首页 / 专利库 / 燃料种类 / 天然气 / 天然气液化方法和装置

天然气液化方法和装置

阅读:641发布:2020-05-12

专利汇可以提供天然气液化方法和装置专利检索,专利查询,专利分析的服务。并且本 发明 涉及可在 天然气 处理过程中使用的气体及其混合物的 液化 。通过本发明而达到的技术效果是在天然气液化工艺中所需要的功耗较低。该技术效果是通过在预冷却和液化阶段使用混合冷却剂以及在 过冷 阶段使用氮循环而达到的。前述发明包含两项 权利要求 。,下面是天然气液化方法和装置专利的具体信息内容。

1.一种天然气液化方法,其特征在于:将预热后且干燥的气体在预冷热交换器(HE)中冷却且凝结至-52~-54℃范围内的温度,然后通过将为分馏目的而供应的液态乙烷馏分去除来将其进行分离,并将来自第一分离器的气流在液化HE中继续冷却至-120~-125℃,且由过冷HE中的气态氮冷凝至-150~-160℃,将过冷后的液化天然气(LNG)的压在液体膨胀机中降低至0.11~0.13MPa,供应过冷后的LNG用于分离目的,然后供应至LNG储存罐,将分离后的气体进料至燃料气系统,将来自预冷却HE的含有氮、甲烷、乙烷、丙烷、丁烷和戊烷的混合冷却剂压缩至3.0~3.1MPa,冷却至26~30℃,并且分离成重质液态冷却剂和轻质气态混合冷却剂,其中将重质液态冷却剂送用于与来自最后分离器的重质液态冷却剂混合;供应重质液体混合冷却剂和轻质气态混合冷却剂,用于通过输入重质和轻质混合冷却剂的低压(LP)混合对流来冷却至-52~-54℃,然后将重质液态混合冷却剂在预冷却HE中过冷,调节至0.25~0.27MPa,并且与来自液化HE的轻质混合冷却剂一起供应以冷却预冷却HE管道,将轻质混合冷却剂凝结,并且继续在预冷却HE和液化HE中过冷,将在液化HE输出口所生产的过冷且液化的轻质混合冷却剂调节至0.25~0.27MPa,然后供应以冷却其管道,继续将来自氮HE的低压气态氮在透平膨胀压缩机中压缩至1.2~1.4MPa,在氮压缩机中压缩至3.5~3.7MPa,接着在空气冷却器中冷却至26~30℃,并且通过低压氮冷却剂对流在氮HE中冷却至-107~-109℃,然后将氮膨胀至0.8~1.0MPa,进料至过冷HE用于LNG流体过冷,通过高压(HP)氮流在氮HE中将氮加热至22~24℃,然后返回到透平膨胀压缩机抽吸。
2.一种天然气液化装置,是用于实施如权利要求1所述的方法的装置,包括如下设备:
预冷却HE、五个分离器、两个节流、液化HE、用于压缩混合冷却剂的三个压缩机、五个空气冷却器、两个泵、液体膨胀机、过冷HE、透平膨胀装置(包括驱动膨胀机和压缩机)和两个氮压缩机;预冷却HE输入口用于进料天然气,预冷却HE的第一输出口与第一分离器的输入口连接,所述分离器的气体输出口与所述液化HE的第一输入口连接,所述液化HE的第一输出口与过冷HE的输入口连接,过冷HE的第一输出口通过液体膨胀机与第二分离器的输入口连接,第二分离器的分离气体输出口用于向燃料气系统进料,第二分离器的液化气体输出口与LNG储存罐连接,第一分离器的液态乙烷输出口与分馏装置输入口连接,预冷却HE的混合冷却剂输出口与第一压缩机的输入口连接,第一压缩机的输出口与空气冷却器的输入口连接,空气冷却器与生产重质液态冷却剂和轻质气态混合冷却剂流的分离器的输入口串联地连接,其中,上述第一压缩机、空气冷却器和分离器构成至少三级的压缩机中的第一级,压缩机的所有级均相同,条件是第i-级分离器(其中,i=1、2)的轻质气态混合冷却剂的输出口与三级压缩机中的第i+1级压缩机输入口连接,最后阶段分离器的轻质混合冷却剂的输出口与预冷却HE的第二输入口连接,分别通过第一泵和第二泵的第一和第二级分离器的重质液态冷却剂的输出口与第三级分离器的重质液态冷却剂的输出口结合,从而将混合物供应至预冷却HE的第三输入口,预冷却HE的第二输出口与液化HE的第二输入口连接,液化HE的第二输出口通过第二节流阀与用于冷却其管道的液化HE的输入口连接,预冷却HE的第三输出口通过第一节流阀与液化HE的第三输出口结合,从而将混合物供应至预冷却HE中用于冷却其管道,过冷HE的第二输出口与氮HE的输入口连接,氮HE的第一输出口和第二输出口分别与膨胀机和透平膨胀压缩机的输入口连接,它们的输出口分别与用于对过冷HE的LNG流体进行冷却的输入口和第二氮压缩机的输入口连接,后者的输出口与串联安装的第五空气冷却器、第一氮压缩机和第四空气冷却器连接,第四空气冷却器的输出口用于将HP氮供应至氮HE的另一输入口。

说明书全文

天然气液化方法和装置

[0001] 本发明涉及气体及其混合物的液化,可在天然气处理过程中使用。
[0002] 现有技术包括在北洋的近海或海岸上进行天然气液化的方法(2009年1月20号的俄罗斯专利号2344359/Cl.F25J1/00)。该方法通过使用包括两个回路的装置来实施:通过除去污染物、重质和氮,随后进行气体液化而进行气体液化的回路;以及冷却剂回路,在该回路中,将压缩且冷却的冷却剂在分流装置中以1:19~1:33的比例分成两股冷却剂流。将较大的冷却剂流供应至热交换器(HE)用于冷却目的,而较小的冷却剂流(通过节流)供应至汽提塔的反应区。在它们的压平衡后,将两股冷却剂混合在一起。该方法的缺点在于高功耗。
[0003] 被本发明申请人作为原型采用的最接近的现有技术是如下天然气液化方法和装置(2009年1月20号的俄罗斯专利号2344360/Cl.F25J1/00)。该方法通过使用包括两个回路的装置来实施:通过除去污染物、重质烃和氮,随后进行气体液化而进行气体液化的回路;以及冷却剂回路,在该回路中,将压缩且冷却的冷却剂在分流装置中以1:19~1:33的比例分成两股冷却剂流。将较大的冷却剂流供应至热交换器(HE)用于冷却目的,而较小的冷却剂流(通过节流阀)供应至汽提塔的反应区。在它们的压力平衡后,将两股冷却剂混合在一起。天然气液化装置包括通过除去污染物、重质烃和氮,随后进行气体液化而进行气体液化的回路以及冷却剂回路。液化天然气的分流装置具有两个输出口,与在混合器中结合的第一和第二液化线连接。第一液化线穿过第一HE,而第二液化线穿过第二HE。两条线均安装有阀和压力计,以确保它们在液化气混合器中合并之前使第一和第二条线的液化气压力平衡,混合器的输出口与第一分离器连接,分离器的顶部通过穿过第一HE的第三液化线与汽提塔连接。汽提塔的顶部通过管道与第二HE连接,并且汽提塔的底部与穿过过冷的HE的第四液化线连接。冷却剂回路包括压缩的冷却剂分离器,其两个输出口与在第一冷却剂混合器中结合的第一和第二冷却剂线连接。第一冷却剂线通过第三HE,第二冷却剂线通过第三节流阀和汽提塔的反应区。两条线均装备有阀和压力计,以确保它们在液化气体混合器中合并之前使第一和第二条线的冷却剂压力平衡。
[0004] 使用上述方法和装置的特征在于高功耗。
[0005] 通过本发明的申请而达到的技术效果是,在天然气液化工艺中需要较低的功耗。
[0006] 天然气液化的工艺流程图在下述附图中示出。
[0007] 天然气液化方法的本质在于,将预热后且干燥的气体在预冷HE中冷却并凝结至-52~-54℃范围内的温度。然后通过将为分馏用途而供应的液态乙烷馏分除去来进行分离,并将来自第一分离器的气体流在液化HE中继续冷却至-120~-125℃,且由过冷HE中的气态氮冷凝至-150~-160℃。将过冷的液化天然气(LNG)的压力在液体膨胀机中降低至0.11~0.13MPa。供应过冷的LNG用于分离目的,然后供应至LNG储存罐。将分离的气体供应至燃料气系统,并将来自预冷HE的含有氮、甲烷、乙烷、丙烷、丁烷、戊烷的混合冷却剂压缩至3.0~3.1MPa,冷却至26~30℃,并且分离成重质液态冷却剂和轻质气态混合冷却剂。将重质液态冷却剂送以与来自最后的分离器的重质液态冷却剂混合。供应重质液体混合冷却剂和轻质气态混合冷却剂,以通过输入重质和轻质混合冷却剂的低压(LP)混合对流而冷却至-52~-54℃。然后将重质液态混合冷却剂在预冷却HE中过冷,调节至0.25~0.27MPa,与来自液化HE的轻质混合冷却剂一起进行管道输送来供应,以冷却预冷却HE。将轻质混合冷却剂冷凝,并在预冷却HE和液化HE中继续过冷。将在液化HE输出口所产生的过冷的液化轻质混合冷却剂调节至0.25~0.27MPa,然后供应以冷却其管道。继续将来自氮HE的低压气态氮在透平膨胀压缩机中压缩至1.2~1.4MPa,在氮压缩机中压缩至3.5~3.7MPa,接着在空气冷却器中冷却至26~30℃,并通过低压氮冷却剂对流在氮HE中冷却至-107~-109℃。然后,将氮膨胀至0.8~1.0MPa,供给至过冷HE以用于LNG流体过冷,通过高压(HP)氮流在氮HE中加热至22~24℃,并且返回到透平膨胀压缩机抽吸。
[0008] 用于实施该方法的天然气液化装置的本质在于,该装置包括下述设备:预冷却HE、五个分离器、两个节流阀、液化HE、用于压缩混合冷却剂的三个压缩机、五个空气冷却器、两个泵、液体膨胀机、过冷HE、透平膨胀装置(包括驱动膨胀机和压缩机)以及两个氮压缩机。预冷却HE输入口用于进料天然气。预冷却HE的第一输出口与第一分离器的输入口连接,分离器的气体输出口与液化HE的第一输入口连接,液化HE的第一输出口与过冷HE的输入口连接,过冷HE的第一输出口通过液体膨胀机与第二分离器的输入口连接,第二分离器的分离后的气体输出口用于向燃料气系统进料。第二分离器的液化气体输出口与LNG储存罐连接。第一分离器的液态乙烷输出口与分馏装置的输入口连接。预冷却HE的混合冷却剂输出口与第一压缩机的输入口连接,第一压缩机的输出口与空气冷却器的输入口连接,空气冷却器与生产重质液态冷却剂和轻质气态冷却剂流体的分离器的输入口串联地连接。上述第一压缩机、空气冷却器和分离器构成至少三级的压缩机中的第一级,压缩机的所有级均为相同。第i-级的分离器(其中,i=1、2)的轻质气态混合冷却剂的输出口与所述三级压缩机中的第i+1级的压缩机输入口连接。最后一级的分离器的轻质混合冷却剂的输出口与预冷却HE的第二输入口连接。分别通过第一泵和第二泵的第一和第二级分离器的重质液态冷却剂的输出口将与第三级的分离器的重质液态冷却剂的输出口结合,从而将混合物供应至预冷却HE的第三输入口。预冷却HE的第二输出口与液化HE的第二输入口连接,液化HE的第二输出口通过第二节流阀与用于冷却其管道的液化HE的输入口连接。预冷却HE的第三输出口通过第一节流阀与液化HE的第三输出口结合,从而将混合物供应至预冷却HE中用于冷却其管道。过冷HE的第二输出口与氮HE的输入口连接,氮HE的第一输出口和第二输出口分别与膨胀机和透平膨胀压缩机的输入口连接,它们的输出口分别与用于对过度冷却HE中的LNG流体进行冷却的输入口和第二氮压缩机的输入口连接。后者的输出口与串联安装的第五空气冷却器、第一氮压缩机和第四空气冷却器连接,第四空气冷却器的输出口用于将HP氮供应至氮HE的另一个输入口。
[0009] 天然气液化装置包含两个回路:
[0010] -混合冷却剂回路;和
[0011] -氮冷却剂回路。
[0012] 天然气液化装置由下述设备和机构构成:
[0013] -预冷却HE(1);
[0014] -第一至第五分离器(2、20、8、11、14);
[0015] -第一和第二节流阀(3、5);
[0016] -液化HE(4);
[0017] -第一至第三压缩机(6、9、12),用于将混合冷却剂压缩的目的;
[0018] -第一至第五空气冷却器(7、10、13、23、25);
[0019] -第一和第二泵(15、16);
[0020] -液体膨胀机(19);
[0021] -过冷HE(17);
[0022] -氮HE(18)、
[0023] -透平膨胀装置,包含膨胀机(21)和压缩机(22);
[0024] -两个氮压缩机(24、26);
[0025] -分馏装置(27);
[0026] -LNG储存罐(28)。
[0027] 将预处理后且干燥的天然气进料用于液化目的,然后通过预冷却HE(1)中的混合冷却剂冷却至-52~-54℃。两相流体通过第一分离器(2),在第一分离器中,去除乙烷馏分,然后将来自第一分离器的液体进料用于分馏目的。将气流供应至液化HE(4),并冷却至-120~-125℃。
[0028] 然后,液化天然气(LNG)由过冷HE(17)中的氮冷却至-150~-160℃。
[0029] 离开过冷HE(17)的冷却LNG的压力在液体膨胀机(19)中降低至0.11~0.13MPa。将低压LNG供应至分离器(20),然后供应至LNG储存罐。由于液化气体膨胀能量,液体膨胀机(19)可以降低液化工艺中的功耗。
[0030] 混合冷却剂回路
[0031] 混合冷却剂包括氮、甲烷、乙烷、丙烷、丁烷和戊烷。
[0032] 将混合冷却剂在压缩机(6、9、12)中压缩至3.0~3.1MPa。在各压缩级之间,将其在空气冷却器(7、10、13)中冷却至26~30℃。将该两相流体供应至混合冷却剂分离器(8、11、14),分离成重质液态混合冷却剂和轻质气态混合冷却剂流体。来自分离器(8、11)的重质液态混合冷却剂流体通过泵(15、16)与来自分离器(14)的液体混合。在各级的重质液态混合冷却剂的成分和体积取决于混合冷却剂的成分,该成分以如下方式选择,即确保在某种环境温度下进行天然气液化的过程中冷却剂的消耗最小。
[0033] 在HE(1)中通过低压的重质和轻质混合冷却剂的对流,将重质和轻质液态混合冷却剂流体冷却至-52~-54℃。
[0034] 将重质混合冷却剂在HE(1)中冷却,通过节流阀(3)调节至0.25~0.27MPa,并且与来自液化HE(4)的轻质混合冷却剂一起供应至HE(1)的管际空间中以冷却HE(1)管道。
[0035] 轻质混合冷却剂在HE(1)和(4)中凝结并冷却。然后将过冷的轻质混合冷却剂通过节流阀(5)调节至0.25~0.27MPa,并且供应至液化HE(4)的管际空间中,以冷却其管道。
[0036] 将低压的重质和轻质混合剂流体混合在一起,并返回到HE(1)的管际空间中,以冷却其管道。
[0037] 低压混合冷却剂以20~25℃的蒸汽离开HE(1),将其供应于再循环。
[0038] 混合冷却剂用于将气流冷却至-120~-125℃。
[0039] 氮冷却剂回路
[0040] 在透平膨胀装置内的由膨胀机(21)驱动的压缩机(22)中,将低压气态氮压缩至1.2~1.4MPa,并且在氮压缩机(24)和(26)中压缩至3.5~3.7MPa。然后,在空气冷却器(23)和(25)中将其冷却至26~30℃,并且通过低压氮对流在氮HE(18)中冷却至-107~-109℃。
[0041] 然后,氮在膨胀机(21)中膨胀至0.8~1.0MPa,被供应至过冷HE(17)以冷却LNG流体,在氮HE(18)中由HP氮被加热至22~24℃,并返回到压缩机抽吸(22)。
[0042] 在天然气液化工艺中功耗的降低是由于在预冷却和液化阶段使用混合冷却剂以及在过冷阶段使用氮循环的结果。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈