首页 / 专利库 / 生物工程 / 转染 / Src和Src家族激酶的Na+/K+-ATP酶特异性肽抑制剂/激活剂

Src和Src家族激酶的Na+/K+-ATP酶特异性肽抑制剂/激活剂

阅读:858发布:2023-03-02

专利汇可以提供Src和Src家族激酶的Na+/K+-ATP酶特异性肽抑制剂/激活剂专利检索,专利查询,专利分析的服务。并且公开了调控Src和其下游 信号 传导通路的方法,其包括Src和Na+/K+-ATP酶之间的结合。Na+/K+-ATP酶/Src 复合体 是强心类固醇如乌本苷的功能性受体。还公开了Src 抑制剂 或激活剂,其包括干扰Na/K-ATP酶和Src之间相互作用的Na+/K+-ATP酶或Src,通过不同于ATP类似物的机理发挥作用,并且是通路(Na+/K+-ATP酶)特异性的。,下面是Src和Src家族激酶的Na+/K+-ATP酶特异性肽抑制剂/激活剂专利的具体信息内容。

1.调控Src和其下游信号传导通路的方法,其包括Src和 Na+/K+-ATP酶之间的结合。
2.诱导乌本苷引起的信号转导的受体,其包含Na+/K+-ATP酶/Src 或Src家族激酶的复合体。
3.靶标,其包含Na+/K+-ATP酶和Src或Src家族激酶之间的相互 作用位点。
4.药物组合物,其用于调控涉及控制细胞生长、运动性、活性氧 (ROS)的产生、por-胶原合成和肌肉收缩的多种信号传导通路,所述 组合物包含一种或多种Src和Src家族激酶抑制剂或激活剂。
5.权利要求4的组合物,其包含一种或多种肽或肽片段,其抑制 或刺激Na+/K+-ATP酶的信号传导功能并且不抑制Na+/K+-ATP酶的离 子泵功能。
6.权利要求4的组合物,其中所述抑制剂不直接与ATP竞争。
7.包含Na+/K+-ATP酶或Src序列的Src抑制剂或激活剂,其干扰 Src和Na+/K+-ATP酶之间的相互作用,通过与ATP类似物不同的机理 发挥作用,并且是通路(Na+/K+-ATP酶)特异性的。
8.治疗组合物,其包含至少一种权利要求7的肽Src抑制剂或激 活剂。
9.开发小分子的方法,所述小分子模拟权利要求7的肽抑制剂或 激活剂,通过与ATP类似物不同的机理发挥作用,并且是通路 (Na+/K+-ATP酶)特异性的。
10.包含Na+/K+-ATP酶的信号转导物,其介导与癌细胞生长、心 脏纤维质生成、缺血/再灌注损伤、肌肉收缩或尿毒症心肌病有关的一 种或多种信号传导通路。
11.包含在Src或Na+/K+-ATP酶α1亚基中发现的功能结构域的 组合物,其中Na+/K+-ATP酶介导的对Src的抑制是由于所述α亚基或 其他P型ATP酶的α亚基的N结构域和Src激酶结构域之间的相互作用。
12.权利要求11的组合物,其包含ND1肽,或其片段。
13.来自ND1的肽,其足够结合Src以及其他Src家族激酶,包括 但不限于Lyn,和抑制它们的活性。
14.来自Src激酶结构域(KD1)或其他Src家族激酶的类似结构域 的肽,其能够与Na+/K+-ATP酶结合并通过竞争Src的结合基序而有效 激活Na+/K+-ATP酶抑制的Src。
15.肽,其用于激活或抑制Na+/K+-ATP酶通路特异性Src或Src 家族激酶。
16.包含肽或其片段的Src抑制剂和/或激活剂,所述肽或其片段 靶向i)与Na+/K+-ATP酶或者Src特异相互作用而不是竞争ATP结合, 和ii)提供Src活性的通路特异性调节的区域。
17.各Src家族激酶的同种型特异性Src抑制剂和/或激活剂,所 述激酶包括具有序列或其片段的激酶,其中使用也结合该激酶结构域的 Na+/K+-ATP酶的一个或多个α亚基开发所述序列或其片段。
18.小分子,其包含权利要求16的同种型特异性Src抑制剂和/ 或激活剂。
19.用于大规模和高通量筛选的快速筛选测定法,其包括 Na+/K+-ATP酶和至少一种Src或Src家族激酶之间的相互作用。
20.治疗蛋白激酶相关的疾病状态的方法,该方法包括对需要其的 受试者施用治疗有效量的至少一种权利要求3或4的组合物。
21.权利要求19的方法,其中所述疾病状态涉及使用Src或Src 家族激酶作为效应物的非受体酪氨酸激酶或者受体酪氨酸激酶。
22.权利要求19的方法,其中所述疾病状态涉及包含Src的细胞 酪氨酸激酶。
23.权利要求19的方法,其中所述疾病状态包括癌症或者肾脏或 心血管相关的疾病。
24.物质的组合物,其包含:a)具有5到50个氨基酸长度的肽, 该肽包含选自任一种如本文所述的肽序列的基序和b)第一种可检测的 部分,其中所述第一种可检测的部分与该肽结合。
25.组合物,其包含图19B中所示的序列[SEQ ID NO 1]或者基于 该序列开发。
26.组合物,其包含图20B中所示的序列[SEQ ID NO 34]或者基 于该序列开发。
27.组合物,其包含图24A中所示的肽序列[SEQ ID NO 2]或者基 于该肽序列开发。
28.组合物,其包含Na+/K+-ATP酶和Src或Src家族激酶之间相 互作用的结构信息或者基于该信息开发。
29.小分子Src抑制剂或激活剂,其被开发以靶向Na+/K+-ATP酶 和Src或Src家族激酶之间的相互作用或基于该相互作用开发。
30.Src抑制剂或激活剂,其基于NA+/K+-ATP酶或其他P-ATP酶 和Src或Src家族激酶之间的相互作用开发。
31.开发鉴定的Na+/K+-ATP酶/Src受体复合体的激动剂或拮抗剂 的方法。
32.组合物,其包含基于Na+/K+-ATP酶/Src复合体开发的激动剂 或拮抗剂。
33.治疗组合物,其包含至少一种权利要求32的激动剂或拮抗剂。
34.对培养的细胞中操作细胞Na+/K+-ATP酶的方法,其包括用A4 siRNA表达载体转染细胞,从而降低克隆的细胞中Na/K-ATP酶的表达。
35.至少部分沉默培养的细胞中内源α1的表达的方法,其包括用 A4 siRNA表达载体转染细胞,从而降低克隆的细胞中α1的表达。
36.耗尽内源Na+/K+-ATP酶而不需要使用乌本苷以迫使表达转染 的Na+/K+-ATP酶的方法,其包括使用A4 siRNA以沉默来自希望的物种, 包括人和猪的细胞中的α1表达。
37.包含GST-NT(氨基酸残基6-90)[SEQ ID NO 51]的表达载体。
38.包含GST-CD2(氨基酸残基152-288)[SEQ ID NO 52]的表达 载体。
39.包含GST-CD3(氨基酸残基350-785)[SEQ ID NO 53]的表达 载体。
40.包含GST-H+/K+-CD3[SEQ ID NO 54]的构建体。
41.包含GST-SERCA-CD3[SEQ ID NO 55]的构建体。
42.基于siRNA的测定法,其经配置以测定Na+/K+-ATP酶的量和 性质的改变对基础的和乌本苷刺激的Src活性的影响。
43.用于测定外源的/突变的α1的信号传导功能的α1耗尽细胞, 该细胞通过用α1表达载体转染敲减的细胞来制备,所述载体中A4 siRNA 靶向的序列被沉默突变,其中外源α1被敲入并且α1的表达被恢复,不 仅总的细胞Na+/K+-ATP酶蛋白,而且Na+/K+-ATP酶活性都被恢复。

说明书全文

相关申请的交叉引用

本申请要求2006年10月31日提交的美国临时申请号6O/855,482 的权益,将其公开内容引入本文作为参考。

关于联邦政府资助的研究的申明

发明在政府支持下做出并且根据国家心脏、和血液研究所(美 国公共卫生部,健康和人类服务部)授予的美国国立卫生研究院项目 HL-36573和HL-67963,政府在本发明中享有权利。

本发明的技术领域和工业实用性

所鉴定的肽可用作用于治疗癌症和其他疾病的治疗剂和/或作为 开发更好的治疗剂的促进剂,在所述疾病中,Src和Src家族激酶或 者高度升高或者在遗传上和/或功能上被降低。这些疾病状态包括但不 限于,白血病、前列腺癌乳腺癌、缺血/再灌注损伤、尿毒症心肌病、 高血压、心脏纤维质生成和缺乏心肌收缩。此外,如所鉴定的肽证 实的,可能利用新发现的Na+/K+-ATP酶/Src受体复合体作为靶标用 于开发新的受体激动剂和拮抗剂以及新的Src和Src家族激酶抑制剂 和激活剂。

发明背景

强心类固醇(CTS)由一组特异结合Na+/K+-ATP酶的化学物质组 成。它们包括植物来源的毛地黄药物(如地高辛和乌本苷)和脊椎动 物来源的糖苷配基(如蟾蜍灵和海蟾蜍灵)。最近的研究已经将乌本 苷和海蟾蜍灵鉴定为内源类固醇,其产生和分泌受到多种生理和病理 学刺激,包括人类中的血管紧张肽II和肾上腺素的调控。这些类固醇 可以激活蛋白质激酶和调控细胞生长、基因表达、细胞内活性 (ROS)浓度,从而在控制肾和心血管功能、保护缺血/再灌注损伤和 刺激或抑制细胞生长中起重要作用。
Src家族激酶是52-62kDa膜结合的非受体酪酸激酶并且它们 应答多种细胞外配体而参与几种酪氨酸磷酸化相关的信号通路。例如, Src含有至少三个重要的蛋白质相互作用结构域。SH3结构域结合到聚 脯氨酸基序并且SH2结构域与磷酸化的酪氨酸残基相互作用。该激酶 结构域与核苷酸反应并磷酸化底物。蛋白质配体与SH3或SH2结构域 的结合可以激活Src。也报导结合Src的激酶结构域的蛋白质能够调 控Src活性。
Na+/K+-ATP酶--细胞钠的分子机器,属于在进化上远古的酶 家族,其将ATP的解与膜离子转运相偶联。现在认为Na+/K+-ATP 酶具有双重功能。它不仅将Na+和K+泵穿过细胞膜,而且通过不同激 活蛋白激酶将细胞外CTS信号传递到细胞内区室。
特别地,发明人发现Na+/K+-ATP酶与Src和Src家族激酶相互作 用形成功能性受体。乌本苷与该受体的结合激活Src,其又磷酸化多 种效应子,导致不同通路(包括Ras/Raf/ERK1/2和磷脂酶C/蛋白激 酶C级联)的装配和激活以及细胞内Ca2+和细胞ROS产生的增加。这 些信号通路的激活最终导致心脏和肾功能的改变,刺激细胞增殖和组 织纤维质生成,保护组织抵抗缺血/再灌注损伤和抑制癌细胞生长。这 些效应以组织/细胞特异性方式发生。
因为Src和Src家族激酶在细胞信号转导中起重要作用,所以许 多研究人员参与寻找激酶特异性和通路特异性抑制剂。迄今为止,已 经开发了许多抑制剂,并且它们中的多数被开发为ATP类似物,其与 ATP竞争对这些激酶的结合,导致对激酶活性的抑制。然而,缺乏通 路特异性是当前的Src抑制剂的主要缺点。因为Src和Src家族激酶 对于许多细胞功能是必须的,因此一般性抑制可以损害治疗的总体益 处。过去,这已经通过这些抑制剂在动物研究中的严重副作用所证实。 此外,这些抑制剂中的一些显示出对受体酪氨酸激酶的交叉活性。
强心类固醇已经被用作治疗充血性心力衰竭和其他心脏病的药 物,因为它们增加细胞内Ca2+从而增加收缩力。然而,这些化学品不 仅激活Na+/K+-ATP酶相关的细胞信号传导通路,而且抑制Na+/K+-ATP 酶的离子泵功能。后者促进了它们的临床副作用并且限制了这些药物 的临床应用。内源强心类固醇是调控肾脏和心血管功能的激素。已知 这些激素对新发现的Na+/K+-ATP酶/Src的过度刺激引起高血压并在 肾脏上皮细胞中诱导异常细胞增殖以及诱导组织纤维质生成。
考虑到上述问题,清楚的是本领域中仍然需要开发通路(例如, Na+/K+-ATP酶)特异性Src抑制剂或激活剂的方法,所述抑制剂或激 活剂可以用于阻断内源CTS激活的Src通路或者刺激Na+/K+-ATP酶相 关的Src以模拟CTS效应而不抑制Na+/K+-ATP酶的离子泵功能。此外, 需要靶向新发现的Na+/K+-ATP酶/Src受体复合体以开发该受体的新 型激动剂或拮抗剂,从而使得Na+/K+-ATP酶/Src复合体的受体功能 可以被刺激以治疗疾病,如充血性心力衰竭和缺血/再灌注损伤,或者 被抑制以治疗疾病,如组织纤维质生成和癌症。
还需要监测Src与Na+/K+-ATP酶的相互作用和激酶酶促活性的测 定法,所述测定法是灵敏的、容易使用,并且适应于高通量筛选方法。
还需要分离参与蛋白质-蛋白质相互作用的操作上确定的配体和 最佳地鉴定一组详尽的参与配体结合的含有模结构域的蛋白质的方 法。
然而,如果这种方法可以得到,这种方法将可用于分离具有任何 目的功能结构域的功能形式的任何多肽。
此类一般性方法将具有巨大的实用性,因为可以鉴定相关蛋白的 完整家族,其中每个蛋白具有其自身形式的目的功能结构域。此类相 关蛋白质的知识将为我们理解多种生理学过程贡献巨大,所述生理学 过程包括细胞生长或死亡、恶性肿瘤、肾脏/心血管功能和免疫反应, 等等。
此类方法将也促进开发更有效的具有更少副作用的治疗剂、诊断 剂或预防剂。
根据本发明,提供了这样的方法。
发明概述
一方面,本文提供了调控Src及其下游信号传导通路的方法,其 包括Src和Na+/K+-ATP酶之间的结合。
另一方面,本文提供了诱导乌本苷引起的信号转导的受体,其包 含Na+/K+-ATP酶/Src或Src家族激酶的复合体。
另一方面,本文提供了靶标,其包含Na+/K+-ATP酶和Src或Src 家族激酶之间的相互作用位点。
另一方面,本文提供了药物组合物,其用于调控涉及控制细胞生 长、运动性、活性氧类别(ROS)的产生、por-胶原合成和肌肉收缩的 多种信号传导通路,所述组合物包含一种或多种Src和Src家族激酶 抑制剂或激活剂。在一些实施方案中,该组合物包含一种或多种肽或 肽片段,其抑制或刺激Na+/K+-ATP酶的信号传导功能并且不抑制 Na+/K+-ATP酶的离子泵功能。而且,在一些实施方案中,所述抑制 剂不直接与ATP竞争。
另一方面,本文提供了包含Na+/K+-ATP酶或Src序列的Src抑制 剂或激活剂,其干扰Src和Na+/K+-ATP酶之间的相互作用,通过与 ATP类似物不同的机理发挥作用,并且是通路(Na+/K+-ATP酶)特异性 的。
另一方面,本文提供了治疗组合物,其包含至少一种如本文所述 的肽Src抑制剂或激活剂。
另一方面,本文提供了开发小分子的方法,所述小分子模拟肽抑 制剂或激活剂,通过与ATP类似物不同的机理发挥作用,并且是通路 (Na+/K+-ATP酶)特异性的。
另一方面,本文提供了包含Na+/K+-ATP酶的信号转导物,其介导 与癌细胞生长、心脏纤维质生成、缺血/再灌注损伤、肌肉收缩或尿毒 症心肌病有关的一种或多种信号传导通路。
另一方面,本文提供了包含在Src或Na+/K+-ATP酶α1亚基中发 现的功能结构域的组合物,其中Na+/K+-ATP酶介导的对Src的抑制是 由于所述α亚基或其他P型ATP酶的α亚基的N结构域和Src激酶结 构域之间的相互作用。
另一方面,本文提供了包含ND1肽,或其片段的组合物。
另一方面,本文提供了来自ND1的肽,其足够结合Src以及其他 Src家族激酶,包括但不限于Lyn,和抑制它们的活性。
另一方面,本文提供了来自Src激酶结构域(KD1)或来自其他Src 家族激酶的类似结构域的肽,其能够与Na+/K+-ATP酶结合并通过竞争 Src的结合基序而有效激活Na+/K+-ATP酶抑制的Src。
另一方面,本文提供了用于激活或抑制Na+/K+-ATP酶通路特异性 Src或Src家族激酶的肽。
另一方面,本文提供了包含肽或其片段的Src抑制剂和/或激活 剂,所述肽或其片段靶向i)与Na+/K+-ATP酶或者Src特异相互作用 而不是竞争ATP结合,和ii)提供Src活性的通路特异性调节的区域。
另一方面,本文提供了各Src家族激酶的同种型特异性Src抑制 剂和/或激活剂,所述激酶包括具有序列或其片段的激酶,其中使用也 结合该激酶结构域的Na+/K+-ATP酶的一个或多个α亚基开发所述序 列或其片段。
另一方面,本文提供了小分子,其包含如本文所述的同种型特异 性Src抑制剂和/或激活剂。
另一方面,本文提供了用于大规模和高通量筛选的快速筛选测定 法,其包含Na+/K+-ATP酶和至少一种Src或Src家族激酶之间的相互 作用。
另一方面,本文提供了治疗蛋白激酶相关的疾病状态的方法,该 方法包括对需要其的受试者施用治疗有效量的至少一种如本文所述的 组合物。
另一方面,本文提供了方法,其中所述疾病状态涉及使用Src或 Src家族激酶作为效应物的非受体酪氨酸激酶或者受体酪氨酸激酶。
另一方面,本文提供了方法,其中所述疾病状态涉及包括Src的 细胞酪氨酸激酶。
另一方面,本文提供了方法,其中所述疾病状态包括癌症或者肾 脏或心血管相关的疾病。
另一方面,本文提供了物质的组合物,其包含:a)具有5到50 个氨基酸长度的肽,该肽包含选自任一种如本文所述的肽序列的基序 和b)第一种可检测的部分,其中所述第一种可检测的部分与该肽结 合。
另一方面,本文提供了组合物,其包含图19B中所示的序列[SEQ ID NO 1]或者基于该序列开发。
另一方面,本文提供了组合物,其包含图20B中所示的序列[SEQ ID NO 34]或者基于该序列开发。
另一方面,本文提供了组合物,其包含图24A中所示的肽序列[SEQ ID NO 2]或者基于该肽序列开发。
另一方面,本文提供了组合物,其包含Na+/K+-ATP酶和Src或 Src家族激酶之间相互作用的结构信息或者基于该信息开发。
另一方面,本文提供了小分子Src抑制剂或激活剂,其被开发以 靶向Na+/K+-ATP酶和Src或Src家族激酶之间的相互作用或基于该相 互作用开发。
另一方面,本文提供了Src抑制剂或激活剂,其基于NA+/K+-ATP 酶或其他P-ATP酶和Src或Src家族激酶之间的相互作用开发。
另一方面,本文提供了开发鉴定的Na+/K+-ATP酶/Src受体复合 体的激动剂或拮抗剂的方法。
另一方面,本文提供了组合物,其包含基于Na+/K+-ATP酶/Src 复合体开发的激动剂或拮抗剂。
另一方面,本文提供了治疗组合物,其包含至少一种如本文所述 的激动剂或拮抗剂。
另一方面,本文提供了在培养的细胞中操作细胞Na+/K+-ATP酶的 方法,其包括用A4 siRNA表达载体转染细胞,从而降低克隆的细胞中 Na/K-ATP酶的表达。
另一方面,本文提供了至少部分沉默培养的细胞中内源α1的表 达的方法,其包括用A4 siRNA表达载体转染细胞,从而降低克隆的细 胞中α1的表达。
另一方面,本文提供了耗尽内源Na+/K+-ATP酶而不需要使用乌本 苷以迫使表达转染的Na+/K+-ATP酶的方法,其包括使用A4 siRNA以 沉默来自希望的物种(包括人和猪)的细胞中的α1表达。
另一方面,本文提供了包含GST-NT(氨基酸残基6-90)[SEQ ID NO 51]的表达载体。
另一方面,本文提供了包含GST-CD2(氨基酸残基152-288)[SEQ ID NO 52]的表达载体。
另一方面,本文提供了包含GST-CD3(氨基酸残基350-785)[SEQ ID NO 53]的表达载体。
另一方面,本文提供了包含GST-H+/K+-CD3[SEQ ID NO 54]的 构建体。
另一方面,本文提供了包含GST-SERCA-CD3[SEQ ID NO 55]的构 建体。
另一方面,本文提供了基于siRNA的测定法,其经配置以测定 Na+/K+-ATP酶的量和性质的改变对基础的和乌本苷刺激的Src活性的 影响。
另一方面,本文提供了用于测定外源的/突变的α1的信号传导功 能的α1耗尽细胞,该细胞通过用α1表达载体转染敲减(knockdown) 的细胞来制备,所述载体中A4 siRNA靶向的序列被沉默突变,其中外 源α1被敲入并且α1的表达被恢复,不仅总的细胞Na+/K+-ATP酶蛋 白,而且Na+/K+-ATP酶活性都被恢复。
当按照附图阅读时,根据下面优选实施方案的详述,本发明的多 种目标和优点将对于本领域技术人员变得显而易见。
附图简述
图1A和B.LLC-PK1细胞中Na+/K+-ATP酶和Src之间的相互作用。
图1A.在1024 X 1024像素分辨率下,LLC-PK1细胞中Na+/K+-ATP 酶(红色)和Src(绿色)的共定位。左边和中间的图像分别显示了 Na+/K+-ATP酶α1和Src的膜定位,合并的图像(右边)显示了这两 种蛋白质的共定位。比例尺:20μm。
图1B.LLC-PK1细胞中EYFP-大鼠α1(黄色)和Src-ECFP(青 色)之间相互作用的荧光共振能量转移(FRET)分析。加方框的区域 (ROI1)被光漂白并且就FRET进行分析。发明人也测量了没有被光漂 白的环形区域(ROI2)处的FRET。在来自6个独立实验的16个细胞 中进行了相同的实验。比例尺:8μm。
图2A-D.纯化的猪肾Na+/K+-ATP酶(PKE)与GST-Src的结合。 将纯化的Na+/K+-ATP酶溶解在1% Triton X-100中。以100,000Xg 离心后,将所示量的澄清的上清液与5μg GST-Src在0.5% Triton X-100存在下温育30分钟,接着用相同缓冲液洗涤四次。
图2A和2B.考斯蓝染色的GST-Src和纯化的Na+/K+-ATP酶 (PKE)。
图2C.来自三个独立实验的代表性蛋白质印迹,显示了用抗 Na+/K+-ATP酶α1抗体检测的pulldown产物。
图2D.进行与C中相同的pulldown测定法并将650ng(总输入 的三分之一)纯化的Na+/K+-ATP酶(PKE)酶直接作为输入对照装载。
图3A-C.鉴定涉及与Na+/K+-ATP酶相互作用的Src结构域:
图3A.Src结构的图示。
图3B.GST-Src、GST-SH2、GST-SH3、GST-SH3SH2和GST激酶的 考马斯蓝染色。
图3C.GST-Src、GST-SH3SH2、GST-激酶、GST-SH2,但非GST-SH3 结构域与Na+/K+-ATP酶的结合。纯化的Na+/K+-ATP酶的等分试样(2 μg)用于每个结合测定法。相同的实验重复三次。
图4A-D.鉴定涉及与Src相互作用的Na+/K+-ATP酶结构域:
图4A.Na+/K+-ATP酶的α1亚基的图示。NT,N-末端;CD2,胞质 结构域2;CD3,胞质结构域3;PD,磷酸化结构域;ND,核苷酸结合结 构域;CT,C-末端。
图4B.四个独立实验的代表性蛋白质印迹显示了当使用200ng Src时,纯化的Src(缺少前84个氨基酸)与CD3结合,但是不与α1 亚基的NT结合。
图4C.蛋白质印迹,显示Src被Na+/K+-ATP酶(Na/K)和 NA+/K+-ATP酶(H/K)的GST-CD3拉下(pull down)但是没有被来自 1mg LLC-PK1细胞裂解物的SERCA拉下。
图4D.蛋白质印迹,显示了Na+/K+-ATP酶和Src之间的结构域 相互作用。将不同的GST-融合的Na+/K+-ATP酶结构域构建体与Src 的His标记的SH3SH2结构域或激酶结构域温育,并通过蛋白质印迹分 析pull down产物。
图5A-B.Na+/K+-ATP酶和GST-CD3对Src的调控:
图5A.将所示量的纯化的Na+/K+-ATP酶(PKE)与重组Src(4.5 U)在PBS中温育30分钟,然后加入2mM ATP/Mg2+并另外温育5分钟。 样品在SDS-PAGE上分离后,用如所示的抗体探测膜。*与对照相比p <0.05;**与对照相比p<0.01。
图5B.将GST(100ng)或不同量的GST-CD3与重组Src(4.5U) 在PBS中温育30分钟。如A中分析Src的磷酸化。值为至少四次独立 实验的平均值±SE。*与对照相比p<0.05。
图6A-C.通过乌本苷刺激Na+/K+-ATP酶/Src复合体:
图6A.将预先形成的Na+/K+-ATP酶/Src复合体与不同浓度的乌 本苷在2mM ATP/Mg2+存在下处理5分钟,并使用如所示的位点特异 性抗体分析磷酸化的Src。值为至少四次独立实验的平均值±SE。** 与对照相比p<0.01。
图6B.用10μM乌本苷处理Src或Src/Na+/K+-ATP酶复合体, 并测量Src活性。**与对照相比p<0.01。
图6C.四次实验的代表性蛋白质印迹,显示了乌本苷和酸盐对 Na+/K+-ATP酶/Src复合体的影响。重复与A中相似的实验以评估钒酸 盐(Van)或钒酸盐加乌本苷(Oua)对Src磷酸化的影响。
图7A-D.通过从Na+/K+-ATP酶释放激酶结构域激活Src:
图7A.对照实验,显示了Src可以与Na+/K+-ATP酶共同沉淀。在 0.5ml PBS中用或不用5μg Na+/K+-ATP酶温育的Src(4.5U)以 100,000Xg离心30分钟。将沉淀重悬浮在PBS中并进行如材料和方 法中所述的磷酸化测定。作为输入对照,将4.5U Src直接悬浮在PBS 中并测定pY418磷酸化。**p<0.01。
图7B.在PBS中将Src(4.5U)与5μg纯化的Na+/K+-ATP酶预 温育然后暴露于10μM乌本苷15分钟。然后通过离心收集对照处理 的和乌本苷处理的Na+/K+-ATP酶/Src复合体,重悬浮在PBS中,并 将其进行如A中的磷酸化测定。两个代表性蛋白质印迹在A和B中显 示,值为至少三次独立实验的平均值±SE。**p<0.01。
图7C.四次单独实验的代表性蛋白质印迹,显示了乌本苷诱导激 酶结构域从Na+/K+-ATP酶的释放。将GST-Src、GST-SH3SH2或GST -激酶在室温下于500μl PBS中与1μg纯化的Na+/K+-ATP酶温 育30分钟。然后在谷胱甘肽珠上拉下(pull down)复合体,洗涤三 次,重悬浮在500μl PBS中,并暴露于10μM乌本苷15分钟。随 后将小珠用PBS再洗涤三次,用抗-α1抗体通过蛋白质印迹分析拉 下(pull down)的Na+/K+-ATP酶。
图7D.三次独立实验的代表性蛋白质印迹,显示了GST-激酶结构 域融合蛋白对Src的激活。将GST、GST-SH3SH2或GST-激酶(各5μ g)与2μg纯化的Na+/K+-ATP酶在室温下预温育15分钟。然后向混 合物加入重组Src(4.5U)温育额外的30分钟。通过加入2mM ATP/ Mg2+开始磷酸化反应并如A中测量Src pY418。
图8A-C.乌本苷在活细胞中从Na+/K+-ATP酶解离Src激酶结构 域:
图8A.LLC-PK1细胞中乌本苷诱导的FRET信号改变的代表性迹 线。
图8B.用Src-Rluc和GFP-α1共转染293T细胞。用Rluc-GFP 融合蛋白转染的293T细胞用作阳性对照,并将Rluc和GFP- Na+/K+-ATP酶共转染的细胞用作阴性对照。
图8C.乌本苷处理以依赖剂量的方式降低GFP-Na+/K+-ATP酶和 Src-Rluc之间的BRET信号。值为至少四次实验的平均值±SE。*p< 0.05;**p<0.01。
图9A-D.乌本苷-激活的Na+/K+-ATP酶/Src磷酸化并募集下游 效应物;
图9A.用1μM乌本苷处理LLC-PK1细胞5分钟,并用抗-α 1抗体免疫沉淀细胞裂解物并分析酪氨酸磷酸化的蛋白质。
图9B.用100μM乌本苷处理SYF和SYF+Src细胞5分钟并如 A中进行分析。在A和B中显示了三次实验的代表性蛋白质印迹。
图9C.对Src的抑制阻断了乌本苷诱导的Src向Na+/K+-ATP酶 信号复合体的募集。将LLC-PK1细胞用1μM PP2或PP3预处理15 分钟,然后暴露于1μM乌本苷5分钟。免疫沉淀并分析细胞裂解物。 值为至少四次独立实验的平均值±SE。*p<0.05。
图9D.在2mM ATP存在或不存在下,如以前所述的(Wang等人, 2004)分离胞膜窖并用100nM乌本苷处理5分钟。之后,胞膜窖在RIPA 缓冲液中裂解,并通过离心使裂解物澄清并用抗窖蛋白-1抗体免疫沉 淀。通过蛋白质印迹用α1、Src、和窖蛋白-1探测免疫沉淀物。显示 了三个独立实验的代表性蛋白质印迹。
图10.图示显示了所鉴定的Na+/K+-ATP酶和Src(A)之间的相 互作用和乌本苷怎样调控Na+/K+-ATP酶/Src受体复合体(B)。
图11A-B.通过siRNA对内源Na+/K+-ATP酶的沉默:
图11A.通过SDS-PAGE分离来自不同细胞系的总细胞裂解物(30 μg/泳道)并通过蛋白质印迹分析Na+/K+-ATP酶的α1亚基的表达。 显示了代表性蛋白质印迹(见表2中的定量数据)。
图11B.混合P-11和PY-17细胞,共同培养24小时,然后如“实 验步骤”中所述的用抗-α1抗体(克隆C464.6)免疫染色。比例尺 代表50μm。
图12A-B.AAC-19细胞中Na+/K+-ATP酶的表达。
图12A.如“实验步骤”中所述的用表达大鼠α1的载体转染PY-17 细胞产生克隆AAC-19。通过SDS-PAGE分离细胞裂解物(来自P-11和 AAC-19的15μg和来自PY-17的60μg)并通过蛋白质印迹分析。 印迹首先用识别猪和大鼠α1亚基的抗体α6F探测,然后剥离,用与 大鼠α1特异反应的抗NASE再次探测。
图12B.混合P-11和AAC-19细胞,共同培养24小时,然后如 “实验步骤”中所述的用抗-α1抗体(克隆C464.6)免疫染色。比例 尺代表50μm。
图13.乌本苷(oua)对Na+/K+-ATP酶活性的浓度依赖性作用。 如“实验步骤”中所述的从P-11和AAC-19细胞制备全细胞裂解物并 测定Na+/K+-ATP酶活性。数据显示为对照的百分比,并且每个点表示 为四次独立实验的平均值±S.E.。用GraphPad软件进行曲线拟合分 析。
图14A-C.Na+/K+-ATP酶对Src活性的调控:
图14A和14B-通过SDS-PAGE分离来自不同细胞系的细胞裂解物 (30μg/泳道)并通过抗-c-Src(B-12)或抗-Tyr(P)418-Src抗体分 析。定量数据是来自四次独立实验的平均值±S.E.。*,相当于对 P-11的p<0.05。
图14C.使培养的P-11和TCN23-19细胞血清饥饿12h并使用抗 -Tyr(P)418-Src抗体免疫染色。如“实验步骤”中所述的收集图像。 比例尺代表50μm。
图15A-D.无泵的Na+/K+-ATP酶对Src活性的调控:
图15A和15B.通过SDS-PAGE分离来自不同细胞系的细胞裂解物 (30μg/泳道)并通过抗-c-Src(B-12)或抗-Tyr(P)418-Src抗体分 析。定量数据是来自四次独立实验的平均值±S.E.。*,相当于对 P-11的p<0.05。
图15C.PY-17细胞用空载体(模拟物)、沉默突变的野生型大鼠 α1(AAC)或D371E突变体瞬时转染PY-17细胞。36h后,如所述的裂 解转染的细胞并通过蛋白质印迹分析。显示了代表性蛋白质印迹,相 同的实验重复四次。
图15D.用表达EYFP-融合的α1D 371E突变体的载体 (pEYFP-D371E)瞬时转染TCN23-19细胞。24h后,使细胞血清饥饿12h 并使用抗-Tyr(P)418-Src抗体免疫染色。来自代表性实验的图像表明 突变pEYFP-D371E的表达降低了红色(Tyr(P)418-Src)荧光的强度(与 绿色和附近的非绿色细胞相比)。收集四次独立实验中来自40个不同 显微镜视野的Tyr(P)418-Src的定量数据并表示为平均值±S.E.**, p<0.01。比例尺代表22μm;W/O,无。
图16A-B.Src和无泵Na+/K+-ATP酶之间的相互作用:
图16A和16B.用Src-ECFP和EYFP-大鼠α1突变体(D371E)表达 载体共转染TCN23-19细胞。24h后,如“实验步骤”中所述的进行FRET 分析。将加框的ROI_1(绿色)光漂白,并分析ROI_3(黄色)膜区域的 FRET。选择加框的ROI_2(紫色)并用作非漂白对照。重复实验三次, 并分析总共20个细胞。
图16C.如A中用沉默突变的野生型大鼠α1(AAC)或大鼠α1无 泵突变体(D371E)表达载体瞬时转染TCN23-19细胞。36h后,制备细 胞裂解物并用单克隆的抗-Src(克隆GD11)抗体进行免疫沉淀。使用 抗-NASE抗体(对于大鼠α1)或抗-c-Src(SRC2)抗体通过蛋白质印 迹分析免疫沉淀物。相同的实验重复三次,并显示了代表性蛋白质印 迹。IP,免疫沉淀。
图17A-E.通过Src-相互作用的Na+/K+-ATP酶对FAK磷酸化的 调控:
图17A.使培养的P-11和PY-17细胞血清饥饿12小时。然后用抗 磷酸酪氨酸抗体(4G10)免疫沉淀细胞裂解物,并通过抗-FAK抗体分析 免疫沉淀物。合并的定量数据来自三个独立的实验。
图17B.通过SDS-PAGE分析来自不同细胞系的细胞裂解物并通过 抗-Tyr(P)925-FAK和抗-Tyr(P)418-Src抗体分析。剥离相同的膜并用抗 c-Src(B-12)抗体再次探测。显示了三个独立实验的代表性印迹。
图17C.通过抗-pERK1/2或抗-ERK1/2抗体分析细胞裂解物。从 四个独立实验计算定量数据(平均值±S.E.)作为pERK/ERK的相对比 例。
图17D.用1μM PP2处理P-11和PY-17细胞0.5和2小时。通 过使用特异性抗体测量FAK和Src激活。显示了代表性蛋白质印迹, 相同的实验重复三次。
图17E.用空载体(模拟物)或D371E突变体瞬时转染PY-17细胞。 36小时后,裂解转染的细胞并如所示用特异性抗体通过蛋白质印迹分 析。显示了代表性蛋白质印迹,相同的实验重复三次。IP,免疫沉淀物; IB,免疫印迹。*,相对于P-11的p<0.05。
图18A-D.乌本苷对Src和ERK1/2的作用:
图18A和18B.将细胞暴露于100nM乌本苷5或15分钟,并通 过蛋白质印迹分析细胞裂解物(50μg/泳道)的活性Src或活性 ERK1/2。印迹首先用抗-Tyr(P)418-Src或抗-pERK抗体探测,然后剥 离,并再次探测总的Src或ERK1/2以确保相等上样。
图18C和18D.细胞用所示浓度的乌本苷处理5分钟,如图18A 和18B对总的细胞裂解物分析Tyr(P)418-Src和总的Src或pERK1/2和 总的ERK1/2。显示了代表性蛋白质印迹和组合的定量数据。相对于 P-11细胞的对照条件计算来自三个独立实验的定量数据(pSrc/Src 或pERK/ERK的相对比例)(平均值±S.E.)。*,相对于每种细胞系的 各自对照条件,p<0.05,con,对照。
图19.与Src相互作用并抑制Src的Na+/K+-ATP酶中特定结构 域的进一步作图:
图19A.Na+/K+-ATP酶α1和CD3结构域图解。
图19B.ND1的氨基酸序列[SEQ ID NO 1]
[LTQNRMTVAHMWSDNQIHEADTTENQSGVSFDKTSATWLALSRIAGLCNRA VFQANQ].
图19C.使用GST-标记的α1截短和His-Src的体外结合测定法。
图19D.序列,显示了ND1肽在不同物种和Na/K-ATP酶的不同同 种型中是保守的(显示了部分序列并且全长序列可以根据提供的检索 号[SEQ ID NO:2-33]从Swiss Prot数据库得到。
图20A-C.与Na+/K+-ATP酶相互作用的Src中特定结构域的进一 步作图:
图20A.Src和它的激酶结构域的示意性结构。
图20B.KD1的氨基酸序列[SEQ ID:34]
[LRLEVKLGQGCFGEVWMGTWNGTTRVAIKTLKPGTMSPEAFLQEAQVMK KLRHE].
图20C.使用GST标记的Src截短和纯化的Na+/K+-ATP酶的体外 结合测定法。
图21.活性测定证实ND1和KD1涉及Src的Na+/K+-ATP酶介导 的调控。
图22A-B.ND1在活细胞中有效阻断Src活性。
图22A.用YFP-标记的ND1、ND和CD3瞬时转染LLC-PK1细胞24 小时。
图22B.来自三次独立实验的定量数据。*p<0.05。
图23.YFP-ND1抑制人前列腺癌细胞(DU145)生长。
图24.来自ND1的抑制Src的20个氨基酸的肽(P-3)的作图。
图24A.P-3的肽序列[SEQ ID 2]
[SATWLALSRIAGLCNRAVFQ]。
图24B.当将纯化的Src与P-3肽在37℃温育20分钟并加入2mM ATP后温育额外的5分钟时得到的结果。
图25.表1-人Na+/K+-ATP酶-α1亚基特异性siRNA的靶标和 寡核苷酸序列,其中通过粗体字母标记靶序列。[SEQ ID NO.35-46]。 (见图25-表4)。
图26.表2-用于不同细胞系的DNA构建体的相对α1亚基蛋白质 含量和组成。
图27.表3-不同细胞系中的Na+/K+-ATP酶活性。
图28.肽penetratin(TAT)和antennapedia(AP)的螺旋的序列 [SEQ ID NO 47,48]。
图29.TAT-P3和AP-P3抑制Src并阻断DU 145细胞生长。
图29A.显示了TAT或AP标记的Src肽抑制剂(TAT-P3或AP-P3) 的序列[SEQ ID NO 49,50]。
图29B显示了新肽在体外抑制Src。
图29C显示FITC-缀合的TAT-P3靶向细胞膜。
图29D显示向DU 145细胞加入TAT-P3或AP-P3抑制了细胞生长。
图30A-B显示了具有SEQ ID NO 1-55的表。
优选实施方案详述
Src和Src家族激酶是非受体酪氨酸激酶,其在涉及控制细胞生 长、运动和肌肉收缩的多种信号传导通路的调控中起重要作用。此外, 我们最近的研究已经表明通过强心类固醇对Na/K-ATP酶-结合的Src 的激活保护心脏免于缺血/再灌注损失。它还抑制癌细胞生长和刺激成 纤维细胞中的胶原合成。因为Src家族激酶在许多类型的癌症中具有 高活性,所以制药公司对于开发特异性Src和Src家族激酶抑制剂感 兴趣。多数开发的抑制剂是直接与ATP竞争的ATP类似物。
一方面,本发明涉及肽Src抑制剂,其包括结合并抑制Src的 Na+/K+-ATP酶。肽抑制剂不仅通过不同于ATP类似物的机理发挥作用, 而且是通路(Na+/K+-ATP酶)特异性的。从而,这些肽可以用于开发 癌症和其他疾病的有效治疗剂,在所述癌症和其他疾病中Src或 Na+/K+-ATP酶/Src活性是异常的。此外,本发明涉及包括Src片段的 肽Src激活剂,其结合并阻止Na+/K+-ATP酶对Src的抑制。像强心类 固醇一样,这些肽激活剂可以激活Na+/K+-ATP酶结合的Src。与强心 类固醇相比,它们不抑制Na+/K+-ATP酶的泵功能。从而,这些激活剂 用于开发充血性心力衰竭、局部缺血/再灌注损失(例如,心肌梗塞) 和其中Src或Na+/K+-ATP酶/Src活性异常的其他疾病的有效治疗剂。
强心类固醇如乌本苷激活Src,导致许多不同类型细胞中的蛋白 质酪氨酸磷酸化。发明人现在已经发现Src和Na+/K+-ATP酶通过多个 结构域相互作用以形成功能性受体复合体。该相互作用有效保持Src 处于失活状态,表明Na+/K+-ATP酶是有效的Src抑制剂。
因为Na+/K+-ATP酶作为新发现的信号转导物,介导若干信号通 路,所述通路涉及癌细胞生长、心脏纤维质生成、缺血/再灌注损失和 尿毒症心肌病,本发明人现在已经发现Na+/K+-ATP酶和Src之间此类 相互作用的干扰提供了这些疾病的有用的治疗信息。
Src和Na+/K+-ATP酶α1亚基中功能结构域的详细作图揭示 Na+/K+-ATP酶介导的对Src的抑制是由于α亚基的N结构域,特别是 ND1肽和Src激酶结构域,特别是KD1肽之间的相互作用。
进一步分析揭示来自ND1的20个氨基酸的肽(P-3)足够结合并抑 制Src活性以及其他Src家族激酶,如Lyn。此外,当细胞穿透肽(例 如,TAT或AP)附着到Src抑制性肽时,该新的肽完全能够进入细胞 并抑制细胞Src活性。当在前列腺癌DU 145细胞中测试时,这些标记 的肽抑制剂有效阻断DU 145细胞增殖。发明人还发现来自Src激酶结 构域的KD1可以结合Na+/K+-ATP酶并且通过与结合基序竞争Src而有 效激活Na+/K+-ATP酶-抑制的Src。
从而,发明人已经开发了可用于激活或抑制Na+/K+-ATP酶通路特 异性Src或Src家族激酶的肽。此外,发明人已经鉴定了相互作用位 点(即,α亚基的ND1和Src的KD1之间),其可以用作开发其他肽 和小分子抑制剂或激活剂的靶标,所述小分子抑制剂或激活剂是更有 效的、组织特异性的或者具有更高的药效学或药物代谢动力学性质。
另一方面,所述肽代表新类别的Src抑制剂和/或激活剂。因为这 些肽靶向与Na+/K+-ATP酶特异相互作用而不是一般性竞争ATP结合的 区域,所以它们更特异并且具有与受体酪氨酸激酶更小的交叉反应性。 此外,这些肽提供了Src活性的通路特异性调节,从而被更狭窄(特 异)地靶向。此外,结构-功能研究将产生各Src家族激酶的更有效 和特异的抑制剂/激活剂,因为每种激酶具有不同的KD1序列。因为 Na+/K+-ATP酶的其他α亚基也结合激酶结构域,所以可以开发同种型 特异性Src抑制剂。最后,使用该结构信息,现在可能开发具有更好 的药效学和药物代谢动力学性质的小分子。
Src抑制剂肽的基于序列的分析或者所鉴定的相互作用结构域的 结晶可以揭示Src和Na+/K+-ATP酶之间的精确界面,这将允许开发抑 制或激活Src的新肽或小分子。使用所鉴定的相互作用(Na+/K+-ATP 酶/Src相互作用或α亚基N结构域/Src激酶结构域相互作用),可 以开发快速筛选测定法用于大规模和高通量筛选其他的肽和小分子。 可以用遗传方法或化学品或激素上调或下调细胞的Na+/K+-ATP酶,从 而抑制或激活细胞Src或Src家族激酶。
另一方面,所发现的Na+/K+-ATP酶/Src受体复合体作为开发该 受体的新的激动剂和拮抗剂的靶标。
实施例1
Src与Na+/K+-ATP酶的结合形成功能性信号传导复合体
Na+/K+-ATP酶与Src相互作用从而形成功能性信号传导复合物
材料和方法
从Calbiochem(San Diego,CA)得到一种Src激酶抑制剂PP2。 从New England Nuclear(Boston,MA)得到[γ-32P]ATP。使用的抗 体和它们的来源如下:单克隆抗磷酸酪氨酸抗体(PY99)、单克隆抗-Src 抗体(B12)、山羊抗兔和山羊抗小鼠二级抗体从Santa Cruz Biotechnology(Santa Cruz,CA)得到。多克隆的抗-Src pY418抗体 和抗-Src pY529来自Biosource International(Camarillo,CA)。 单克隆抗His抗体来自Invitrogen(Carlsbad,CA)。纯化的重组Src 和用于测定Src激酶活性的测定试剂盒、抗磷酸酪氨酸抗体和G蛋白 琼脂糖得自Upstate Biotechnology(Lake Placid,NY)。质粒 pGFP2-C、pRluc-N和DeepBlueC购自Biosignal Packard(Montreal, Canada)。质粒pEYFP-C1和pECFP-N1购自Clontech(Palo Alto,CA), pGEX-4T-1和pTrc-His来自Invitrogen。所有二级抗体都缀合到辣 根过氧化物酶;因此,使用化学发光对免疫反应性带显色(Pierce, Rockford,IL)。谷胱甘肽珠来自Amersham Bioscience(Uppsala, Sweden)。Optitran硝酸纤维素膜得自Schleicher & Schuell(Keene, NH)。
质粒构建体
进行缺少SH4结构域的鸡c-Src和GST-Src突变体的制备(Ma等 人,2000)。基于猪肾Na+/K+-ATP酶α1亚基的序列构建GST-NT(氨 基酸残基6-90)[SEQ ID NO 51],GST-CD2(氨基酸残基152-288)[SEQ ID NO 52]和GST-CD3(氨基酸残基350-785)[SEQ ID NO 53]表达 载体(见图3A)。
分别基于大鼠NA+/K+-ATP酶cDNA和大鼠心脏SERCA 2a cDNA构 建GST-H+/K+-CD3[SEQ ID NO 54]和GST-SERCA-CD3[SEQ ID NO 55]。 通过从GST-Src载体切除对应的Src cDNA然后将它们插入pTrc-His A 载体产生His标记的Src构建体。通过将全长c-Src符合读框地克隆 到pECFP-N1或pRluc载体中构建用于荧光共振能量转移(FRET)和生 物发光共振能量转移(BRET)测定法的Src-ECFP和Src-Rluc。从 Pressley博士(Texas Tech University)提供的表达载体切除大鼠 Na+/K+-ATP酶α1 cDNA并将其符合读框地插入pEYFP-C1中,并将 犬Na+/K+-ATP酶α1 cDNA克隆到pGFP2载体中。通过DNA测序验证 所有构建体。
细胞制备、培养和瞬时转染
猪肾近端LLC-PK1、人胚肾293T细胞和小鼠成纤维细胞SYF和 SYF+Src细胞得自美国典型培养物保藏中心(Manassas,VA)并培养 在含有10%胎血清(FBS)和青霉素(100U/ml)/链霉素(100gg/ml) 的DMEM培养基中。使LLC-PK1和293T细胞血清饥饿24h,而SYF和 SYF+Src细胞培养在含有0.5%FBS的培养基中24h并用于实验。使 用Lipofectamine 2000,用多种质粒转染细胞(Wang等人,2004)。 除非另外指出,在转染后24小时进行实验。
制备Src、Na+/K+-ATP酶、GST融合的蛋白和His标记的蛋白
如所述的(Ma等人,2000)从sf-9细胞纯化没有前85个氨基酸残 基的Src并用于最初的结合测定中以确保Src结合Na+/K+-ATP酶,但 是不结合纯化的Na+/K+-ATP酶制备物中的脂类组分。在随后的实验 (例如,磷酸化和活性测定)中,使用来自Upstate Biotechnology 的纯化的重组全长Src。使用Jorgensen方法(Xie等人,1996)从猪 肾外髓质纯化Na+/K+-ATP酶并使用具有1200到1400μmol Pi/mg/h 的比活性的制备物。
在我们的实验条件下,100μM钒酸盐或10μM乌本苷引起纯 化的猪肾Na+/K+-ATP酶的ATP酶活性的完全抑制。GST融合蛋白或His 标记的蛋白在大肠杆菌BL21中表达并在谷胱甘肽珠或镍柱上纯化。
免疫沉淀和GST pulldown
将细胞在含有1%Nonidet P40、0.25%脱氧胆酸钠、150mM NaCl、 1mM EDTA、1mM苯甲基磺酰氟、1mM原钒酸钠、1mM NaF、10μ g/ml抑酶肽、10μg/ml抑酶肽和50mM Tris-HCl(pH 7.4)的RIPA 缓冲液中裂解。细胞裂解物通过在16,000xg下离心15分钟澄清, 并将上清液(1mg)用抗-α1抗体免疫沉淀或者与不同的GST融合蛋 白温育。然后通过G蛋白琼脂糖或谷胱甘肽柱(Ma等人,2000;Haas 等人,2002)拉下(pull down)复合体并通过蛋白质印迹分析。
Src激酶活性
使用商业试剂盒测定Src激酶活性(Haas等人,2000)。为了确定 Na+/K+-ATP酶怎样影响Src激酶活性,将纯化的Src(4.5U)与5μ g纯化的Na+/K+-ATP酶在Src测定缓冲液中于室温下温育30分钟。 之后,将对照Src或Na+/K+-ATP酶结合的Src都暴露于10μM乌本 苷并测定Src激酶活性。在其他实验中,通过抗-pY418抗体测量Src pY418以指示Src激活(Ma等人,2000)。为此,将纯化的Src(4.5U) 与不同量的纯化的Na+/K+-ATP酶或GST-Na+/K+ATP酶构建体在磷酸缓 冲盐水(PBS)中于37℃下温育30分钟。之后,加入2mM ATP/Mg2+。 反应在37℃持续5分钟并通过加入SDS样品缓冲液终止。
体外结合测定
将纯化的Na+/K+-ATP酶溶解在1%Triton X-100PBS中并以 100,000xg离心30分钟。收集上清液用于结合测定。将GST-融合蛋 白(5μg)缀合在谷胱甘肽珠上并与500μl PBS中溶解的 Na+/K+-ATP酶在0.5% Triton X-100存在下于室温温育30分钟。用 相同缓冲液洗涤所述珠四次。结合的Na+/K+-ATP酶在10%SDS-PAGE 上分离并通过蛋白质印迹检测。类似地进行互换结合测定 (reciprocall binding assag),其中使用GST-Na+/K+-ATP酶构建 体(5μg)和缺少前85个氨基酸的纯化的Src(200ng)或者His标记 的Src构建体(100ng)。为了测试天然Na+/K+-ATP酶是否结合Src, 在不存在Triton X-100的情况下下重复上面的实验。为了制备 Na+/K+-ATP酶/Src复合体,在不存在Triton X-100的情况下下将2-5 μg纯化的Na+/K+-ATP酶与PBS中的4.5U Src(~10ng)在室温温 育30分钟。复合体直接用于所指出的实验或者通过以100,000xg 离心30分钟收集。对照实验表明Na+/K+ATP酶-结合的而不是游离的 Src可以通过离心共沉淀。
通过接纳体光漂白进行FRET分析
使用上述pECFP-N1和pE YFP-C1载体,将增强的青色荧光蛋白 (ECFP)融合到Src的C-末端,并且将增强的黄色荧光蛋白(EYFP)融合 到大鼠Na+/K+-ATP酶α1亚基的N-末端。然后将Src-ECFP和EYFP- 大鼠α1质粒共转染到LLC-PK1细胞中。用ECFP/EYFP或ECFP/EYFP- 大鼠α1转染的细胞用作对照。24小时后,生长在盖玻片上的细胞用 冷的甲醇在-20℃下固定15分钟并用PBS溶液洗涤两次。然后将盖 玻片用于用Leica DMIRE2共焦显微镜(Wetzlar,Germany)进行FRET 测量。456nm处和515nm的激光线用于激发荧光,并对于Src-ECFP 在465-509nm和对于EYFP-大鼠α1在530-570nm处记录发射强度。 选择表达Src-ECFP和EYFP大鼠α1两者的细胞进行FRET分析。选择 目的膜区域(ROI1)并通过应用100%强度的515-nm激光光漂白。所选 的ROI1区域中在光漂白过程前后Src-ECFP和EYFP-大鼠α1的发射 强度用于计算FRET效率。也计算非光漂白区(ROI2)的FRET效率并用 作对照。
活细胞中的FRET分析
将LLC-PK1细胞用Src-ECFP和EYFP-大鼠α1共转染并培养在盖 玻片上24小时。然后将盖玻片封固在金属腔中并用Leica DMIRE2共 焦显微镜分析。用456nm和515nm的激光线激发荧光,并对于 Src-ECFP在465-509nm处和对于EYFP-大鼠α1在530-570nm处记 录发射强度。选择表达Src-ECFP和EYFP大鼠α1两者的细胞并仅仅 通过456-nm激光照射。仅仅表达Src-ECFP或EYFP-大鼠α1的细胞用 于校正和测定激光强度以及增益和补偿设置。分别在465-509nm(FECFP) 和530-570nm(FEYFP)下记录所选膜区域中Src-ECFP和EYFP-大鼠α1 的发射强度。FEYFP/FECFP的比率反映FRET效率。通过50s记录后,将 相同的细胞暴露于乌本苷并继续记录所指示的时间。
BRET分析
如Lowry等人(2002)所述的进行BRET测定。简言之,用 GFP-Na+/K+-ATP酶和Src-Rluc或如所述的其他构建体转染后24小 时,将细胞以一式三份接种在96孔微量培养板中。用所示浓度的乌本 苷处理后,将细胞暴露于相等体积的含有10μM DeepBlue C(Rluc 的底物)的BRET分析缓冲液中。使用具有微量培养板发光计检测的 Fluoroskan Ascent FL(Labsystems,Franklin,MA)立即获得410nm (对于Rluc)和515nm(对于GFP)处的发射。如下计算BRET比率: (515nm处的发射-515nm处的背景)/(410nm处的发射-410nm处 的背景),其中在每个实验中通过测量非转染细胞样品的信号评估背景 信号。
共定位分析
将LLC-PK1细胞在盖玻片上培养24小时,用PBS快速洗涤两次, 然后用冰冷的甲醇固定15分钟。细胞再次用PBS洗涤并用 SignalEnhancer(Molecular Probes)封闭。兔多克隆抗-Src抗体和 单克隆抗Na+/K+ATP酶抗体在3%BSA中混合并与盖玻片在4℃过夜温 育。用PBS洗涤后,加入Alexa fluor 546-缀合的抗小鼠抗体和Alexa fluor 488-缀合的抗兔抗体并在室温温育1小时。用PBS再次洗涤盖 玻片三次。通过546nm处的激发和566-620nm处的发射显示 Na+/K+-ATP酶。通过488nm处的激发和505-535nm处的发射显示 Src。为了避免两种荧光染料之间的干扰,发明人使用了顺序方法,其 特征是通过Leica共焦显微镜测量两种蛋白质的共定位,其中交替地 对细胞应用两种激光光线488nm和546nm。用Leica Confocal Software(版本2.5 build 1347)进行共定位分析。
数据分析
数据以平均值±SE给出。使用学生t检验进行统计学分析,并 在p<0.05时认可显著性。
结果
Na+/K+-ATP酶与Src的相互作用
乌本苷结合Na+/K+-ATP酶激活了几种不同细胞系中的Src激酶。 此外,Src可以与Na+/K+-ATP酶α1亚基共同免疫沉淀并且乌本苷以 时间和剂量依赖性方式调控该相互作用(Haas等人,2002)。
发明人现在认为信号传导的Na+/K+-ATP酶可以与Src相互作用形 成信号传导复合体。为了证实,将LLC-PK1细胞固定并通过单克隆抗 -α1和多克隆抗-Src抗体双染色。Na+/K+ATP酶α1和Src在 LLC-PK1细胞中的质膜中共定位(图1A)。
像素分析表明质膜中25.2±1.3%的Na+/K+-ATP酶与Src共定 位。在过表达Src-ECFP的293T细胞中也观察到这两种蛋白质之间相 似的共定位。为了测试LLC-PK1细胞中Na+/K+-ATP酶和Src是否相互 作用,发明人用Src-ECFP和EYFP-大鼠α1转染细胞。使用接纳体光 漂白方案在转染的细胞中进行荧光共振能量转移(FRET)分析。选择大 鼠α1用于最初的FRET实验是因为发明人有大鼠α1特异性抗体,因 此发明人除了检测YFP荧光外还可以使用蛋白质印迹证实转染的α1 的表达。数据表明能量从Src-ECFP转移到EYFP-大鼠α1。
如图1B中所示,EYFP-大鼠α1的光漂白导致Src-ECFP信号的增 强。从六次单独实验的共16个细胞测量的FRET效率为8.1到18.8 (13.2±1.7)。相反,在用一对ECFP/EYFP或ECFP/EYFP-大鼠α1 转染的细胞中没有检测到FRET。这些数据表明Na+/K+-ATP酶和Src 很接近,表明LLC-PK1细胞中这两种蛋白质的直接相互作用。
为了得到直接结合证据,发明人首先用纯化的猪肾Na+/K+ATP酶 (PKE)和GST-Src进行在体外结合测定。重要的是注意到纯化的 Na+/K+-ATP酶是膜附着的制备物,其中α1和01亚基以1∶1摩尔比结 合并且占制备物中90%以上的蛋白质含量(图2B和Jorgensen,1974, 1988)。
如图2C中所示,1% Triton X-100-增溶的Na+/K+-ATP酶以浓 度依赖性方式结合到GST-Src。当在结合测定中使用0.5μg Na+/K+-ATP酶时,检测到显著量的α1亚基。为了定量结合,进行如 图2D中所示的实验。数据表明当使用2μg纯化的Na+/K+-ATP酶时, GST-Src拉下(pull down)输入的12±2.4%(n=3)。这些数据 提示Src和Na+/K+ATP酶之间直接结合的可能性。为了控制该结合不 被Na+/K+-ATP酶的增溶诱导,发明人用纯化的Na+/K+ATP酶不存在去 污剂的情况下进行了上述实验,表明Na+/K+-ATP酶和GST-Src之间相 似的相互作用。为了分析Src的哪些结构域与Na+/K+-ATP酶(关于结 构域结构见图3A)相互作用,发明人表达并纯化了GST-SH2、GST-SH3、 GST-SH3SH2和GST-激酶结构域融合蛋白(Ma等人,2000)。使用相同 的体外结合测定,发明人观察到纯化的Na+/K+-ATP酶结合到激酶结构 域、SH3SH2和SH2结构域,但是不结合SH3结构域(图3C)。因为 GST-SH3SH2比GST-SH2拉下了更多的Na+/K+-ATP酶,所以该构建体 用于随后的实验中。
尽管Src或其结构域构建体不可能通过它们与纯化的酶制备物的 中间蛋白质组分的结合拉下Na+/K+-ATP酶,但是为了排除该可能性和 鉴定Na+/K+-ATP酶的哪些结构域涉及其与Src的相互作用,发明人制 备了GST融合蛋白,其含有N-末端(GST-NT)、第二个胞质环(GST-CD2)、 和连接Na+/K+-ATP酶的α1亚基的穿膜螺旋M4和M5的大的中央环 (GST-CD3;图4A),因为已知这些结构域与多种蛋白质相互作用。
如图4B中所示,Src与GST-CD3和GST-CD2,但不与GST-NT相互 作用。为了进一步测试该结合是Na+/K+-ATP酶特异的,发明人制备了 来自大鼠胃NA+/K+-ATP酶的CD3和大鼠心脏肌质网Ca2+-ATP酶2a (SERCA)的GST融合蛋白。数据显示来自NA+/K+-ATP酶的GSFCD3而不 是SERCA从LLC-PK1细胞裂解物拉下Src(图4C)。
为了对Na+/K+-ATP酶和Src之间的特异性结构域相互作用作图, 发明人制备了His标记的激酶结构域和SH3SH2结构域融合蛋白。使用 相同的结合测定,发明人发现GST-CD3与激酶结构域,但不与Src的 SH3SH2结构域相互作用。相反,CD2与SH3SH2,但不与激酶结构域相 互作用(图4D)。总之,上面的结果表明Na+/K+ATP酶可以通过α1亚 基的CD2和CD3结构域直接与Src相互作用。
Na+/K+ATP酶对Src的调控
因为SH3SH2与调控蛋白的结合足够激活Src,所以发明人测试了 Src与Na+/K+-ATP酶的结合是否导致Src激活。当将纯化的重组Src 与不同量的纯化的Na+/K+-ATP酶在ATP/Mg2+存在下在无去污剂的PBS 溶液中温育时,Src在Tyr 418(pY418)处的自磷酸化(表明Src激活) 以浓度依赖性方式降低(图5A)。因为在100μM钒酸盐(其完全抑 制Na+/K+-ATP酶对ATP的水解)存在下重复实验时发明人观察到相同 结果,所以Na+/K+-ATP酶对Src的影响可能是由于这两种蛋白质之间 的相互作用,但不是ATP的减少。为了进一步检验该假设,发明人测 定了CD3对Src的作用。因为据报导维-奥二氏综合征蛋白质通过激酶 结构域的结合抑制Src,所以发明人推断CD3和激酶结构域之间的相 互作用可以足够保持Src处于无活性状态。实际上,如图5B中所示, GST-CD3而不是GST作为纯化的Na+/K+-ATP酶发挥作用,引起了Src pY418的剂量依赖性抑制。
因为上面的数据提示Na+/K+-ATP酶可以结合Src并保持其处于无 活性状态,所以发明人现在认为Na+/K+-ATP酶/Src复合体可以构成 乌本苷的功能复合体并且以与G蛋白偶联的受体/G蛋白复合体相似的 方式起作用;即,乌本苷与该复合体的结合释放捕获的Src激酶结构 域,导致Src激活和随后下游效应物的酪氨酸磷酸化。为了测试,发 明人将重组Src与纯化的Na+/K+-ATP酶在无去污剂的PBS溶液中,在 乌本苷存在或不存在下温育。蛋白质印迹分析表明乌本苷的家族以剂 量依赖型方式显著增加了pY418(图6A)。
为了证实pY418的改变与Src活性相关,发明人现在使用通过商 业通路可获得的激酶测定试剂盒测量的Src介导的酪氨酸磷酸化。如 图6B中所示,尽管Na+/K+-ATP酶保持Src处于无活性状态,但是乌 本苷的加入恢复了激酶活性。发明人还确定了钒酸盐是否影响该 Na+/K+-ATP酶/Src复合体的活性。如图6C中所示,尽管10-100μM 钒酸盐完全抑制了ATP酶活性,但是其对Src pY418没有显示出影响。 更重要的是,乌本苷仍然能够在钒酸盐存在下刺激Src的pY418。
为了测试乌本苷是否通过将Src从相互作用的Na+/K+-ATP酶解离 而激活Src,发明人将Src与纯化的Na+/K+-ATP酶温育。因为纯化的 Na+/K+-ATP酶附着到膜,所以其可以通过以100,000Xg离心30分 钟沉淀。当Src结合到Na+/K+-ATP酶时,离心足够沉淀Src。蛋白质 印迹分析也表明共同沉淀的Src保持无活性状态(图7A),其与图5 中给出的发现相一致。因为仅仅Na+/K+-ATP酶结合的Src可以沉淀, 所以发明人推断如果乌本苷将Src从Na+/K+-ATP酶解离,那么所回收 的Src将在乌本苷处理的样品中减少。
令人惊奇地,当离心前用乌本苷处理样品后进行样品分析时,发 明人发现乌本苷对与Na+/K+-ATP酶共同沉淀的总Src没有影响,而是 增加了Src pY418的量(图7B)。因为发明人已经表明多种结构域涉及 Src与Na+/K+-ATP酶的相互作用,所以上面的发现导致我们检测乌本 苷是否仅仅从相互作用的Na+/K+-ATP酶解离单个(激酶)结构域。为 此,将1μg纯化的Na+/K+-ATP酶与GST-Src、GST-SH3SH2或GST 激酶在无去污剂的PBS溶液中温育,并通过离心收集复合体。之后, 将复合体暴露于10μM乌本苷。
如图7C中所描绘的,乌本苷对全长Src或SH3SH2结构域与 Na+/K+-ATP酶的结合没有影响,而是将激酶结构域从Na+/K+-ATP酶 解离出来,其符合图5中给出的发现。乌本苷对SH3SH2结构域与 Na+/K+-ATP酶的结合没有影响这一事实显然解释了为什么乌本苷没 有改变Src与该酶的总体结合。为了进一步测试激酶结构域的释放是 否足够激活Src,发明人将GST-激酶融合蛋白与Na+/K+-ATP酶预温 育,然后加入全长Src以竞争激酶结构域结合位点。蛋白质印迹分析 表明GST激酶,而不是GST或GST-SH3SH2显著增加了Src pY418(图 7D)。总之,这些发现为如下观点提供了强烈支持:乌本苷通过释放 Src的被捕获的激酶结构域而激活Na+/K+-ATP酶/Src复合体。
乌本苷激活活细胞中Na+/K+-ATP酶/Src复合体并刺激酪氨酸激 酶磷酸化
如果乌本苷通过在活细胞中释放激酶结构域而激活Na+/K+-ATP 酶/Src复合体,发明人现在认为乌本苷将增加激酶结构域和相互作用 的Na+/K+-ATP酶之间的距离,因为被释放的激酶结构域将结合并磷酸 化其效应物。这将导致共表达的Src-ECFP和EYFP-大鼠α1之间FRET 信号的减弱。为了测试,发明人进行了活细胞FRET以及BRET分析。
如图8A中所示,456nm处ECFP的激发引起对照细胞中ECFP谱 (在465和509nm之间检测为FECFP)和EYFP谱(在530和570nm 之间检测为FEYFP)的发射,表明Src-ECFP和EYFP-大鼠α1之间潜 在的FRET。为了测试乌本苷是否刺激激酶结构域的释放,将相同的细 胞暴露于乌本苷并测量ECFP和EYFP强度。如图8A中所示,一旦细胞 暴露于100μM乌本苷,那么存在FEYFP的依赖时间的减弱和FECFP的同 时增加,表明乌本苷引起了Src-ECFP和EYFP-大鼠α1之间FRET的减 弱。作为对照,在用ECFP和EYFP转染的细胞中重复了相同的实验, 并且没有观察到可检测到的FRET。
因为必须激发ECFP以进行FRET分析,所以在实验期间发生光漂 白和光谱透胶,使得数据分析,特别是活细胞中的数据分析复杂化。 此外,因为乌本苷不敏感的大鼠α1用于FRET分析,所以发明人想要 测试乌本苷敏感的α1是否类似于大鼠α1发挥功能。因此,发明人使 用GFP犬α1和Src-Renilla萤光素酶(Src-Rluc)进行BRET分析以确 证上面的发现。将两种构建体都瞬时转染到293T细胞中并将GFP-融 合Rluc的构建体用作阳性对照。选择人293T细胞用于BRET分析,因 为这些细胞在我们的实验条件下更容易被瞬时转染。
如图8B中所示,共表达GFP-犬α1和Src-Rluc产生了与阳性对 照相当的BRET比率,表明Src与活细胞中的Na+/K+-ATP酶相互作用。 重要的是,当转染的细胞暴露于不同浓度的乌本苷时,乌本苷引起了 BRET比率的依赖剂量的降低。当使用10nM乌本苷时检测到显著降低 (图8C)。这些数据与犬α1的已知乌本苷敏感性一致并且支持图8A 中FRET分析的结果。
蛋白质酪氨酸磷酸化的增加对于乌本苷诱导的细胞功能改变是必 需的。尽管乌本苷对Src的激活导致Na+/K+-ATP酶结合的EGF受体和 PLC-,y的反式激活,但是发明人没有测试所鉴定的Na+/K+-ATP酶/Src 复合体的激活是否造成与所述信号传导复合体结合的其他蛋白质的乌 本苷诱导的酪氨酸磷酸化。
为了测试,将LLC-PK1细胞暴露于1μM乌本苷5分钟。然后将 来自对照和处理的细胞的细胞裂解物用抗-α1抗体免疫沉淀。当将 免疫沉淀物在SDS-PAGE上分离并用抗磷酸酪氨酸抗体探测磷酸酪氨 酸时,发明人观察到乌本苷实际上刺激了多种Na+/K+-ATP酶结合的蛋 白质的酪氨酸磷酸化(图9A)。为了证实Src是应答乌本苷而启动蛋白 质酪氨酸磷酸化所需的,发明人在Src家族激酶敲除SYF细胞中重复 了相同的实验。
如图9B中所示,乌本苷对蛋白质酪氨酸磷酸化的作用在SYF细胞 中完全消失。另一方面,当将Src敲回到SYF细胞(SYF+Src)中时, 乌本苷对蛋白质酪氨酸磷酸化的作用恢复,表明Src在启动乌本苷激 活的蛋白质酪氨酸磷酸化中的基本作用。这进一步受到如下事实的支 持:Src抑制剂PP2能够阻断SYF+Src细胞中乌本苷诱导的蛋白质 酪氨酸磷酸化。
因为发明人已经表明乌本苷刺激Src向Na+/K+-ATP酶信号传导复 合体的募集,所以发明人现在认为乌本苷首先激活Na+/K+-ATP酶结合 的Src并随后导致EGFR、窖蛋白-1和其他效应物的酪氨酸磷酸化。这 些效应物又为募集额外Src和其他信号传导蛋白至该信号复合体上提 供了结合位点。
为了测试,发明人在1μM PP2存在或不存在下,用1μM乌本 苷处理LLC-PK1细胞5分钟。然后通过抗-α1抗体免疫沉淀细胞裂解 物。免疫沉淀物的蛋白质印迹分析表明乌本苷增加了对照细胞而不是 用PP2预处理的细胞中共沉淀的Src(图9C),支持了如下观点:Src 的最初激活是将额外的Src募集到复合体所必须的。对照实验也表明 用PP3(Src抑制剂PP2的无活性类似物)预处理LLC-PK1细胞不能阻断 乌本苷诱导的Src向Na+/K+-ATP酶的募集(图9C)。
为了确证上面的发现,发明人还用来自LLC-PK1细胞的分离的胞 膜窖制备物进行了免疫沉淀实验。发明人以前表明乌本苷以依赖Src 的方式增加了分离的胞膜窖制备物中蛋白质的酪氨酸磷酸化。它也刺 激了Na+/K+-ATP酶/窖蛋白-1/Src复合体的形成(Wang等人,2004)。 然而,因为ATP的加入是乌本苷激活分离的胞膜窖中Src所需的,发 明人认为如果Src激活和窖蛋白-1的酪氨酸磷酸化是Src的额外募集 所需的,那么不存在ATP时,乌本苷不能刺激Src向窖蛋白-1复合体 的募集。实际上,这是当发明人在不存在ATP时重复上述实验时所观 察到的(图9D)。总之,这些数据清楚地表明乌本苷通过首先激活Src 然后将包括Src在内的更多效应蛋白募集到信号Na+/K+-ATP酶而通过 Na+/K+-ATP酶传递信号。
讨论
发明人现在显示了涉及Na+/K+-ATP酶/Src相互作用的已作图的 结构域。发明人还阐明Na+/K+-ATP酶和Src可以通过所鉴定的蛋白质 结构域装配成功能信号传导复合体并且乌本苷与Na+/K+-ATP酶的结 合激活Src并引起下游蛋白质酪氨酸磷酸化。该结论和其他结论在图 10和中总结并在下文讨论。
作为强心类固醇受体的Na+/K+-ATP酶/Src复合体
因为Na+/K+-ATP酶的α1亚基在其N-末端含有保守的富含脯氨酸 的基序(Yudowski等人,2000),所以发明人最初认为乌本苷可能促进 Src的SH3和Na+/K+-ATP酶之间的相互作用,导致Src的激活。另发 明人惊奇的是,GST pull down测定法表明SH3结构域不参与和 Na+/K+-ATP酶的直接相互作用。相反,SH2和Src的激酶结构域分别 与Na+/K+-ATP酶α1亚基的CD2和CD3结构域相互作用。此外,发 明人的结果表明Na+/K+-ATP酶和GST-CD3都抑制Src活性(图5)。尽 管发明人不能排除与Na+/K+-ATP酶共同纯化的其他Src调节剂涉及其 中的可能性,但是纯化的CD3结构域单独可以模拟Na+/K+-ATP酶的作 用这一事实强烈提示Na+/K+-ATP酶足够失活Src。
Na+/K+-ATP酶和Src形成无活性Src复合体这一事实导致发明人 现在认为该受体复合体可以以类似于细胞因子受体的方式传递乌本苷 信号。尽管这些受体没有内在的激酶活性,但是与Src的偶联允许它 们激活下游的蛋白质酪氨酸磷酸化。本文描述的一些实例支持该观点。
首先,乌本苷诱导的Na+/K+-ATP酶的构象改变足够释放Src的激 酶结构域(图7)。有趣的是,SERCA的一种抑制剂,毒胡萝卜内酯能够 将CD3带到膜附近。如果乌本苷可以对CD3发挥类似效果,那么这可 以解释乌本苷怎样从Na+/K+-ATP酶释放激酶结构域。另一方面,因为 乌本苷对SH3SH2结构域与CD2的结合没有影响,所以该结构域可以作 为铰链发挥功能,保持激活的Src结合到信号Na+/K+-ATP酶用于特异 性和稳健的信号传递。
其次,通过加入GST-激酶结构域融合蛋白拮抗Src激酶结构域与 Na+/K+-ATP酶的结合如乌本苷那样发挥作用并且刺激了Src pY418。
第三,所观察到的乌本苷对Src的作用(图6)不是由于对ATP酶 活性的抑制,因为在完全抑制ATP酶活性的浓度下,钒酸盐没有显示 出对Src的作用。
此外,不水解ATP的GSTCD3也可以抑制Src激活。类似地,所述 发现也反对离子强度改变涉及乌本苷诱导的对Src的激活,因为这些 实验在试管中在相同的离子条件下进行。
最后,FRET和BRET分析都表明乌本苷在活细胞中确实释放激酶 结构域(图8)。重要的是注意到乌本苷对Na+/K+-ATP酶/Src-激酶 结构域相互作用的影响是剂量依赖式的并且与乌本苷与Na+/K+-ATP 酶结合的已知的剂量反应曲线良好相关(Haas等人,2002)。
简言之,发明人已经阐明乌本苷引起的信号转导的新的机理。因 为Src家族激酶是高度保守的,所以发明人认为信号传导Na+/K+ATP 酶可以与Src家族的其他成员相互作用。此外,哺乳动物细胞以组织 特异性方式表达至少四种不同类型的亚基,并且现在认为不同的同种 型也可以以组织特异性方式与Src相互作用。至此,有趣的是注意到 Src也与NA+/K+ATP酶的CD3结构域相互作用(图4C),提示NA+/K+ATP 酶在Src活性调节中的潜在功能。
发明人还认为这些P-ATP酶也可以作为Src效应物,因为最近的 研究已经提出了这些P-ATP酶的Src介导的酪氨酸磷酸化(Kanagawa 等人,2000;Masaki等人,2000;Ferrandi等人,2004)。
发现的重要性
Na+/K+-ATP酶在保持哺乳动物细胞中跨细胞膜的Na+和K+离子浓 度中的基本功能是公知的。强心类固醇的结合位点在整个真核生物种 系发生中如此保守这一事实表明这些类固醇在Na+/K+-ATP酶功能的 调控中必定起重要作用。因为直到几年前,离子泵是Na+/K+-ATP酶的 唯一已知的功能,所以本领域充分接受强心类固醇必定通过抑制ATP 酶活性传递信号,尽管没有此类信号转导的激素先例。该作用模式已 经导致本领域许多人质疑内源性强心类固醇的重要性,因为它们在正 常生理条件下以亚纳摩尔浓度循环,并且仅仅可以结合到1-2%的细胞 表面Na+/K+-ATP酶。因为多数哺乳动物细胞每个细胞含有1百万 Na+/K+-ATP酶分子,所以强心类固醇仅仅作为Na+/K+-ATP酶的泵功 能抑制剂是非常无效的,因为它们必须针对细胞的大泵能力起作用。 另一方面,如果结合位点对于调控Na+/K+-ATP酶的信号传导功能是保 守的,那么强心类固醇将作为真正的激动剂发挥功能。如通过我们的 共定位分析估计的,-25%的Na+/K+-ATP酶具有与Src相互作用的能力。 乌本苷对1-2%的这些受体的激活将产生每个细胞几千活性分子。基于 HeLa细胞中EGF信号传导的发现和信号放大原理,这将足够通过激酶 级联产生强烈信号,特别是如果信号传导事件在膜微结构域如胞膜窖 中发生。与这相一致的是,最近的研究已经表明在培养的细胞和动物 模型中,生理学浓度(例如0.1-1nM)的乌本苷能够激活Src和ERK (Aydemir-Koksoy等人,2001;Ferrandi等人,2004)。
在药理学上,发明人已经阐明在分离的心脏制备物以及在培养的 肌细胞中通过激活Src和ERK完成乌本苷诱导的收缩力(Mohammadi等 人,2003)。此外,Src和ERK的抑制阻断了心肌细胞中细胞内Ca2+ 的乌本苷诱导的增加(Tian等人,2001)。
从而,本文的实施例揭示了心脏中洋地黄诱导的收缩力的可能的 分子机理。本文的实施例也表明这可以用于开发可以刺激Na+/K+-ATP 酶的信号传导功能而不影响离子泵功能的化学品或肽。此外,本文的 发明人还提供了对所述分子机理的认识,其中膜转运蛋白通过所述分 子机理使用Src形成功能信号复合体。因为许多膜转运蛋白和离子通 道与Na+/K+-ATP酶一样经历底物或者配体依赖性构象改变,所以这些 发现提出了关于其他膜转运蛋白是否也涉及信号转导从而构成另一组 重要的受体和信号转导物的重要生物学问题。至此,发明人指出 Na+/K+-ATP酶的CD3在许多不同的P型ATP酶中是高度保守的并且现 在认为其他P类型的ATP酶(例如,图4C中所示的NA+/K+-ATP酶)也 涉及Src的调控。发明人也指出一些最近的报导表明Src与许多其他 膜离子通道相互作用并调控这些通道(Yu等人,1997;Sobko等人, 1998;Tiran等人,2003)。
实施例II
使用RNA干扰测定法对Src相互作用的Na+/K+-ATP酶的功能表征
Na+/K+-ATP酶和Src形成信号传导受体复合体。这里,发明人现 在展示了Na+/K+-ATP酶的量和性质的改变怎样影响基础Src活性和乌 本苷诱导的信号转导。通过用表达α1特异性小干扰RNA的载体转染 LLC-PK1细胞产生了一些α1亚基敲减细胞系。尽管α1敲减导致 Na+/K+-ATP酶活性的显著降低,但是它提高了基础Src活性和一种Src 效应物黏着斑激酶的酪氨酸磷酸化。同时,它还消除了Src和ERK 1/2 的乌本苷诱导的激活。当通过大鼠α1挽救敲减的细胞时,恢复了 Na+/K+-ATP酶活性和基础Src活性。此外,乌本苷能够以高得多的浓 度刺激挽救细胞中的Src和ERK 1/2,与猪和大鼠α1之间乌本苷敏感 性的所确立的差异相一致。最后荧光共振能量转移分析和免疫共沉淀 测定表明泵缺失的大鼠α1(D371E)突变体也可以结合Src。该突变体 的表达恢复了基础Src活性和黏着斑激酶酪氨酸磷酸化。总之,发明 人现在认为LLC-PK1细胞含有Src相互作用的Na+/K+-ATP酶库,其不 仅调控Src活性而且作为乌本苷激活蛋白激酶的受体。
Src的激活对于许多细胞活性(包括细胞内钙的调控、基因表达 和细胞生长)的乌本苷诱导的改变是必需的,并且发明人已经检查了 Na+/K+-ATP酶是否直接与Src相互作用以形成功能性信号传导受体。
使用体外谷胱甘肽S转移酶pull down测定法,发明人现在鉴定 了Na+/K+-ATP酶α1亚基的第二个和第三个细胞内结构域分别与Src SH2和激酶结构域相互作用。在功能上,这些相互作用保持Src处于 无活性状态,并且乌本苷与该无活性的Na+/K+-ATP酶·Src复合体的 结合释放并随后激活所结合的Src。这些新的实例表明细胞内Src相 互作用的Na+/K+-ATP酶现在被认为在基础Src活性的调控中起重要作 用并且作为乌本苷的功能性受体刺激活细胞中蛋白质酪氨酸磷酸化。 为了测试,发明人开发了基于siRNA的测定法,其允许我们确定 Na+/K+-ATP酶的量和性质的改变对基础的和乌本苷刺激的Src活性的 影响。
材料和方法
最高纯度的化学品购自Sigma。GeneSuppressor载体购自 BioCarta(San Diego,CA)。细胞培养基、胎牛血清、胰蛋白酶、 Lipofectamine 2000和限制酶购自Invitrogen。EYFP表达载体 (pEYFP)和ECFP表达载体(pECFP)来自Clontech。QuikChange诱变试 剂盒购自Stratagene(La Jolla,CA)。Optitran硝化纤维素膜来自 Schleicher & Schuell。增强的化学发光SuperSignal试剂盒购自 Pierce。Image-iT FX信号增强剂、Antifade试剂盒、Alexa Fluor 488- 缀合的抗小鼠/兔IgG和Alexa Fluor 546-缀合的抗小鼠/兔IgG来自 Molecular Probes(Eugene,OR)。抗-Src(克隆GD11)单克隆抗体、 抗-Na+/K+-ATP酶α1多克隆和单克隆(克隆C464.6)抗体、抗磷酸酪 氨酸(克隆4G10)抗体,和G蛋白-琼脂糖来自Upstate Biotechnology Inc.(Lake Placid,NY)。单克隆抗-Tyr(P)418-Src和抗 -Tyr(P)529-Src抗体来自BIOSOURCE(Camarillo,CA)。多克隆抗-FAK 和抗-Tyr(P)925FAK抗体来自Cell Signaling(Danvers,MA)。单克 隆抗-α1抗体(a 6F)来自University of Iowa的Developmental Studies Hybridoma Bank。抗-c-Src(B-12)单克隆抗体、抗c-Src (SRC2)多克隆抗体、抗-ERK(C-16)多克隆抗体、抗-pERK(E-4)单 克隆抗体和所有二级辣根过氧化物酶缀合的抗体都来自Santa Cruz Biotechnology Inc.(Santa Cruz,CA)。多克隆大鼠α1特异性抗体 (抗NASE)由Thomas Pressley博士(Texas Tech University,Lubbock, TX)提供。
细胞培养
LLC-PK1细胞和人胚肾293T细胞来自美国典型培养物保藏中心 并保持在5%CO2-湿润培养箱中含有10%胎牛血清、100单位/ml青霉 素和100μg/ml链霉素的Dulbecco改良的Eagle培养基中。
siRNA表达载体的构建
使用GeneSuppressor构建试剂盒构建siRNA。简言之,使用人α 1cDNA(GenBankTM检索号NM_000701)作为模板合成四对寡核苷酸 (A1-A4)(细节见表1),并通过将两个互补的寡核苷酸退火制备插入 片段。然后将退火的插入片段克隆入用SalI和XbaI消化的 pSuppressorTM-U6载体中。通过核苷酸测序证实阳性克隆。
位点定向诱变
Pressley博士提供了大鼠α1表达载体pRc/CMV-α1 AAC(12)。 为了使得大鼠α1的表达对A4 siRNA不敏感,使用QuikChange诱变 试剂盒将α1 siRNA靶向的序列从2530ggtcgtctgatcttt(GenBankTM 检索号NM_012504)沉默突变为2530ggcaggctaatattc。产生SspI (aat/att)限制酶位点以方便克隆筛选。通过DNA测序证实阳性突变体 (pRc/CMV-α1 AACm1或缩写为AAC)然后用于该研究中。通过用 pRc/CMV α1AACm1作为模板将1126gacaag突变为1126gagaag产生泵 缺失的突变体(D371E)(13)。
产生稳定的α1亚基敲减和敲入细胞系
使用Lipofectamine 2000,用不同的siRNA表达载体以及pEYFP 瞬时转染人胚肾293T细胞。48小时后,首先检查细胞的EYFP表达用 于评估转染效率然后收集细胞用于通过蛋白质印迹分析内源α1含 量。为了产生稳定细胞系,用A4 siRNA表达载体(pSuppressor-A4 siRNA)(见图25-表1)和嘌呤霉素选择标记物(pBade-puro)转染一批 LLC-PK1细胞。
图25显示了表1,人Na/KATP酶-α1亚基特异性siRNA的靶标和 寡核苷酸序列,其中靶序列用粗体字母标记[SEQ ID NO.35-46]。
另一批细胞用pEYFP以及pSuppressor-A4 siRNA和pBade-puro 共转染使得共表达的EYFP可以用作标记物来挑选克隆。共同选择空载 体(pSuppressor)或A1 siRNA-转染的细胞并用作对照。转染后24小 时用嘌呤霉素(1μg/ml)选择细胞。克隆并扩增嘌呤霉素抗性菌落。 为了挽救Na+/K+-ATP酶敲减细胞,细胞用pRc/CMV-α1 AACm1转染。 用3μM乌本苷启动选择,因为未转染的细胞对乌本苷非常敏感。大 约1周后,分离乌本苷抗性菌落并且在乌本苷不存在下扩增成稳定细 胞系。不使用G418是因为这些细胞抗G418,从而需要3mg/ml才能 杀死未被转染的细胞。敲减的细胞对杀稻瘟素(15μg/ml)也是敏感 的,发明人也使用该试剂进行其他选择。
免疫沉淀和免疫印迹分析
将细胞用PBS洗涤,溶解在修改的冰冷的放射免疫沉淀测定缓冲 液中,并进行免疫沉淀或蛋白质印迹分析。使用增强的化学发光试剂 盒检测蛋白质信号并使用Bio-Rad GS-670成像密度计进行定量。
Na+/K+-ATP酶活性测定
测定Na+/K+-ATP酶酶促活性。简言之,用Tris-EGTA缓冲液(pH 7.2)从培养物收集细胞并简短超声处理。然后室温下用0.1mg/mg 蛋白质浓度的阿拉霉素处理细胞裂解物30分钟。通过测定32P从 [,y-32P]ATP的最初释放测量ATP酶活性,并在含有100mM NaCl、25 mM KCl、3mM MgCl2、1mM EGTA、2mM ATP、5mM NaN3和50mM Tris-HCl (pH 7.4)的反应混合物(1ml)中进行反应。Na+/K+-ATP酶活性计算为 不存在乌本苷和存在1mM乌本苷时测量的活性之间的差异。为了测 定乌本苷浓度曲线,将阿拉霉素处理的细胞裂解物与不同浓度的乌本 苷预温育15分钟,然后加入ATP以开始反应。
共焦荧光显微术
培养在盖玻片上的细胞用PBS洗涤两次并用在-20℃预冷的甲醇 固定15分钟。然后将固定的细胞用PBS洗涤三次并在室温下用200μ 1 Image-iT FX信号增强剂封闭30分钟。再次洗涤细胞并用含有1% 牛血清白蛋白的PBS中的一级抗体在室温下温育1小时。用PBS洗涤 三次后,细胞用相应的Alexa Fluor缀合的二级抗体温育。使用Leica DMIRE2共焦显微镜(Leica,Mannheim,Germany)进行图像显示。Leica 共焦软件用于数据分析。
通过接纳体光漂白进行FRET分析
将ECFP融合到Src的C末端,并将EYFP融合到大鼠Na+/K+-ATP 酶α1或其突变体的N-末端。使用接纳体光漂白方案,在用Src-ECFP 和EYFP-大鼠α1表达载体共转染的细胞中进行FRET分析。简言之, 24小时培养后,将盖玻片上的细胞用-20℃下预冷的甲醇固定15分钟, 并用PBS溶液洗涤两次。通过应用高强度的515nM激光将EYFP-大鼠 α1光漂白,并在EYFP光漂白之前(Dpre)和之后(Dpost)记录456nM 激光激发的ECFP发射。然后通过(Dpost-Dpre)/Dpre的比率计算FRET 效率。用Src-ECFP和EYFP或EYFP-α1和ECFP表达载体转染的细胞 用作对照,在这些对照细胞中没有观察到可检测到的FRET。
数据分析
数据以平均值±S.E给出。用学生t检验进行统计学分析,并 且在p<0.05时认可显著性。
结果
通过基于siRNA的测定法操作细胞Na+/K+-ATP酶含量
如图25中的表1所示,选择了共四对α1特异性siRNA。人胚肾 293T细胞中的瞬时转染测定法表明A4 siRNA的表达导致人α1亚基表 达的超过40%的降低,而其他的导致0(A1 siRNA)到20%(A2和A3 siRNA)的减弱。因为如通过共表达的EYFP所指示的,转染效率为约 50%,所以发明人推断A4 siRNA在沉默内源Na+/K+-ATP酶的表达中 是有效的。因此,将LLC-PK1细胞用A4 siRNA表达载体 (pSuppressor-A4 siRNA)与嘌呤霉素选择标记(pBade-puro)与或不与 pEYFP进行转染,如“实验步骤”中所述。两轮选择后,发明人收集 了20个稳定的转染体。使用单克隆(a6F)抗体的蛋白质印迹分析表明 这些克隆中α1亚基的表达与用空载体(pSuppressor)转染并选择的 对照P-11细胞相比显著降低。相反,从用A1 siRNA转染的LLC-PK1 细胞中得到的细胞克隆(例如A1)以与P-11细胞中相当的水平表达 α1(见图26,表2)。
图26显示了表2,相对α1亚基蛋白质含量和用于不同细胞系中 的DNA构建体的组成。
本文的发明人已经扩增并进一步表征了3种表达A4 siRNA-的克 隆。如图11A中所示,α1亚基的表达在A4-11、TCN23-19和PY-17 细胞中显著降低。在这些细胞系中,通过使用共表达的EYFP作为标记 物克隆的PY-17细胞表达最低水平的Na+/K+-ATP酶。
图26中的表2显示了发明人产生的这些和其他细胞系中α1相 对量的定量数据。因为使用从猪肾制备的纯化的Na+/K+-ATP酶进行的 对照蛋白质印迹表明仅仅可能进行合理的定量测定,其比较α1的量 中小于6倍差异的两个样品(数据未显示),所以发明人通过比较A4-11 与对照P-11,然后比较TCN23-19和PY-17与A4-11测量了这些细胞 中α1的相对量。为了证实上面的蛋白质印迹数据,发明人还用不同 的抗Na+/K+-ATP酶α1单克隆抗体(克隆C464.6)和抗-Na+/K+-ATP 酶α1多克隆抗体探测了印迹,显示与图11A中基本相同的结果。此 外,当用抗Na+/K+-ATP酶α1抗体(克隆C464.6)免疫染色共培养 的P-11和PY-17细胞时,发明人发现绿色PY-17细胞没有显示出α1 的可检测的表达,而对照P-11细胞的质膜被该抗体清楚地标记(图 11B)。为了确保α1亚基的敲减不诱导其他同种型的表达,发明人就 α2和α3分析了细胞裂解物并且在上面的细胞系中没有发现可检测 到的信号。
此外,当测量细胞裂解物中的乌本苷敏感的ATP酶活性时,与对 照P-11细胞相比在PY-17细胞中注意到显著(80%)降低(见图27, 表3)。
图27显示了表3,在细胞系P-11,PY-17和AAC-19中的 Na+/K+-ATP酶活性。
PY-17细胞具有非常低的内源Na+/K+-ATP酶并且当细胞通过敲入 内源α1进行挽救时,可用于研究Na+/K+-ATP酶的结构-功能性质。 为了证实,发明人首先进行了大鼠α1 cDNA的沉默突变以改变siRNA 靶向的序列。发明人然后用突变的大鼠α1表达载体(pRc/CMV α1 AACm1)转染PY-17细胞并产生了一些稳定的转染物。克隆AAC-19的进 一步分析表明与P-11和PY-17,不同这些细胞不像表达大鼠α1(图 12A)。
当使用单克隆抗体(a6F)分析相同印迹的总α1时,发明人发现 AAC-19细胞表达与对照P-11细胞中相当的量的α1(图12A)。通过用 抗-α1(克隆C464.6)抗体免疫染色共同培养的P-11和AAC-19细胞 进一步证实了该结果。如图12B中所述,绿色AAC-19和对照P-11细 胞显示出质膜中相似水平的Na+/K+-ATP酶。对照实验也表明不存在乌 本苷时,大鼠α1在该细胞系中稳定表达至少20代。大鼠α1向PY-17 细胞的功能性敲入能够恢复Na+/K+-ATP酶活性(见图27-表3)。而 且,它偏移了乌本苷对ATP酶活性的剂量反应曲线,并使得挽救的细 胞对乌本苷的敏感性降低。实际上,挽救的细胞与仅仅表达α1同种 型的大鼠细胞系的行为一样(图13)。重要的是注意到PY-17与对照 P-11细胞一样对乌本苷敏感,并且10μM乌本苷引起Na+/K+-ATP 酶的完全抑制。
Na+/K+-ATP酶对基础Src活性的调控
体外研究表明Na+/K+-ATP酶直接结合Src并保持其处于无活性状 态。本文的发明人现在认为该调控模式在活细胞中起作用并且细胞内 Na+/K+-ATP酶的降低将减小该相互作用,导致基础Src活性升高。为 了测试,发明人测量了来自上面细胞系的细胞裂解物中Src的磷酸化 (Tyr(P)418-Src),其指示Src的激活。
如图14A中所述,内源Na+/K+-ATP酶的敲减没有改变总Src的表 达。然而,活性Src的水平在A4-11、TCN23-19和PY-17细胞中显著 降低。有趣的是,Src活性的升高似乎与这些细胞中表达的Na+/K+-ATP 酶的量反相关(图14B)。
通过用抗-Tyr(P)418-Src抗体免疫染色细胞进一步证实了这些 发现,表明TCN23-19细胞含有比P-11细胞更多的活性Src(图14C)。 重要的是注意到两个对照细胞系P-11和A1细胞之间活性Src的量没 有差异。
为了测试当补充Na+/K+-ATP酶时,由于Na+/K+-ATP酶的表达降 低引起的Src活性的升高是可逆转的,发明人测定了AAC-19细胞中总 的Src和活性Src。如图12A-B中所示,AAC-19细胞来自大鼠α1-转 染的PY-17细胞并且表达与对照P-11细胞中相当的量的Na+/K+-ATP 酶。尽管大鼠α1的敲入不改变AAC-19细胞中总的Src,但是它降低 活性Src水平至对照P-11细胞中所看到的水平(图15A和15B)。
如图27中表3所示,PY-17细胞中Na+/K+-ATP酶活性降低80%。 当在22Na+(0.5μCi/ml)培养基中温育细胞60分钟以完全平衡可交 换的细胞内Na+与22Na+(15)后测量细胞内Na+时,发明人发现PY-17细 胞中稳态细胞内Na+约为P-11细胞中的两倍。为了确保AAC-19细胞中 观察到的Src活性的改变不是由于功能性Na+/K+-ATP酶的恢复和随后 细胞内Na+的减少,发明人测试了大鼠α1的泵缺失突变体的敲入对于 所观察到的Na+/K+-ATP酶和Src之间的相互作用是否足够,PY-17细 胞用沉默突变的野生型大鼠α1(pRc/CMV α1 AACm1)或大鼠α1泵 缺失突变体(D371E)瞬时转染。
如图15C中所示,大鼠α1或突变体的表达减少了PY-17细胞中 的活性Src。为了进一步证实,发明人还用EYFP融合的大鼠α1突变 表达载体(pEYFP-D371E)瞬时转染TCN23-19细胞并免疫染色活性Src。 如图15D中所示,表达大鼠α1突变体的细胞与未转染的TCN23-19细 胞相比具有低得多的活性Src。这些数据表明泵缺失的Na+/K+-ATP酶 突变体仍然能够与Src相互作用并调控Src。为了进一步证实,发明 人在用EYFP-大鼠α1突变体(D371E)和Src-ECFP表达载体瞬时转染 的TCN23-19细胞中进行了FRET分析。
如图16A中所示,泵缺失突变体被靶向至质膜。当通过接纳体光 漂白方案测量这些转染的细胞中的FRET时,清楚了证明了能量从 SrcECFP向EYFP-D371E的转移(图16B)。从三个独立实验中的共20 个细胞测量的FRET效率为10.4到15.6(13.2±1.4)。这些数据表 明泵缺失Na+/K+-ATP酶像野生型α1(10)一样作用并且可以与Src 相互作用而形成信号传导复合体。该结论进一步得到免疫共沉淀测定 法的支持,其表明大鼠α1突变体可以被抗-Src抗体共沉淀(图16C)。
FAK是已知的Src效应物,其在细胞迁移和增殖的调控中起重要 作用。Src的激活刺激FAK Tyr925的磷酸化,其随后也导致RDK1/2的 激活。为了检查基础Src活性的升高是否可以导致Src效应物的激活, 发明人测量了α1敲减细胞中FaK的酪氨酸磷酸化。如图17A中所示, 细胞裂解物被抗磷酸酪氨酸抗体免疫沉淀,并且使用抗FAK抗体探测 免疫沉淀物。数据清楚地表明α1敲减能够增加酪氨酸磷酸化的FAK 的量。特别地,当探测细胞裂解物的Tyr(P)925-FAK时,发明人发现 A4-11和PY-17细胞中Tyr(P)925-FAK的显著升高(图17B)。有趣的 是,当测量总的ERK1/2和pERK1/2时,发明人发现PY-17细胞中活性 ERK 1/2的量的适度增加(图17C)。这符合Tyr(P)925-FAK的已知的功 能(19,20)。该Tyr(P)925的增加对Src抑制剂PP2敏感(图17D)。重 要的是注意到FAK磷酸化与PP2处理的敲减细胞中活性Src水平良好 相关。总之,这些数据表明由于α1敲减引起升高的Src活性可以刺 激Src效应物的酪氨酸磷酸化。这得到如下观察的进一步支持:泵缺 失突变体(D371E)的表达不仅恢复了基础Src活性,而且降低了PY-17 细胞中FAK Tyr925磷酸化(图17E)。
Na+/K+-ATP酶的敲减消除了Src和ERK1/2的乌本苷诱导的激活
因为Na+/K+-ATP酶·Src复合体作为乌本苷的功能性受体以诱导 Src激活和ERK1/2的随后刺激,所以上面的实施例导致发明人测试 Na+/K+-ATP酶的敲减是否影响乌本苷激活的信号转导。
如图18A中所示,尽管乌本苷激活了P-11细胞中的Src,但是乌 本苷的该效应在PY-17细胞中基本上被消除,而在A4-11细胞中观察 到显著降低。为了确定该抑制不是由于受体信号转导的非特异性缺陷, 发明人也测量了EGF对Src的作用。发明人发现表皮生长因子能够刺 激P-11和PY-17细胞中的SrcTyr(P)418(P-11中2.5±0.3倍增加 对比PY-17中1.7±0.2倍增加,n=3)。与对于Src的发现相一 致,发明人也不能检测PY-17细胞中ERK1/2磷酸化的任何乌本苷诱导 的改变(图18B)。
相反,表皮生长因子能够刺激PY-17细胞中的ERK1/2。这些数据 支持如下观点:Na+/K+-ATP酶实际上是乌本苷诱导的信号转导的受 体。该观点进一步得到图18C和18D中给出的发现的支持,表明大鼠 α1的敲入不仅恢复了乌本苷应答而且使AAC-19细胞中的剂量反应曲 线偏向右边。
讨论
在该实施例中,发明人不仅介绍了有效的且α1特异性RNA干扰 测定法,而且提供了挽救Na+/K+-ATP酶耗尽的细胞的方案。这些方法 使得我们可能阐明细胞Na+/K+-ATP酶调控Src和其效应物FAK并且 Na+/K+-ATP酶·Src复合体作为乌本苷的唯一受体而激活活细胞中的 Src和随后激活ERK1/2。
通过RNA干扰测定法操作细胞内Na+/K+-ATP酶含量
RNA干扰是最初在1998年在秀丽隐杆线虫(Caenorhabditis elegans)中发现的细胞机理,并且指通过双链RNA触发的内源mRNA 的降解进行的转录后基因沉默。其现在已经被开发为人工沉默多种生 物系统(包括培养的细胞和完整生物)中特定基因的有力工具。使用 Paul等人(2002)开发的策略和瞬时转染测定法,发明人鉴定A4 siRNA 对于沉默α1表达是有效的。从而,发明人用A4 siRNA表达载体转染 猪LLC-PK1细胞并克隆了几个稳定的细胞系。蛋白质印迹分析和免疫 染色测定表明克隆的细胞系中α1的表达被显著降低(图11和12和 图26-表2)。例如,PY-17细胞中α1为对照P-11细胞中的仅仅约 8%。功能分析揭示α1的耗尽导致PY-17细胞中乌本苷-敏感性ATP 酶活性降低80%(图27-表3)。发明人现在开发了沉默培养的细胞 中内源α1的表达的有效方案。
为了测试α1耗尽的细胞是否可以用于研究内源/突变α1的信号 传导功能,发明人用大鼠α1表达载体转染了PY-17细胞,所述表达 载体中,A4 siRNA靶向的序列被沉默突变。通过利用与大鼠α1特异 反应的抗体的可用性优点,发明人在本文中阐明内源大鼠α1可以被 敲入并且大鼠α1的表达不仅恢复了总的细胞Na+/K+-ATP酶蛋白质而 且恢复了Na+/K+-ATP酶活性。而且,大鼠α1挽救的细胞(AAC-19)显 示出与仅仅表达Na+/K+-ATP酶α1亚基的大鼠细胞系相同的乌本苷 敏感性(图13)。总之,这些数据表明发明人已经开发了操作细胞 Na+/K+-ATP酶的有效方案。
该方案与广泛使用的乌本苷选择方案相比,为在乌本苷敏感细胞 系中表达突变Na+/K+-ATP酶方面提供了额外的优点(23-26)。
首先,本方案使得可能耗尽内源Na+/K+-ATP酶,允许发明人研究 Na+/K+-ATP酶表达的降低对细胞功能的影响。
其次,本方案不需要使用乌本苷以强迫表达转染的Na+/K+-ATP 酶。在考虑最近的研究中这是重要的,所述研究表明乌本苷刺激 Na+/K+-ATP酶的信号传导功能并且诱导该酶的胞吞作用。
第三,本方案可用于测定具有极低(小于10%)的内源Na+/K+-ATP 酶的细胞中的内源/突变Na+/K+-ATP酶。
第四,所鉴定的A4 siRNA可用于沉默来自不同于人和猪的物种的 细胞中的α1表达,因为A4 siRNA靶向的人α1 cDNA序列(核苷酸 2293到核苷酸2312)[SEQ ID NO:38]在从鱼类到人的所有鉴定的α1 亚基(但不是其他同种型)中是保守的。
第五,用不同同种型的Lp挽救PY-17细胞,Na+/K+-ATP酶提供 了揭露同种型特异性信号传导功能的通路。
Src-相互作用的Na+/K+-ATP酶库
Na+/K+-ATP酶存在于具有Src的胞膜窖中。FRET分析表明信号传 导Na+/K+-ATP酶和Src可能相互作用并形成功能性受体复合体。体外 结合测定法表明α1亚基和Src可以通过多个结构域直接相互作用并 且该相互作用保持Src处于无活性状态。发明人现在认为存在 Na+/K+-ATP酶的Src相互作用库,其不仅调控基础Src活性,而且作 为乌本苷的受体以刺激多种效应物的依赖Src的酪氨酸磷酸化。
首先,因为信号传导Na+/K+-ATP酶结合Src并保持其处于无活性 状态,所以发明人现在认为内源Na+/K+-ATP酶的减少将耗尽 Na+/K+-ATP酶的Src相互作用库,从而导致Src激活。实际上,如图 14中所示,α1敲减细胞含有比对照P-11细胞更高活性Src。重要的 是提到α1敲减确实引起PY-17细胞中细胞内Na+浓度的显著升高。然 而,当通过fura-2测量细胞内Ca2+时,PY-17细胞中的稳态Ca2+与P-11 细胞中的相当。从而,Src活性的增加不可能是由于细胞内Na+或Ca2+ 的改变。
其次,当通过大鼠α1挽救α1敲减的PY-17细胞时,发明人观察 到大鼠α1的敲入足够耗尽Src相互作用的Na+/K+-ATP酶库,导致基 础Src活性的恢复。
第三,因为当前所述的体外结合测定法表明α1的第三个细胞内 结构域与Src相互作用并抑制Src活性,发明人现在认为大鼠α1的 泵缺失突变体应该能够结合并抑制活细胞中的Src。实际上,发明人 发现将大鼠α1突变体D371E敲入PY-17细胞也能够耗尽Na+/K+-ATP 酶的该Src相互作用库并减少活性Src的量(图15)。
另外,FRET分析和免疫共沉淀测定法表明泵缺失突变体可以与活 细胞中的Src相互作用(图16)。因为泵缺失突变体的表达不降低PY-17 细胞内的细胞内Na+浓度,所以这些数据也表明Na+/K+-ATP酶可以独 立于细胞内Na+浓度的改变与Src相互作用并调控Src。
FAK涉及细胞增殖、细胞存活和细胞迁移的调节。它也是Src的 效应物之一。活性Src与FAK的结合导致FAK的完全激活和FAK Tyr925 的酪氨酸磷酸化,其导致一些下游信号传导分子的装配,其中包括 ERK1/2的激活。发明人发现细胞Na+/K+-ATP酶的耗尽不仅激活了Src, 而且刺激了FAK的酪氨酸磷酸化。PP2对Src的抑制或者泵缺失α1 突变体的敲入减少了PY-17细胞中的Tyr(P)925-FAK(图17)。相一致 的是,发明人也观察到乌本苷刺激了对照LLC-PK1细胞中的Src和随 后刺激了FAK。这些发现是重要的。首先,它们支持如下观点: Na+/K+-ATP酶是蛋白激酶的重要调控物。其次,Na+/K+-ATP酶对Src 和Src效应物FAK的调控作用依赖于Na+/K+-ATP酶与蛋白质相互作用 而不依赖泵送离子的能力。第三,α1耗尽诱导的Src激活能够产生 下游通路。发明人也注意到FAK在细胞运动性的调控中起关键作用并 且上皮细胞中α1的耗尽影响紧密连接的形成和细胞运动性。从而, 发明人现在认为α1耗尽和随后FAK的激活在细胞迁移的调控中的作 用是重要的。
乌本苷诱导的信号转导似乎通过Src的激活启动。因为乌本苷使 用Na+/K+-ATP酶·Src复合体作为功能性受体,所以发明人现在认为 Src的乌本苷诱导的激活应该与Src-相互作用的Na+/K+-ATP酶库的 大小相关。实际上,发明人发现乌本苷对Src激活的作用与Na+/K+-ATP 酶的细胞水平反相关。尽管乌本苷诱导A4-11细胞中Src的适度激活, 但是它不能激活PY-17细胞中的Src。因为需要Src将乌本苷信号传 递到许多下游效应物,所以本文的实施例进一步表明a/K-ATP酶·Src 复合体是乌本苷引起蛋白质信号级联的唯一受体。这得到下面观察的 进一步支持。首先,用大鼠α1挽救PY-17细胞恢复了乌本苷对Src 和ERK1/2的作用。其次,因为所挽救的细胞表达乌本苷不敏感的大鼠 α1,所以需要高得多的乌本苷浓度来刺激AAC-19细胞中的Src和随 后刺激ERK1/2(图18)。第三,发明人已经开发了用于操作细胞 Na+/K+-ATP酶的有用的方案,其允许进一步表征Na+/K+-ATP酶的信 号传导性质。第四,这些新的发现表明Na+/K+-ATP酶是重要的受体, 其能够通过蛋白激酶传递乌本苷信号。第五,因为Src活跃地参与细 胞生长的控制,本文的发明人现在表明需要再次检查Na+/K+-ATP酶介 导的对Src的抑制和乌本苷引发的对Src激活是否在癌症生物学中起 重要作用的问题。
实施例III
在图19A-D中显示了与Src相互作用并抑制Src的Na+/K+-ATP 酶中特定结构域的进一步作图。结果显示含有57个氨基酸的ND1结合 Src。图19A显示了Na+/K+-ATP酶α1和CD3结构域的方案。图19B 显示了ND1的氨基酸序列[SEQ ID NO.1]
[LTQNRMTVAHMWSDNQIHEADTTENQSGVSFDKTSATWLALSRIAGLCNRA VFQANQ].
图19C显示了使用GST标记的α1截短物和His-Src的体外结合 测定法。
图19D显示了该肽在不同物种和不同同种型的Na/K-ATP酶中是保 守的[SEQ ID NO.2-33]。
实施例IV
图20A-C中显示了与Na+/K+-ATP酶相互作用的Src中的特定结构 域的进一步作图。结果表明含有54个氨基酸的KD1结合Na+/K+-ATP 酶。图20A显示了Src和其激酶结构域的示意性结构。图20B显示了 来自Src的KD1肽与Na+/K+-ATP酶结合。[SEQ ID NO:34]
[LRLEVKLGQGCFGEVWMGTWNGTTRVAIKTLKPGTMSPEAFLQEAQVMK KLRHE].
图20C显示了使用GST标记的Src截短物和纯化的Na+/K+-ATP 酶的体外结合测定法。
实施例V
活性测定法证实ND1和KD1参与Src的Na+/K+-ATP酶介导的调控。 图21显示Na+/K+-ATP酶的GST-ND1抑制Src活性并且该抑制效果可 以被Src的GST-KD1竞争。
图22A-B显示ND1有效阻断活细胞中的Src活性。ND1、ND和CD3 降低LLC-PK1细胞中的Src磷酸化。图22A显示LLC-PK1细胞用YFP- 标记的ND1、ND和CD3瞬时转染24小时。细胞然后在RIPA缓冲液中 裂解并探测pY418。也将YFP瞬时转染到LLC-PK1细胞中作为对照。 图22B显示了来自三个实验的定量数据。*p<0.05。
实施例VI
ND1也抑制前列腺癌细胞(DU145)生长。图23显示YFP-ND1终止 人前列腺癌细胞(DU145)生长。用Lipofectamine 2000将2.0μg pYFP-C1或pYFP-C1-ND1质粒转染到LLC-PK1细胞中。48小时后,用 台盼蓝染色来计数细胞数。
实施例VII
鉴定P3作为有效的Src抑制剂:ND1的作图已经鉴定了来自ND1 的20个氨基酸的肽(P-3)抑制Src。图24A-B表明来自ND1的肽3显 著抑制Src活性。图24A显示了P3肽序列[SEQ ID NO:2].
(SATWLALSRIAGLCNRAVFQ)
图24B显示了当纯化的Src与P-3肽在37℃温育20分钟并加入2 mM ATP额外温育5分钟时的结果。通过加入5X上样缓冲液终止反应。 探测pY418来测量Src激活。
图28显示了增强大分子的细胞膜渗透性的肽(TAT和AP)的序列。
TAT或AP与P3的缀合使得细胞膜可渗透:图29A显示了TAT或 AP缀合的Src肽抑制剂(TAT-P3或AP-P3)的序列。图29B显示了新肽 在体外抑制Src。图29C显示FITC缀合的TAT-P3被靶向至细胞膜。 图29D显示向DU145细胞加入TAT-P3或AP-P3抑制细胞生长。
尽管本发明已经参考多种和优选的实施方案进行了描述,但是本 领域技术人员应当理解可以进行多种改变并且等同方案可以替代其要 素而不背离本发明的基本范围。另外,可产生许多修改使具体的条件 或材料适应本发明的教导而不脱离其基本范围。因此,本发明旨在不 限于预期用于实施本发明的本文公开的具体实施方案,而是本发明将 包括落入权利要求范围内的所有实施方案。
参考文献
将上面讨论的参考文献和下面的参考文献(在它们提供的补充本 文给出方案的示例性程序或者其他细节的程度上)特别引入本文作为 参考。本文参考文献的引用将不被理解为承认其是本发明的现有技术
Abram,C.L.,and Courtneidge,S.A.(2000).Src family tyrosine kinases.and growth factor signaling.Exp.Cell Res.254,1-13.
Aizman,O.,Uhlen,P.,Lal,M.,Brismar,H.,and Aperia,A.(2001).Ouabain,a steroid hormone that signals with slow calcium oscillations.Proc.Natl.Acad.Sci.USA 98, 13420-13424.
Aydemir-Koksoy,A.,Abramowitz,J.,and Allen,J.C.(2001).Ouabain-induced signaling and vascular smooth muscle cell proliferation.J.Biol.Chem.276,46605-46611.
Baker,P.F.,and Willis,J.S.(1969).On the number of sodium pumping sites in cell membranes.Biochim.Biophys.Acta 183,646-649.
Baker,P.F.,and Willis,J.S.(1970).Potassium ions and the binding of cardiac glycosides to mammalian cells.Nature 226,521-523.
Barwe,S.P.,Anilkumar,G.,Moon,S.Y.,Zheng,Y.,Whitelegge,J.P.,Rajasekaran, S.A.,and Rajasekaran,A.K.(2005).Novel role for Na,K-ATPase in phosphatidylinositol 3-kinase signaling and suppression of cell motility.Mol.Biol.Cell 16,1082-1094.
Berkers,J.A.,van Bergen en Henegouwen,P.M.,and Boonstra,J.(1991).Three classes of epidermal growth factor receptors on HeLa cells.J.Biol.Chem.266,922-927.
Boggon,T.J.,and Eck,M.J.(2004).Structure and regulation of Src family kinases. Oncogene 23,7918-7927.
Brown,M.T.,and Cooper,J.A.(1996).Regulation,substrates and functions of Src. Biochim.Biophys.Acta 1287,121-149.
Devarajan,P.,Scaramuzzino,D.A.,and Morrow,J.S.(1994).Ankyrin binds to two distinct cytoplasmic domains of Na,K-A TPase alpha subunit.Proc.Natl.Acad.Sci.USA 91,2965-2969.
Dolgova,N.,Mast,N.,Akimova,O.,Rubtsov,A.,and Lopina,O.(2003).Proteins binding to alphalbetal isozyme of Na,K-ATPase.Ann.NY Acad.Sci.986,527-529.
Emanuel,J.R.,Schulz,J.,Zhou,X.M.,Kent,R.B.,Housman,D.,Cantley,L.,and Levenson,R.(1988)J.Biol.Chem.263,7726-7733.
Fedorova,O.V.,Talan,M.I.,Agalakova,N.I.,Lakatta,E.G.,and Bagrov,A.Y. (2002).Endogenous ligand of alpha(1)sodium pump,marinobufagenin,is a novel mediator of sodium chloride-dependent hypertension.Circulation 105,1122-1127.
Ferrandi,M.,Molinari,I.,Barassi,P.,Minotti,E.,Bianchi,G.,and Ferrari,P.(2004). Organ hypertrophic signaling within caveolae membrane subdomains triggered by ouabain and antagonized by PST 2238.J.Biol.Chem.279,33306-33314.
Fire,A.,Xu,S.,Montgomery,M.K.,Kostas,S.A.,Driver,S.E.,and Mello,C.C. (1998)Nature 391,806-811.
Haas,M.,Askari,A.,and Xie,Z.(2000).Involvement of Src and epidermal growth factor receptor in the signal-transducing function of Na+/K+-ATPase.J.Biol.Chem.275, 27832-27837.
Haas,M.,Wang,H.,Tian,J.,and Xie,Z.(2002).Src-mediated inter-receptor cross- talk between the Na+/K+-ATPase and the epidermal growth factor receptor relays the signal from ouabain to mitogen-activated protein kinases.J.Biol.Chem.277,18694- 18702.
Hamlyn,J.M.,Blaustein,M.P.,Bova,S.,DuCharme,D.W.,Harris,D.W.,Mandel, F.,Mathews,W.R.,and Ludens,J.H.(1991).Identification and characterization of a ouabain-like compound from human plasma.Proc.Natl.Acad.Sci.USA 88,6259-6263.
Haskell,M.D.,Slack,J.K.,Parsons,J.T.,and Parsons,S.J.(2001)Chem.Rev.101, 2425-2440.
Huang,L.,Li,H.,and Xie,Z.(1997).Ouabain-induced hypertrophy in cultured cardiac myocytes is accompanied by changes in expression of several late response genes. J.Mol.Cell Cardiol.29,429-437.
Ihle,J.N.(1994).The Janus kinase family and signaling through members of the cytokine receptor superfamily.Proc.Soc.Exp.Biol.Med.206,268-272.
Jewell,E.A.,and Lingrel,J.B.(1991)J.Biol.Chem.266,16925-16930.
Jorgensen,P.L.(1974).Purification and characterization of(Na+plus K+)ATPase.3. Purification from the outer medulla of mammalian kidney after selective removal of membrane components by sodium dodecylsulphate.Biochim.Biophys.Acta 356,36-52.
Jorgensen,P.L.(1988).Purification of Na+,K+-ATPase:enzyme sources,preparative problems,and preparation from mammalian kidney.Methods Enzymol.156,29-43.
Kanagawa,M.,Watanabe,S.,Kaya,S.,Togawa,K.,Imagawa,T.,Shimada,A., Kikuchi,K.,and Taniguchi,K.(2000).Membrane enzyme systems responsible for the Ca(2+)-dependent phosphorylation of Ser(27),the independent phosphorylation of Tyr(10) and Tyr(7),and the dephosphorylation of these phosphorylated residues in the alpha-chain of H/K-ATPase.J.Biochem.(Tokyo)127,821-828.
Kent,R.B.,Emanuel,J.R.,Ben Neriah,Y.,Levenson,R.,and Housman,D.E.(1987) Science 237,901-903.
Kaplan,J.H.(2002).Biochemistry of Na,K-ATPase.Annu.Rev.Biochem.71,511- 535.
Kim,D.,Barry,W.H.,and Smith,T.W.(1984)J.Pharmacol.Exp.Ther.231,326- 333.
Kometiani,P.,Li,J.,Gnudi,L.,Kahn,B.B.,Askari,A.,and Xie,Z.(1998).Multiple signal transduction pathways link Na+/K+-ATPase to growth-related genes in cardiac myocytes.The roles of Ras and mitogen-activated protein kinases.J.Biol.Chem.273, 15249-15256.
Lingrel,J.B.,and Kuntzweiler,T.(1994).Na+,K(+)-ATPase.J.Biol.Chem.269, 19659-19662.
Liu,L.,Abramowitz,J.,Askari,A.,and Allen,J.C.(2004)Am.J.Physiol.287, H2173-H2182.
Liu,J.,Kesiry,R.,Periyasamy,S.M.,Malhotra,D.,Xie,Z.,and Shapiro,J.I.(2004) Kidney Int.66,227-241.
Liu,L.,Mohammadi,K.,Aynafshar,B.,Wang,H.,Li,D.,Liu,J.,Ivanov,V.,Xie,Z., and Askari,A.(2003)Am.J.Physiol.284,C1550-C1560.
Liu,J.,Tian,J.,Haas,M.,Shapiro,J.I.,Askari,A.,and Xie,Z.(2000).Ouabain interaction with cardiac Na+/K+-ATPase initiates signal cascades independent of changes in intracellular Na+and Ca2+concentrations.J.Biol.Chem.275,27838-27844.
Lowry,W.E.,Huang,J.,Ma,Y.C.,Ali,S.,Wang,D.,Williams,D.M.,Okada,M., Cole,P.A.,and Huang,X.Y.(2002).Csk,a critical link of g protein signals to actin cytoskeletal reorganization.Dev.Cell 2,733-744.
Ma,Y.C.,Huang,J.,Ali,S.,Lowry,W.,and Huang,X.Y.(2000).Src tyrosine kinase is a hovel direct effector of G proteins.Cell 102,635-646.
Masaki,T.,Shiratori,Y.,Okada,H.,Nishioka,M.,Taniguchi,K.,Hatanaka,Y.,and Omata,M.(2000).pp60c-src activation in gastric carcinoma:a preliminary study.Am.J. Gastroenterol.95,837-838.
McCall,D.(1979).Cation exchange and glycoside binding in cultured rat heart cells. Am.J.Physiol.236,C87-C95.
Miyakawa-Naito,A.,Uhlen,P.,Lal,M.,Aizman,O.,Mikoshiba,K.,Brismar,H., Zelenin,S.,and Aperia,A.(2003)J.Biol.Chem.278,50355-50361.
Mohammadi,K.,Liu,L.,Tian,J.,Kometiani,P.,Xie,Z.,and Askari,A.(2003). Positive inotropic effect of ouabain on isolated heart is accompanied by activation of signal pathways that link Na+/K+-ATPase to ERK1/2.J.Cardiovasc.Pharmacol.41,609- 614.
Mohammadi,K.,Kometiani,P.,Xie,Z.,and Askari,A.(2001)J.Biol.Chem.276, 42050-42056.
Ohtsubo,M.,Noguchi,S.,Takeda,K.,Morohashi,M.,and Kawamura,M.(1990) Biochim.Biophys.Acta 1021,157-160.
Paul,C.P.,Good,P.D.,Winer,I.,and Engelke,D.R.(2002)Nat.Biotechnol.20, 505-508.
Petrosian,S.A.,Carr,D.L.,Guerrero,G.,and Pressley,T.A.(1998)Arch.Biochem. Biophys.357,249-258.
Pierdomenico,S.D.,Bucci,A.,Manunta,P.,Rivera,R.,Ferrandi,M.,Hamlyn,J.M., Lapenna,D.,Cuccurullo,F.,and Mezzetti,A.(2001).Endogenous ouabain and hemodynamic and left ventricular geometric patterns in essential hypertension.Am.J. Hypertens.14,44-50.
Price,E.M.,and Lingrel,J.B.(1988)Biochemistry 27,8400-8408.
Rajasekaran,S.A.,Palmer,L.G.,Quan,K.,Harper,J.F.,Ball,W.J.,Jr.,Bander,N. H.,Peralta Soler,A.,and Rajasekaran,A.K.(2001)Mol.Biol.Cell 12,279-295.
Schaller,M.D.(2001)Biochim.Biophys.Acta 1540,1-21.
Scheiner-Bobis,G.,and Schoner,W.(2001).A fresh facet for ouabain action.Nat. Med.7,1288-1289.
Schlaepfer,D.D.,Hauck,C.R.,and Sieg,D.J.(1999)Prog.Biophys.Mol.Biol.71, 435-478.
Schlaepfer,D.D.,Broome,M.A.,and Hunter,T.(1997)Mol.Cell.Biol.17,1702- 1713.
Schlaepfer,D.D.,Hanks,S.K.,Hunter,T.,and van der Geer,P.(1994)Nature 372, 786-791.
Schulte,R.J.,and Sefton,B.M.(2003).Inhibition of the activity of SRC and Abl tyrosine protein kinases by the binding of the Wiskott-Aldrich syndrome protein. Biochemistry 42,9424-9430.
Skou,J.C.(1957)Biochim.Biophys.Acta 23,394-401.
Sobko,A.,Peretz,A.,and Attali,B.(1998).Constitutive activation of delayed rectifier potassium channels by a Src family tyrosine kinase in Schwann cells.EMBO J.17,4723- 4734.
Tatosyan,A.G.,and Mizenina,O.A.(2000).Kinases of the Src family:structure and functions.Biochemistry(Mosc.)65,49-58.
Tian,J.,Cai,T.,Yuan,Z.,Wang,H.,Liu,L.,Haas,M.,Maksimova,E.,Huang,X.Y., and Xie,Z.J.(2006)Mol.Biol.Cell17,317-326.
Tian,J.,Gong,X.,and Xie,Z.(2001).Signal-transducing function of Na+-K-ATPase is essential for ouabain’s effect on[Ca2+]i in rat cardiac myocytes.Am.J.Physiol.Heart Circ.Physiol.281,H1899-H1907.
Tiran,Z.,Peretz,A.,Attali,B.,and Elson,A.(2003).Phosphorylation-dependent regulation of Kv2.1 Channel activity at tyrosine 124 by Src and by protein-tyrosine phosphatase epsilon.J.Biol.Chem.278,17509-17514.
Thomas,S.M.,and Brugge,J.S.(1997)Annu.Rev.Cell Dev.Biol.13,513-609.
Toyoshima,C.,and Nomura,H.(2002).Structural changes in the calcium pump accompanying the dissociation of calcium.Nature 418,605-611.
Wan,Y.S.,Wang,Z.Q.,Voorhees,J.,and Fisher,G.(2001).EGF receptor crosstalks with cytokine receptors leading to the activation of c-Jun kinase in response to UV irradiation in human keratinocytes.Cell Signal 13,139-144.
Wang,H.,Haas,M.,Liang,M.,Cai,T.,Tian,J.,Li,S.,and Xie,Z.(2004).Ouabain assembles signaling cascades through the caveolar Na+/K+-ATPase.J.Biol.Chem.279, 17250-17259.
Xie,Z.(2001).Ouabain interaction with cardiac Na+/K+-ATPase reveals that the enzyme can act as a pump and as a signal transducer.Cell.Mol.Biol.(Noisy-le-grand)47, 383-390.
Xie,Z.,Kometiani,P.,Liu,J.,Li,J.,Shapiro,J.I.,and Askari,A.(1999).Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes.J.Biol.Chem.274,19323-19328.
Xie,Z.,Wang,Y.,Liu,G.,Zolotarjova,N.,Periyasamy,S.M.,and Askari,A.(1996). Similarities and differences between the properties of native and recombinant Na+/K+- ATPases.Arch.Biochem.Biophys.330,153-162.
Xie,Z.J.,Wang,Y.H.,Ganjeizadeh,M.,McGee,R.,Jr.,and Askari,A.(1989)Anal. Biochem.183,215-219.
Young,M.A.,Gonfloni,S.,Superti-Furga,G.,Roux,B.,and Kuriyan,J.(2001). Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation.Cell 105,115-126.
Yu,X.M.,Askalan,R.,Keil,G.J.,2nd,and Salter,M.W.(1997).NMDA channel regulation by channel-associated protein tyrosine kinase Src.Science 275,674-678.
Yuan,Z.,Cai,T.,Tian,J.,Ivanov,A.V.,Giovannucci,D.R.,and Xie,Z.(2005). Na+/K+-ATPase tethers phospholipase C and IP3 receptor into a calcium regulatory complex.Mol.Biol.Cell 16,4034-4045.
Yudowski,G.A.,Efendiev,R.,Pedemonte,C.H.,Katz,A.I.,Berggren,P.O.,and Bertorello,A.M.(2000).Phosphoinositide-3 kinase binds to a proline-rich motif in the Na+,K+-ATPase alpha subunit and regulates its trafficking.Proc.Natl.Acad.Sci.USA 97,6556-6561.
序列表
<110>UNIVERSITY OF TOLEDO
<120>Src和Src家族激酶的Na+/K+-ATP酶特异性肽抑制剂/激活剂
<130>53-28445
<140>
<141>
<150>60/855,482
<151>2006-10-31
<160>55
<170>PatentIn version 3.3
<210>1
<211>57
<212>PRT
<213>家犬
<400>1
Leu Thr Gln Asn Arg Met Thr Val Ala His Met Trp Ser Asp Asn Gln
1               5                   10                  15
Ile His Glu Ala Asp Thr Thr Glu Asn Gln Ser Gly Val Ser Phe Asp
            20                  25                  30
Lys Thr Ser Ala Thr Trp Leu Ala Leu Ser Arg Ile Ala Gly Leu Cys
        35                  40                  45
Asn Arg Ala Val Phe Gln Ala Asn Gln
    50                  55
<210>2
<211>20
<212>PRT
<213>家犬
<400>2
Ser Ala Thr Trp Leu Ala Leu Ser Arg Ile Ala Gly Leu Cys Asn Arg
1               5                   10                  15
Ala Val Phe Gln
            20
<210>3
<211>20
<212>PRT
<213>人类
<400>3
Ser Ala Thr Trp Leu Ala Leu Ser Arg Ile Ala Gly Leu Cys Asn Arg
1               5                   10                  15
Ala Val Phe Gln
            20
<210>4
<211>20
<212>PRT
<213>野猪
<400>4
Ser Ala Thr Trp Leu Ala Leu Ser Arg Ile Ala Gly Leu Cys Asn Arg
1               5                   10                  15
Ala Val Phe Gln
            20
<210>5
<211>20
<212>PRT
<213>绵羊
<400>5
Ser Ala Thr Trp Leu Ala Leu Ser Arg Ile Ala Gly Leu Cys Asn Arg
1               5                   10                  15
Ala Val Phe Gln
            20
<210>6
<211>20
<212>PRT
<213>家鼠
<400>6
Ser Ala Thr Trp Phe Ala Leu Ser Arg Ile Ala Gly Leu Cys Asn Arg
1               5                   10                  15
Ala Val Phe Gln
            20
<210>7
<211>20
<212>PRT
<213>原鸡
<400>7
Ser Ala Thr Trp Leu Ala Leu Ser Arg Ile Ala Gly Leu Cys Asn Arg
1               5                   10                  15
Ala Val Phe Gln
            20
<210>8
<211>20
<212>PRT
<213>海蟾蜍
<400>8
Ser Pro Thr Trp Thr Ala Leu Ala Arg Ile Ala Gly Leu Cys Asn Arg
1               5                   10                  15
Ala Val Phe Pro
            20
<210>9
<211>20
<212>PRT
<213>非洲爪蟾
<400>9
Ser Pro Thr Trp Thr Ala Leu Ser Arg Val Ala Gly Leu Cys Asn Arg
1               5                   10                  15
Ala Val Phe Gln
            20
<210>10
<211>20
<212>PRT
<213>鳗鲡
<400>10
Ser Ala Thr Trp Ala Ala Leu Ala Arg Ile Ala Gly Leu Cys Asn Arg
1               5                   10                  15
Ala Val Phe Leu
            20
<210>11
<211>20
<212>PRT
<213>白亚口鱼
<400>11
Ser Asp Thr Trp Ala Ser Leu Ala Arg Ile Ala Gly Leu Cys Asn Arg
1               5                   10                  15
Ala Val Phe Leu
            20
<210>12
<211>20
<212>PRT
<213>电鳐(Torpedo californica)
<400>12
Ser Leu Ser Trp Asn Ala Leu Ser Arg Ile Ala Ala Leu Cys Asn Arg
1               5                   10                  15
Ala Val Phe Gln
            20
<210>13
<211>20
<212>PRT
<213>斑马鱼
<400>13
Ser Pro Thr Trp Ala Ala Leu Ala Arg Val Ala Gly Leu Cys Asn Arg
1               5                   10                  15
Ala Val Phe Arg
            20
<210>14
<211>20
<212>PRT
<213>人类
<400>14
Ser Pro Thr Trp Thr Ala Leu Ser Arg Ile Ala Gly Leu Cys Asn Arg
1               5                   10                  15
Ala Val Phe Lys
            20
<210>15
<211>20
<212>PRT
<213>家鼠
<400>15
Ser Pro Thr Trp Thr Ala Leu Ser Arg Ile Ala Gly Leu Cys Asn Arg
1               5                   10                  15
Ala Val Phe Lys
            20
<210>16
<211>20
<212>PRT
<213>原鸡
<400>16
Ser Pro Thr Trp Ala Ala Leu Ser Arg Ile Ala Gly Leu Cys Asn Arg
1               5                   10                  15
Ala Val Phe Lys
            20
<210>17
<211>20
<212>PRT
<213>人类
<400>17
Ser His Thr Trp Val Ala Leu Ser His Ile Ala Gly Leu Cys Asn Arg
1               5                   10                  15
Ala Val Phe Lys
            20
<210>18
<211>20
<212>PRT
<213>家鼠
<400>18
Ser His Thr Trp Val Ala Leu Ser His Ile Ala Gly Leu Cys Asn Arg
1               5                   10                  15
Ala Val Phe Lys
            20
<210>19
<211>20
<212>PRT
<213>原鸡
<400>19
Ser Ala Thr Trp Val Ala Leu Ser His Ile Ala Gly Leu Cys Asn Arg
1               5                   10                  15
Ala Val Phe Lys
            20
<210>20
<211>20
<212>PRT
<213>家鼠
<400>20
Ser Asp Thr Trp Phe Tyr Leu Ala Arg Ile Ala Gly Leu Cys Asn Arg
1               5                   10                  15
Ala Asp Phe Lys
            20
<210>21
<211>20
<212>PRT
<213>人类
<400>21
Ser Asp Thr Trp Phe Met Leu Ala Arg Ile Ala Gly Leu Cys Asn Arg
1               5                   10                  15
Ala Asp Phe Lys
            20
<210>22
<211>20
<212>PRT
<213>小鼠
<400>22
Ser Asp Thr Trp Phe Tyr Leu Ala Arg Ile Ala Gly Leu Cys Asn Arg
1               5                   10                  15
Ala Asp Phe Lys
            20
<210>23
<211>20
<212>PRT
<213>日本三涡虫
<400>23
Ser Asp Thr Trp Lys Met Leu Ala Arg Ile Ser Met Leu Cys Asn Arg
1               5                   10                  15
Ala Gln Phe Lys
            20
<210>24
<211>20
<212>PRT
<213>黑腹果蝇
<400>24
Ser Pro Gly Phe Lys Ala Leu Ser Arg Ile Ala Thr Leu Cys Asn Arg
1               5                   10                  15
Ala Glu Phe Lys
            20
<210>25
<211>20
<212>PRT
<213>猫栉头虱
<400>25
Ser Pro Gly Phe Lys Ala Leu Ala Arg Ile Ala Thr Leu Cys Asn Arg
1               5                   10                  15
Ala Glu Phe Lys
            20
<210>26
<211>20
<212>PRT
<213>豚草
<400>26
Ser Ala Gly Trp Lys Ala Leu Val Lys Ile Ala Ala Leu Cys Ser Arg
1               5                   10                  15
Ala Glu Phe Lys
            20
<210>27
<211>20
<212>PRT
<213>豚草
<400>27
Ser Lys Gly Phe Pro Glu Leu Ile Arg Val Ala Ser Leu Cys Ser Arg
1               5                   10                  15
Ala Glu Phe Lys
            20
<210>28
<211>20
<212>PRT
<213>水螅
<400>28
Ser Leu Thr Trp Lys Ser Leu Ala Lys Val Ala Ala Leu Cys Ser Arg
1               5                   10                  15
Ala Glu Phe Lys
            20
<210>29
<211>20
<212>PRT
<213>秀丽隐杆线虫
<400>29
Gly Ala Ser Phe Glu Ala Leu Val Arg Ile Ala Ser Leu Cys Asn Arg
1               5                   10                  15
Ala Glu Phe Lys
            20
<210>30
<211>22
<212>PRT
<213>秀丽隐杆线虫
<400>30
Lys Glu Asp Ser Tyr Gln Lys Leu Leu Arg Cys Ala Thr Leu Cys Ser
1               5                   10                  15
 Arg Ser His Phe Arg Val
             20
<210>31
<211>24
<212>PRT
<213>盘基网柄菌
<400>31
Thr Pro Thr Cys Ala Ala Leu Leu Ash Val Gly Ala Cys Cys Asn Arg
1               5                   10                  15
Ala Asp Phe Asp Arg Leu Glu Gly
            20
<210>32
<211>20
<212>PRT
<213>家鼠
<400>32
Ser Glu Thr Trp Arg Ala Leu Cys Arg Val Leu Thr Leu Cys Asn Arg
1               5                   10                  15
Ala Ala Phe Lys
            20
<210>33
<211>25
<212>PRT
<213>家鼠
<400>33
Ser Thr Tyr Ala Asp Gly Leu Val Glu Leu Ala Thr Ile Cys Ala Leu
1               5                   10                  15
Cys Asn Asp Ser Ser Leu Asp Phe Asn
            20                  25
<210>34
<211>54
<212>PRT
<213>家犬
<400>34
Leu Arg Leu Glu Val Lys Leu Gly Gln Gly Cys Phe Gly Glu Val Trp
1               5                   10                  15
Met Gly Thr Trp Asn Gly Thr Thr Arg Val Ala Ile Lys Thr Leu Lys
            20                  25                  30
Pro Gly Thr Met Ser Pro Glu Ala Phe Leu Gln Glu Ala Gln Val Met
        35                  40                  45
Lys Lys Leu Arg His Glu
    50
<210>35
<211>19
<212>DNA
<213>人类
<400>35
agatcatgga atccttcaa                                        19
<210>36
<211>19
<212>DNA
<213>人类
<400>36
ctccaccaac aagtaccag                                        19
<210>37
<211>19
<212>DNA
<213>人类
<400>37
ggtcatcatg gtcacagga                      19
<210>38
<211>19
<212>DNA
<213>人类
<400>38
ggtcgtctga tctttgata                      19
<210>39
<211>57
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成的寡核苷酸
<400>39
tcgagagatc atggaatcct tcaattcaag agattgaagg attccatgat ctttttt    57
<210>40
<211>57
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成的寡核苷酸
<400>40
ctagaaaaaa gatcatggaa tccttcaatc tcttgaattg aaggattcca tgatctc    57
<210>41
<211>57
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成的寡核苷酸
<400>41
tcgagctcca ccaacaagta ccagttcaag agactggtac ttgttggtgg agttttt    57
<210>42
<211>57
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成的寡核苷酸
<400>42
ctagaaaaac tccaccaaca agtaccagtc tcttgaactg gtacttgttg gtggagc    57
<210>43
<211>57
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成的寡核苷酸
<400>43
tcgagggtca tcatggtcac aggattcaag agatcctgtg accatgatga ccttttt    57
<210>44
<211>57
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成的寡核苷酸
<400>44
ctagaaaaag gtcatcatgg tcacaggatc tcttgaatcc tgtgaccatg atgaccc    57
<210>45
<211>57
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成的寡核苷酸
<400>45
tcgagggtcg tctgatcttt gatattcaag agatatcaaa gatcagacga ccttttt    57
<210>46
<211>57
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成的寡核苷酸
<400>46
ctagaaaaag gtcgtctgat ctttgatatc tcttgaatat caaagatcag acgaccc    57
<210>47
<211>13
<212>PRT
<213>人工序列
<220>
<223>人工序列的描述:合成的肽
<400>47
Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Pro Pro Gln
1               5                   10
<210>48
<211>16
<212>PRT
<213>人工序列
<220>
<223>人工序列的描述:合成的肽
<400>48
Arg Gln Ile Lys Ile Trp Phe Gln Asn Arg Arg Met Lys Trp Lys Lys
1               5                   10                  15
<210>49
<211>33
<212>PRT
<213>人工序列
<220>
<223>人工序列的描述:合成的肽
<400>49
Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Pro Pro Gln Ser Ala Thr
1               5                   10                  15
Trp Leu Ala Leu Ser Arg Ile Ala Gly Leu Cys Asn Arg Ala Val Phe
            20                  25                  30
Gln
<210>50
<211>36
<212>PRT
<213>人工序列
<220>
<223>人工序列的描述:合成的肽
<400>50
Arg Gln Ile Lys Ile Trp Phe Gln Asn Arg Arg Met Lys Trp Lys Lys
1               5                   10                  15
Ser Ala Thr Trp Leu Ala Leu Ser Arg Ile Ala Gly Leu Cys Asn Arg
            20                  25                  30
Ala Val Phe Gln
        35
<210>51
<211>90
<212>PRT
<213>野猪
<400>51
Met Gly Lys Gly Val Gly Arg Asp Lys Tyr Glu Pro Ala Ala Val Ser
1               5                   10                  15
Glu His Gly Asp Lys Lys Lys Ala Lys Lys Glu Arg Asp Met Asp Glu
            20                  25                  30
Leu Lys Lys Glu Val Ser Met Asp Asp His Lys Leu Ser Leu Asp Glu
        35                  40                  45
Leu His Arg Lys Tyr Gly Thr Asp Leu Ser Arg Gly Leu Thr Pro Ala
    50                  55                  60
Arg Ala Ala Glu Ile Leu Ala Arg Asp Gly Pro Asn Ala Leu Thr Pro
65                  70                  75                  80
Pro Pro Thr Thr Pro Glu Trp Val Lys Phe
                85                  90
<210>52
<211>137
<212>PRT
<213>野猪
<400>52
Ser Ser Lys Ile Met Glu Ser Phe Lys Ash Met Val Pro Gln Gln Ala
1               5                   10                  15
Leu Val Ile Arg Asn Gly Glu Lys Met Ser Ile Asn Ala Glu Glu Val
            20                  25                  30
Val Val Gly Asp Leu Val Glu Val Lys Gly Gly Asp Arg Ile Pro Ala
        35                  40                  45
Asp Leu Arg Ile Ile Ser Ala Asn Gly Cys Lys Val Asp Asn Ser Ser
    50                  55                  60
Leu Thr Gly Glu Ser Glu Pro Gln Thr Arg Ser Pro Asp Phe Thr Asn
65                  70                  75                  80
Glu Asn Pro Leu Glu Thr Arg Asn Ile Ala Phe Phe Ser Thr Asn Cys
               85                  90                  95
Val Glu Gly Thr Ala Arg Gly Ile Val Val Tyr Thr Gly Asp Arg Thr
           100                  105                 110
Val Met Gly Arg Ile Ala Thr Leu Ala Ser Gly Leu Glu Gly Gly Gln
        115                 120                 125
Thr Pro Ile Ala Ala Glu Ile Glu His
    130                 135
<210>53
<211>435
<212>PRT
<213>野猪
<400>53
Ala Arg Lys Asn Cys Leu Val Lys Asn Leu Glu Ala Val Glu Thr Leu
1               5                   10                  15
Gly Ser Thr Ser Thr Ile Cys Ser Asp Lys Thr Gly Thr Leu Thr Gln
            20                  25                  30
Asn Arg Met Thr Val Ala His Met Trp Ser Asp Asn Gln Ile His Glu
        35                  40                  45
Ala Asp Thr Thr Glu Asn Gln Ser Gly Val Ser Phe Asp Lys Thr Ser
    50                  55                  60
Ala Thr Trp Leu Ala Leu Ser Arg Ile Ala Gly Leu Cys Asn Arg Ala
65                  70                  75                  80
Val Phe Gln Ala Asn Gln Glu Asn Leu Pro Ile Leu Lys Arg Ala Val
                85                  90                  95
Ala Gly Asp Ala Ser Glu Ser Ala Leu Leu Lys Cys Ile Glu Leu Cys
            100                 105                 110
Cys Gly Ser Val Lys Glu Met Arg Glu Arg Tyr Thr Lys Ile Val Glu
        115                 120                 125
Ile Pro Phe Asn Ser Thr Asn Lys Tyr Gln Leu Ser Ile His Lys Asn
    130                 135                 140
Pro Asn Thr Ala Glu Pro Arg His Leu Leu Val Met Lys Gly Ala Pro
145                 150                 155                 160
Glu Arg Ile Leu Asp Arg Cys Ser Ser Ile Leu Ile His Gly Lys Glu
                165                 170                 175
Gln Pro Leu Asp Glu Glu Leu Lys Asp Ala Phe Gln Asn Ala Tyr Leu
            180                 185                 190
Glu Leu Gly Gly Leu Gly Glu Arg Val Leu Gly Phe Cys His Leu Phe
        195                 200                 205
Leu Pro Asp Glu Gln Phe Pro Glu Gly Phe Gln Phe Asp Thr Asp Asp
    210                 215                 220
Val Asn Phe Pro Leu Asp Asn Leu Cys Phe Val Gly Leu Ile Ser Met
225                 230                 235                 240
Ile Asp Pro Pro Arg Ala Ala Val Pro Asp Ala Val Gly Lys Cys Arg
                245                 250                 255
Ser Ala Gly Ile Lys Val Ile Met Val Thr Gly Asp His Pro Ile Thr
            260                 265                 270
Ala Lys Ala Ile Ala Lys Gly Val Gly Ile Ile Ser Glu Gly Asn Glu
        275                 280                 285
Thr Val Glu Asp Ile Ala Ala Arg Leu Asn Ile Pro Val Ser Gln Val
    290                 295                 300
Asn Pro Arg Asp Ala Lys Ala Cys Val Val His Gly Ser Asp Leu Lys
305                 310                 315                 320
Asp Met Thr Ser Glu Gln Leu Asp Asp Ile Leu Lys Tyr His Thr Glu
                325                 330                 335
Ile Val Phe Ala Arg Thr Ser Pro Gln Gln Lys Leu Ile Ile Val Glu
            340                 345                 350
Gly Cys Gln Arg Gln Gly Ala Ile Val Ala Val Thr Gly Asp Gly Val
        355                 360                 365
Asn Asp Ser Pro Ala Ser Lys Lys Ala Asp Ile Gly Val Ala Met Gly
    370                 375                 380
Ile Ala Gly Ser Asp Val Ser Lys Gln Ala Ala Asp Met Ile Leu Leu
385                 390                 395                 400
Asp Asp Asn Phe Ala Ser Ile Val Thr Gly Val Glu Glu Gly Arg Leu
                405                 410                 415
Ile Phe Asp Asn Leu Lys Lys Ser Ile Ala Tyr Thr Leu Thr Ser Asn
            420                 425                 430
Ile Pro Glu
        435
<210>54
<211>431
<212>PRT
<213>人工序列
<220>
<223>人工序列的描述:合成的构建体
<400>54
Thr Val Thr Val Cys Leu Ser Leu Thr Ala Lys Arg Leu Ala Ser Lys
1               5                   10                  15
Asn Cys Val Val Lys Asn Leu Glu Ala Val Glu Thr Leu Gly Ser Thr
            20                  25                  30
Ser Val Ile Cys Ser Asp Lys Thr Gly Thr Leu Thr Gln Asn Arg Met
        35                  40                  45
Thr Val Ser His Leu Trp Phe Asp Asn His Ile His Thr Ala Asp Thr
    50                  55                  60
Thr Glu Asp Gln Ser Gly Gln Thr Phe Asp Gln Ser Ser Glu Thr Trp
65                  70                  75                  80
Arg Ala Leu Cys Arg Val Leu Thr Leu Cys Asn Arg Ala Ala Phe Lys
                85                  90                  95
Ser Gly Gln Asp Ala Val Pro Val Pro Lys Arg Ile Val Ile Gly Asp
            100                 105                 110
Ala Ser Glu Thr Ala Leu Leu Lys Phe Ser Glu Leu Thr Leu Gly Asn
        115                 120                 125
Ala Met Gly Tyr Arg Asp Arg Phe Pro Lys Val Cys Glu Ile Pro Phe
    130                 135                 140
Asn Ser Thr Asn Lys Phe Gln Leu Ser Ile His Thr Leu Glu Asp Pro
145                 150                 155                 160
Arg Asp Pro Arg His Leu Leu Val Met Lys Gly Ala Pro Glu Arg Val
                165                 170                 175
Leu Glu Arg Cys Ser Ser Ile Leu Ile Lys Gly Gln Glu Leu Pro Leu
            180                 185                 190
Asp Glu Gln Trp Arg Glu Ala Phe Gln Thr Ala Tyr Leu Ser Leu Gly
        195                 200                 205
Gly Leu Gly Glu Arg Val Leu Gly Phe Cys Gln Leu Tyr Leu Asn Glu
    210                 215                 220
Lys Asp Tyr Pro Pro Gly Tyr Thr Phe Asp Val Glu Ala Met Asn Phe
225                 230                 235                 240
Pro Ser Ser Gly Leu Cys Phe Ala Gly Leu Val Ser Met Ile Asp Pro
                245                 250                 255
Pro Arg Ala Thr Val Pro Asp Ala Val Leu Lys Cys Arg Thr Ala Gly
            260                 265                 270
Ile Arg Val Ile Met Val Thr Gly Asp His Pro Ile Thr Ala Lys Ala
        275                 280                 285
Ile Ala Ala Ser Val Gly Ile Ile Ser Glu Gly Ser Glu Thr Val Glu
    290                 295                 300
Asp Ile Ala Ala Arg Leu Arg Met Pro Val Asp Gln Val Asn Lys Lys
305                 310                 315                 320
Asp Ala Arg Ala Cys Val Ile Asn Gly Met Gln Leu Lys Asp Met Asp
                325                 330                 335
Pro Ser Glu Leu Val Glu Ala Leu Arg Thr His Pro Glu Met Val Phe
            340                 345                 350
Ala Arg Thr Ser Pro Gln Gln Lys Leu Val Ile Val Glu Ser Cys Gln
        355                 360                 365
Arg Leu Gly Ala Ile Val Ala Val Thr Gly Asp Gly Val Asn Asp Ser
    370                 375                 380
Pro Ala Leu Lys Lys Ala Asp Ile Gly Val Ala Met Gly Ile Ala Gly
385                 390                 395                 400
Ser Asp Ala Ala Lys Asn Ala Ala Asp Met Ile Leu Leu Asp Asp Asn
                405                 410                 415
Phe Ala Ser Ile Val Thr Gly Val Glu Gln Gly Arg Leu Ile Phe
            420                 425                 430
<210>55
<211>447
<212>PRT
<213>人工序列
<220>
<223>人工序列的描述:合成的构建体
<400>55
Gly Thr Arg Arg Met Ala Lys Lys Asn Ala Ile Val Arg Ser Leu Pro
1               5                   10                  15
Ser Val Glu Thr Leu Gly Cys Thr Ser Val Ile Cys Ser Asp Lys Thr
            20                  25                  30
Gly Thr Leu Thr Thr Asn Gln Met Ser Val Cys Arg Met Phe Ile Leu
        35                  40                  45
Asp Lys Val Glu Gly Asp Thr Cys Ser Leu Asn Glu Phe Thr Ile Thr
    50                  55                  60
Gly Ser Thr Tyr Ala Pro Ile Gly Glu Val Gln Lys Asp Asp Lys Pro
65                  70                  75                  80
Val Lys Cys His Gln Tyr Asp Gly Leu Val Glu Leu Ala Thr Ile Cys
                85                  90                  95
Ala Leu Cys Asn Asp Ser Ala Leu Asp Tyr Asn Glu Ala Lys Gly Val
            100                 105                 110
Tyr Glu Lys Val Gly Glu Ala Thr Glu Thr Ala Leu Thr Cys Leu Val
        115                 120                 125
Glu Lys Met Asn Val Phe Asp Thr Glu Leu Lys Gly Leu Ser Lys Ile
    130                 135                 140
Glu Arg Ala Asn Ala Cys Asn Ser Val Ile Lys Gln Leu Met Lys Lys
145                 150                 155                 160
Glu Phe Thr Leu Glu Phe Ser Arg Asp Arg Lys Ser Met Ser Val Tyr
                165                 170                 175
Cys Thr Pro Asn Lys Pro Ser Arg Thr Ser Met Ser Lys Met Phe Val
            180                 185                 190
Lys Gly Ala Pro Glu Gly Val Ile Asp Arg Cys Thr His Ile Arg Val
        195                 200                 205
Gly Ser Thr Lys Val Pro Met Thr Pro Gly Val Lys Gln Lys Ile Met
    210                 215                 220
Ser Val Ile Arg Glu Trp Gly Ser Gly Ser Asp Thr Leu Arg Cys Leu
225                 230                 235                 240
Ala Leu Ala Thr His Asp Asn Pro Leu Arg Arg Glu Glu Met His Leu
                245                 250                 255
Glu Asp Ser Ala Asn Phe Ile Lys Tyr Glu Thr Asn Leu Thr Phe Val
            260                 265                 270
Gly Cys Val Gly Met Leu Asp Pro Pro Arg Ile Glu Val Ala Ser Ser
        275                 280                 285
Val Lys Leu Cys Arg Gln Ala Gly Ile Arg Val Ile Met Ile Thr Gly
    290                 295                 300
Asp Asn Lys Gly Thr Ala Val Ala Ile Cys Arg Arg Ile Gly Ile Phe
305                 310                 315                 320
Gly Gln Asp Glu Asp Val Thr Ser Lys Ala Phe Thr Gly Arg Glu Phe
                325                 330                 335
Asp Glu Leu Ser Pro Ser Ala Gln Arg Asp Ala Cys Leu Asn Ala Arg
            340                 345                 350
Cys Phe Ala Arg Val Glu Pro Ser His Lys Ser Lys Ile Val Glu Phe
        355                 360                 365
Leu Gln Ser Phe Asp Glu Ile Thr Ala Met Thr Gly Asp Gly Val Asn
    370                 375                 380
Asp Ala Pro Ala Leu Lys Lys Ser Glu Ile Gly Ile Ala Met Gly Ser
385                 390                 395                 400
Gly Thr Ala Val Ala Lys Thr Ala Ser Glu Met Val Leu Ala Asp Asp
                405                 410                 415
Asn Phe Ser Thr Ile Val Ala Ala Val Glu Glu Gly Arg Ala Ile Tyr
            420                 425                 430
Asn Asn Met Lys Gln Phe Ile Arg Tyr Leu Ile Ser Ser Asn Val
        435                 440                 445
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈