首页 / 专利库 / 医疗设备 / 外科手术机器人 / 用于在由虚拟对象限定的目标部位处对患者执行手术的系统和方法

用于在由虚拟对象限定的目标部位处对患者执行手术的系统和方法

阅读:812发布:2020-10-28

专利汇可以提供用于在由虚拟对象限定的目标部位处对患者执行手术的系统和方法专利检索,专利查询,专利分析的服务。并且一种用于在由虚拟对象限定的目标部位处执行手术的系统和方法。外科 手术导航 系统包括待附接到患者的患者追踪器(54、56)。 定位 器(44)与患者追踪器协作并且在手术期间生成与目标部位相关联的定位器数据。外科手术 导航系统 还包括用于生成与目标部位和目标部位周围的表面相关联的图像数据的视觉装置(72)。与定位器和视觉装置通信的导航计算机被配置为基于定位器数据和图像数据确定在目标部位之外的要避开的区域。在一些情况下,生成第二虚拟对象以限定要避开的区域,使得手术期间使用的外科手术器械避开该区域。,下面是用于在由虚拟对象限定的目标部位处对患者执行手术的系统和方法专利的具体信息内容。

1.一种外科手术导航系统,包括:
跟踪器,被配置成附接到患者;
定位器,被配置为与所述跟踪器协作以生成与患者上的目标部位相关联的定位器数据,所述定位器数据具有由虚拟对象限定的目标部位;
视觉装置,被配置为生成与目标部位和目标部位周围的表面相关联的图像数据;
导航计算机,耦合到所述定位器和所述视觉装置,用于基于所述定位器数据和所述图像数据确定在目标部位之外的要避开的区域。
2.如权利要求1所述的系统,其中所述导航计算机被配置成通过分析所述定位器数据和所述图像数据来确定要避开的所述区域。
3.如权利要求1和2中任一项所述的系统,其中所述导航计算机被配置为生成限定所述区域的第二虚拟对象。
4.根据权利要求1-3中任一项所述的系统,其中所述导航计算机具有坐标变换模,所述坐标变换模块被配置为将所述定位器数据和所述图像数据组合进公共坐标系
5.如权利要求4所述的系统,其中所述导航计算机具有数据合并模块,所述数据合并模块被配置为在所述公共坐标系中评估所述图像数据和所述定位器数据,以通过合并所述图像数据和所述定位器数据以形成合并数据来确定要避开的区域。
6.如权利要求5所述的系统,其中,所述导航计算机被配置为选择合并数据的至少一部分以限定表示目标部位之外的目标部位周围的表面的要避开区域。
7.根据权利要求1-6中任一项所述的系统,其中由所述视觉装置生成的所述图像数据包括目标部位之外的目标部位周围的表面的至少一部分的三维图。
8.如权利要求7所述的系统,其中三维地图包括点、范围图、面、线或单点中的一个或多个。
9.一种机器人外科手术系统,包括:
机器人装置;
端部执行器,耦合到所述机器人装置;
跟踪器,被配置成附接到患者;
定位器,被配置为与所述跟踪器协作以生成与患者上的目标部位相关联的定位器数据,所述定位器数据具有由虚拟对象限定的目标部位;
视觉装置,被配置为生成与目标部位和目标部位周围的表面相关联的图像数据;和导航计算机,耦合到所述定位器和所述视觉装置并且被配置为基于所述定位器数据和所述图像数据来确定在目标部位之外要避开的区域,其中所述导航计算机被耦合到所述机器人装置,使得所述机器人装置可操作以相对于目标部位移动所述端部执行器,同时避开要避开的区域。
10.一种用于操作外科手术系统的方法,所述外科手术系统包括附接到患者的追踪器、定位器、视觉装置和导航计算机,所述方法包括以下步骤:
生成与患者上的目标部位相关联的定位器数据,所述定位器数据具有由虚拟对象限定的目标部位;
生成与目标部位和目标部位周围的表面相关联的图像数据;和
基于定位器数据和图像数据来确定在目标部位之外要避开的区域。
11.如权利要求10所述的方法,其中基于定位器数据和图像数据来确定在目标部位之外要避开的区域包括分析定位器数据和图像数据以生成限定区域的第二虚拟对象。
12.根据权利要求10和11中任一项所述的方法,其中,基于定位器数据和图像数据来确定目标部位之外要避开的区域包括将定位器数据和图像数据组合进公共坐标系。
13.根据权利要求12所述的方法,其中基于定位器数据和图像数据来确定目标部位之外要避开的区域包括:
在公共坐标系中评估图像数据和定位器数据;
合并图像数据和定位器数据以形成合并数据;和
选择合并数据的至少一部分以限定表示目标部位之外的目标部位周围的表面的要避开区域。
14.根据权利要求10-13中任一项所述的方法,其中生成与目标部位和目标部位周围的表面相关联的图像数据包括生成目标部位之外的目标部位周围的表面的至少一部分的三维图。
15.根据权利要求14所述的方法,其中生成目标部位之外的目标部位周围的表面的至少一部分的三维图包括生成点云、范围图、面、线或单点中的一个或多个。

说明书全文

用于在由虚拟对象限定的目标部位处对患者执行手术的系统

和方法

[0001] 相关应用
[0002] 本申请要求于2015年12月31日提交的美国临时专利申请No.62/273,543的优先权和权益,其全部内容和公开内容通过引用结合于此。

技术领域

[0003] 本公开一般涉及用于在由虚拟对象限定的目标部位处对患者进行手术的系统和方法。

背景技术

[0004] 导航系统帮助用户精确定位物体。例如,导航系统用于工业,航空航天和医疗应用。在医疗领域,导航系统帮助外科医生精确地将外科手术器械相对于患者中的目标部位放置。目标部位通常需要某种形式的治疗,如去除组织。在某些情况下,使用虚拟对象(如3D模型)在导航系统中限定目标部位。在手术期间可以向用户显示虚拟对象的表示,以帮助用户可视化相对于目标部位的器械治疗端的放置。例如,目标部位可以与患者的骨骼相关联,并且虚拟对象可以限定待通过器械的治疗端去除的骨骼的体积。
[0005] 常规的导航系统采用定位器,其与跟踪器协作以提供与器械和目标部位相关联的位置和/或定向数据,例如待去除的骨骼的体积。定位器通常被放置为使得其具有跟踪器的视野。跟踪器固定在器械上以及患者上,以与患者和器械一起移动。附着于患者身上的跟踪器附着在被治疗的骨骼上,由于骨骼的刚性特性而保持与目标部位的刚性关系。通过在器械和患者身上使用单独的跟踪器,可以精确定位器械的治疗端以保持在目标部位内。
[0006] 通常,目标部位位于手术期间应避开的敏感解剖结构(例如软组织)附近。这些敏感的解剖结构难以使用常规的跟踪器来跟踪,因为这些敏感的解剖结构可能由于其弹性和/或柔性而相对于跟踪器移位。就像往常一样,牵开器或其他工具位于目标部位附近,在手术过程中也应该避开。可以以与用于治疗患者的器械相同的方式跟踪牵开器或其他工具,但是向跟踪器和其他工具添加跟踪器会显着增加导航系统的成本和复杂性,特别是通过增加由导航系统跟踪的目标的数量。因此,在目前的外科手术中,回避有时是使用者的责任,因此使用者必须非常小心,以避开敏感的解剖结构和可能靠近目标部位的未跟踪工具。
[0007] 因此,本领域需要解决在手术期间要避开的敏感解剖结构和/或其他结构的识别的导航系统和方法。发明内容
[0008] 在一个实施例中,提供了一种用于在由虚拟对象限定的目标部位处执行手术的手术导航系统。手术导航系统包括待附接到患者的患者跟踪器。定位器与患者跟踪器合作并在手术期间生成与目标部位相关的定位器数据。手术导航系统还包括用于生成与目标部位和目标部位周围的表面相关联的图像数据的视觉装置。与定位器和视觉装置通信的导航计算机被配置为基于定位器数据和图像数据确定要在目标部位之外避开的区域。
[0009] 在另一个实施例中,提供了一种用于在由虚拟对象限定的目标部位处执行手术的机器人手术系统。机器人手术系统包括机器人装置。端部执行器联接到机器人装置以治疗目标部位。机器人手术系统还包括待附接到患者的患者跟踪器。定位器与患者跟踪器合作并在手术期间生成与目标部位相关的定位器数据。机器人手术系统包括视觉装置以生成与目标部位和目标部位周围的表面相关联的图像数据。与定位器和视觉装置通信的导航计算机被配置为基于定位器数据和图像数据确定在手术期间要在目标部位之外避开的区域。导航计算机与机器人装置通信,使得机器人装置可操作以相对于目标部位移动端部执行器,同时避开该待被避开的区域。
[0010] 在另一个实施例中,提供了一种在虚拟对象所限定的目标部位处执行手术的方法。该方法包括在患者跟踪器附着到患者时生成与目标部位相关联的定位器数据。还会生成与目标部位和目标部位周围表面相关的图像数据。该方法还包括基于定位器数据和图像数据确定在手术期间要在目标部位之外避开的区域。
[0011] 这些系统和方法提供了若干优点。例如,通过使用定位器捕获定位器数据以及使用视觉装置捕获图像数据,导航计算机能够识别位于目标部位之外的要避开的区域。结果,在一些实施例中,这些系统和方法提供外科手术器械的准确放置,以避开否则难以跟踪的敏感解剖结构,并避开目标部位附近的可能未配备单独的跟踪器的其他工具。附图说明
[0012] 优点将容易理解,因为当结合附图考虑时通过参考以下详细描述,其优点将变得更好理解。
[0013] 图1是包括定位器和视觉装置的机器人手术系统的透视图。
[0014] 图2是用于控制机器人手术系统的控制系统的示意图。
[0015] 图3是机器人手术系统中使用的坐标系统的透视图。
[0016] 图4是来自视觉装置的图像数据与来自定位器的定位器数据组合以产生限定要被避开的区域的虚拟对象的图示。
[0017] 图5是治疗患者的方法所执行的步骤的流程图

具体实施方式

[0018] 如图所示,在图1中,示出了用于治疗患者22的系统20。系统20被显示在诸如医疗设施的手术室之类的手术设置中。在所示的实施例中,系统20包括加工站24和引导站26。引导站26被设置为跟踪手术室中各种对象的运动。这样的对象包括例如外科手术器械30,患者的股骨F和患者的胫骨T。引导站26跟踪这些对象以便向用户显示它们的相对位置和取向,并且在一些情况下为了控制或限制外科手术器械30相对于目标部位的移动。外科手术器械30被示出为加工站24的一部分。然而,在其他实施例中,外科手术器械30由用户手动地保持和移动。
[0019] 待由外科手术器械30治疗的目标部位由虚拟对象限定。在所示的实施例中,示出了与股骨F相关联的股骨目标部位TS。当然,诸如胫骨T的目标部位等若干其他目标部位也是可能的,其中每个目标部位由其自身单独的虚拟对象来限定。表示目标部位的虚拟对象由用户预先设定和/或自动生成以限定待处理材料的体积,外科手术器械30的轨迹,待由外科手术器械30切割的平面,待钻孔等等。在所示的实施例中,虚拟对象VB(参见图4)限定要从股骨F去除的材料的体积。在一些情况下,虚拟对象在术中被设置或重置,即在外科手术过程中。应该理解的是,虽然本文阐述的描述涉及整形外科手术程序,但本文描述的系统和方法同样适用于任何类型的手术程序。
[0020] 引导站26包括容纳导航计算机34的导航推车组件32。导航界面与导航计算机34可操作地通信。导航界面包括适于位于无菌区域之外的第一显示器36以及适于位于无菌区域内的第二显示器38。显示器36,38可调节地安装到导航推车组件32。第一和第二输入装置40、42(例如键盘鼠标)可用于将信息输入到导航计算机34中或以其他方式选择/控制导航计算机34的某些方面。可以想到包括触摸屏(未示出)或语音激活的其他输入装置。
[0021] 定位器44与导航计算机34通信。在所示的实施例中,定位器44是光学定位器,并且包括定位器相机单元46。定位器相机单元46具有外壳48,其容纳一个或多个光学位置传感器50。在一些实施例中,采用至少两个光学传感器50,优选三个,四个或更多。光学传感器50可以是三个独立的电荷耦合器件(CCD)。在一个实施例中,采用三个一维CCD。应该理解的是,在其他实施例中,也可以在手术室周围布置各自具有单独的CCD或两个或更多个CCD的分开的定位器相机单元。CCD检测红外信号。另外,定位器44可以采用不同的模态,并且可以是电磁定位器,RF定位器,超声定位器或能够跟踪对象的任何其他常规定位器。
[0022] 定位器相机单元46安装到可调节臂以将光学传感器50定位在下面讨论的跟踪器的视野中,理想地,其没有障碍物。在一些实施例中,定位器相机单元46通过围绕旋转关节旋转而在至少一个自由度上是能够调节的。在其他实施例中,定位器相机单元46可在大约两个或更多个自由度是能够调节的。
[0023] 定位器相机单元46包括与光学传感器50通信以接收来自光学传感器50的信号的定位器相机控制器52。定位器相机控制器52通过有线或无线连接(未示出)与导航计算机34通信。一种这样的连接可以是IEEE 1394接口,它是用于高速通信和同步实时数据传输的串行总线接口标准。连接也可以使用公司特定的协议。在其他实施例中,光学传感器50直接与导航计算机34通信。
[0024] 为了跟踪对象的目的,位置和取向信号和/或数据被传输到导航计算机34。导航推车组件32,显示器36、38和定位器相机单元46可以与在Malackowski等人的于2010年5月25日发布的标题为“Surgery System”并且在此通过引用并入的美国专利7,725,162中描述的那些类似。
[0025] 导航计算机34具有用于执行这里描述的功能所必需的显示器36、38,中央处理单元(CPU)和/或其它处理器62,存储器(未示出)和存储器(未示出)。导航计算机34装载有如下所述的软件。软件将从定位器相机单元46接收到的信号转换成表示正在跟踪的对象的位置和取向的定位器数据。
[0026] 引导站26可与多个跟踪装置54、56、58一起操作,这些跟踪装置54、56、58在本文中也被称为跟踪器。在所示的实施例中,一个跟踪器54牢固地固定到患者的股骨F上,另一个跟踪器56牢固地固定到患者的胫骨T上。跟踪器54、56牢固地固定在骨骼上。跟踪器54,56可以以在此通过引用并入的美国专利7,725,162中所示的方式连接到股骨F和胫骨T。跟踪器54、56也可以如在此通过引用并入的2014年1月16日提交的标题为“Navigation Systems and Methods for Indicating and Reducing Line-of-Sight Errors”的美国专利申请公开No.2014/0200621中所示安装。在又一些实施例中,跟踪器54、56可以安装到解剖结构的其他组织。
[0027] 器械跟踪器58牢固地附接到外科手术器械30。器械跟踪器58可以在制造期间集成到外科手术器械30中,或者可以单独地安装到外科手术器械30以准备外科手术。通过器械跟踪器58跟踪的外科手术器械30的治疗端可以是旋转钻,电消融装置等。
[0028] 跟踪器54、56、58可以由内部电池供电,或者可以具有导线以通过导航计算机34接收电,导航计算机34与定位器相机单元46一样优选地接收外部电力。
[0029] 在所示的实施例中,外科手术器械30附接到加工站24的操纵器66.操纵器66也可以被称为机器人装置或机器人臂。名称为“Surgical  Manipulator Capable of Controlling a Surgical Instrument in Multiple Modes”的美国专利9,119,655示出了这种配置,该专利的公开内容在此通用引用并入。应该理解的是,在其他实施例中,外科手术器械30被手动操纵,而其位置和/或取向没有任何机器人约束。外科手术器械30可以是可用于执行医疗/外科手术的任何外科手术器械(也称为工具)。外科手术器械30可以是翻边器械,电外科手术器械,声波仪器,扩眼器,冲击器,矢状锯或其他器械。在一些实施例中,采用多个外科手术器械来治疗患者,每个外科手术器械被定位器44单独地跟踪。
[0030] 定位器44的光学传感器50接收来自跟踪器54、56、58的光信号。在所示实施例中,跟踪器54、56、58是有源跟踪器。在该实施例中,每个跟踪器54、56、58具有至少三个用于将光信号传输到光学传感器50的有源跟踪元件或标记。有源标记可以是例如发光二极管透射光(诸如红外光)的LED60。光学传感器50优选具有100Hz以上,更优选300Hz以上,最优选500Hz以上的采样率。在一些实施例中,光学传感器50具有8000Hz的采样率。采样率是光学传感器50接收来自顺序发光的LED 60的光信号的速率。在一些实施例中,来自LED 60的光信号针对每个跟踪器54,56,58以不同的速率发光。
[0031] 参考图2,每个LED 60连接到位于相关联的跟踪器54、56、58的外壳中的跟踪器控制器61,该跟踪器54、56、58向/从导航计算机34发送/接收数据。在一个实施例中,跟踪器控制器61通过与导航计算机34的有线连接以几兆字节/秒的量级发送数据。在其他实施例中,可以使用无线连接。在这些实施例中,导航计算机34具有收发器(未示出)以从跟踪器控制器接收数据。
[0032] 在其他实施例中,跟踪器54、56、58可以具有无源标记(未示出),例如反射从定位器相机单元46发射的光的反射器。反射的光然后被光学传感器50接收。有源以及无源装置在本领域中是众所周知的。
[0033] 在一些实施例中,跟踪器54、56、58还包括陀螺仪传感器和加速度计,诸如2015年4月14日授予Wu的在此通过引用并入的标题为“Navigation System Including Optical and Non-optical Sensor”的美国专利No.9,008,757中所示的跟踪器。
[0034] 导航计算机34包括导航处理器62。应该理解,导航处理器62可以包括一个或多个处理器以控制导航计算机34的操作。处理器可以是任何类型的微处理器或多处理器系统。术语“处理器”并非旨在将任何实施例的范围限制为单个处理器。
[0035] 定位器相机单元46接收来自跟踪器54、56、58的LED 60的光信号,并向导航处理器62输出与跟踪器54、56、58的LED 60相对于定位器44的位置相关的信号。基于接收的光学(和在一些实施例中的非光学信号),导航处理器62例如通过已知的三测量方法产生指示跟踪器54、56、58相对于定位器44的相对位置和取向的数据。在一些实施例中,数据由定位器相机控制器52生成并且然后被传输到导航计算机34。
[0036] 在开始外科手术之前,将附加数据加载到导航处理器62中。基于跟踪器54、56、58的位置和取向以及先前加载的数据,导航处理器62确定外科手术器械30的治疗端的位置(例如外科手术钻的质心)和外科手术器械30相对于待施加治疗端的目标部位(诸如股骨目标部位TS)的取向。在一些实施例中,导航处理器62将这些数据转发给操纵器控制器64。然后,操纵器控制器64可以使用该数据来控制操纵器66,如在名称为“Surgical Manipulator Capable of Controlling a Surgical Instrument in Multiple Modes“并且其公开在此通过引用并入的美国专利No.9,119,655中所描述的。在一个实施例中,操纵器66相对于外科医生设定的虚拟对象被控制。在这里描述的实施例中,虚拟对象VB限定要由外科手术器械30去除的股骨F的材料体积。因此,虚拟对象VB为外科手术器械30的治疗端提供要保持在其内的虚拟边界(即,对于与要留在其内的外科手术器械的治疗端相关联的单独的虚拟对象)。
[0037] 导航处理器62还产生指示治疗端与目标部位的相对位置的图像信号。这些图像信号被施加到显示器36、38。基于这些信号,显示器36、38生成图像,其允许外科医生和工作人员虚拟地查看治疗端与目标部位的相对位置。在大多数情况下,图像一次显示相对于一个目标部位的治疗端。例如,在股骨F和胫骨T都被治疗的手术过程中,在材料正在从股骨F上移除时,股骨目标部位TS以及外科手术器械30的治疗端相对于股骨目标部位TS的相对位置可以在视觉上表示。同样,当使用者完成从股骨F上移除材料并准备从胫骨T移除材料时,显示器36、38可仅示出外科手术器械30的治疗端相对于与胫骨T相关的目标部位的放置。
[0038] 参考图3,通常参照定位器坐标系LCLZ进行物体的跟踪。定位器坐标系统LCLZ有原点和取向(一组x,y和z轴)。在手术中,一个目的是将定位器坐标系统LCLZ保持在已知位置。安装到定位器相机单元46的加速度计(未示出)可以用于跟踪定位器坐标系LCLZ的突然或意外移动,如当定位器相机单元46被外科工作人员无意中碰撞时可能发生的那样。
[0039] 每个跟踪器54、56、58和被跟踪的对象也具有与定位器坐标系统LCLZ分开的其自己的坐标系统。例如,跟踪器54、56、58具有骨骼跟踪器坐标系统BTRK1,骨骼跟踪器坐标系统BTRK2和器械跟踪器坐标系统TLTR。
[0040] 在所示的实施例中,引导站26通过监视牢固地附接到骨上的骨跟踪器54、56的位置来监视患者的股骨F和胫骨T的位置。股骨坐标系是FBONE,胫骨坐标系是TBONE,它们是骨骼跟踪器54、56牢固地连接到的骨骼的坐标系。
[0041] 在手术开始之前,产生感兴趣解剖结构的术前图像,诸如股骨F和胫骨T(或其他实施例中的其他组织或结构)的术前图像。这些图像可以基于患者解剖结构的MRI扫描,放射扫描或计算机断层扫描(CT)扫描。这些图像用于开发感兴趣解剖结构的虚拟模型,例如股骨F和胫骨T的虚拟模型和/或待由外科手术器械30治疗的其他解剖结构。通常,虚拟模型是3D模型,所述3D模型代表待治疗的整个解剖结构或待治疗的解剖结构的至少一部分的数据以及表示限定目标部位的虚拟对象的数据。在所示的实施例中,股骨的虚拟模型VM是包括表示股骨F的一部分和虚拟对象VB(参见图4)的模型数据的3-D模型。虚拟对象VB限定目标部位TS和在手术过程期间要从股骨F去除的材料的体积。虚拟对象可以在虚拟模型内被限定并且可以被表示为网格表面,构造固体几何形状(CSG),体素或者使用其他虚拟对象表示技术。
[0042] 使用本领域中众所周知的方法将术前图像和/或虚拟模型映射到股骨坐标系统FBONE和胫骨坐标系统TBONE。这些术前图像和/或虚拟模型固定在股骨坐标系统FBONE和胫骨坐标系统TBONE中。作为采取手术前图像的替代方法,可以在手术室内从运动学研究,骨骼追踪和其他方法来开展治疗计划。这些相同的方法也可以用来生成前面描述的3-D虚拟模型。
[0043] 在本文所述的手术的初始阶段期间,骨跟踪器54、56牢固地固定到患者的骨骼上。坐标系FBONE和TBONE的姿态(位置和取向)分别映射到坐标系BTRK1和BTRK2。在一个实施例中,例如在此通过引用并入的Malackowski等人的美国专利7,725,162中公开的具有其自己的跟踪器PT(参见图1)的指针器械P(参见图1)可用于将股骨坐标系统FBONE和胫骨坐标系统TBONE分别注册到骨骼跟踪器坐标系统BTRK1和BTRK2。考虑到骨骼与其跟踪器54、56之间的固定关系,股骨F和胫骨T在股骨坐标系统FBONE和胫骨坐标系统TBONE中的位置和取向可以被转换为骨骼跟踪器坐标系统BTRK1和BTRK2,因此定位器相机单元46能够通过追踪追踪器54、56来追踪股骨F和胫骨T。这些描述姿势的数据被存储在与机械手控制器64和导航处理器62集成的存储器中。
[0044] 外科手术器械30的治疗端(也被称为能量施加器的远端)具有其自己的坐标系EAPP。例如,坐标系统EAPP的原点可以代表手术切割钻的质心。在手术开始之前,坐标系EAPP的姿态固定为仪器跟踪器坐标系TLTR的姿态。因此,确定这些坐标系EAPP,TLTR相对于彼此的姿态。姿势描述数据被存储在与操纵器控制器64和导航处理器62集成的存储器中。
[0045] 参考图2,定位引擎100是可以被认为是导航计算机34的一部分的软件模。定位引擎100的组件在导航处理器62上运行。定位引擎100可以在操纵器控制器64和/或导航处理器62上运行。
[0046] 定位引擎100从定位器相机控制器52接收作为输入的光学信号,并且在一些实施例中接收来自跟踪器控制器(未示出)的基于非光学的信号。基于这些信号,定位引擎100确定定位器坐标系LCLZ中骨骼跟踪器坐标系BTRK1和BTRK2的姿态。基于为仪器跟踪器58接收的相同信号,定位引擎100确定仪表跟踪器坐标系TLTR在定位器坐标系LCLZ中的姿态。
[0047] 定位引擎100将表示跟踪器54、56、58的姿态的信号转发给坐标变换器102。坐标变换器102是在导航处理器62上运行的软件模块。坐标变换器102参考限定术前图像和/或患者的虚拟模型与骨骼跟踪器54、56之间的关系的数据。坐标变换器102还存储指示外科手术器械30的治疗端相对于器械跟踪器58的姿势的数据。如果与虚拟模型分离,则坐标变换器102还参考限定虚拟对象的数据。
[0048] 在手术期间,坐标变换器102接收指示跟踪器54、56、58相对于定位器44的相对姿态的数据。基于这些数据和先前加载的数据,坐标变换器102生成指示位置坐标系EAPP和骨骼坐标系FBONE、TBONE两者相对于定位器坐标系LCLZ的位置和方向。
[0049] 结果,坐标变换器102生成指示外科手术器械30的治疗端相对于施加治疗端的目标部位的位置和取向的数据。代表这些数据的图像信号被转发到显示器36、38,使外科医生和工作人员能够查看该信息。在某些实施例中,代表这些数据的其他信号可被转发给操纵器控制器64以引导操纵器66和外科手术器械30的相应移动。因此,该数据还指示外科手术器械30的治疗端的虚拟位置,其也可以被建模为相对于虚拟模型和虚拟对象的单独的虚拟对象。
[0050] 返回参考图1,引导站26进一步包括视觉装置72。在所示的实施例中,视觉装置安装到定位器相机单元46。在其他实施例中,视觉装置72可以安装在单独的可调节臂以将视觉装置72与定位器相机单元46分开定位。视觉装置72优选地放置在目标部位的视野中而没有障碍物。视觉装置72具有与导航计算机34可操作通信的视觉控制器73。视觉装置72也可被称为能够实时捕获3-D图像的成像装置或数字成像装置。合适的视觉装置的一个例子是由微软公司出售的商用Kinect SDK或类似的Kinect型号。在其他实施例中,视觉装置72可以包括激光器阵列或立体相机系统。
[0051] 视觉装置72具有支撑一个或多个图像传感器78、79的外壳76。图像传感器中的一个可以是用于识别深度图像的深度图像传感器78,而另一个图像传感器可以是用于生成彩色图像的彩色图像传感器79。图像传感器78、79均都可以采用CMOS传感器或其他合适的传感器的形式。另外,光源80被支撑在壳体76中以产生并发射由深度图像传感器78的视场中的表面反射回来的光。
[0052] 传感器78、79和光源80与视觉控制器73通信以确定视场中的表面相对于视觉坐标系VIS(参见图3)的距离。在一个实施例中,光源80发射红外光并且视觉控制器73确定红外光从视场中的表面反射并返回到深度图像传感器78所需的经过时间。该过程在多个迭代中重复以确定从视觉装置72到视觉装置72的视场中的表面的距离,从而可以生成点202(见图4)。
[0053] 导航计算机34与视觉控制器73通信以接收代表点云202的信号和/或数据。包括图像生成器模块的成像软件加载在导航计算机34上并由导航处理器62运行以基于视觉装置72的视场创建点云202。在视觉坐标系VIS中创建点云202。点云202是视觉坐标系VIS中与视觉装置72的视场中的表面对应的一组图像数据点。这些图像数据点由x,y,z坐标限定。点云
202可以被保存或存储为图像数据文件。
[0054] 应该理解的是,通过将视觉装置72集成到定位器相机单元46中,视觉坐标系VIS可以容易地配准到定位器坐标系LCLZ,因为图像传感器78、79相对于光学传感器50的位置是已知的并且是固定的,反之亦然。在制造期间,视觉装置72可以被校准到定位器44以产生关于相同坐标系的数据,使得视觉坐标系VIS不需要经由坐标变换器102被变换到定位器坐标系LCLZ。
[0055] 在其他实施例中,例如视觉装置72与定位器相机单元46分离的那些实施例中,视觉装置72可具有刚性地安装到壳体76的追踪器(未示出),以建立视觉坐标系VIS和定位器坐标系LCLZ之间的关系。例如,使用限定跟踪器的坐标系和视觉坐标系VIS之间的关系的预加载的数据,基于跟踪器在定位器坐标系LCLZ中的位置,坐标转换器102可以将视觉坐标系VIS转换成定位器坐标系统LCLZ。
[0056] 参考图4,视觉装置72收集目标部位的图像和位于视觉装置72的视场内的目标部位周围的表面。在所示的实施例中,视觉装置72收集目标部位TS和位于视觉装置72的视场内的目标部位TS周围的表面的图像。导航计算机34与视觉控制器73协作以创建目标部位TS的点云202和目标部位TS周围的表面,其限定与目标部位TS和目标部位TS周围的表面相关联的图像数据。
[0057] 在正在生成图像数据的同时,定位器数据也正在被生成。导航计算机34与定位器44协作以确定限定定位器坐标系LCLZ中的目标部位的虚拟模型和虚拟对象的位置和取向。
在所示的实施例中,导航计算机34与定位器44协作以确定股骨F的虚拟模型VM的位置和取向以及定位器坐标系LCLZ中的虚拟对象VB的位置和取向。该定位器数据包括限定虚拟模型VM和虚拟对象VB的模型数据。在一些情况下,模型数据包括与虚拟模型VM相关联的点云形式的数据点以及与虚拟对象VB相关联的单独点云。
[0058] 仍然参考图4,导航处理器62运行数据合并模块101(见图1),其是合并定位器数据和图像数据以产生合并数据(一旦定位器数据和图像数据位于或转换为公共坐标系统)的软件模块。合并数据表示第二虚拟对象VR,其限定了在手术期间要在目标部位TS之外避开的区域R。数据的合并在图4中由箭头示出。在所示的实施例中,表示第二虚拟对象VR的合并数据可以包括:(1)与要由外科手术器械30避开的在目标部位TS之外的骨骼相关联的数据点204;(2)与由外科手术器械30避开的在目标部位TS之外的暴露的软组织相关联的数据点206;(3)与由外科手术器械30避开的牵开器相关联的数据点208;和(4)与目标部位TS之外的患者皮肤相关的数据点210。
[0059] 在一些实施例中,如图4所示,合并数据包括在定位器数据和图像数据合并之后具有位于虚拟对象VB之外的坐标的点云202中的所有数据点。在一些情况下,当外科手术器械30的治疗端到达目标部位TS的路径不完全清楚时,例如当目标部位TS至少部分地被软组织或其他敏感解剖结构阻挡时,将目标部位TS之外的所有可视表面限定为第二虚拟对象VR的一部分是特别有利的,使得外科手术器械30能够避开位于目标部位TS之外的任何敏感的解剖结构、工具等。
[0060] 表示第二虚拟对象VR并且限定了要避开的区域R的合并数据可以由导航处理器62处理,使得其可以在显示器38、39上显示给用户并且用户可以可视化外科手术器械30相对于区域R的位置和取向。在一些情况下,虚拟地限定要避开的区域R的数据点可以被转换成网格表面,构造性立体几何形状(CSG)、体素或使用各种虚拟对象表示技术的其他虚拟对象类型。另外,导航处理器62可以自动地将第二虚拟对象VR的大小以及因此区域R的范围限制到离目标部位TS预定义的距离,或者用户可以能够手动地细化第二虚拟对象VR,包括限定第二虚拟物体VR的外周边。
[0061] 应该注意的是,由于由第二虚拟对象VR限定的区域中的一些组织的弹性和/或柔性性质,第二虚拟对象VR在外科手术过程中可能会改变配置(例如,尺寸,形状,位置等)。另外,区域R可以随着牵开器的调整而变化,或者当附加工具或装置进出视觉装置72的视野时而变化。换句话说,要避开的区域R的性质是动态的并且可以连续地改变,但是利用这里描述的导航技术,第二虚拟对象VR可以随着每个新的图像数据集和定位器数据被连续地更新(例如,以预定频率),使得用户在外科手术期间能够避开要避开的区域R无论区域R发生何种变化。
[0062] 限定要避开的区域R的第二虚拟物体VR也可以被传送到操纵器控制器64并且被视为其中防止外科手术器械30的治疗端进入的“禁飞区”。结果,当操纵器66以自主模式操作时,操纵器66能够控制外科手术器械30的定位以避开区域R并且由此避开位于目标部位TS周围的诸如软组织和要保留的骨骼的敏感解剖结构,以及诸如牵开器、吸入管等的工具。
[0063] 参考图5,示出了用于确定要避开的区域R的方法的一个实施例。在步骤300中,外科医生或其他医疗专业人员为患者创建手术计划。手术计划确定要进行的手术过程和待进行的治疗。手术计划通常基于术前图像,例如从MRI或CT扫描中获取的图像,这些图像被转换为患者解剖结构的三维虚拟模型VM。限定在外科手术过程中要被治疗的目标部位TS的虚拟对象VB被生成并且与作为手术计划的一部分的3-D虚拟模型VM相关联。
[0064] 在步骤302中,将与虚拟模型VM和虚拟对象VB相关的数据(其限定在目标部位TS处要被治疗的材料的目标体积(例如,待移除的骨骼的目标体积))转移到导航计算机34以被存储在导航计算机34中。
[0065] 在步骤304中,然后生成定位器数据。定位器数据包括与定位器坐标系LCLZ中的虚拟模型VM和虚拟对象VB的位置和取向相关的数据。在步骤306中同时产生图像数据,以便在导航期间的每个时间步骤处存在相应的定位器数据和图像数据。图像数据包括点云202,其包括视觉装置72的视场中的表面的位置和取向,包括目标部位TS的表面和目标部位TS之外的表面。
[0066] 在步骤308中,导航计算机34的数据合并模块101评估定位器数据和图像数据。特别地,数据合并模块101将来自图像数据(例如,点云202)的数据点与来自定位器数据的数据点(例如,虚拟对象VB的数据点)合并。在步骤310中,数据合并模块101然后从图像数据中识别落在虚拟对象VB之外的所有数据点。该剩余的数据组产生要避开的区域R,然后将该区域R保存在导航计算机34的存储器中作为待由外科手术器械30要避开的第二虚拟对象VR。在步骤312中,用户操作外科手术器械30,手动地或自动地从目标部位去除目标体积的组织,同时避开区域R。步骤304-312对于导航期间的每个处理时间步骤重复直到外科手术过程完成,例如直到所有组织已从目标部位TS中删除。结果,该方法能够补偿手术过程中对区域R的变化。
[0067] 在其他实施例中,应该认识到,可以类似地执行这里描述的用于合并定位器数据和图像数据的系统和方法,以生成除定义要被避开的区域(区域R)的虚拟对象之外的其他类型的虚拟对象。例如,定位器数据和图像数据可以合并以产生限定目标位置的虚拟对象,诸如要去除的材料的体积,用于外科手术器械30的期望轨迹等。另外,图像数据和定位器数据可以因为其他目的被合并。
[0068] 如本领域技术人员将认识到的,本实施例的各方面可以采用体现在一个或多个计算机可读介质中的计算机程序产品的形式,所述计算机可读介质具有体现在其上的计算机可读程序代码。包括用于执行本文描述的方法的指令或代码的计算机软件可以存储在一个或多个相关联的存储器装置(例如,ROM,固定或可移动存储器)中,并且当准备被利用时,部分或全部加载(例如,进入RAM)并由CPU执行。这样的软件可以包括但不限于固件,驻留软件,微代码等。
[0069] 在前面的描述中已经讨论了几个实施例。然而,这里讨论的实施例不是穷尽的或将本发明限制为任何特定的形式。已经使用的术语旨在具有描述性文字的性质,而不是限制性的。鉴于上述教导,许多修改和变化是可能的,并且本发明可以以与具体描述不同的方式实施。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈