mm曲率半径的镜具有80微米的下陷。
[0056] 当前商业可用的设计用于实时适应性光学波阵面校正的柔性光学薄膜微型加工的可变形镜具有25微米的最大校正范围。然而通过当前可用的技术可以实现80微米或更大下陷(与Flexible Optics公司的Dr.G.Vdovin私人通信)。
[0057] 图7所示的投影仪具有6°投影场,假定瞳孔中央的极限位置之间的5mm直径完全处于场内,并且由于需要在眼框内一半瞳孔场而限定的7mm直径眼框,假定瞳孔直径为2mm,处于投影仪的最后面的元件(表面23)和眼睛前面之间间隔100mm。
[0058] 图8示出了用于配置2的图像质量(MTF),其中观察者的眼睛处于眼框中央并且焦距于无穷远处。如图8所示,系统图像质量实际上是衍射受限的(图8)并且2mm眼睛瞳孔直径具有130对线/mm的视网膜分辨率。
[0059] 在图8中,使用与图3中的MTF相同的坐标系示出MTF图800。最上面的实MTF曲线801描述了理论上完美的透镜,被称为与图7中相同直径的衍射受限。点线、划线和链接的点线802示出了投影仪性能,具有位于眼框中央的眼睛。线802示出了在瞬态观看的场的中央和边缘的性能,在场的边缘具有分开的径向和子午线。宽的划线803是可视性的中央凹调制阈值的适应性草图,在该阈值之上所有的光栅调制是可视的。线803与MTF曲线802交叉的点指示在视网膜的实际系统性能。
[0060] 图9示出了第二实施例的系统的MTF图900,观察者的眼睛位于眼框的边缘并且虚拟物体位于无穷远处。系统图像质量是实际上衍射受限的。当虚拟物体位于距观察者1.1米距离处时,配置4的图像质量是衍射受限的并且在图中没有示出。
[0061] 镜响应时间是大约1毫秒。当前可用的LC显示器可以操作于150Hz频率。所以系统能够在每个33毫米帧过程中生成最多5个深度图像“片段”。在每个帧,观察者将接收位于距观察者五个不同距离的五对立体偏移的图像“片段”。观察者可以根据由每个深度片段的立体不同给出的距离感观将他或她的眼睛焦距于选择的深度。
[0062] 尽管在上述第一和第二优选实施例中MMDM用作可变功率的光学元件,还可以使用其他技术。对于MMDM有竞争性的技术的一个例子是使用电可切换的LC菲涅透镜的堆叠(夹心)。另一个实用的有竞争的技术可以是电可切换LC菲涅耳区域平板透镜的堆叠。适合的透镜系统是在Y.Fan,H.Ren,S.Wu的“Switchable Fresnel lens using polymer-stabilized LC”,Opt.Express,Vol 11,No.23,2003中描述的,其全部内容合并于此作为参考。在上述两种技术中,电光透镜可以在成像帧的过程中在开和关之间切换,从而产生预先计算的焦度的阵列。在任何时刻,仅一个透镜是激活的。在这种情况下,投影的深度片段的数目将等于在堆叠中打包的LC菲涅耳透镜的数目。更复杂的算法包括在组合中n可切换的菲涅耳透镜的实用,对于n个透镜基本允许最多2-1个深度片段。
[0063] 参考图10,这里公开了双目投影系统的优选实施例1000,包括连个投影仪,每个投影仪可以如图1和2或如图7所示,服务于观察者1001。每个投影仪动态地创建一系列3D景象的深度片段,其中每个立体像对深度碎片具有不一致和明显的图像距离,其是根据从该片段表述的物体到观察者的假定距离。
[0064] 显示器101、701和镜105、705或可变光力的其他光学元件可以由驱动器可知,如在图11中功能性示出。驱动器通常包括处理器、非易失性存储器或其他用于程序的存储介质、易失性共组存储器和用于视频数据的存储和/或输入。驱动器被布置为使用以使得显示器生成表示距观察者位置不同距离处的景象的片段,并且使得可变光力的光学元件与显示器同步地改变光力,从而产生在距观察者位置适当明显距离处的每个输出的图像。
[0065] 图10所示的投影系统具有用于两个投影仪的输出对的源,以数据存储器的形式,具有用于输出对的图像数据。图像数据可以是如下形式:片段图像对、快速驱动器可以从中实时计算片段数据的3D物体数据、或者任何适合的中间形式。为了存储的目的,可以在时间上、空间上或者二者压缩片段图像数据。可以提供包含用于不同深度片段的片段图像对的集合的非瞬态记录和/或存储介质,具有为了持续明确封闭在片段中距观察者更远距离的物体而由在片段中更接近于观察者的物体中断每个片段的正确部分。具有片段图像形式的图像数据可以伴随有元数据,该元数据指示用于每个片段距观察者的正确明显距离。在活动图片或其他随时间改变图像序列的情况下,可以为整个序列、为序列的一部分或者为单个图像定义这样的元数据。
[0066] 图11示出优选实施例双目投影系统利用标准左-右视频输入的流程图。对于LED背光,将包括用于左和右的要被减去的3RGB输入视频通道。公知的水平互相关算法可以快速地询问五个主要深度,从而建立不一致映射。从上述以及颜色分割,可以检测各种物体的边缘。完整的物体分割将重新建立原始左和右视频,但是在五个深度片段内解析。图11示出了适应性深度片段如何利用每个帧中的不同深度解析,如由5个平均间隔的实箭头和不同位置的虚线箭头指示。在片段被实时生成的情况下,可以同时通过分析图像来确定片段深度。在片段被预先生成的情况下,通过人可操作的故意的片段深度选择可以是可行的和恰当的。当然在实际的音频中,仅在解析开关处存在整体帧内改变,并且最邻近的音频帧总体上非常少改变。由此,即使在视频内片段深度是可变的,它们也仅当景象改变时发生改变,并且不是每一帧,从而节省计算能力和数据量。如在图11的流程图中进一步示出,序列发生器发送连续的LCD深度片段图像和它们的伴随的屈光度值,用于柔性镜在视频帧期间的每个五分之一的过程中采用。
[0067] 例如,用于单个片段的片段图像对通常是相同的,除了小的区域,特别是在更接近于物体的片段中的封闭物体的边缘处,以及在每个片段的物体的侧表面,并且对于物体的偏移,位于每个片段内的不同深度。例如,对于动画或其他移动图像的连续帧的图像将通常类似地仅具有小的差异。用于有效地压缩稍微不同的图像的技术是公知的,并且为了简洁的目的在此不再描述。
[0068] 这里公开的双目投影仪系统可以为观察者提供自然的3D景象感知。其可以用在新一代的3D电视系统、3D显示器、3D头戴式显示器、视频游戏机、飞行模拟器、无人驾驶飞行器控制台仿真器、无人驾驶地面车辆控制台仿真器和其他这样的3D系统。
[0069] 尽管已经描述了特定实施例,本领域普通技术人员将理解如何进行改变,并且如何组合不同实施例的特征。例如,提出的片段的数目是基于人眼视觉的持续性,对此帧的刷新时间是33毫秒,对应于用于每个表示电视和视频的每秒30帧,这对于避免感知闪烁是合理的,其中给定了可用LC显示器的响应速度。如果更开的显示器是可用的,可以增加每秒帧的数目以降低闪烁。可选地,或者额外地,可以增加深度片段的数目,尽管仅在于通量吞吐量的画法,需要更亮的照明。相反地,可以降低帧率以减小对系统自由的需求,或者释放资源以增加片段的数目,如果更明显的闪烁是可接受的。
[0070] 在期望的实施例中,在显示器的工作距离,每个投影仪的出瞳的直径是60mm,并且出瞳的中央是60mm分开,对应于典型的人类观察者眼睛的分开。由此,两个投影仪的出瞳构成了两个触摸圆。观察者仅需要将左眼的瞳孔放置到左投影仪的出瞳的任何位置,并且将右眼的瞳孔放置到右投影仪的出瞳的任何位置。提出的3D显示器由此不需要调整眼睛的瞳孔直径以及不同观察者的眼睛间隔,并且可以允许观察者的眼睛和头的充分移动允许舒适的观看。
[0071] 在使用所述投影系统的处理的实施例中,静态3D景象的生成开始于从观察者的角度由其他物体计算物体的模糊的标准几何过程,并且展示了在景象上的活跃可视点的阵列。然后将计算用于活跃点的角度立体不一致的阵列。由于立体不一致,在部分模糊的片段中的活跃可视点对于两只眼睛是不同的。计算可以是对于标准60mm观察者眼间距来进行的,或者对于特定用户或其他观察者或观察者类别的眼间距作出调整。
[0072] 在实施例中,为了生成3D景象,从250mm距离到无穷远的整个深度空间将被划分为5个区域,该5个区域在入眼容纳能力上等量增加,其是对于每个区域近似1屈光度的容纳。在景象中的所有物体和相关的立体偏移数据将根据每个物体位于的区域被组合成5个深度片段文件。角度立体偏移的阵列将被改变成在投影仪的焦平面中的线性横线偏移的阵列,并且将在33毫秒的周期中生成五个片段。每个深度片段将通过可变形镜生成,该镜被设置为与该片段的配置相关联的曲率半径。对于动态景象,通过每个周期中任何移动物体的信的位置每33毫秒周期重复静态景象仿真算法。
[0073] 在上述描述中,假设片段图像是成对生成的,对于在普通深度的每个眼睛一个,并且该对是以五的集合生成,对于五个深度片段的每一个一对,来自或用于单个3D图像,或者视频序列的单个3D帧。还假设图像在它们的对中投影,两个投影仪同时操作。这些限制并不是严格需要的,但是实际情况它通常是最有效的,以将单个3D帧译成五对片段,因为大多数分析可以被更有效地使用。例如,通过在更接近的层的物体单个计算在更远层的物体的封闭将被用于生成所有相关的层。
[0074] 实现本发明的当前考虑的最佳模式的前述描述并不用于限制,而是仅用于描述本发明的通用原理的目的。本发明的全部范围应该参考权利要求确定。
相关专利内容
标题 发布/更新时间 阅读量
感知导盲鞋 2020-05-12 588
热感知器 2020-05-11 823
无线感知器 2020-05-12 220
感知装置 2020-05-11 491
感知装置 2020-05-11 332
基于动态自适应压缩感知的多用户检测方法及电子设备 2020-05-12 654
交互感知决策 2020-05-13 832
感知装置 2020-05-11 566
感知锚杆 2020-05-12 110
一种感知卡 2020-05-11 401
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈