首页 / 专利库 / 手术 / 远程手术 / 计算机辅助远程操作手术系统和方法

计算机辅助远程操作手术系统和方法

阅读:948发布:2020-05-14

专利汇可以提供计算机辅助远程操作手术系统和方法专利检索,专利查询,专利分析的服务。并且远程操作操纵器系统包括操纵器组件和耦接到操纵器组件的工具致动组件。工具致动组件沿插入轴线插入工具(例如,手术器械)并且还使工具围绕插入轴线旋转。操纵器组件包括臂,该臂相对于安装 基座 旋转,以使工具围绕与插入轴线相交的 偏航 轴线旋转。该臂的远侧部分限定弧形 俯仰 弧,并且俯仰弧的中心与插入轴线和偏航轴线的交点重合。沿着俯仰弧驱动工具致动组件以使工具俯仰。操纵器系统可选地是 远程手术 系统,并且该工具可选地是 治疗 、诊断或成像手术器械。,下面是计算机辅助远程操作手术系统和方法专利的具体信息内容。

1.一种远程操作操纵器系统,包括:
安装基座
臂,其包括远侧俯仰弧部分、俯仰调节致动器和可移动连杆,所述臂耦接到所述安装基座以围绕偏航轴线旋转,所述可移动连杆具有近端和远端,所述可移动连杆的所述近端被耦接到所述俯仰调节致动器,所述俯仰弧部分限定具有中心的俯仰弧;
工具致动器组件耦接器,其被耦接以在所述臂的所述俯仰弧部分中的曲线路径上平移,所述臂的所述可移动连杆的所述远端被耦接到所述工具致动器组件耦接器;以及工具致动器组件,其耦接到所述工具致动器组件耦接器,所述工具致动器组件的长轴线限定工具插入轴线;
其中所述偏航轴线、所述俯仰弧的所述中心和所述工具插入轴线是重合的,并且限定所述操纵器系统的远程运动中心
2.根据权利要求1所述的远程操作操纵器系统,其中:
所述臂的所述远侧俯仰弧部分包括固定弧形段和耦接到所述固定弧形段的可动弧形段,所述固定弧形段和所述可动弧形段一起限定所述俯仰弧;
所述可动弧形段被耦接以在所述固定弧形段中的曲线路径上平移;和
所述工具致动器组件耦接器被耦接以在所述可动弧形段中的曲线路径上平移。
3.根据权利要求2所述的远程操作操纵器系统,其中:
所述臂包括弹簧,所述弹簧被定位成将所述可动弧形段偏置到所述可动弧形段在所述固定弧形段中的所述曲线路径上的运动范围的近端。
4.根据权利要求1或2所述的远程操作操纵器系统,其中:
俯仰调节致动器包括线性致动器。
5.根据权利要求1或2所述的远程操作操纵器系统,其中:
所述臂包括延伸到所述安装基座中的突出部,以限定具有旋转轴线的滚转关节;和所述滚转关节的所述旋转轴线限定所述偏航轴线。
6.根据权利要求1或2所述的远程操作操纵器系统,其中:
所述安装基座包括扇形齿轮
所述臂包括偏航调节达和耦接到所述马达的小齿轮,所述小齿轮与所述安装基座的所述扇形齿轮接合;和
所述偏航调节马达围绕所述偏航轴线驱动所述臂。
7.根据权利要求1或2所述的远程操作操纵器系统,其中:
所述臂包括偏航调节马达,所述偏航调节马达具有平行于所述偏航轴线并从所述偏航轴线偏移的旋转轴线;和
所述偏航调节马达围绕所述偏航轴线驱动所述臂。
8.根据权利要求1或2所述的远程操作操纵器系统,其中:
所述安装基座被配置为可释放地耦接到装配臂,所述装配臂被配置为保持所述安装基座在空间中静止。
9.根据权利要求1或2所述的远程操作操纵器系统,其中:
所述俯仰调节致动器包括多个联动马达。
10.根据权利要求1或2所述的远程操作操纵器系统,其中:
所述工具致动器组件耦接器包括滚转调节致动器,所述滚转调节致动器被耦接以驱动所述工具组件致动器围绕所述工具插入轴线旋转。
11.根据权利要求1或2所述的远程操作操纵器系统,其中:
所述工具致动器组件耦接器包括滚转调节致动器和耦接到所述滚转调节马达的第一齿轮;
所述工具致动器组件包括耦接到所述第一齿轮的第二齿轮;和
所述第一齿轮的旋转驱动所述工具组件致动器围绕所述工具插入轴线旋转。
12.根据权利要求1或2所述的远程操作操纵器系统,其中:
所述工具致动器组件与第二工具致动器组件能够互换。
13.根据权利要求1或2所述的远程操作操纵器系统,其中:
所述工具致动器组件被配置为沿所述插入轴线平移工具。
14.根据权利要求1或2所述的远程操作操纵器系统,其中:
所述工具致动器组件被配置为致动安装在所述工具致动器组件中的工具的可移动部件。
15.根据权利要求1或2所述的远程操作操纵器系统,还包括:
套管,其可释放地耦接到与所述工具致动器组件相对的所述工具致动器组件耦接器。
16.一种参考远程运动中心对工具进行远程操作的方法,该方法包括:
通过使用工具致动器组件,经由远程操作沿着插入轴线插入所述工具,所述插入轴线与所述远程运动中心相交;
通过使所述工具致动器组件围绕所述插入轴线旋转,经由远程操作使所述工具围绕所述插入轴线滚转;
通过使支撑所述工具致动器组件的臂围绕所述偏航轴线旋转,经由远程操作使所述工具围绕与所述远程运动中心相交的偏航轴线偏航;以及
通过使所述工具致动器组件沿着所述臂的远侧俯仰弧部分平移,经由远程操作使所述工具围绕与所述远程运动中心重合的俯仰弧的中心俯仰。
17.根据权利要求16所述的方法,其中:
经由远程操作使所述工具围绕所述俯仰弧的所述中心俯仰包括沿着所述臂的所述俯仰弧部分的可动弧形段平移所述工具致动器组件并且沿着所述臂的所述俯仰弧部分的固定弧形段平移所述可动弧形段。

说明书全文

计算机辅助远程操作手术系统和方法

[0002] 本专利文件的公开内容的一部分包含受版权保护的材料。版权所有者不反对专利文件或专利公开中任何一个的传真复制,因为它出现在美国专利和商标局的专利文件或记录中,但在其他方面保留所有版权。
[0003] 相关申请的交叉引用
[0004] 本申请要求美国临时专利申请第62/404,069号(2016年10月4日提交)的优先权的利益,该临时专利申请通过引用合并于此。
[0005] 关于联邦政府资助的研究或开发的声明
[0006] 不适用。

背景技术

[0007] 远程操作手术系统(由于使用机器人技术通常被称为“机器人”手术系统)和其他计算机辅助装置通常包括一个或多个工具操纵器以操纵用于在手术工作部位执行任务的诊断或治疗工具以及用于支持捕获手术工作部位的图像的图像捕获工具的至少一个操纵器。操纵臂包括通过一个或多个主动控制关节耦接在一起的多个连杆。在许多实施例中,可以提供多个主动控制关节。机器人臂还可以包括一个或多个被动关节,其不被主动控制但是符合主动控制关节的运动。这种主动关节和被动关节可以是各种类型,包括旋转关节和棱柱关节。操纵臂的运动姿态可以通过关节的位置和结构的知识和连杆的耦接和已知运动学计算的应用来确定。
[0008] 正在开发用于手术的微创远程手术系统,以增加外科医生的灵活性,并允许外科医生从远程位置对患者进行操作。远程手术是手术系统的总称,其中外科医生使用某种形式的远程控制(例如伺服机构等)来操纵手术工具运动而不是用手直接握持和移动工具。在这种远程手术系统中,在远程位置处向外科医生提供手术部位的图像。在观察通常在合适的观察器或显示器上提供深度假象的手术部位的立体图像的同时,外科医生通过操纵主控制输入装置对患者执行手术程序,该主控制输入装置进而控制相应的远程操作工具的运动。远程操作手术工具可以通过小的微创手术开口或天然孔口插入,以治疗患者体内的手术部位处的组织,通常避免通常与通过开放手术技术进入手术工作部位相关联的创伤。这些计算机辅助远程操作系统可以以足够的灵活性移动手术工具的工作端(末端执行器)以执行相当复杂的手术任务,这通常通过在微创开口处枢转工具的轴、使轴穿过开口轴向滑动、使轴在开口内旋转等来实现。发明内容
[0009] 以下发明内容介绍了本发明主题的某些方面,以便提供基本的理解。该发明内容不是对本发明主题的广泛概述,并且不旨在识别关键或重要元素或描绘本发明主题的范围。尽管该发明内容包含与本发明主题的各个方面和实施例相关的信息,但是其唯一目的是以一般形式呈现一些方面和实施例作为下面更详细描述的序言。
[0010] 在一个方面,一种远程操作操纵器系统包括安装基座和在旋转关节处附接到安装基座的臂。臂相对于安装基座围绕偏航轴线旋转。臂的远侧部分限定了俯仰弧。工具致动器组件被安装到沿着俯仰弧平移的工具致动器组件耦接器上。工具致动组件沿着俯仰弧被驱动,以围绕与偏航轴线重合的俯仰弧的中心移动。工具致动组件沿着插入轴线插入工具,该插入轴线在俯仰弧的中心与偏航轴线重合的位置与偏航轴线相交。
[0011] 在另一方面,臂的远侧部分包括固定弧形段和相对于固定弧形段伸缩的可动弧形段。当工具致动组件沿着俯仰弧移动时,工具致动组件耦接器沿着可动弧形段移动,并且可动弧形段沿着固定弧形段移动。
[0012] 在其他方面,本公开提供了使用计算机辅助远程操作手术系统(“远程手术系统”)进行微创机器人手术的装置和方法。例如,本公开提供了用于远程手术系统的操纵器。在一些实施例中,每个操纵器包括臂,该臂围绕偏航轴线可旋转地耦接到可附连到装配结构的安装基座。臂限定弧形路径,工具致动器组件耦接器沿着该弧形路径行进。工具致动器组件耦接器可以接收手术工具致动组件舱,并且它可以驱动该舱围绕插入轴线的旋转滚转运动。在一些实施例中,插入轴线和偏航轴线在与弧形路径的中心点重合的点处彼此相交。在一些实施例中,达驱动的连杆被用于沿弧形路径驱动工具致动器耦接器。
[0013] 在一个方面,本公开涉及一种远程手术操纵器,其包括:安装基座,其被配置为可释放地与远程手术系统的装配结构耦接;臂,其围绕偏航轴线可旋转地耦接到安装基座,该臂限定俯仰弧;工具致动器组件耦接器,其限定插入轴线并且被配置为可释放地与远程操作工具致动器组件耦接,该工具致动器耦接器沿着俯仰弧可平移;以及连杆,其可枢转地耦接到工具致动器耦接器并且可移动地耦接到臂上,使得连杆可沿着臂平移。
[0014] 这种远程手术操纵器可以可选地包括以下特征中的一个或多个。插入轴线和偏航轴线可以在俯仰弧的中心处彼此相交。在一些实施例中,在工具致动器耦接器沿着俯仰弧的所有位置处,插入轴线和偏航轴线可以在俯仰弧的中心处彼此相交。在特定实施例中,在围绕臂的偏航轴线相对于安装基座的所有位置处,插入轴线和偏航轴线可以在俯仰弧的中心处彼此相交。在一些实施例中,在工具致动器组件耦接器沿着俯仰弧的所有位置并结合围绕臂的偏航轴线相对于安装基座的任何位置处,插入轴线和偏航轴线在俯仰弧的中心处彼此相交。连杆沿着臂的平移导致工具致动器耦接器沿着俯仰弧的曲线平移。连杆可以螺纹耦接到臂的导螺杆,使得臂可以通过导螺杆的旋转沿着臂线性平移。连杆沿着臂的平移导致工具致动器组件耦接器沿着俯仰弧的曲线平移。臂可以包括驱动导螺杆的旋转的俯仰调节马达。工具致动器组件耦接器可包括用于围绕插入轴线可旋转地驱动手术工具致动器组件的滚转调节马达。工具致动器组件耦接器可被配置为可释放地与套管耦接,该套管被配置为在使用远程手术操纵器的手术期间提供穿过患者体壁的手术通道。臂可以包括延伸到由安装基座限定的内部空间中的突出部。该突出部可以限定偏航轴线。安装基座可以包括以静止关系固定到安装基座的扇形齿轮。臂可以包括偏航调节马达,该偏航调节马达可旋转地驱动与扇形齿轮啮合的偏航调节齿轮。臂可以包括固定弧形段和可移动地与固定弧形段耦接的可动弧形段。第一弧形段与可动弧形段组合起来可以限定俯仰弧。
[0015] 在另一方面,本公开涉及一种远程手术操纵器,其包括:安装基座;可旋转地耦接到安装基座的臂;工具致动器组件耦接器,其可移动地耦接到臂上,使得工具致动器组件耦接器相对于臂可平移,该工具致动器耦接器被配置为可释放地与远程手术工具致动器组件耦接;以及可移动地耦接在工具致动器组件耦接器和臂之间的连杆。
[0016] 这种远程手术操纵器装置可以可选地包括以下特征中的一个或多个。连杆可以可枢转地耦接到工具致动器组件并且可螺纹耦接到臂。工具致动器组件耦接器可以沿着由臂限定的弧形平移。臂可包括固定弧形段和可移动地与固定弧形段耦接的可动弧形段。第一弧形段与可动弧形段组合起来可限定俯仰弧。臂可以限定细长开口,工具致动器耦接器可在该细长开口中沿着曲线路径平移。
[0017] 在另一方面,本公开涉及一种远程手术系统,其包括:可释放地与框架可耦接的装配结构;操纵器装置;以及可释放地与工具致动器组件耦接器可耦接的远程手术工具致动器组件。工具致动器组件耦接器包括用于围绕插入轴线可旋转地驱动手术工具致动器组件的滚转调节马达。操纵器装置包括:安装基座,其可释放地与装配结构可耦接;可旋转地耦接到安装基座的臂;工具致动器组件耦接器,其可移动地耦接到臂上,使得工具致动器组件耦接器相对于臂可平移,该工具致动器组件耦接器限定插入轴线;以及可移动地耦接在工具致动器组件耦接器和臂之间的连杆。
[0018] 这种远程手术系统可以可选地包括以下特征中的一个或多个。在一些实施例中,整个工具致动器组件可由滚转调节马达可旋转地驱动。臂和安装基座之间的可旋转耦接限定了偏航轴线。臂限定了俯仰弧,工具致动器组件耦接器沿着该俯仰弧平移。插入轴线和偏航轴线在俯仰弧的中心处彼此相交。臂可包括固定弧形段和可移动地与固定弧形段耦接的可动弧形段。第一弧形段与可动弧形段组合起来限定俯仰弧。
[0019] 本文描述的一些或所有实施例可以提供以下优点中的一个或多个。在一些情况下,本文提供的远程操作操纵器装置有利地构造成具有低轮廓,即在空间上紧凑。这种紧凑的配置是有利的,因为由患者上方的远程操作手术操纵器占据的工作空间被最小化,从而允许增强手术人员对患者的访问。另外,紧凑的操纵器工作空间有利于患者的更大可视化和手术团队成员之间的交流。
[0020] 此外,减小操纵器工作空间的尺寸可以减少操纵器之间碰撞的可能性。结果,减少或消除了对操纵器的冗余自由度的需求。因此,在某些情况下可以减轻操纵器的复杂性。
[0021] 在一些情况下,本文描述的远程操作手术操纵器的紧凑尺寸还可以有利地便于将操纵器安装到手术台的轨道上。在这种情况下,当手术台被操纵以增强手术通路时,台面安装的操纵器装置固有地跟随。因此,有利地减少或消除了响应于手术台的移动而重新定位操纵器的需求。
[0022] 另外,本文描述的远程操作手术操纵器有利地构造成具有相对低的质量和惯性。另外,质量分布基本上是恒定的,使得惯性基本上是恒定的并且因此是可预测的。
[0023] 在附图和以下描述中阐述了一个或多个实施例的细节。根据说明书和附图以及权利要求,其他特征、目的和优点将是显而易见的。

附图说明

[0024] 图1是远程手术系统的示例性操纵子系统的透视图。
[0025] 图2是远程手术系统的示例性用户控制子系统的前视图。
[0026] 图3是示例性远程手术系统操纵臂组件的侧视图。
[0027] 图4是远程手术系统的另一种类型的操纵子系统的透视图。
[0028] 图5是处于第一配置的示例性手术工具的远端部分的透视图。
[0029] 图6是处于第二配置的图5的手术工具的远端部分的透视图。
[0030] 图7是处于第三配置的图5的手术工具的远端部分的透视图。
[0031] 图8是描绘根据一些实施例的与手术工具致动组件舱耦接的手术工具的透视图,该手术工具致动组件舱安装到示例性远程手术操纵器组件。
[0032] 图9是根据一些实施例的示例性手术工具致动组件舱的透视图。
[0033] 图10是根据一些实施例的示例性远程手术系统操纵器的透视图。
[0034] 图11是对应于图10的部分透明视图。
[0035] 图12是图10的远程手术系统操纵器的侧视图。
[0036] 图13是对应于图12的部分透明视图。
[0037] 图14是图10的远程手术系统操纵器的俯视图。
[0038] 图15是对应于图14的部分透明视图。
[0039] 图16和图17是图10的远程手术系统操纵器的部分透明透视图,其示出了操纵器的偏航运动。
[0040] 图18-图20是图10的远程手术系统操纵器的部分透明透视图,其示出了操纵器的俯仰运动。
[0041] 图21是描绘根据一些实施例的与手术工具致动组件舱耦接的手术工具的透视图,该手术工具致动组件舱安装到另一示例性远程手术系统操纵器。
[0042] 图22-图24是图21的远程手术系统操纵器的部分透明透视图,其示出了操纵器的俯仰运动。

具体实施方式

[0043] 阐述创造性方面、实施例、实施方式或应用的该说明书和附图不应被视为是限制的,因为权利要求限定了受保护的发明。在不脱离本说明书和权利要求的精神和范围的情况下,可以进行各种机械、组成、结构、电气和操作变化。在某些情况下,没有详细示出或描述公知的电路、结构或技术,以免模糊本发明。两个或更多个图中的相同数字表示相同或相似的元素。
[0044] 此外,被选择用于描述一个或多个实施例和可选元件或特征的特定词语并不旨在限制本发明。例如,空间相对术语(诸如“下方”、“下面”、“下部”、“上方”、“上面”、“近侧”、“远侧”等)可用于描述图中所示的一个元素或特征与另一个元素或特征的关系。除了图中所示的位置和取向之外,这些空间相对术语旨在还涵盖使用或操作中的装置的不同位置(即平移布置)和取向(即旋转部置)。例如,如果图中的装置被翻转,则描述为在其他元件或特征“下方”或“下面”的元件将在其他元件或特征的“上方”或“上面”。因此,示例性术语“下方”可以涵盖上方和下方的位置和取向。装置可以以其他方式定向(例如,旋转90度或处于其他取向),并且相应地解释在此使用的空间相对描述符。同样地,沿着(平移)和围绕(旋转)各种轴线的运动的描述包括各种特殊装置位置和取向。主体的位置和取向的组合定义了主体的姿势。
[0045] 类似地,除非上下文另有说明,否则诸如“平行”、“垂直”、“圆形”或“方形”的几何术语不旨在要求绝对数学精度。相反,这样的几何术语允许由于制造或等效功能带来的变化。例如,如果元件被描述为“圆形”或“大致圆形”,则本说明书仍涵盖不是精确圆形的组件(例如,略呈椭圆形或多个边的多边形的组件)。词语“包括”或“具有”意味着包括但不限于。
[0046] 应该理解的是,虽然已经使得本说明书足够清晰、简洁和准确,但严格和详尽的语言精确度并不总是可行或可取的,因为说明书应保持合理的长度,并且熟练的读者将理解背景和相关的技术。例如,考虑到视频信号,熟练的读者将理解,被描述为显示信号的示波器不显示信号本身,而是显示信号的表征(representation),并且被描述为显示信号的视频监视器不显示信号本身,而是显示信号携带的视频信息。
[0047] 另外,除非上下文另有说明,否则单数形式“一”、“一个”和“该”旨在也包括复数形式。而且,术语“包含”、“包括”、“具有”等指定所述特征、步骤、操作、元素和/或部件的存在,但不排除存在或添加一个或多个其他特征、步骤、操作、元素、部件和/或群组。而且,除非另有说明,否则一个或多个单独列出的项目中的所述项目或每个项目应被认为是可选的,以便描述项目的各种组合而无需每种可能组合的详尽列表。辅助动词“可/可以”同样暗示特征、步骤、操作、元素或部件是可选的。
[0048] 在实践中,参考一个实施例、实施方式或应用详细描述的元件可选地可以被包括在其中没有具体示出或描述它们的其他实施例、实施方式或应用中。例如,如果参考一个实施例详细描述了一个元件,并且没有参考第二实施例描述该元件,则该元件仍然可以被要求保护为包括在第二实施例中。因此,为了避免在以下描述中不必要的重复,除非另有明确说明、除非一个或多个元件将使实施例或实施方式不起作用、或者除非两个或更多个元件提供冲突的功能,否则结合一个实施例、实施方式或应用示出和描述的一个或多个元件可以被合并到其他实施例、实施方式或方面中。
[0049] 被描述为耦接的元件可以是电气或机械直接耦接的,或者它们可以经由一个或多个中间部件间接耦接。
[0050] 与零件(例如,机械结构、部件或部件组件)相关联的术语“柔性”应该被广泛地解释。本质上,该术语意味着该零件可以反复弯曲并恢复到原始形状而不会损坏该零件。许多“刚性”物体由于材料特性而具有轻微的固有弹性“弯曲度”,尽管这些物体在本文中使用该术语时不被认为是“柔性的”。柔性零件可具有无限自由度(DOF)。这种零件的示例包括封闭的可弯曲的管(由例如镍诺(NITINOL)、聚合物、软橡胶等制成)、螺旋形线圈弹簧等,其可弯曲成各种简单曲线或复合曲线,通常没有明显的横截面形变。其他柔性零件可以通过使用一系列紧密间隔的部件来近似这样的无限DOF零件,所述部件类似于连续“椎骨”的蛇状布置。在这种椎骨布置中,每个部件都是运动链中的短连杆、并且每个连杆之间的可移动机械约束(例如,销铰链、球窝和球、活动铰链等)可以允许连杆之间的相对运动的一个(例如,俯仰)或者两个(例如,俯仰和偏航)DOF。一个短小灵活的零件可以作为单一的机械约束(关节)起作用并被建模,该机械约束在运动链中的两个连杆之间提供一个或多个DOF,即使柔性零件本身可以是由若干耦接的连杆制成的运动链。本领域技术人员将会理解,零件的灵活性可以用其刚度来表达。
[0051] 除非在本说明书中另有说明,否则柔性零件(例如机械结构、部件或部件组合件)可以是主动或被动柔性的。可以通过使用与零件本身固有相关联的来弯曲主动柔性零件。例如,一个或多个肌可以沿着零件在长度方向上排布并且偏离零件的纵向轴线,使得一个或多个肌腱上的张力导致零件或零件的一部分弯曲。主动弯曲主动柔性零件的其他方式包括但不限于使用气动或液压动力、齿轮、电活性聚合物(更一般地,“人造肌肉”)等。通过使用零件外部的力(例如,施加的机械力或电磁力)来弯曲被动柔性零件。被动柔性零件可以保持其弯曲形状直到再次弯曲,或者它可以具有趋向于将零件恢复到原始形状的固有特性。具有固有刚度的被动柔性零件的示例是塑料杆或弹性橡胶管。主动柔性零件在不被其固有的相关力驱动时可以是被动柔性的。单个零件可以由一个或多个串联的主动和被动柔性零件制成。
[0052] 创造性方面与计算机辅助远程操作手术系统相关联。远程操作手术系统的一个示例是由加利福尼亚州桑尼维尔的直观外科公司商售的da 手术系统。本领域技术人员将理解,本文公开的创造性方面可以以各种方式体现和实现,包括完全计算机辅助的实施例和实施方式以及手动和计算机辅助的实施例和实施方式的混合组合。如果适用,创造性方面可以在相对较小的手持式手动操作装置和具有附加机械支撑的相对较大的系统中以及在计算机辅助远程操作医疗装置的其他实施例中体现和实施。另外,创造性方面与包括自主而非远程操作动作的计算机辅助手术系统的进步相关联,因此包括远程操作手术系统和自主手术系统两者,尽管描述集中于远程操作系统。
[0053] 计算机是遵循编程指令对输入信息执行数学或逻辑功能以产生处理的输出信息的机器。计算机包括执行数学或逻辑功能的逻辑单元,以及存储编程指令、输入信息和输出信息的存储器。术语“计算机”和类似术语(例如,“处理器”或“控制器”或“控制系统”)包括集中式单一位置实施方式和分布式实施方式。
[0054] 本公开提供了改进的手术和远程手术装置、系统和方法。本发明构思特别有利于与远程手术系统一起使用,其中多个手术工具安装在相关联的多个远程操作操纵器上并且在手术过程中由这些远程操作操纵器移动。远程操作手术系统通常包括远程机器人系统、远程手术系统和/或远程呈现系统,这些系统包括配置为主-从控制器的一个或多个处理器。通过提供采用适当配置的处理器来借助于具有相对大量自由度的铰接联动装置移动操纵器组件的远程操作手术系统,可以通过微创进入部位来调节联动装置的运动。大量的自由度还可以允许处理器定位操纵器以避免这些移动结构之间的干扰或碰撞等。
[0055] 本文所述的操纵器组件通常包括远程操作操纵器和安装在其上的工具(该工具通常包括在手术情况中的手术器械),但是术语“操纵器组件”也涵盖不带有安装于其上的工具的操纵器。术语“工具”涵盖通用或工业机器人工具和专用机器人手术器械,其中手术器械通常包括适用于组织操纵、组织治疗、组织成像等的末端执行器。工具/操纵器接口通常是快速断开工具保持器或耦接器,以允许快速移除并使用替代工具来更换工具。操纵器组件通常具有在远程手术过程的至少一部分期间固定在空间中的基部,并且操纵器组件可以在基部和工具的末端执行器之间包括多个自由度。末端执行器的致动(诸如夹持装置的钳口的打开或闭合、给电手术板提供能量等)通常将与这些操纵器组件的自由度分离,并且附加于其上。
[0056] 末端执行器通常将在工作空间中以2到6个自由度移动。如本文所用,术语“姿势(pose)”包括位置(position)和取向(orientation)。因此,(例如)末端执行器的姿势的改变可以涉及末端执行器从第一位置到第二位置的平移、末端执行器从第一取向到第二取向的旋转,或两者的组合。如本文所用,术语“末端执行器”因此包括但不限于改变其最远侧零件或多个零件(例如,钳口等)的取向或位置的功能(例如,“手腕”功能、平行运动功能)。
[0057] 当用于微创远程操作手术时,操纵器组件的移动由系统的处理器控制,使得工具的轴或中间部分被约束到通过微创手术进入部位或其他孔口的安全运动。这种运动可以包括例如轴沿着其长轴线穿过孔口部位的轴向插入,轴绕其长轴线的旋转,以及轴围绕靠近进入部位的在其长轴线上的枢轴点(远程运动中心)的枢转运动。但是,这种运动通常会阻止轴在孔口部位处的过度横向运动,否则可能会意外撕裂孔口附近的组织或扩大进入部位。可以通过使用抑制不期望运动的机械操纵器关节联动装置来施加对进入部位处的操纵器运动的这些约束中的一些或全部(即硬件约束在远程运动中心处的运动),或者可以通过使用机器人数据处理和控制技术来部分或全部施加此类约束(即软件控件约束在远程运动中心处的运动)。因此,操纵器组件的这种微创孔约束运动可以采用操纵器组件的零到三个自由度。
[0058] 本文描述的许多示例性操纵器组件将在笛卡尔空间中具有比在手术部位中确定姿势和移动末端执行器所需的更多自由度(例如,7个、8个、9个、10个或更多个)。例如,可以通过微创孔在内部手术部位处以笛卡尔空间中的六个自由度移动手术末端执行器的操纵器组件可以具有九个自由度(六个末端执行器自由度(三个用于位置,三个用于取向)加上三个额外的操纵器组件自由度以符合进入部位约束、避免碰撞等)。具有比给定末端执行器姿势所需的更多自由度的高度可配置的操纵器组件可被描述为具有或提供足够的自由度以允许针对工作空间中的末端执行器姿势的一系列关节状态。例如,对于给定的末端执行器位置,操纵器组件可占据(并在其间被驱动)一系列可替代操纵器联动装置姿势中的任何一个。类似地,对于给定末端执行器速度矢量,操纵器组件可以具有用于操纵器组件的各种关节的一系列不同的关节运动速度。
[0059] 参见图1和图2,远程手术系统可选地包括操纵子系统100(例如,患者侧单元)和用户控制子系统40(例如,外科医生控制台),在此处输入命令以控制控制操纵子系统100中的工具运动。
[0060] 在所示实施例中,操纵子系统100包括基部110、第一操纵臂组件120、第二操纵臂组件130、第三操纵臂组件140和第四操纵臂组件150。如图所示,基部110包括搁置在地板上的部分、从基部竖直延伸的竖直立柱和从立柱的顶部延伸的平吊杆。可任选地使用机械地安置(ground)患者侧单元的其他基部配置(例如,天花板安装式、墙壁安装式、桌台安装式等)。每个操纵臂组件120、130、140和150可枢转地耦接到基座110。在一些实施例中,可以包括少于四个或多于四个的机器人操纵臂组件作为操纵子系统100的一部分。虽然在所示实施例中,基部110包括脚轮以便于移动,但在一些实施例中,操纵子系统100被固定地安装到地板、天花板、手术台、结构框架等。
[0061] 在典型的应用中,操纵臂组件120、130、140或150中的两个均保持手术工具,而操纵臂组件120、130、140或150中的第三个保持立体内窥镜。剩余的操纵臂组件是可用的,以便可以在工作部位处引入另一个工具。可替代地,剩余的操纵臂组件可用于将第二内窥镜或另一图像捕获装置(例如超声换能器)引入工作部位。
[0062] 操纵臂组件120、130、140和150中的每一个包括耦接在一起并通过可致动(机动化)关节操纵的连杆。操纵臂组件120、130、140和150中的每一个包括装配臂(setup arm)部分和操纵器。装配臂部分保持操纵器以将操纵器的远程运动中心置于工具在切口或自然孔口处进入患者体内的地方。然后,装置操纵器可以操纵其工具,使得它可以绕远程运动中心枢转,插入进入孔口和从进入孔口缩回,以及绕其纵向轴杆轴线旋转。
[0063] 在所示实施例中,用户控制子系统40包括立体视觉显示器45,使得用户可以从由操纵子系统100的立体摄像机捕获的图像以立体视觉观看手术工作部位。左眼目镜46和右眼目镜47被提供在立体视觉显示器45中,使得用户可以分别用用户的左眼和右眼观看显示器45内的左显示屏和右显示屏。通常在合适的观察器或显示器上观察手术部位的图像的同时,外科医生通过控制一个或多个主输入装置对患者执行手术程序,该主输入装置进而控制操纵子系统中的相应工具的运动。
[0064] 用户控制子系统40还包括左主输入装置41和右主输入装置42,用户可以分别用左手和右手抓握左主输入装置41和右主输入装置42,以便以优选六个或更多个自由度(“DOF”)操纵由操纵子系统100的操纵臂组件120、130、140和150保持的工具。脚踏板44被提供在用户控制子系统40上,因此用户可以控制与脚踏板相关联的装置的运动和/或致动。可以通过一个或多个其他输入件(例如,按钮、触摸板、语音等)对系统进行附加输入,如输入
49所示。
[0065] 在用户控制子系统40中提供处理器43以用于控制和其他目的。处理器43在远程手术系统中执行各种功能。由处理器43执行的一个功能是平移和传递主输入装置41、42的机械运动,以在它们相应的操纵臂组件120、130、140和150中致动它们各自的关节,使得用户可以有效地操纵工具(例如,手术工具和内窥摄像机)。处理器43的另一功能是实现本文描述的方法、交叉耦接控制逻辑和控制器。
[0066] 尽管被描述为处理器,但是应当理解,处理器43可以通过硬件、软件和固件的任何组合来实现。此外,其如本文所描述的功能可以由一个单元执行或者在多个子单元之间划分,每个子单元进而可以通过硬件、软件和固件的任何组合来实现。此外,尽管被示出为外科医生控制单元40的一部分或物理上邻近外科医生控制单元40,但处理器43也可以作为子单元分布在整个远程手术系统中。因此,这里提到的控制方面通过处理器43以集中或分布的形式实现。
[0067] 参考图3,机器人操纵臂组件120、130、140和150可以操纵诸如手术工具的工具以执行微创手术。例如,在所示布置中,操纵臂组件120包括工具保持器组件122。套管180和手术工具200进而可释放地耦接到工具保持器组件122。套管180是管状构件,其在手术期间位于患者接口部位处。套管180限定内腔,手术工具200的细长轴220可滑动地设置在内腔中。
[0068] 工具保持器组件122包括桁梁(spar)124、套管夹126和工具托架128。在所示实施例中,套管夹126被固定到桁梁124的远端。套管夹126可被致动以与套管180耦接或从套管180脱开。工具保持器托架128沿着桁梁124线性平移以便向近侧(撤出)或向远侧(插入)移动耦接到托架128的工具。工具保持器托架128沿着桁梁124的移动部分地在主控制输入正在控制工具的插入和撤出移动时由处理器43控制。如图所示,工具保持器托架128包括电动马达,该电动马达驱动工具200上的机械输入,这些输入控制末端执行器和其他部件移动。
[0069] 手术工具200包括传动组件210、细长轴220和末端执行器230。传动组件210可以可释放地与工具保持器托架128耦接。轴220从传动组件210向远侧延伸。末端执行器230设置在轴220的远端处。
[0070] 轴220限定纵向轴线222,纵向轴线222与套管180的纵向轴线重合。当工具保持器托架128沿桁梁124平移时,手术工具200的细长轴220沿纵向轴线222移动。以此方式,末端执行器230可以插入患者体内的手术工作空间和/或从该手术工作空间缩回。
[0071] 还参考图4,用于远程手术的另一示例性操纵子系统160包括第一操纵臂组件162和第二机器人操纵臂组件164,每个操纵臂组件均安装到手术台10。在一些情况下,操纵系统160的这种配置可以用作图1的操纵子系统100的替代例。虽然仅描绘了两个操纵臂组件162和164,但应该理解,在一些配置中可以包括一个或多于两个(例如,三个、四个、五个、六个和多于六个)操纵臂组件。
[0072] 在一些情况下,手术台10可在手术期间被移动或重新配置。例如,在一些情况下,手术台10可以围绕各种轴倾斜、升高、降低、枢转、旋转等。在一些情况下,通过操纵手术台10的取向,临床医生可以利用重力的作用将患者的内部器官定位在便于增强手术进入的位置(即,重力缩回)。在一些情况下,手术台10的这种运动可以被集成作为远程手术系统的一部分,并由该系统控制。
[0073] 还参考图5-图7,可以使用不同类型的各种可替代的远程手术工具和不同的末端执行器230,其中至少一些操纵器的工具在手术过程中被移除和更换为另一工具。当操纵器移动时,工具整体移动。操纵器可选地还向工具提供机械输入,以便移动一个或多个工具部件,例如末端执行器。可选地,工具可以包括移动相关联的一个或多个工具部件的一个或多个马达。因此,一些DOF与整体移动工具相关联(例如,围绕远程运动中心的工具俯仰或偏航、通过远程运动中心的工具插入和撤出),并且一些DOF与移动工具部件相关联(例如,通过滚转轴来滚转末端执行器、相对于轴的末端执行器俯仰或偏航等)。工具的末端执行器由这两种类型的DOF来移动,通常协同工作以在空间中执行期望的末端执行器姿势变化。可以看出,操纵臂组件120、130、140和150在手术过程中经常会在患者体外经历显著的移动,以便按照相应的主输入装置的命令移动相应的工具末端执行器。
[0074] 末端执行器可以包括第一末端执行器元件56a和第二末端执行器元件56b,这些元件相对于彼此枢转以便限定一对末端执行器钳口,例如DeBakey镊56i、微型镊56ii和Potts剪刀56iii。其他末端执行器可以具有单个末端执行器元件,例如手术刀和电烙术元件。对于具有末端执行器钳口的工具,通常通过挤压主输入装置41、42上的握持构件来致动钳口。其他末端执行器机械DOF可以包括一些功能,例如,吻合应用、夹取应用、刀片移动等。
[0075] 参考图8,示例性远程手术系统500包括手术工具600、手术工具致动器组件700(在此也被称为“舱(pod)”)以及操纵器组件800。舱700与工具600兼容,并且工具600可移除地耦接到舱700。舱700耦接到操纵器组件800。在一些实施例中,舱700可以容易地从操纵器组件800拆卸,使得舱700可以方便地与另一个舱互换。操纵器组件800可以可调节地安装到框架或结构(诸如图4的装配结构172)上。操纵器组件800和舱700一起形成操纵器。
[0076] 当手术工具600与舱700耦接时,手术工具600的轴640可滑动地延伸穿过套管400,套管400可释放地耦接到操纵器组件800。在使用时,套管400可以延伸穿过患者的体壁或自然孔口。手术工具600包括末端执行器650,末端执行器650由操作主输入装置以进行远程手术的用户来控制。
[0077] 舱700限定了被配置为接收手术工具600的空间。当手术工具600耦接到舱700时,舱700可以整体上致动手术工具600的运动以及末端执行器650相对于工具的主体的运动。例如,舱700可以致动手术工具沿着舱700的纵向轴线702的平移运动,以插入或撤出末端执行器。因此,纵向轴线702也可以被称为插入轴线702,其与工具600的长轴线重合。
[0078] 操纵器组件800包括安装基座810、臂820、工具致动器组件耦接器840(“舱耦接器”)和驱动连杆850。安装基座810被配置为可释放地与远程手术系统的装配结构(例如图4的装配结构172)耦接。臂820可旋转地耦接到安装基座810以围绕轴线802旋转。
[0079] 舱耦接器840被配置为可释放地与舱700耦接,并且其可移动地与臂820耦接,使得舱耦接器840可沿着由臂820限定的弧形路径(“俯仰弧”)平移。如图所示,俯仰弧842被限定在臂820的远侧部分中。
[0080] 驱动连杆850可移动地耦接在臂820和舱耦接器840之间。连杆850的第一端耦接到臂820的致动器。连杆850的第二端耦接到舱耦接器840。因此,臂820中的致动器经由驱动连杆850沿着俯仰弧842驱动舱耦接器840。
[0081] 远程手术系统500被配置为响应于输入(例如,使用如参考图2所描述的控制子系统40的用户输入)来致动手术工具600的俯仰、滚转和偏航运动。例如,臂820可旋转地耦接到安装基座810,使得臂820可以被控制以相对于安装基座810围绕偏航轴线802旋转,如箭头804所示。此外,工具致动器组件耦接器840可移动地耦接到臂820,使得工具致动器组件耦接器840可以被控制以沿着俯仰弧842平移,如箭头844所示。此外,在舱耦接器840处,舱700可以相对于臂820围绕插入轴线702旋转,如箭头704所示。如图所示,在一些实施例中,舱耦接器840包括驱动该舱700围绕轴线702旋转的马达846。
[0082] 在一些实施例(诸如所描绘的实施例)中,插入轴线702和偏航轴线802在俯仰弧842的中心点处彼此相交以限定远程运动中心502。远程运动中心502是空间中的一个点,围绕该点进行上述滚转、俯仰和偏航运动。例如,当臂820相对于安装基座810旋转以产生手术工具600的偏航运动时,远程运动中心502的位置不变,因为偏航轴线802穿过远程运动中心
502。另外,当舱耦接器840沿着俯仰弧842相对于臂820平移以产生手术工具600的俯仰运动时,远程运动中心502的位置不变,因为俯仰弧842的中心点位于远程运动中心502处。此外,当舱700相对于臂820围绕插入轴线702旋转以产生手术工具600的滚转运动时,远程运动中心502的位置不变,因为插入轴线702穿过远程运动中心502。因此,可以说远程手术系统500是硬件约束的远程运动中心系统。
[0083] 在使用中,远程运动中心502(其通常在与套管400的区域重合的位置处)可以定位在患者的体壁或自然孔口处。这种布置的一个优点是,当手术工具600经历滚转、俯仰和偏航运动时,由套管400施加到体壁上的最终创伤被减少或消除,因为在手术工具600经历滚转、俯仰和偏航运动的同时,套管400(在远程运动中心502处)与体壁接触的部分移动相对小的量。
[0084] 此外,关于硬件约束的远程运动中心,应该理解的是,在沿着俯仰弧842的所有舱840位置处,插入轴线702和偏航轴线802在远程运动中心502所在的俯仰弧的中心处彼此相交。另外,在相对于安装基座810围绕臂820的偏航轴线802的所有位置处,插入轴线702和偏航轴线802在远程运动中心502所在的俯仰弧的中心处彼此相交。此外,在舱耦接器840沿着俯仰弧802的所有位置并结合相对于安装基座810围绕臂820的偏航轴线802的任何位置处,插入轴线702和偏航轴线802在远程运动中心502所在的俯仰弧的中心处彼此相交。
[0085] 还参考图9,舱700被示出为与手术工具600和操纵器组件800隔离。舱700包括近端704和远端706,并且纵向轴线702被限定在这些近端和远端之间。
[0086] 在所示实施例中,舱700包括近端板705、远端板707和壳体710。壳体710在近端704和远端706之间延伸。
[0087] 在所示实施例中,近端板705是C形板,而远端板707是限定开放中心的完全环周板。近端板705中的开口与由壳体710限定的狭槽开口712对齐。狭槽开口712和C形近端板705中的开口为手术工具600的手柄612提供间隙,以在手术工具600与工具驱动系统700耦接时从壳体710径向突出。
[0088] 在所示实施例中,舱700还包括位于远端706处的滚转从动齿轮708。该舱的滚转从动齿轮708可以与滚转驱动齿轮847啮合并由其驱动(参见图13、图17和图19),当舱700与操纵器组件800耦接时,该滚转驱动齿轮847耦接到舱耦接器840的滚转驱动马达846。当滚转驱动齿轮847驱动滚转从动齿轮708时,整个舱700旋转以围绕纵向轴线702滚转。结果,当手术工具600与舱700接合时,手术工具600整体上也旋转以围绕纵向轴线702(即围绕轴640)滚转。可替代地,在一些实施例中,滚转驱动马达(滚转驱动齿轮耦接到其上)是舱700的部件,并且滚转从动齿轮是舱耦接器840的部件。在一些实施例中,滚转从动齿轮可以被固定到舱耦接器840。在这种布置中,当滚转从动齿轮由滚转驱动马达驱动时,整个舱700旋转以围绕纵向轴线702滚转。使工具作为整体进行旋转将旋转工具的末端执行器,因此可以通过消除用于相对于工具的主体滚转的末端执行器DOF来简化工具。
[0089] 还参考图10、图12和图14,示例性操纵器组件800被示出为与手术工具600和舱700隔离。在示例性实施例中,可以看到安装基部810的近端包括球状物,该球状物被配置为可释放地与远程手术系统的装配结构(例如图4的装配结构172)中的相应凹穴(socket)耦接。该球状物和凹穴形成球形关节,其有利地允许安装基座以各种方式确定姿势以与套管对准进行手术。在其他实施例中,可以在操纵器和臂的装配部分之间使用其他关节配置。
[0090] 在所示实施例中,舱耦接器840包括滚转驱动马达846,该滚转驱动马达846驱动舱700围绕插入轴线702旋转。开放的内部空间被限定在舱耦接器840中。当舱700被安装在舱耦接器702上时,该开放空间接收舱700的远端部分706并与插入轴线702对齐。插入舱700的远端部分706使该舱与滚转驱动马达846接合,该滚转驱动马达846然后可驱动舱700围绕插入轴线702滚转。滚转驱动马达846布置的细节在下面进一步讨论。
[0091] 连杆850可移动地耦接在臂820和舱耦接器840之间。连杆850的第一端耦接到臂820的致动器(例如,线性致动器)。连杆850的第二端耦接到舱耦接器840。因此,通过由臂
820的致动器驱动的连杆850沿着俯仰弧842的曲线路径驱动舱耦接器840。可以使用各种线性致动器类型,包括驱动导螺杆或滚珠丝杠(带有随螺杆转动而平移的螺纹螺母)的马达、链条或皮带驱动器、液压或气动致动器、电磁或压电线性驱动器等。
[0092] 还参考图11、图13和图15,示例性操纵器组件800的一些部分被透明地示出,因此操纵器组件800的内部部件可以被可视化。
[0093] 首先,将描述用于操纵器组件800的偏航运动的机构。臂820包括柱形凸起部822,该柱形凸起部822延伸到由安装基座810限定的内部空间中,并在臂和安装基座之间形成滚转关节。间隔开的偏航轴承824a和824b设置在凸起部822和由安装基座810限定的内部空间之间,以提供基座810和臂820之间的可旋转界面。柱形凸起部822的纵向轴线限定偏航轴线802。偏航调节马达826设置在臂820内,其旋转轴线平行于偏航轴线802并从偏航轴线802偏移。偏航驱动齿轮828由偏航调节马达826驱动。偏航驱动齿轮828与偏航从动齿轮806啮合,该偏航从动齿轮806围绕偏航轴线802以静止关系附着于安装基座810。在所示实施例中,偏航从动齿轮806是扇形齿轮(例如,弧形齿条),其足以适应期望的偏航运动范围。当安装基座810被装配结构保持静止时,偏航调节马达826的致动将使偏航驱动齿轮828旋转,该偏航驱动齿轮828然后将沿着围绕偏航从动齿轮806(即围绕偏航轴线802)的圆形路径行进。结果,臂820将相对于安装基座810围绕偏航轴线802旋转。然而,可选地,凸起部可以从基座
810延伸到臂820中,并且上述部件被相应地修改。而且,可选地,马达和驱动齿轮可以固定在底座810中并且驱动臂820以进行旋转。
[0094] 现在将描述用于操纵器组件800的俯仰运动的机构。臂820包括俯仰调节马达830。在所示实施例中,两个俯仰调节马达830一起联动以获得更大的扭矩,但不是在所有实施例中都需要两个马达。在一些实施例中,包括单个俯仰调节马达830。通过俯仰调节马达830使耦接到俯仰调节马达830的轴的俯仰驱动齿轮832旋转。俯仰从动齿轮834由俯仰驱动齿轮
832驱动。在一些实施例中,一个或多个中间齿轮可以被定位在俯仰驱动齿轮832和俯仰从动齿轮834之间。俯仰从动齿轮834附着到导螺杆836,该导螺杆836可旋转地耦接在臂820内。因此,当俯仰从动齿轮834由俯仰驱动齿轮832(其由俯仰调节马达830旋转)旋转时,导螺杆836围绕其纵向轴线旋转。螺母838与导螺杆836螺纹耦接。当导螺杆836旋转时,螺母
838被限制而不能与导螺杆836一起旋转。因此,当导螺杆836旋转时,螺母838沿导螺杆836的纵向轴线平移。连杆850的第一端852可枢转地耦接到螺母838。连杆850的第二端854可枢转地耦接到舱耦接器840。因此,当螺母838沿导螺杆836的纵向轴线平移时,连杆850的第二端854驱动舱耦接器840的平移。舱耦接器840的平移遵循俯仰弧842的曲线路径。事实就是如此,因为舱耦接器840包括在臂820内限定的弧形槽821内行进的四个轴承848。弧形槽821限定了俯仰弧842。其他实施例可选地使用其他俯仰弧设计,例如,带有一个或多个轴承的单个弧形槽、在任一侧上带有轴承的一个或多个弧形轨道、一个或多个平行的弧形轨道(每个轨道内有各自的轴承)、带有匹配小齿轮的一个或多个弧形齿条、一个或多个弧形杆(其中一个或多个轴承在杆上滑动),等等。并且,如上所述,可以使用其他线性致动器类型。
[0095] 参考图16和图17,示例性操纵器装置800的偏航运动(如箭头804所示)可以被进一步可视化。安装基座810是静止的(例如,耦接到装配结构),并且臂820可相对于安装基座810围绕偏航轴线802旋转。
[0096] 臂820包括偏航调节马达826。偏航驱动齿轮828刚性地耦接到偏航调节马达826的轴。因此,偏航调节马达826的致动将使偏航驱动齿轮828旋转。偏航调节马达826可以双向旋转。
[0097] 偏航驱动齿轮828与偏航从动齿轮806啮合,偏航从动齿轮806围绕偏航轴线802以静止关系附着于安装基座810。由于安装基座810被装配结构保持静止,因此致动偏航调节马达826(其使偏航驱动齿轮828旋转)将使偏航驱动齿轮828沿着围绕偏航从动齿轮806的圆形路径行进。结果,臂820将相对于安装基座810围绕偏航轴线802旋转。
[0098] 在所示实施例中,操纵器装置800可以可旋转地调节通过约160°的偏航运动范围。也就是说,臂820可以相对于安装基座810围绕偏航轴线802旋转通过大约160度的行程。在一些实施例中,操纵器装置800被配置为促进约90°至约130°、约100°至约140°、约110°至约
150°、约120°至约160°、约130°至约170°或约140°到约180°的偏航运动范围。偏航运动范围可以受到硬件(例如,弧形齿条的末端、基座和臂之间的物理硬止动件等)的约束或者可以受到马达826的软件控制的约束。
[0099] 将操纵器组件偏航和俯仰致动器马达放置在臂820中有利地允许基座810相对较短,允许俯仰驱动器自身向后折叠,并且允许偏航驱动器占据与俯仰驱动器相同的长度以用于整体紧凑的臂和操纵器组件设计。
[0100] 参考图18-图20,示例性操纵器组件800的俯仰运动(如箭头844所示)可以被进一步可视化。如箭头844所示,操纵器组件800的俯仰运动需要舱耦接器840沿着俯仰弧842的曲线平移运动。
[0101] 该臂包括双向可旋转地驱动导螺杆836的一个或多个俯仰调节马达830。螺母838螺纹耦接到导螺杆836并且被旋转地约束,使得导螺杆836的旋转导致螺母838的平移运动。连杆850的第一端852可枢转地耦接到螺母838。连杆850的第二端854可枢转地耦接到舱耦接器840。因此,当螺母838沿导螺杆836的纵向轴线平移时,连杆850的第二端854驱动舱耦接器840的平移。舱耦接器840的平移遵循俯仰弧842的曲线路径,因为舱耦接器840包括在臂820内限定的弧形槽821内(图11和图13)行进的四个轴承848。弧形槽821限定了俯仰弧
842。四个轴承848有利地彼此间隔开,以便提供舱耦接器840相对于臂820的结构稳定性和刚度。
[0102] 来自手术工具600和/或套管400(图8)的与插入轴线702大致平行的力经由四个间隔开的轴承848传递到臂820,这些轴承848在臂820内限定的弧形槽821内行进。来自手术工具600和/或套管400的横向于插入轴线702的力以及来自手术工具600和/或套管400的扭转力经由多个轴承849传递到臂820。轴承849可旋转地耦接到舱耦接器840并在臂820的内平坦表面上滚转。在所示实施例中,包括八个轴承849(在舱耦接器840的每一侧上各有四个,其骑跨在臂820的远侧弧形部分内)。这八个轴承849彼此间隔开,以有利地提供舱耦接器840相对于臂820的结构稳定性和刚性。在一些实施例中,包括多于或少于八个轴承849。例如,在一些实施例中,包括两个、三个、四个、五个、六个、七个、九个、十个、十一个、十二个或多于十二个轴承849。
[0103] 俯仰弧842的半径843的中心点与远程运动中心502重合。因此,操纵器装置800的俯仰运动围绕远程运动中心502进行,因为俯仰弧842的半径843的中心点与远程运动中心502重合。
[0104] 在所示实施例中,操纵器装置800可以调节通过大约80度的俯仰运动范围。也就是说,舱耦接器840可沿着俯仰弧842相对于臂820平移通过大约80°的行程。在一些实施例中,操纵器装置800被配置为促进约50°至约70°、约60°至约80°、约70°至约90°、约80°至约100°、约90°至约110°或约100°至120°的俯仰运动范围。运动范围可以由物理硬止动件来约束,例如到达弧形槽的末端或专用机械挡,或者它可以由马达的软件控制来约束。
[0105] 有利地,操纵器装置800的俯仰运动范围部分地通过连杆850的配置来促进。也就是说,连杆850的第二端854被分叉(forked)以便为滚转调节马达846在舱耦接器840如图10-图11、图14-图16和图18-图20所示相对于臂820被定位时的叉齿之间的空间内行进提供间隙。将滚转驱动马达846向近侧放置在舱耦接器820上防止了,当手术工具被驱动至其完全俯仰-后倾运动范围极限时,马达向远侧突出并干扰另一操纵器或手术工具或临床人员,并且连杆850的分叉允许马达在连杆内行进,以增加手术工具的完整俯仰-前倾运动范围极限。然而,可替代地,滚转驱动马达可以被放置在舱耦接器的远侧或侧面。而且,可以可选地使用偏移到马达846的侧面的非分叉单连杆或者在连杆846两侧上的两个连杆,而不是分叉连杆850。
[0106] 如前所述,螺母838受到约束而不能旋转。使螺母838如此受约束的一种机制也有利地帮助防止或减少向导螺杆836施加不期望的侧向力。特别地,臂820限定在导螺杆836的相对侧上平行于导螺杆836延伸的两个细长线性通道839(例如,参见图13)。两个轴承853可移动地接合在两个细长线性通道839内。两个轴承853可以与螺母838或与连杆850的第一端852可旋转地耦接。这种布置将力从连杆850(否则将横向地施加到导螺杆836上)经由轴承
853传递到细长线性通道839。
[0107] 在一些实施例中,为了各种有利的目的,操纵器组件800可包括电子传感器等。例如,编码器可以耦接到机动俯仰、滚转和/或偏航调节机构的传动系。在一些实施例中,可以使用能够肯定地识别操纵器装置800的可动部件的位置的位置传感器
[0108] 参考图21,另一示例性远程手术系统操纵器1100包括手术工具600,该手术工具600可选择性地与兼容的手术工具致动器组件1000(同样被称为“舱”)耦接,该手术工具致动器组件1000进而可与示例性操纵器组件900耦接以形成远程操作工具操纵器。手术工具
600的配置如上所述,并且上述舱700的描述通常适用于舱1000,在下面的描述中指出了某些差异。操纵器组件900及其部件通常类似于如上所述的操纵器组件800及其部件(例如,基部、臂、舱耦接器),在下面的描述中指出了某些差异。套管1200及其安装通常类似于上述套管400。远程运动中心502和相关的偏航、俯仰和插入轴线如上所述。
[0109] 如图21所示,手术工具致动器组件耦接器940(同样被称为“舱耦接器”)可移动地与臂920耦接,使得舱耦接器940沿着由臂920的远侧部分限定的弧形路径942(同样被称为“俯仰弧”)平移。在所示实施例中,弧形路径942由固定弧形段922(即相对于臂920的其他主要部分固定)和可动弧形段926的组合限定。可动弧形段926以伸缩布置可移动地耦接到固定弧形段922,如下面参照图22-图24进一步描述的。
[0110] 连杆950类似于连杆850并且可移动地耦接在臂920和舱耦接器940之间。连杆950的第一端耦接到臂920的致动器,该致动器类似于臂820的俯仰调节致动器。连杆950的第二端耦接到舱耦接器940。因此,通过由臂920的致动器驱动的连杆950沿着俯仰弧942的曲线路径来驱动舱940。
[0111] 远程手术系统1100被配置为响应于如上所述的用户输入来致动手术工具600的偏航、俯仰和滚转运动,其中臂820围绕相关联的偏航轴线902旋转(箭头904),舱耦接器940沿着俯仰弧942平移(箭头944),并且舱1000围绕插入轴线1002旋转(箭头1004)。如上所述,舱1000控制工具沿轴线1002的插入和撤出以及工具600远端部件运动。
[0112] 还参考图22-图24,现在将进一步描述示例性操纵器组件900的俯仰运动(如箭头944所示)。如箭头944所示,操纵器装置900的俯仰运动需要舱耦接器940沿着俯仰弧942的曲线平移运动。在这些图中,臂920被透明地示出,使得臂920内部的机构可以被可视化。
[0113] 在所示实施例中,弧形路径942由第一固定弧形段922和第二可动弧形段926的组合限定。可动弧形段926可移动地耦接到固定弧形段922,使得可动段926相对于固定段922向远侧伸缩。如图所示,可动段926被定位并在固定段922内部平移,并且可选地,可动段926被定位并在固定段922外部平移。这种伸缩布置提供了优点。例如,如图22和图23所示,弧形段922和926的伸缩布置允许操纵器组件900的总长度与仅具有拥有相同俯仰运动范围的固定弧形部分的臂相比更短。具有较短的总长度可以有利地减少操纵器组件之间碰撞的可能性(例如,当在手术期间使用两个或更多个操纵器组件时,如图4所示)。另外,缩短操纵器组件900的总长度允许增强临床人员对患者的访问以及相对于患者的操纵器定位的更大灵活性。
[0114] 如上面针对臂820所描述,臂920包括双向可旋转地驱动导螺杆936的一个或多个俯仰调节马达930。螺母938螺纹耦接到导螺杆936并且被旋转地约束,使得导螺杆936的旋转导致螺母938的平移运动。连杆950的第一端952可枢转地耦接到螺母938。连杆950的第二端954可枢转地耦接到舱940。因此,当螺母938沿着导螺杆936的纵向轴线平移时,连杆950的第二端954驱动舱耦接器940的平移,以遵循俯仰弧942的曲线路径。图22-图24的序列示出了沿着俯仰弧942平移的舱耦接器940以及相对于固定段922伸缩的可动段926。
[0115] 如图22所示,在完整的手术工具俯仰-前倾配置中,舱耦接器940位于其相对于可动弧形段926的近端运动范围极限处,并且可动弧形段926位于其相对于固定弧形段922的近端运动范围极限处。当相对于臂920向远侧驱动连杆950时,舱耦接器940首先开始沿着由可动弧形段926限定的曲线路径向远侧平移,同时可动弧形段926相对于固定弧形段922保持静止。如图23所示,在舱耦接器940相对于可动弧形段926已达到其远侧运动范围极限的配置中,可动弧形段926开始相对于固定弧形段922向远侧移动。当相对于臂920向远侧更远地驱动连杆950时,舱耦接器940相对于可动弧形段926保持在其远侧运动范围极限处,而可动弧形段926沿着由固定弧形段922限定的曲线路径向远侧平移,直到可动弧形段926达到其相对于固定弧形段922的远侧运动范围极限,如图24所示。
[0116] 可动弧形段926和舱耦接器940的近侧缩回到其近侧运动范围极限(例如,从图24的配置朝向图23的配置并且进一步朝向图22的配置移动)可以作为上述远侧运动序列的逆转而发生。在一些实施例中,可动弧形段926朝向其相对于固定弧形段922的近侧运动范围极限被弹簧偏压。因此,当连杆950驱动舱耦接器940通过舱耦接器的整个俯仰运动范围的近侧部分(例如,图22)时,可动段926保持在其近侧运动范围极限处。当连杆950驱动舱耦接器940超出其在可动连杆926内的远侧运动范围极限(例如,图23)时,俯仰调节致动器克服弹簧偏压,并且可动连杆926和舱耦接器940一起开始沿着固定段922向远侧平移,以使舱耦接器940移动通过舱耦接器940的整个俯仰运动范围的远侧部分(例如,图24)。
[0117] 在缩回期间,连杆950向近侧缩回(从图24的配置开始),并且弹簧偏压使可动弧形段926保持抵靠舱耦接器940。当可动弧形段926达到其相对于固定弧形段922的近侧运动范围极限时,则舱耦接器940将开始沿着由可动弧形段926限定的曲线路径向近侧平移,直到舱耦接器940达到其相对于可动弧形段926的近侧运动范围。
[0118] 在一些实施例中,可动弧形段926相对于固定弧形段922的伸展和缩回移动可以是机动的。单独的机动线性致动器驱动可动弧形段通过其弧形运动范围。在一些实施例中,当舱耦接器相对于固定段和可动段向远侧和近侧移动时,可以使用其他伸缩布置或伸缩致动器布置来控制可动段相对于固定段的位置。
[0119] 用于可移动地耦接舱耦接器940和可动弧形段926的轴承布置以及用于移动地耦接可动弧形段926和固定弧形段922的轴承布置类似于上面参考操纵器组件800(参见例如图18-图20)所描述的用于可移动地耦接舱耦接器840和臂820的轴承布置。也就是说,第一组多个轴承(例如,四个轴承)附着于舱耦接器940并且在可动段926中限定的弧形槽中行进,并且第二组多个轴承(例如,四个轴承)附着于可动段926并且在固定段922中限定的弧形槽中行进。同样地,第一组侧向轴承(例如,四个轴承)附着于舱耦接器940并且抵靠可动段926的一个或多个内平坦表面,并且第二组侧向轴承(例如,四个)附着于可动段926并且抵靠固定段922的一个或多个内平坦表面。这种轴承布置可以有利地提供舱耦接器940相对于可动弧形段926的结构稳定性和刚性,以及可动弧形段926相对于固定弧形段922的结构稳定性和刚性(如上面参考舱耦接器840和臂820之间的轴承布置所述)。
[0120] 如上面针对操纵器组件820所述,在其他实施例中可以使用包括两个或更多个弧形凹槽,或一个或多个弧形轨道,或一个或多个弧形杆等的其他弧形机构。
[0121] 在所示实施例中,操纵器装置900可以调节通过大约80度的俯仰运动范围。也就是说,舱耦接器940可以沿着俯仰弧942相对于臂920平移通过大约80°的行程。在一些实施例中,操纵器装置900被配置为促进约50°至约70°、约60°至约80°、约70°至约90°、约80°至约100°、约90°至约110°或约100°到120°的俯仰运动范围。
[0122] 如前所述,螺母938受到约束而不能旋转。螺母938如此受约束的一种机构还有利地帮助防止或减少向导螺杆936施加不希望的横向力。特别地,臂920限定两个细长线性沟道,这些线性沟道在导螺杆936的相对侧上平行于导螺杆936延伸。两个轴承953可移动地接合在两个细长线性沟道939内。两个轴承953可以与螺母938或与连杆950的第一端952可旋转地耦接。这种布置将经由轴承953将力从连杆950传递到臂920的细长线性沟道(否则该力将被横向地施加到导螺杆936)。
[0123] 再次参考图21,可以看出,所描绘的操纵器1100没有明确地示出类似于例如上面图8中所示的马达846的舱滚转马达。尽管没有明确示出,但是在一些实施例中可以实现类似的舱滚转马达。并且在具有固定俯仰弧和伸缩俯仰弧的一些实施例中,可以使用内部舱滚转马达。例如,当舱1000安装到舱耦接器940上(或舱700安装到舱耦接器840)时,内部舱滚转马达使舱围绕插入轴线滚转。
[0124] 在一些实施例中,为了各种有利的目的,操纵器装置900可以包括电子传感器等。例如,编码器可以耦接到机动化俯仰、滚转和/或偏航调节机构的传动系。在一些实施例中,可以使用位置传感器,其可以肯定地识别操纵器装置900的可移动部件的位置。
[0125] 虽然本说明书包含许多具体的实施细节,但这些不应被解释为对任何发明或可能要求保护的范围的限制,而是作为具体针对特定发明的特定实施例的特征的描述。在本说明书中的独立实施例的上下文中描述的某些功能也可以在单个实施例中组合实现。相反,在单个实施例的上下文中描述的各种特征也可以单独地或以任何合适的子组合形式在多个实施例中实现。此外,虽然本文可能将特征描述为以某些组合方式起作用并且甚至最初如此声明,但是在某些情况下可以从组合中切除来自所要求保护的组合的一个或多个特征,并且所要求保护的组合可以针对子组合或子组合的变体。
[0126] 类似地,虽然在附图中以特定顺序描绘了操作,但是这不应该被理解为要求以所示的特定顺序或按顺序执行这些操作,或者执行所有示出的操作,以实现期望的结果。在某些情况下,多任务处理和并行处理可能是有利的。而且,本文描述的实施例中的各种系统模块和部件的分离不应被理解为在所有实施例中都需要这种分离,并且应该理解,所描述的程序部件和系统通常可以一起集成在单个产品中或打包成多个产品。
[0127] 已经描述了主题的特定实施例。其他实施例在随附的权利要求的范围内。例如,权利要求中记载的动作可以以不同的顺序执行并且仍然实现期望的结果。作为一个示例,附图中描绘的过程不一定需要所示的特定顺序或连续顺序来实现期望的结果。在某些实施方式中,多任务和并行处理可能是有利的。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈