首页 / 专利库 / 单位和数量 / 弹性模量 / 杨氏模量 / 用于电化学系统的新颖分隔物

用于电化学系统的新颖分隔物

阅读:189发布:2022-12-30

专利汇可以提供用于电化学系统的新颖分隔物专利检索,专利查询,专利分析的服务。并且在一个方面中,本 发明 提供了用于电化学系统的分隔物系统,其提供对各种电化学存储和转换应用有用的 电子 、机械和化学特性。一些实施方式的分隔物系统例如提供对管理和控制基于锂和锌的 电池 中的枝状晶体形成有用的结构、物理和静电属性。在实施方式中,例如本发明的分隔物系统具有支持优良的离子转移特性,而同时提供对防止枝状晶体引起的机械故障、 短路 和/或热逸散有效的屏障的多层、多孔几何结构。,下面是用于电化学系统的新颖分隔物专利的具体信息内容。

1.一种用于电化学系统的分隔物系统,包括:
第一高机械强度层,其具有完全穿过所述第一高机械强度层延伸并以第一图案设置的
多个孔;以及
第二高机械强度层,其具有完全穿过所述第二高机械强度层延伸并以第二图案设置的
多个孔;所述第二图案具有相对于所述第一图案的偏移对准,使得所述第一高机械强度层的所述孔和所述第二高机械强度层的所述孔沿着从所述第一高机械强度层垂直地延伸到
所述第二高机械强度层的轴的重叠小于或等于20%;
其中所述第一高机械强度层和所述第二高机械强度层定位成使得设置成与所述第一
高机械强度层和所述第二高机械强度层接触电解质的离子能够通过所述第一高机械强
度层和所述第二高机械强度层转移。
2.一种用于电化学系统的分隔物系统,包括:
第一高机械强度层,其具有完全穿过所述第一高机械强度层延伸并以第一图案设置的
多个孔;
第二高机械强度层,其具有完全穿过所述第二高机械强度层延伸并以第二图案设置的
多个孔,所述第二图案具有相对于所述第一图案的偏移对准,使得所述第一高机械强度层的所述孔和所述第二高机械强度层的所述孔沿着从所述第一高机械强度层垂直地延伸到
所述第二高机械强度层的轴的重叠小于或等于20%;以及
第三高机械强度层,其具有完全穿过所述第三高机械强度层延伸并以第三图案设置的
多个孔,所述第三图案具有与所述第一图案相同的孔空间布置;
其中所述第一高机械强度层、所述第二高机械强度层和所述第三高机械强度层定位成
使得设置成与所述第一高机械强度层、所述第二高机械强度层和所述第三高机械强度层接触的电解质的离子能够通过所述第一高机械强度层、所述第二高机械强度层和所述第三高机械强度层转移。
3.一种用于电化学系统的分隔物系统,包括:
第一高机械强度层,其具有完全穿过所述第一高机械强度层延伸并以第一图案设置的
多个孔;
第二高机械强度层,其具有完全穿过所述第二高机械强度层延伸并以第二图案设置的
多个孔,所述第二图案具有相对于所述第一图案的偏移对准,使得所述第一高机械强度层的所述孔和所述第二高机械强度层的所述孔沿着从所述第一高机械强度层垂直地延伸到
所述第二高机械强度层的轴的重叠小于或等于20%;
第三高机械强度层,其具有完全穿过所述第三高机械强度层延伸并以第三图案设置的
多个孔,所述第三图案具有与所述第一图案的孔空间布置相同的孔空间布置;以及
第四高机械强度层,其具有完全穿过所述第四高机械强度层延伸并以第四图案设置的
多个孔,所述第四图案具有与所述第二图案的孔空间布置相同的孔空间布置;
其中所述第一高机械强度层、所述第二高机械强度层、所述第三高机械强度层和所述
第四高机械强度层定位成使得设置成与所述第一高机械强度层、所述第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层接触的电解质的离子能够通过所述第一
高机械强度层、所述第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层转移。
4.一种用于电化学系统的分隔物系统,包括:
第一高机械强度层,其具有完全穿过所述第一高机械强度层延伸并以第一图案设置的
多个孔;
第二高机械强度层,其具有完全穿过所述第二高机械强度层延伸并以第二图案设置的
多个孔,所述第二图案具有相对于所述第一图案的偏移对准,使得所述第一高机械强度层的所述孔和所述第二高机械强度层的所述孔沿着从所述第一高机械强度层垂直地延伸到
所述第二高机械强度层的轴的重叠小于或等于40%;以及
第三高机械强度层,其具有完全穿过所述第三高机械强度层延伸并以第三图案设置的
多个孔;所述第三图案具有相对于所述第一图案和所述第二图案的偏移对准,使得所述第一高机械强度层的所述孔、所述第二高机械强度层的所述孔和所述第三高机械强度层的所述孔沿着从所述第一高机械强度层或所述第二高机械强度层垂直地延伸到所述第三层的
轴的重叠小于或等于20%;
其中所述第一高机械强度层、所述第二高机械强度层和所述第三高机械强度层定位成
使得设置成与所述第一高机械强度层、所述第二高机械强度层和所述第三高机械强度层接触的电解质的离子能够通过所述第一高机械强度层、所述第二高机械强度层和所述第三高机械强度层转移。
5.一种用于电化学系统的分隔物系统,包括:
第一高机械强度层,其具有完全穿过所述第一高机械强度层延伸并以第一图案设置的
多个孔;
第二高机械强度层,其具有完全穿过所述第二高机械强度层延伸并以第二图案设置的
多个孔,所述第二图案具有相对于所述第一图案的偏移对准,使得所述第一高机械强度层的所述孔和所述第二高机械强度层的所述孔沿着从所述第一高机械强度层垂直地延伸到
所述第二高机械强度层的轴的重叠小于或等于50%;
第三高机械强度层,其具有完全穿过所述第三高机械强度层延伸并以第三图案设置的
多个孔;所述第三图案具有相对于所述第一图案和所述第二图案的偏移对准,使得所述第一高机械强度层的所述孔、所述第二高机械强度层的所述孔和所述第三高机械强度层的所述孔沿着从所述第一高机械强度层或所述第二高机械强度层垂直地延伸到所述第三层的
轴的重叠小于或等于30%;以及
第四高机械强度层,其具有完全穿过所述第四高机械强度层延伸并以第四图案设置的
多个孔;所述第四图案具有相对于所述第一图案、所述第二图案和所述第三图案的偏移对准,使得所述第一高机械强度层的所述孔、所述第二高机械强度层的所述孔、所述第三高机械强度层的所述孔和所述第四高机械强度层的所述孔沿着从所述第一高机械强度层或所
述第二高机械强度层垂直地延伸到所述第四高机械强度层的轴的重叠小于或等于20%;
其中所述第一高机械强度层、所述第二高机械强度层、所述第三高机械强度层和所述
第四高机械强度层定位成使得设置成与所述第一高机械强度层、所述第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层接触的电解质的离子能够通过所述第一
高机械强度层、所述第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层转移。
6.如权利要求1-5中任一项所述的分隔物系统,其中所述第一图案、所述第二图案、所
述第三图案和所述第四图案中的两个或更多个的所述孔沿着从所述第一高机械强度层垂
直地延伸到所述第二高机械强度层的所述轴的重叠小于或等于10%。
7.如权利要求1-6中任一项所述的分隔物系统,其中所述第一图案、所述第二图案、所
述第三图案和所述第四图案中的两个或更多个的所述孔沿着从所述第一高机械强度层垂
直地延伸到所述第二高机械强度层的所述轴的重叠选自0到5%的范围。
8.如权利要求1-7中任一项所述的分隔物系统,其中所述第一图案、所述第二图案、所
述第三图案和所述第四图案中的两个或更多个的所述孔沿着从所述第一高机械强度层垂
直地延伸到所述第二高机械强度层的所述轴的重叠等于0。
9.如权利要求4所述的分隔物系统,其中所述第一图案、所述第二图案和所述第三图
案的所述孔沿着从所述第一高机械强度层垂直地延伸到所述第二高机械强度层的所述轴
的重叠小于或等于10%。
10.如权利要求4所述的分隔物系统,其中所述第一图案、所述第二图案和所述第三图
案的所述孔沿着从所述第一高机械强度层垂直地延伸到所述第二高机械强度层的所述轴
的重叠选自0到5%的范围。
11.如权利要求5所述的分隔物系统,其中所述第一图案、所述第二图案、所述第三图
案和所述第四图案的所述孔沿着从所述第一高机械强度层垂直地延伸到所述第二高机械
强度层的所述轴的重叠小于或等于10%。
12.如权利要求5所述的分隔物系统,其中所述第一图案、所述第二图案、所述第三图
案和所述第四图案的所述孔沿着从所述第一高机械强度层垂直地延伸到所述第二高机械
强度层的所述轴的重叠选自0到5%的范围。
13.如权利要求1-12中任一项所述的分隔物系统,其中所述第一图案、所述第二图案、
所述第三图案和所述第四图案中的两个或更多个包括基本上互补的图案。
14.如权利要求13所述的分隔物系统,其中所述基本上互补的图案基本上相应于彼此
的负像。
15.如权利要求1-14中任一项所述的分隔物系统,还包括设置在所述第一高机械强度
层、所述第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的至少一个的侧面上的一个或多个低离子电阻层。
16.如权利要求15所述的分隔物系统,其中所述一个或多个低离子电阻层中的每个是
含电解质层,所述含电解质层提供所述电解质的储器。
17.如权利要求15-16中任一项所述的分隔物系统,其中所述一个或多个低离子电阻
2
层中的每个独立地具有小于或等于20ohm-cm 的离子电阻。
18.如权利要求15-17中任一项所述的分隔物系统,其中所述一个或多个低离子电阻
层中的至少一个是为设置在所述第一高机械强度层、所述第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的至少两个之间的电解质提供空间的压缓冲层
19.如权利要求15-18中任一项所述的分隔物系统,其中所述高机械强度层和所述一
个或多个低离子电阻层中的至少一个是沉积在所述高机械强度层和所述一个或多个低离
子电阻层中的至少一个上的沉积层。
20.如权利要求15-19中任一项所述的分隔物系统,其中所述高机械强度层和所述一
个或多个低离子电阻层中的至少一个是沉积在电化学电池电极上的沉积层。
21.如权利要求15-20中任一项所述的分隔物系统,其中所述一个或多个低离子电阻
层中的至少一个通过压力、热或化学附着而附着到所述第一高机械强度层、所述第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个的至少一侧。
22.如权利要求15-21中任一项所述的分隔物系统,其中所述一个或多个低离子电阻
层中的至少一个通过树脂聚合物附着到所述第一高机械强度层、所述第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个的至少一侧。
23.如权利要求15-22中任一项所述的分隔物系统,其中所述一个或多个低离子电阻
层中的至少一个包括微孔材料、纺织材料或非纺织材料。
24.如权利要求15-22中任一项所述的分隔物系统,其中所述一个或多个低离子电阻
层中的至少一个包括陶瓷或玻璃电解质、聚合物电解质或固体电解质。
25.如权利要求15-22中任一项所述的分隔物系统,其中所述一个或多个低离子电阻
层中的至少一个包括穿孔陶瓷分隔物、多孔陶瓷分隔物、穿孔玻璃分隔物、多孔玻璃分隔物、穿孔金属、穿孔合金分隔物、穿孔橡胶、橡胶网、金属网或合金网。
26.如权利要求15-25中任一项所述的分隔物系统,其中所述一个或多个低离子电阻
层中的至少一个包括具有中心孔的环或框架
27.如权利要求15-26中任一项所述的分隔物系统,其中所述一个或多个低离子电阻
层包括与所述第一高机械强度层、所述第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的至少一个物理接触的一个或多个框架层,或其中所述一个或多个低离子电阻层包括与电化学电池的至少一个电极接触的一个或多个框架层。
28.如权利要求27所述的分隔物系统,其中所述第一高机械强度层设置在第一框架层
和第二框架层之间,且其中所述第二高机械强度层设置在第三框架层和第四框架层之间。
29.如权利要求27所述的分隔物系统,其中所述第一高机械强度层设置在第一框架层
和第二框架层之间,且其中所述第二高机械强度层设置在第二框架层和第三框架层之间。
30.如权利要求15-29中任一项所述的分隔物系统,其中所述一个或多个低离子电阻
层包括与电化学电池的所述电极中的至少一个接触的一个或多个框架层。
31.如权利要求15-30中任一项所述的分隔物系统,其中所述一个或多个低离子电阻
层包括设置在所述第一层和所述第二层之间的隔板,所述隔板将所述第一层和所述第二层分开选自10nm到1000μm的范围的选定距离。
32.如权利要求15-31所述的分隔物系统,其中所述隔板包括:
环,其用于建立在所述第一高机械强度层和所述第二高机械强度层之间的所述选定距
离;
框架结构,其具有多孔壁构件,
材料层,或
分立材料元件的布置。
33.如权利要求15-32中任一项所述的分隔物系统,其中所述低离子电阻层中的每个
独立地是聚合物、陶瓷、木材、玻璃、矿物、金属、合金、纺织材料、非纺织材料、纤维素、木纤维、海绵或其组合。
34.如权利要求15-33中任一项所述的分隔物系统,其中所述一个或多个低离子电阻
层各自独立地具有大于或等于50%的孔隙率。
35.如权利要求15-34中任一项所述的分隔物系统,其中所述一个或多个低离子电阻
层各自独立地具有选自50%到95%的范围的孔隙率。
36.如权利要求1-35中任一项所述的分隔物系统,其中所述一个或多个低离子电阻层
或高机械强度层涂覆在另一低离子电阻层或高机械强度层上,或涂覆在化学电池中的电极上。
37.如权利要求1-36中任一项所述的分隔物系统,其中所述高机械强度层之一的至少
一侧是可润湿的。
38.如权利要求37所述的分隔物系统,其中所述高机械强度层的所述可润湿侧放置成
靠近另一高机械强度层,在它们之间没有设置低离子电阻层。
39.如权利要求37所述的分隔物系统,其中所述高机械强度层的所述可润湿侧放置成
靠近电极,在它们之间没有设置低离子电阻层。
40.如权利要求1-39中任一项所述的分隔物系统,还包括设置在所述第一高机械强度
层、所述第二高机械强度层、所述第三高机械强度层、所述第四高机械强度层或所述一个或多个低离子电阻层中的至少一个的侧面上的一个或多个化学屏障层。
41.如权利要求40所述的分隔物系统,其中所述一个或多个化学屏障层独立地防止不
需要的化学组分通过所述一个或多个化学屏障层转移到电化学电池的正电极或负电极。
42.如权利要求40-41中任一项所述的分隔物系统,其中所述一个或多个化学屏障层
防止电解质溶剂通过所述一个或多个化学屏障层转移到电化学电池的正电极或负电极。
43.如权利要求40-42中任一项所述的分隔物系统,其中所述一个或多个化学屏障层
包括布置在电化学电池的电极的至少一侧上的固体电解质或固体聚合物电解质。
44.如权利要求40-43中任一项所述的分隔物系统,其中所述一个或多个化学屏障层
包括来自LISICON或NASICON的固体电解质或包括聚化乙烯(PEO)的聚合物电解质。
45.如权利要求40-44中任一项所述的分隔物系统,其中所述分隔物系统是具有负电
极和正电极的电化学电池的部件,其中所述一个或多个化学屏障层包括离子传导保护膜,其中所述离子传导保护膜提供与所述正电极接触的第一电解质和与所述负电极接触的第
二电解质之间的屏障,其中所述离子传导保护膜防止所述负电极和所述第一电解质之间的接触。
46.如权利要求45所述的分隔物系统,其中所述负电极是锂金属电极,其中所述离子
传导保护膜传导锂离子电荷载体并防止所述锂金属电极和所述第一电解质之间的接触。
47.如权利要求45所述的分隔物系统,其中所述离子传导保护膜包括选自由玻璃状或
无定形活性金属离子导体、陶瓷活性金属离子导体和玻璃-陶瓷活性金属离子导体组成的组的材料。
48.如权利要求40-47中任一项所述的分隔物系统,其中所述一个或多个化学屏障层
还包括布置在所述保护膜的表面和所述正电极或所述负电极之间的固体聚合物电解质。
49.如权利要求40-48中任一项所述的分隔物系统,其中所述高机械强度层、一个或多
个低离子电阻层和所述一个或多个化学屏障层中的至少一个是沉积在所述高机械强度层、一个或多个低离子电阻层和所述一个或多个化学屏障层中的至少一个上的沉积层。
50.如权利要求40-49中任一项所述的分隔物系统,其中所述高机械强度层、一个或多
个低离子电阻层和所述一个或多个化学屏障层中的至少一个是沉积在电化学电池的电极
上的沉积层。
51.如权利要求40-47中任一项所述的分隔物系统,包括所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的至少两个与所述一个或多个化学屏障层的组合,而没有任何所述低离子电阻层。
52.如权利要求1所述的分隔物系统,还包括第三高机械强度层,所述第三高机械强度
层具有完全穿过所述第三高机械强度层延伸并以第三图案设置的多个孔;所述第三高机械强度层位于所述第一高机械强度层和所述第二高机械强度层之间;所述第三图案具有相对于所述第一图案或所述第二图案的偏移对准,使得所述第一图案或所述第二图案的所述孔和所述第三图案的所述孔沿着从所述第一高机械强度层或所述第二高机械强度层垂直地
延伸到所述第三高机械强度层的轴的重叠小于或等于20%。
53.如权利要求52所述的分隔物系统,还包括第四高机械强度层,所述第四高机械强
度层具有完全穿过所述第四高机械强度层延伸并以第四图案设置的多个孔;所述第四高
机械强度层位于所述第一高机械强度层和所述第二高机械强度层之间,所述第四图案具有相对于所述第一图案、所述第二图案或所述第三图案的偏移对准,使得所述第一图案、所述第二图案或所述第三图案的所述孔和所述第四图案的所述孔沿着从所述第一高机械强度
层或所述第二高机械强度层垂直地延伸到所述第四高机械强度层的轴的重叠小于或等于
20%。
54.如权利要求1-53中任一项所述的分隔物系统,其中所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层、所述第四高机械强度层、低离子电阻层、框架层、隔板、化学屏障层的至少一部分或这些的任何组合经由压力、加热、粘合剂涂覆、化学附着、等离子体处理或这些的任何组合至少部分地连接到彼此。
55.如权利要求1-54中任一项所述的分隔物系统,其中所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层、所述第四高机械强度层、低离子电阻层、框架层、隔板、化学屏障层的至少一部分或这些的任何组合经由下列项而至少部分地连接到彼此:胶环氧树脂、粘固剂、PTFE、固体电解质、凝胶电解质、聚合物电解质、有机粘合剂、丙烯酸粘合剂、氰基丙烯酸酯、stycast1266、deltabond151、PVDF、PVA、LIPON、LISICON、PE-PP-PVDF、四甲基氢氧化铵五水合物(CH3)4NOH·5H2O、聚(氧化乙烯)(PEO)、环氧氯丙烷和环氧乙烷的共聚物P(ECH-共-EO)和聚(乙烯醇)、玻璃纤维聚合物电解质、硫化锌、二氧化硅、Kapton胶带、聚氧化乙烯或聚氧化丙烯或共聚物PVDF-共-HFP Bi2O3、不含氟粘结剂或芳族粘结剂、聚丙烯酸锂或其组合。
56.如权利要求1-55中任一项所述的分隔物系统,其中所述分隔物系统是具有正电极
和负电极的电化学电池的部件,所述分隔物还包括设置在所述正电极和所述负电极之间的电解质;其中所述电解质与所述第一高机械强度层、所述第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个接触。
57.如权利要求1-56中任一项所述的分隔物系统,例如所述分隔物系统是具有正电极
和负电极的电化学电池的部件,所述分隔物还包括设置在所述正电极和所述负电极之间的第一电解质和第二电解质;其中所述第一电解质具有与所述第二电解质不同的组成;其中所述第一电解质与所述第一高机械强度层、所述第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个接触,且其中所述第二电解质与所述第一高机械强度层、所述第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个接触,其中所述第一电解质和所述第二电解质由于在它们之间的不可渗透的离子传导层的存在或由于不同的化学性质和物理性质例如亲水或疏水行为或密度而彼此不混合。
58.如权利要求1-57中任一项所述的分隔物系统,其中孔的所述第一图案提供大于或
等于30%的所述第一高机械强度层的第一孔隙率,且其中孔的所述第二图案提供大于或等于30%的所述第二高机械强度层的第二孔隙率。
59.如权利要求1-58中任一项所述的分隔物系统,其中孔的所述第一图案提供大于
或等于30%的所述第一高机械强度层的第一孔隙率,或其中孔的所述第二图案提供大于或等于30%的所述第二高机械强度层的第二孔隙率;或其中孔的所述第三图案提供大于或等于30%的所述第三高机械强度层的第三孔隙率;或其中孔的所述第四图案提供大于或等于
30%的所述第四高机械强度层的第四孔隙率。
60.如权利要求1-59中任一项所述的分隔物系统,其中孔的所述第一图案提供选自
30%到70%的范围的所述第一高机械强度层的孔隙率,且其中孔的所述第二图案提供选自
30%到70%的范围的所述第二高机械强度层的孔隙率。
61.如权利要求1-59中任一项所述的分隔物系统,其中孔的所述第一图案提供选自
30%到70%的范围的所述第一高机械强度层的孔隙率;或其中孔的所述第二图案提供选自
30%到70%的范围的所述第二高机械强度层的孔隙率;或其中孔的所述第三图案提供选自
30%到70%的范围的所述第三高机械强度层的孔隙率;或其中孔的所述第四图案提供选自
30%到70%的范围的所述第四高机械强度层的孔隙率。
62.如权利要求2或4所述的分隔物系统,其中所述第二高机械强度层设置在所述第一
高机械强度层和所述第三高机械强度层之间。
63.如权利要求3或5所述的分隔物系统,其中所述第一高机械强度层设置在所述第二
高机械强度层和所述第四高机械强度层之间,或其中所述第三高机械强度层设置在所述第二高机械强度层和所述第四高机械强度层之间。
64.如权利要求1-63中任一项所述的分隔物系统,其中所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层或所述第四高机械强度层中的任一个的所述孔独立地具有选自由圆形、平行四边形、矩形、正方形、三形、椭圆形、四边形、五边形、六边形和其任何组合组成的组的横截面形状。
65.如权利要求1-64中任一项所述的分隔物系统,其中所述高机械强度层的所述孔具
有大于或等于20μm的至少一个横向尺寸。
66.如权利要求1-64中任一项所述的分隔物系统,其中所述高机械强度层的所述孔具
有选自200μm和1mm的范围的至少一个横向尺寸。
67.如权利要求1-64中任一项所述的分隔物系统,其中所述高机械强度层的所述孔具
有小于或等于200μm的至少一个横向尺寸。
68.如权利要求1-64中任一项所述的分隔物系统,其中所述高机械强度层的所述孔具
有小于或等于10μm的至少一个横向尺寸。
69.如权利要求1-64中任一项所述的分隔物系统,其中所述高机械强度层的所述孔具
有小于或等于1μm的至少一个横向尺寸。
70.如权利要求1-64中任一项所述的分隔物系统,其中所述第一图案、所述第二图案、
所述第三图案或所述第四图案中的任一个独立地是孔的对称图案或孔的非对称图案。
71.如权利要求1-70中任一项所述的分隔物系统,其中所述第一图案、所述第二图案、
所述第三图案或所述第四图案中的任一个独立地包括不是无规则的孔的图案。
72.如权利要求1-71中任一项所述的分隔物系统,其中孔的所述第一图案、孔的所述
第二图案、孔的所述第三图案或孔的所述第四图案中的任一个独立地通过选自由激光切
割、光刻、蚀刻、铸造、钻孔、模制、冲压图案化、涂覆和这些的任何组合组成的组的工艺来制造。
73.如权利要求1-72中任一项所述的分隔物系统,其中所述第一高机械强度层和所述
第二高机械强度层不完全物理接触。
74.如权利要求1-73中任一项所述的分隔物系统,其中所述第一高机械强度层和所述
第二高机械强度层分隔开选自20nm到2mm的范围的一段距离。
75.如权利要求1-74中任一项所述的分隔物系统,其中所述第一高机械强度层或所述
第二高机械强度层与所述第三高机械强度层或所述第四高机械强度层分隔开选自20nm到
2mm的范围的一段距离。
76.如权利要求1-75中任一项所述的分隔物系统,其中所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层、所述第四高机械强度层、所述一个或多个低离子电阻层和所述一个或多个化学屏障层中的任一个独立地具有在10nm到25μm的范围上
选择的平均厚度。
77.如权利要求1-75中任一项所述的分隔物系统,其中所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层、所述第四高机械强度层、所述一个或多个低离子电阻层和所述一个或多个化学屏障层中的任一个独立地具有在5μm到1mm的范围上选
择的平均厚度。
78.如权利要求1-75中任一项所述的分隔物系统,其中所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层、所述第四高机械强度层、所述一个或多个低离子电阻层和所述一个或多个化学屏障层中的任一个独立地具有在10nm到2μm的范围上选
择或在2μm到50μm的范围上选择的平均厚度。
79.如权利要求1-78中任一项所述的分隔物系统,其中所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个独立地具有在500MPa到500GPa的范围上选择的杨氏模量
80.如权利要求1-79中任一项所述的分隔物系统,其中所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个独立地具有在5MPa到1000MPa的范围上选择的屈服强度
81.如权利要求1-80中任一项所述的分隔物系统,其中所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个独立地具有在0.005N到10N的范围上选择的传播撕裂强度。
82.如权利要求1-81中任一项所述的分隔物系统,其中所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个独立地具有在10N到500N的范围上选择的引发撕裂强度。
83.如权利要求1-82中任一项所述的分隔物系统,其中所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个独立地具有在50MPa到2GPa的范围上选择的抗拉强度
84.如权利要求1-83中任一项所述的分隔物系统,其中所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个独立地具有在10N cm到1000N cm的范围上选择的冲击强度。
85.如权利要求1-84中任一项所述的分隔物系统,其中所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个独立地包括平面层或中空圆柱形层。
86.如权利要求1-85中任一项所述的分隔物系统,其中所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层、所述第四高机械强度层、所述一个或多个低离子电阻层和所述一个或多个化学屏障层中的任一个包括化学上抗性的材料。
87.如权利要求1-86中任一项所述的分隔物系统,其中所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个独立地包括具有大于或等于100摄氏度的熔点的材料。
88.如权利要求87所述的分隔物系统,其中所述高机械强度层中的至少两个具有相差
至少30摄氏度的不同的熔化温度
89.如权利要求88所述的分隔物系统,其中所述高机械强度层的熔化温度的差异提供
关闭机制,所述关闭机制是通过熔化所述层中的一个,电化学电池的两个电极之间的离子路径闭合。
90.如权利要求88所述的分隔物系统,其中所述高机械强度层的熔化温度的差异结果
不提供关闭机制,所述关闭机制是通过熔化所述层中的一个,电化学电池的两个电极之间的离子路径闭合。
91.如权利要求1-90中任一项所述的分隔物系统,其中所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个独立地包括具有小于或等于50ppm/℃的热膨胀导热系数的材料。
92.如权利要求1-91中任一项所述的分隔物系统,其中所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个独立地包括选自由聚合物、金属、合金、陶瓷、木材、玻璃、半导体、纺织材料和非纺织材料组成的组的一种或多种材料。
93.如权利要求1-92中任一项所述的分隔物系统,其中所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个独立地包括选自由凝胶电解质、固体电解质和聚合物电解质组成的组的一种或多种材料。
94.如权利要求1-93中任一项所述的分隔物系统,其中所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个独立地包括选自由下列项组成的组的一种或多种材料:聚丙烯酸(PAA)、交联聚乙烯(PEX、XLPE)、聚乙烯(PE)、聚对苯二甲酸乙二酯(PET、PETE)、聚苯醚(PPE)、聚氯乙烯(PVC)、聚偏二氯乙烯(PVDC)、聚乳酸(PLA)、聚丙烯(PP)、聚丁烯(PB)、聚对苯二甲酸丁二酯(PBT)、聚酰胺(PA)、聚酰亚胺(PI)、聚酸酯(PC)、聚四氟乙烯(PTFE)、聚苯乙烯(PS)、聚酯(PU)、聚酯(PE)、丙烯腈-丁二烯-苯乙烯(ABS)、聚(甲基丙烯酸甲酯)(PMMA)、聚甲(POM)、聚砜(PES)、苯乙烯-丙烯腈(SAN)、乙烯-醋酸乙烯酯(EVA)、苯乙烯-顺丁烯二酸酐(SMA)、PVDF、PEO PVDF、LIPON PVDF、LISICON PVDF、四甲基氢氧化铵五水合物(CH3)4NOH·5H2O、聚(氧化乙烯)(PEO)、环氧氯丙烷和环氧乙烷的共聚物P(ECH-共-EO)和聚(乙烯醇)、PEO–PVA–玻璃纤维聚合物电解质、硫化锌、二氧化硅、PVA和PSA、PVA/V6/PSS;PVAN6/(PSS+PAA);V6/PVA/(PSS+PAA);PVMPSS+PAA(35%))/(PSS+PAA(35%));(PSS+PAA(35%))/PVA/(PSS+PAA(35%));
或(PSS+PAA(35%))/(PVA(10%)+PSS(20%相对于PVA))/(PSS+PAA(35%))、聚乙二醇、聚丙二醇、聚丁二醇、烷基-聚乙二醇、烷基-聚丙二醇、烷基-聚丁二醇、其共聚物、PEO材料、PVA材料和其任何组合。
95.如权利要求1-94中任一项所述的分隔物系统,其中所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个的表面能够以电解质润湿。
96.如权利要求1-94中任一项所述的分隔物系统,其中所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个的表面涂覆有能够以电解质润湿的涂层。
97.如权利要求1-94中任一项所述的分隔物系统,其中所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个的表面的至少一部分涂覆有粘合剂涂层。
98.如权利要求96-97中任一项所述的分隔物系统,其中所述涂层具有小于5μm的厚
度,或其中所述涂层覆盖所述表面的小于10%,或其中所述涂层具有小于5μm的厚度并覆盖所述表面的小于10%。
99.如权利要求1-98中任一项所述的分隔物系统,其中所述第一高机械强度层、所述
第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个的至少一个表面具有表面粗糙度,所述表面粗糙度为在所述第一高机械强度层、所述第二高机械强度层、所述第三高机械强度层或所述第四高机械强度层的至少一部分之间的电解质提供空间。
100.如权利要求1-99中任一项所述的分隔物系统,其中所述分隔物系统是具有正电
极和负电极的电化学电池中的部件;其中所述第一高机械强度层、所述第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个的至少一个表面具有表面粗
糙度,所述表面粗糙度为在所述第一高机械强度层、所述第二高机械强度层、所述第三高机械强度层或所述第四高机械强度层和所述电化学电池的所述正电极或所述负电极之间的
电解质提供空间。
101.如权利要求99-100中任一项所述的分隔物系统,其中所述表面粗糙度提供在所
述高机械强度层中的两个的至少一部分之间或在高机械强度层和所述正电极或负电极的
至少一部分之间的从5nm和5微米的范围选择的距离。
102.如权利要求1-94中任一项所述的分隔物系统,还包括设置在所述第一高机械强
度层、所述第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层的任一个上的一个或多个涂层。
103.如权利要求102所述的分隔物系统,其中所述一个或多个涂层独立地包括非导电
涂层。
104.如权利要求102所述的分隔物系统,其中所述一个或多个涂层独立地包括疏水涂
层或亲水涂层。
105.如权利要求102所述的分隔物系统,其中所述一个或多个涂层独立地包括聚乙二
醇。
106.如权利要求102所述的分隔物系统,其中所述一个或多个涂层防止材料从正电极
转移到电化学电池的负电极。
107.如权利要求102所述的分隔物系统,其中所述一个或多个涂层独立地具有选自
10nm到2μm的范围的厚度。
108.如权利要求102所述的分隔物系统,其用于具有基于硫的阴极的电化学电池,其
中所述一个或多个涂层排斥疏水聚硫化物并增加所述电化学电池的性能和循环寿命
109.如权利要求1-108中任一项所述的分隔物系统,其中所述第一高机械强度层、所
述第二高机械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个独立地是金属层。
110.如权利要求109所述的分隔物系统,其中所述第一高机械强度层、所述第二高机
械强度层、所述第三高机械强度层和所述第四高机械强度层中的任一个独立地是选自由
Al、Ni、Cu和不锈组成的组的金属。
111.如权利要求109所述的分隔物系统,其中所述涂层是非导电涂层。
112.如权利要求111所述的分隔物系统,其中所述非导电涂层是PTFE、PE、PP、PVC或
聚酰亚胺。
113.如权利要求1-112中任一项所述的分隔物系统,包括在一次电化学电池或二次电
化学电池中的分隔物。
114.如权利要求1-113中任一项所述的分隔物系统,包括在锂电池、性电池、锌电池
或铅酸电池中的分隔物。
115.如权利要求1-113中任一项所述的分隔物系统,包括在锂金属-空气电池、锂离子
电池、锂-空气电池、Fe-空气电池、Al-空气电池或锌-空气电池中的分隔物。
116.如权利要求1-113中任一项所述的分隔物系统,包括在燃料电池、液流电池系统、
半固体电池、3D电池、纳米电池、微电池或电化学电容器中的分隔物。
117.一种电化学电池,包括:
负电极;
正电极;
第一电解质,其设置在所述正电极和所述负电极之间;以及
权利要求1-116中任一项所述的分隔物系统,其设置成与所述电解质接触并在所述负
电极和所述正电极之间;其中所述分隔物系统定位成使得所述电解质的离子能够在所述正电极和所述负电极之间转移。
118.如权利要求117所述的电化学电池,还包括设置在所述正电极和所述负电极之
间的化学屏障层;所述电化学电池还包括设置在所述正电极和所述负电极之间的第二电解质,其中所述化学屏障层防止所述第一电解质和所述第二电解质的混合。
119.如权利要求117-118中任一项所述的电化学电池,其中所述偏移对准不提供在所
述正电极和所述负电极之间的直接线性路径。
120.如权利要求117-119中任一项所述的电化学电池,其中所述偏移对准防止通过在
所述正电极或所述负电极上制造缺陷、外部物体或形成枝状晶体而经由所述正电极和所述负电极之间的电接触的短路
121.如权利要求117-120中任一项所述的电化学电池,其中所述第一高机械强度层、
所述第二高机械强度层、所述第三高机械强度层、所述第四高机械强度层、所述低离子电阻层、所述框架层、所述隔板、所述化学屏障层中的至少一个或这些的任何组合通过经由压力、加热、粘合剂涂覆、化学附着、等离子体处理或通过将一层沉积或涂覆在另一层上或电极上或这些的任何组合而至少部分地连接到所述正电极或所述负电极。
122.如权利要求117-121中任一项所述的电化学电池,其中所述第一高机械强度层、
所述第二高机械强度层、所述第三高机械强度层、所述第四高机械强度层、所述低离子电阻层、所述框架层、所述隔板、所述化学屏障层中的至少一个或这些的任何组合通过经由胶水、环氧树脂、粘固剂、特氟隆涂层、固体电解质、凝胶电解质或聚合物电解质而至少部分地连接到所述正电极或所述负电极。
123.如权利要求117-122中任一项所述的电化学电池,其中所述第一高机械强度层、
所述第二高机械强度层、所述第三高机械强度层、所述第四高机械强度层、低离子电阻层、框架层、隔板、化学屏障层中的至少一个或这些的任何组合包括沉积在所述正电极或所述负电极的表面上的涂层。
124.如权利要求117-123中任一项所述的电化学电池,其中所述分隔物系统防止所述
正电极和所述负电极之间的电接触。
125.如权利要求117-124中任一项所述的电化学电池,其中所述分隔物系统提供等于
-3
或大于1x10 S/cm的在所述正电极和所述负电极之间的离子电导率。
126.如权利要求117-124中任一项所述的电化学电池,其中所述分隔物系统提供等于
-2
或大于1x10 S/cm的在所述正电极和所述负电极之间的离子电导率。
127.如权利要求117-126中任一项所述的电化学电池,其中所述分隔物系统设置成与
所述正电极和所述负电极物理接触。
128.如权利要求117-127中任一项所述的电化学电池,具有至少300次循环的循环容
量。
129.如权利要求117-128中任一项所述的电化学电池,其中所述分隔物系统提供在
2 2
0.5ohm cm 到25ohm cm 的范围上选择的从所述正电极到所述负电极的净离子电阻。
130.如权利要求117-128中任一项所述的电化学电池,其中所述分隔物系统提供小于
2
或等于5ohm cm 的从所述正电极到所述负电极的净离子电阻。
131.如权利要求117-130中任一项所述的电化学电池,其中所述电化学电池提供在等
-1
于或大于C/5的放电率下等于或大于100mAh g 的比容量
132.如权利要求117-131中任一项所述的电化学电池,其中所述电解质是含水的。
133.如权利要求117-131中任一项所述的电化学电池,其中所述电解质是非质子的。
134.如权利要求117-131中任一项所述的电化学电池,其中所述电解质包括至少部分
地溶解在一种或多种非水溶剂中的碱金属盐。
135.如权利要求117-131中任一项所述的电化学电池,其中所述电解质包括溶剂和支
持盐;其中所述溶剂选自由有机碳酸盐、醚、酯、甲酸盐、内酯、砜、环丁砜、1,3-二氧戊环、碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸丁烯酯、碳酸亚乙烯酯、氟代碳酸乙烯酯、氟代碳酸丙烯酯、y-丁内酯、二氟乙酸甲酯、二氟乙酸乙酯、二甲氧基乙烷、二甘醇二甲醚(双(2-甲氧基乙基)醚)、四氢呋喃、二氧戊环、2MeTHF、1,2-DME或高级甘醇二甲醚、环丁砜、甲酸甲酯、乙酸甲酯和其任何组合组成的组;且其中所述支持盐选自由LiPF6、LiBF4、LiAsF6、LiClO4、LiSO3CF3、LiN(CF3SO2)2、LiN(SO2C2F5)2和其任何组合组成的组。
136.如权利要求117-131中任一项所述的电化学电池,其中所述电解质包括选自由
PVdF、PVdF—HFP共聚物、PAN和PEO及其混合物组成的组的高尔夫剂;选自由EC、PC、DEC、DMC、EMC、THE、2MeTHF、1,2-DME及其混合物组成的组的增塑剂;以及选自由LiPF6、LiBF4、LiAsF6、LiClO4、LiSO3CF3、LiN(CF3SO2)2和LiN(SO2C2F5)2组成的组的Li盐。
137.如权利要求117-131中任一项所述的电化学电池,其中所述电解质包括固体带电
介质或凝胶电极。
138.如权利要求117-131中任一项所述的电化学电池,其中所述电解质包括聚合介
质。
139.如权利要求117-131中任一项所述的电化学电池,其中所述电解质包括聚氧化乙
烯、聚四氟乙烯、聚偏二氟乙烯、含氟共聚物、聚丙烯腈或其任何组合。
140.如权利要求117-139中任一项所述的电化学电池,其中所述负电极或所述正电极
包括纳米尺寸的材料。
141.如权利要求117-139中任一项所述的电化学电池,其中所述负电极或所述正电极
是以粉末的形式。
142.如权利要求117-141中任一项所述的电化学电池,其中所述负电极包括选自由
锂、锌、、硅、、锑、铅、锗、镁、镉、铋、铟、钼、铌、钨、钽、、镍、锰、、过渡金属磷酸钠、混合金属磷酸钠、Li4/3Ti5/3O4、石墨、锡的合金、钴、碳、LiVO2、Li4Ti5O12、Li4/3Ti5/3O4、TiO2、WO2和MoO2组成的组的材料。
143.如权利要求117-142中任一项所述的电化学电池,其中所述正电极包括选自由石
墨、LiCoO_2NiO_8O2、LiNiO2、LiFePO4、LiMnPO4、LiCoPO4、LiMn2O4、LiCoO2、LiNiO_5Mn l.5O4、LiVPO4F、氧化、氧化镍、氧化钴、氧化锰、AgO、Ag2O3、Zn、ZnO AgO、Ag2O、Ag2O3、HgO、Hg2O、CuO、CdO、NiOOH、Pb2O4、PbO2、LiFePO4、Li3V2(PO4)3、V6O13、V2O5、Fe3O4、Fe2O3、MnO2、LiCoO2、LiNiO2、LiMn2O4、LiVO2、Li4Ti5O12、TiO2、WO2和MoO2组成的组的材料。
144.如权利要求117-142中任一项所述的电化学电池,其中所述正电极包括选自由下
列项组成的组的材料:选自由LixCoO2、LixNiO2、LixMn2O4和LiFePO4组成的组的基于锂化的金属氧化物的阴极;选自由AgxV2O5、CuxV2O5、V2O5、V6O13、MnO2、CuO、Ag2CrO4和MoO3组成的组的基于未锂化的金属氧化物的阴极,其中x的范围从0到2;选自由FeS2、TiS2、FeS和CuS组成的组的基于锂化的金属氧化物的阴极;选自由元素硫、聚硫化物及其组合组成的组的活性硫阴极;以及PEO/碳/金属氧化物型阴极结构,其包括选自由气态、液态和固态氧化剂及其组合例如过氧化物、过氧化氢、O2、SO2和NO2组成的组的含水电化学活性组分例如水或水溶性氧化剂,且所述水溶性固体氧化剂选自由NaNO2、KNO2、Na2SO3和K2SO3组成的组,其中所述阴极结构导电组分是多孔催化载体例如镍,且其中所述阴极结构电化学活性材料包括空气。
145.如权利要求117-144中任一项所述的电化学电池,包括一次电化学电池或二次电
化学电池。
146.如权利要求117-144中任一项所述的电化学电池,包括锂电池、碱性电池、锌电
池、铅酸电池、锂金属-空气电池、锂离子电池、锂-空气电池、Fe-空气电池、Al-空气电池或锌-空气电池。
147.如权利要求117-144中任一项所述的电化学电池,包括燃料电池、液流电池系统、
半固体电池、3D电池、纳米电池、微电池或电化学电容器。
148.如权利要求117-144中任一项所述的电化学电池,其中所述电化学电池是薄膜
池。
149.一种包括权利要求117-144中任一项的至少一个电化学电池的电池组,其中所述
至少一个电化学电池包括锂离子电化学电池。
150.一种包括权利要求149的电池组的电子设备。
151.一种碱金属燃料电池,包括:
可再生阳极,其包括固体碱金属和溶解在溶剂中作为燃料的碱金属;
阴极结构,其包括静态导电组分、包括碱金属的离子的电解质的离子传导组分和从所
述电池的操作环境获得的流体氧化剂;以及
权利要求1-112中任一项的分隔物系统,其设置在所述阳极和所述阴极结构之间。
152.如权利要求117-151中任一项所述的电化学电池,其中所述电化学电池的电极中
的至少一个具有溶剂化金属的形式。
153.如权利要求152所述的电化学电池,其中所述金属是锂或锂合金。
154.如权利要求117-151中任一项所述的电化学电池,其中所述电化学电池的电极中
的至少一个具有熔融金属的形式。
155.如权利要求152所述的电化学电池,其中所述电化学电池是碱金属离子电池。
156.如权利要求117-151中任一项所述的电化学电池,其中所述电化学电池具有在包
括所述正电极的所述电池的第一侧上的第一电解质和在包括所述负电极的所述电池的第
二侧上的第二电解质,其中所述第一电解质具有与所述第二电解质不同的组成;且其中所述电化学电池还包括一个或多个化学屏障层,所述化学屏障层包括定位在所述正电极和所述负电极之间的离子传导保护膜。
157.如权利要求156所述的电化学电池,其中所述第一电解质是含水电解质,且所述
第二电解质是非质子电解质。
158.如权利要求156所述的电化学电池,其中所述第一电解质和所述第二电解质中的
至少一种是固体电解质。
159.如权利要求1-116中任一项所述的分隔物系统,还包括防止水分子、CO2、O2或空
气通过所述分隔物系统转移的一个或多个固体电解质层。
160.如权利要求159所述的分隔物系统,其中所述一个或多个固体电解质层包括
LISICON或NASICON。
161.如权利要求1-116中任一项所述的分隔物系统,其中所述高机械强度层中的至少
一个具有大于或等于50的介电常数
162.如权利要求1-116中任一项所述的分隔物系统,其中所述高机械强度层中的至少
一个包括导电材料。
163.如权利要求1-116中任一项所述的分隔物系统,其中所述第一高机械强度层、所
述第二高机械强度层、所述第三高机械强度层、所述第四高机械强度层、所述低离子电阻层、所述框架层、所述隔板、所述化学屏障层中的至少一个或这些的任何组合具有高表面能。
164.如权利要求163所述的分隔物系统,其中所述表面能大于或等于10mJ/m2。
165.如权利要求163-164中任一项所述的分隔物系统,其中所述表面能有助于用电解
质润湿所述层。
166.如权利要求163-165中任一项所述的分隔物系统,其中所述表面能有助于所述层
连接到彼此或连接到电化学电池的一个或多个电极。

说明书全文

用于电化学系统的新颖分隔物

[0001] 相关申请的交叉引用
[0002] 本申请要求2011年7月11日提交的美国临时申请号61/506,489和2012年4月10日提交的美国临时申请号61/622,371的益处和优先权,每个临时申请据此通过引用被全部并入。
[0003] 背景
[0004] 在过去几十年中,在电化学存储和转换设备中取得了革命性的进步,扩展了这些系统在各种领域——包括便携式电子设备、航空和航天飞船技术、客运车辆和生物医学仪器——中的能。当前最新型的电化学存储和转换设备具有被特别设计成提供与不同范围的应用要求和操作环境的兼容性的设计和性能属性。例如,发展了跨越从用于植入式医疗设备的展示非常低的自放电率和高放电可靠性的高能密度电池到为各种便携式电子设备提供长运行时间的廉价的重量轻的可再充电电池到用于能够在短时间段内提供非常高的放电率的军事和航天应用的高容量电池的范围的高级电化学存储系统。
[0005] 尽管有该不同系列的高级电化学存储和转换系统的发展和广泛采用,但相当大的压力继续刺激研究以扩展这些系统的功能,从而实现更宽范围的设备应用。在对高功率便携式电子产品的要求中的大的增长例如在发展提供较高的能量密度的安全、重量轻的一次电池和二次电池中产生极大的利益。此外,对消费电子设备和仪器的领域中的小型化的要求继续刺激对用于减小高性能电池的尺寸、质量和形状因子的新颖设计和材料策略的研究。此外,在电动车辆和航空航天设计的领域中的继续发展也产生对能够具有在操作环境的有用范围内的良好设备性能的机械坚固的高可靠性高能密度和高功率密度电池的需要。
[0006] 在电化学存储和转换技术中的很多最近的进步直接归因于用于电池部件的新材料的发现和集成。锂电池技术例如至少部分地由于用于这些系统的新颖电极电解质材料的发现而继续快速发展。元素锂具有使它对用在电化学电池中有吸引力的特性的独特组合。首先,它是周期表中具有6.94AMU的原子质量的最轻金属。其次,锂具有非常低的电化学化/还原电势(即,-3.045V相对于NHE(标准氢参考电极))。特性的这个独特的组合使基于锂的电化学电池具有非常高的比容量。最新型的锂离子二次电池提供优良的充电-放电特性,且因此也作为便携式电子设备例如手机和便携式计算机中的电源而被广泛采用。据此通过引用被全部并入的美国专利号6,852,446、6,306,540、6,489,055以及由Gholam-Abbas Nazri和Gianfranceo Pistoia编辑的“Lithium Batteries Science and Technology”,Kluer Academic Publishers,2004,涉及锂和锂离子电池系统。
[0007] 电极材料、电解质组成和设备几何结构中的进步继续支持基于Li的电化学系统的进一步发展。例如,在2012年3月29日公布的美国专利申请公布US2012/0077095和在2012年3月15日公布的国际专利申请公布WO2012/034042公开了用于包括锂电池的电化学系统的三维电极阵列结构。
[0008] 尽管有相当大的进步,但依然存在与基于Li的电化学系统的继续发展有关的实际挑战。相当大的问题例如涉及一次和二次锂和锂离子电池中的枝状晶体形成。通常已知在很多电解质中的Li沉积是高度枝状的,这使这些系统易受到涉及短路、机械故障和热逸散的问题的影响。涉及枝状晶体形成的安全忧虑目前是实现可再充电系统中的金属Li阳极的障碍。很多策略被实行以解决与枝状晶体形成有关的安全性,特别是在二次电池的背景中,包括非锂阳极和能够实时监控与枝状晶体形成相关的问题的内部安全系统的发展。
[0009] 如通常从前述内容认识到的,目前存在对展示对各种应用有用的电化学特性的基于锂的电化学系统的需要。具体地,需要能够有良好的电化学性能和对一次基于锂的电池和二次基于锂的电池的高度通用性的锂电化学系统。
[0010] 概述
[0011] 在一个方面中,本发明提供了用于电化学系统的分隔物系统,其提供对各种电化学存储和转换应用有用的电子、机械和化学特性。一些实施方式的分隔物系统例如提供对防止电化学电池中的灾难性故障有用和对提高性能例如循环寿命和能量以及功率有用的结构、物理和静电特性。一个系列的例子是用于管理和控制基于金属的电池例如基于锂、基于、基于锌和基于铅的电池中的枝状晶体形成的分隔物。在实施方式中,例如本发明的分隔物系统具有支持优良的离子转移特性而同时提供对防止枝状晶体引起的机械故障、电子内部短路和/或热逸散有效的屏障的多层、多孔几何结构。另一系列的例子是由几个多孔/穿孔层和不能透过的然而离子选择性的传导膜组成的多层分隔物,其中多孔层提供对防止内部短路故障例如枝状晶体短路故障和/或热逸散有效的屏障;且膜层提供对分隔紧邻阳极的电解质与紧邻阴极的电解质有效的屏障,其可防止电极及其表面和其电解质中的任一个的污染,并因此提高电池的性能例如能量、功率和寿命周期;这在金属空气和液流电池及半固体电池中特别有用,一些例子是锂-空气、锂和锌-空气电池。
[0012] 在实施方式中,本发明提供了用于电化学系统的分隔物系统,其包括:(i)第一高机械强度层,其具有完全穿过第一高机械强度层延伸并以第一图案设置的多个孔;以及(ii)第二高机械强度层,其具有完全穿过第二高机械强度层延伸并以第二图案设置的多个孔;第二图案具有相对于第一图案的偏移对准,使得第一高机械强度层的孔和第二高机械强度层的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴的重叠小于或等于20%;其中第一高机械强度层和第二高机械强度层定位成使得设置成与第一高机械强度层和第二高机械强度层接触的电解质的离子能够通过第一高机械强度层和第二高机械强度层转移。在实施方式中,例如第一高机械强度层和第二高机械强度层彼此不直接物理接触。在这个方面的实施方式中,第一高机械强度层的孔和第二高机械强度层的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴的重叠小于或等于10%。在实施方式中,例如本发明的分隔物系统还包括设置在第一高机械强度层和第二高机械强度层之间并可选地与第一高机械强度层、第二高机械强度层或两者接触的一种或多种电解质,其中第一高机械强度层和第二高机械强度层是离子传导的,并可选地允许电化学系统的电解质的转移。
[0013] 在实施方式中,本发明提供了用于电化学系统的分隔物系统,其包括:(i)第一高机械强度层,其具有完全穿过第一高机械强度层延伸并以第一图案设置的多个孔;(ii)第二高机械强度层,其具有完全穿过第二高机械强度层延伸并以第二图案设置的多个孔;第二图案具有相对于第一图案的偏移对准,使得第一高机械强度层的孔和第二高机械强度层的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴的重叠小于或等于20%;以及(iii)第三高机械强度层,其具有完全穿过第三高机械强度层延伸并以第三图案设置的多个孔,第三图案具有与第一图案的孔空间布置相同的孔空间布置,其中第一高机械强度层、第二高机械强度层和第三高机械强度层定位成使得设置成与第一高机械强度层、第二高机械强度层和第三高机械强度层接触的电解质的离子能够通过第一高机械强度层、第二高机械强度层和第三高机械强度层转移。在这个方面的实施方式中,第一高机械强度层的孔和第二高机械强度层的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴的重叠小于或等于10%。如在整个本描述中使用的,“相同的孔空间布置”指两个或更多个高机械强度层的孔的位置使得它们沿着在高机械强度层之间垂直延伸的轴对准。
在实施方式中,例如“相同的孔空间布置”指两个或更多个高机械强度层的孔的位置使得它们沿着在高机械强度层之间垂直延伸的轴重叠90%或更大的因子。
[0014] 在实施方式中,本发明提供了用于电化学系统的分隔物系统,其包括:(i)第一高机械强度层,其具有完全穿过第一高机械强度层延伸并以第一图案设置的多个孔;(ii)第二高机械强度层,其具有完全穿过第二高机械强度层延伸并以第二图案设置的多个孔;第二图案具有相对于第一图案的偏移对准,使得第一高机械强度层的孔和第二高机械强度层的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴的重叠小于或等于20%;(iii)第三高机械强度层,其具有完全穿过第三高机械强度层延伸并以第三图案设置的多个孔,第三图案具有与第一图案的孔空间布置相同的孔空间布置,以及(iv)第四高机械强度层,其具有完全穿过第四高机械强度层延伸并以第四图案设置的多个孔,第四图案具有与第二图案的孔空间布置相同的孔空间布置;其中第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层定位成使得设置成与第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层接触的电解质的离子能够通过第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层转移。在这个方面的实施方式中,第一高机械强度层的孔和第二高机械强度层的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴的重叠小于或等于10%。
[0015] 在实施方式中,本发明提供了用于电化学系统的分隔物系统,其包括:(i)第一高机械强度层,其具有完全穿过第一高机械强度层延伸并以第一图案设置的多个孔;(ii)第二高机械强度层,其具有完全穿过第二高机械强度层延伸并以第二图案设置的多个孔,第二图案具有相对于第一图案的偏移对准,使得第一高机械强度层的孔和第二高机械强度层的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴的重叠小于或等于40%;以及(iii)第三高机械强度层,其具有完全穿过第三高机械强度层延伸并以第三图案设置的多个孔;第三图案具有相对于第一图案和第二图案的偏移对准,使得第一高机械强度层的孔、第二高机械强度层的孔和第三高机械强度层的孔沿着从第一层或第二层垂直地延伸到第三层的轴的重叠小于或等于20%;其中第一高机械强度层、第二高机械强度层和第三高机械强度层定位成使得设置成与第一高机械强度层、第二高机械强度层和第三高机械强度层接触的电解质的离子能够通过第一高机械强度层、第二高机械强度层和第三高机械强度层转移。在这个方面的实施方式中,第一高机械强度层的孔和第二高机械强度层的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴的重叠小于或等于20%,且第一高机械强度层的孔、第二高机械强度层的孔和第三高机械强度层的孔沿着从第一高机械强度层或第二高机械强度层垂直地延伸到第三高机械强度层的轴的重叠小于或等于
10%。
[0016] 在实施方式中,本发明提供了用于电化学系统的分隔物系统,其包括:(i)第一高机械强度层,其具有完全穿过第一高机械强度层延伸并以第一图案设置的多个孔;(ii)第二高机械强度层,其具有完全穿过第二高机械强度层延伸并以第二图案设置的多个孔,第二图案具有相对于第一图案的偏移对准,使得第一高机械强度层的孔和第二高机械强度层的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴的重叠小于或等于50%;(iii)第三高机械强度层,其具有完全穿过第三高机械强度层延伸并以第三图案设置的多个孔,第三图案具有相对于第一图案和第二图案的偏移对准,使得第一高机械强度层的孔、第二高机械强度层的孔和第三高机械强度层的孔沿着从第一高机械强度层或第二高机械强度层垂直地延伸到第三高机械强度层的轴的重叠小于或等于30%,以及(iv)第四高机械强度层,其具有完全穿过第四高机械强度层延伸并以第四图案设置的多个孔,第四图案具有相对于第一图案、第二图案和第三图案的偏移对准,使得第一高机械强度层的孔、第二高机械强度层的孔、第三高机械强度层的孔和第四高机械强度层的孔沿着从第一高机械强度层或第二高机械强度层垂直地延伸到第四高机械强度层的轴的重叠小于或等于20%;
其中第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层定位成使得设置成与第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层接触的电解质的离子能够通过第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层转移。在这个方面的实施方式中,第一高机械强度层的孔和第二高机械强度层的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴的重叠小于或等于30%,且相对于第一图案和第二图案的偏移对准使得第一高机械强度层的孔、第二高机械强度层的孔和第三高机械强度层的孔沿着从第一层或第二层垂直地延伸到第三层的轴的重叠小于或等于20%,且相对于第一图案、第二图案和第三图案的偏移对准使得第一高机械强度层的孔、第二高机械强度层的孔、第三高机械强度层的孔和第四高机械强度层的孔沿着从第一高机械强度层或第二高机械强度层垂直地延伸到第三层的轴的重叠小于或等于10%。
[0017] 在一些实施方式中,例如第二高机械强度层设置在第一高机械强度层和第三高机械强度层之间。在一些实施方式中,例如第一高机械强度层设置在第二高机械强度层和第四高机械强度层之间,或其中第三高机械强度层设置在第二高机械强度层和第四高机械强度层之间。在实施方式中,第一机械强度层和第二机械强度层未设置成物理接触,或第一机械强度层、第二机械强度层和第三机械强度层未设置成物理接触,或第一机械强度层、第二机械强度层、第三机械强度层和第四机械强度层未设置成物理接触。
[0018] 这个方面的一些分隔物例如提供用于管理电化学系统中的枝状晶体形成的多层结构,其中多层分隔物层(例如,第一、第二、第三、第四高机械强度层等)具有孔的互补图案,例如微通道或纳米通道,其以在正电极和负电极之间的枝状晶体生长是在动力学上和/或在热力学上不利的方式来建立正电极和负电极之间的离子电导率。这个方面的一些分隔物例如提供具有多层几何结构的屏障和例如通过提供多层结构来防止正电极和负电极之间的枝状晶体生长的直接线性通路的物理特性,其中在正电极和负电极之间的离子转移的唯一通路需要在动力学上和/或在热力学上对枝状晶体生长不利的弯曲轨迹。在实施方式中,第一高机械强度层、第二高机械强度层、第三高机械强度层和/或第四高机械强度层是平面的,并设置在相对于彼此基本上平行的方向上,例如,其中第一高机械强度层、第二高机械强度层、第三高机械强度层和/或第四高机械强度层的平表面设置在平行的平面中。在实施方式中,第一高机械强度层、第二高机械强度层、第三高机械强度层和/或第四高机械强度层是中空的圆柱形结构,并设置在基本上同心的方向上,例如其中圆柱形的第一层和第二层的弯曲表面设置在同心的方向上。如本文使用的,从同心方向垂直地延伸的轴垂直于中心轴并从中心轴径向延伸。
[0019] 本发明的一些分隔物系统的多层几何结构提供偏移对准,这提供了第一图案的孔和第二图案的孔沿着从第一层垂直地延伸到第二层的轴的选定重叠。本发明的这个方面对获取有用的离子转移特性,而同时防止在电化学电池的正电极和负电极之间的枝状晶体形成是有用的。在一些实施方式中,术语“偏移”指一种配置,其中分隔物的一个高机械强度层的孔沿着从一层延伸到另一层的轴例如从第一高机械强度层垂直地延伸到第二高机械强度层的轴相对于另一高机械强度层的孔的位置偏移。在一些实施方式中,术语“偏移”指在高机械强度层中的孔的图案的相对配置,例如其中第一高机械强度层的第一图案的孔相对于第二高机械强度层的第二图案的孔的位置偏移,使得第一高机械强度层的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴不完全叠加在第二高机械强度层的孔上。在实施方式中,例如第一高机械强度层和第二高机械强度层是纳米和/或微米多孔的并对准,使得第一高机械强度层的孔根本不沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴叠加在第二高机械强度层的孔上。在实施方式中,例如第一图案、第二图案、第三图案和第四图案中的两个或更多个的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴的重叠小于或等于10%,且可选地对于一些应用小于或等于1%。在实施方式中,例如第一图案、第二图案、第三图案和第四图案中的两个或更多个的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴的重叠选自0到5%的范围,且可选地对于一些应用选自从0到1%的范围。在实施方式中,例如第一图案、第二图案、第三图案和第四图案中的两个或更多个的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴的重叠等于0,例如按良好的精确度等于0。在实施方式中,例如第一图案、第二图案和第三图案的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴的重叠小于或等于10%。在实施方式中,例如第一图案、第二图案和第三图案的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴的重叠选自0到5%的范围。在实施方式中,例如第一图案、第二图案、第三图案和第四图案的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴的重叠小于或等于10%。在实施方式中,例如第一图案、第二图案、第三图案和第四图案的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴的重叠选自0到5%的范围。
[0020] 在实施方式中,例如第一图案、第二图案、第三图案和第四图案中的两个或更多个包括基本上互补的图案。在实施方式中,例如基本上互补的图案相应于基本上彼此的负像(negative image)。如本文使用的,互补的图案指一种配置,其中高机械强度层的一种图案的孔和一个或多个其它图案或一个或多个其它高机械强度层的孔的相对位置被选择成防止电化学电池的正电极和负电极之间的枝状晶体生长。在实施方式中,例如第一图案和第二图案的基本上互补的图案是彼此的负图像,例如其中第一图案的孔的位置相应于没有孔的第二层的区域。作为本发明的互补图案的例子,第一层可以以相应于棋盘的黑方格的孔的图案为特征,而第二层可以以相应于棋盘的红方格的孔的图案为特征。作为本发明的互补图案的例子,第一高机械强度层可具有以第一节距和孔间距为特征的孔的第一周期性图案,其中第二高机械强度层可具有以相同的节距和孔间距为特征但从第一图案的孔的位置偏移或平移的孔的第二周期性图案,使得第一高机械强度层的孔不沿着从第一高机械强度层和第二高机械强度层垂直延伸的轴叠加在第二高机械强度层的孔上。
[0021] 在实施方式中,具有三个或更多个高机械强度层的分隔物系统可包括具有相同的图案(即,非互补图案)的一些高机械强度层,只要具有互补图案的至少一层位于具有相同的图案的高机械强度层之间。例如,分隔物系统可以以具有图案A的一个或多个高机械强度层和具有图案B的一个或多个高机械强度层为特征,其中A和B是根据ABA的重复序列布置的互补图案,且较长序列对包含四个或更多个高机械强度层的多层系统是可能的,例如ABABAB。
[0022] 在另一实施方式中,具有三个或更多个高机械强度层的分隔物系统可只包括具有互补图案的高机械强度层。例如,分隔物系统可以以具有图案A的一个或多个高机械强度层、具有图案B的一个或多个高机械强度层和具有图案C的一个或多个高机械强度层为特征,其中A、B和C各自对其它两个图案是互补的,根据ABC的重复序列布置,且较长序列(例如,ABCABC)和变化的序列(例如,ABCBA、ABCA)对包含四个或更多个高机械强度层的多层系统是可能的。
[0023] 在另一方面中,本发明提供了分隔物系统,其还包括设置在第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的至少一个的侧面上的一个或多个低离子电阻层。在实施方式中,例如一个或多个低离子电阻层中的每个是电化学电池的提供例如电解质的储器的含电解质层。在实施方式中,例如一个或多个低离子电阻层中2
的每个独立地具有小于或等于20ohm-cm 的离子电阻,且优选地对于一些实施方式小于或
2 2
等于2ohm-cm,且优选地对于一些实施方式小于或等于1ohm-cm。在实施方式中,例如所述一个或多个低离子电阻层中的至少一个是为设置在第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的至少两个之间的电解质提供空间的压力缓冲层
[0024] 在实施方式中,例如高机械强度层和一个或多个低离子电阻层中的至少一个是沉积在高机械强度层和一个或多个低离子电阻层中的至少一个上的沉积层。在实施方式中,例如高机械强度层和一个或多个低离子电阻层中的至少一个是沉积电化学电池的电极上的沉积层,例如直接沉积在呈现给电化学电池的电解质的正或负电极的表面上的一层。在实施方式中,例如一个或多个低离子电阻层和可选地所有低离子电阻层中的至少一个通过压力、热或化学附着而附着到第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个的至少一侧。在实施方式中,例如一个或多个低离子电阻层和可选地所有低离子电阻层中的至少一个通过树脂聚合物附着到第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个的至少一侧。在实施方式中,例如一个或多个低离子电阻层和可选地所有低离子电阻层中的至少一个包括微孔材料、纺织材料或非纺织材料。
[0025] 在实施方式中,例如一个或多个低离子电阻层和可选地所有低离子电阻层中的至少一个包括陶瓷或玻璃电解质、聚合物电解质或另一固体电解质。在实施方式中,例如低离子电阻层包括玻璃电解质,例如LISICON或LIPON或聚合物电解质例如PEO。在实施方式中,例如一个或多个低离子电阻层和可选地所有低离子电阻层中的至少一个包括穿孔陶瓷分隔物、多孔陶瓷分隔物、穿孔玻璃分隔物、多孔玻璃分隔物或穿孔金属或穿孔合金分隔物或穿孔橡胶或橡胶网或金属网或合金网。
[0026] 在实施方式中,例如一个或多个低离子电阻层中的至少一个包括具有中心孔的环或框架,例如提供在电化学电池中的机械支持结构、电解质储器结构和/或隔板结构的环或框架结构。在实施方式中,例如一个或多个低离子电阻层包括与第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的至少一个接触的一个或多个框架层。在实施方式中,例如第一高机械强度层设置在第一框架层和第二框架层之间且其中第二高机械强度层设置在第三框架层和第四框架层之间,或第一高机械强度层设置在第一框架层和第二框架层之间且其中第二高机械强度层设置在第二框架层和第三框架层之间。在实施方式中,例如一个或多个低离子电阻层包括与电化学系统的至少一个电极例如电化学电池的正电极和/或负电极物理接触的一个或多个框架层。在实施方式中,例如一个或多个低离子电阻层包括设置在第一层和第二层之间的隔板,隔板将第一层和第二层分开选自10nm到1000μm的范围且可选地对于一些应用选自1μm到1000μm的范围的选定距
离。在实施方式中,例如这个方面的隔板包括:用于建立在第一高机械强度层和第二高机械强度层之间的选定距离的环;具有多孔壁构件(porous wall component)的框架结构,材料层或分立材料元件的布置(arrangement of discrete material element)。
[0027] 在实施方式中,例如低离子电阻层和可选地所有低离子电阻层中的每个独立地是聚合物、陶瓷、木材、玻璃、矿物、金属、合金、纺织材料、非纺织材料、纤维素、木纤维、海绵或其组合。在实施方式中,例如一个或多个低离子电阻层各自独立地具有大于或等于50%、和优选地对于一些应用大于70%、和优选地对于一些应用大于90%的孔隙率。在实施方式中,例如一个或多个低离子电阻层各自独立地具有选自50%到95%的范围的孔隙率,优选地对于一些应用选自70%到95%的范围的孔隙率。
[0028] 在实施方式中,例如高机械强度层之一的至少一侧是可润湿的,例如可以用电化学电池的电解质润湿。在实施方式中,例如分隔物配置以紧邻另一高机械强度层放置的高机械强度层的可润湿侧为特征,在它们之间没有设置低离子电阻层。在实施方式中,例如分隔物配置以紧邻电极放置的高机械强度层的可润湿侧为特征,在它们之间没有低离子电阻层。在实施方式中,例如分隔物包括涂覆在另一低离子电阻层或高机械强度层上或涂覆在化学电池中的电极上例如电化学系统的正电极或负电极上的一个或多个低离子电阻层或高机械强度层。
[0029] 在另一方面中,本发明提供了分隔物,其还包括设置在第一高机械强度层、第二高机械强度层、第三高机械强度层、第四高机械强度层或一个或多个低离子电阻层中的至少一个的侧面上的一个或多个化学屏障层。具有一个或多个化学屏障的分隔物在电化学系统中是有用的,其中正电极和负电极设置成与不同的电解质接触,且因此化学屏障允许电荷载体的转移,但防止电解质的转移。在这样的配置中,化学屏障对保护电极免受劣化和/或使得能够对电化学电池的正电极和负电极使用不同电解质是有用的。在实施方式中,例如一个或多个化学屏障层独立地防止不需要的化学组分通过一个或多个化学屏障层转移到电化学电池的正电极或负电极。在实施方式中,例如一个或多个化学屏障层防止电解质溶剂通过一个或多个化学屏障层转移到电化学电池的正电极或负电极。在实施方式中,例如一个或多个化学屏障层包括布置在电化学电池的电极的至少一侧上的固体电解质或固体聚合物电解质。在实施方式中,例如一个或多个化学屏障层包括来自LISICON或NASICON的固体电解质或包括聚氧化乙烯(PEO)的聚合物电解质。
[0030] 在实施方式中,例如分隔物系统是具有负电极和正电极的电化学电池的部件,其中一个或多个化学屏障层包括离子传导保护膜,其中保护膜提供与正电极接触的第一电解质和与负电极接触的第二电解质之间的屏障,其中离子传导保护膜防止负电极和第一电解质之间的接触。在实施方式中,例如负电极是锂金属电极,其中离子传导保护膜传导锂离子电荷载体并防止锂金属电极和第一电解质之间的接触。
[0031] 在实施方式中,例如离子传导保护膜包括选自由玻璃状或无定形活性金属离子导体、陶瓷活性金属离子导体和玻璃-陶瓷活性金属离子导体组成的组的材料。在实施方式中,例如一个或多个化学屏障层还包括布置在保护膜的表面和正电极或负电极之间的固体聚合物电解质。在实施方式中,例如高机械强度层、一个或多个低离子电阻层和一个或多个化学屏障层中的至少一个是沉积在高机械强度层、一个或多个低离子电阻层和一个或多个化学屏障层中的至少一个上的沉积层。在实施方式中,例如高机械强度层、一个或多个低离子电阻层和一个或多个化学屏障层中的至少一个是沉积在电化学电池的电极上的沉积层。在实施方式中,例如分隔物包括第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的至少两个与一个或多个化学屏障层的组合,而没有任何低离子电阻层。
[0032] 在一个方面中,分隔物还包括第三高机械强度层,其具有完全穿过第三高机械强度层延伸并以第三图案设置的多个孔;第三高机械强度层位于第一高机械强度层和第二高机械强度层之间;第三图案具有相对于第一图案或第二图案的偏移对准,使得第一图案或第二图案的孔和第三图案的孔沿着从第一高机械强度层或第二高机械强度层垂直地延伸到第三高机械强度层的轴的重叠小于或等于20%。在一个方面中,分隔物还包括第四高机械强度层,其具有完全穿过第四高机械强度层延伸并以第四图案设置的多个孔;第四高机械强度层位于第一高机械强度层和第二高机械强度层之间,第四图案具有相对于第一图案、第二图案或第三图案的偏移对准,使得第一图案、第二图案或第三图案的孔和第四图案的孔沿着从第一高机械强度层或第二高机械强度层垂直地延伸到所述第四高机械强度层的轴的重叠小于或等于20%。
[0033] 本发明的多层分隔物系统的层可经由各种机制和设备布置来配置并连接以提供对特定的应用有用的机械特性。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层、第四高机械强度层、低离子电阻层、框架层、隔板、化学屏障层中的至少一部分和可选地全部或这些的任何组合通过经由压力、加热、粘合剂涂覆、化学附着、等离子体处理或这些的任何组合至少部分地连接到彼此。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层、第四高机械强度层、低离子电阻层、框架层、隔板、化学屏障层中的至少一部分和可选地全部或这些的任何组合经由胶水、环氧树脂、粘固剂、PTFE、固体电解质、凝胶电解质、聚合物电解质、有机粘合剂、丙烯酸粘合剂、氰基丙烯酸酯、stycast1266、deltabond151、PVDF、PVA、LIPON、LISICON、PE-PP-PVDF、四甲基氢氧化铵五水合物(CH3)4NOH·5H2O、聚(氧化乙烯)(PEO)、环氧氯丙烷和环氧乙烷的共聚物P(ECH-共-EO)和聚(乙烯醇)、玻璃纤维聚合物电解质、硫化锌、二氧化硅、Kapton胶带、聚氧化乙烯或聚氧化丙烯或共聚物PVDF-共-HFP Bi2O3、不含氟粘结剂或芳族粘结剂、聚丙烯酸锂或其组合至少部分地连接到彼此。
[0034] 在实施方式中,本发明提供了分隔物系统,其还包括防止例如水分子、CO2、O2或空气通过所述分隔物系统转移的一个或多个固体电解质层,其中所述一个或多个固体电解质层包括LISICON或NASICON。
[0035] 在一个方面中,本发明的分隔物还包括一种或多种电解质,例如电化学电池的电解质,其可选地与第一高机械强度层、第二高机械强度层、第三高机械强度层、第四高机械强度层、低离子电阻层、框架层、隔板、化学屏障层的至少一部分或这些的任何组合物理接触。在实施方式中,例如分隔物系统是具有正电极和负电极的电化学电池的部件,分隔物还包括设置在正电极和负电极之间的电解质;其中电解质与第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个接触。在实施方式中,例如分隔物系统是具有正电极和负电极的电化学电池的部件,分隔物还包括设置在正电极和负电极之间的第一电解质和第二电解质;其中第一电解质具有与第二电解质不同的组成;其中第一电解质与第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个接触,且其中第二电解质与第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个接触,其中第一电解质和第二电解质由于在它们之间的不可渗透的离子传导层的存在或由于不同的化学性质和物理性质例如亲水或疏水行为或密度而彼此不混合。
[0036] 分隔物系统的部件例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层的物理、化学和电子特性的选择被选择为提供对电化学电池中的应用有用的净分隔物特性,例如提供高电阻、高离子电导率和有用的机械属性的组合。
[0037] 在实施方式中,例如孔的第一图案提供大于或等于30%且优选地对于一些应用大于40%的第一高机械强度层的第一孔隙率,和/或其中孔的第二图案提供大于或等于30%且优选地对于一些应用大于40%的第二高机械强度层的第二孔隙率。在实施方式中,例如孔的第一图案提供大于或等于30%且优选地对于一些应用大于40%的第一高机械强度层的第一孔隙率,或其中孔的第二图案提供大于或等于30%且优选地对于一些应用大于40%的第二高机械强度层的第二孔隙率;或其中孔的第三图案提供大于或等于30%且优选地对于一些应用大于40%的第三高机械强度层的第三孔隙率;或其中孔的第四图案提供大于或等于30%且优选地对于一些应用大于40%的第四高机械强度层的第四孔隙率。在实施方式中,例如孔的第一图案提供选自30%到70%的范围且优选地对于一些应用40%到70%的第一高机械强度层的孔隙率;且其中孔的第二图案提供选自30%到70%的范围且优选地对于一些应用40%到70%的第二高机械强度层的孔隙率。在实施方式中,例如孔的第一图案提供选自30%到70%的范围且优选地对于一些应用40%到70%的第一高机械强度层的孔隙率;或其中孔的第二图案提供选自30%到70%的范围且优选地对于一些应用40%到70%的第二高机械强度层的孔隙率;或其中孔的第三图案提供选自30%到70%的范围且优选地对于一些应用40%到70%的第三高机械强度层的孔隙率;或其中孔的第四图案提供选自30%到70%的范围且优选地对于一些应用40%到70%的第四高机械强度层的孔隙率。
[0038] 高机械强度层的孔的各种几何结构、形状、方向和图案在本发明的分隔物系统中是有用的。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层或第四高机械强度层中的任一个的孔独立地具有选自由圆形、平行四边形、矩形、正方形、三形、椭圆形、四边形、五边形、六边形和其任何组合组成的组的横截面形状。在实施方式中,例如高机械强度层的孔具有大于或等于20μm、可选地对于一些实施方式大于或等于50μm、可选地对于一些实施方式大于或等于200μm、可选地对于一些实施方式大于或等于
500μm的至少一个横向尺寸(例如,长度、宽度、直径等)。在实施方式中,例如高机械强度层的孔具有在1μm和1mm且可选地对于一些应用在200μm和1mm之间的至少一个横向尺寸。在实施方式中,例如高机械强度层的孔具有小于或等于200μm和可选地对于一些应用小于或等于10μm和可选地对于一些应用小于或等于1μm的至少一个横向尺寸。在实施方式中,例如第一图案、第二图案、第三图案或第四图案中的任一个独立地是孔的对称图案或孔的非对称图案。在实施方式中,例如第一图案、第二图案、第三图案或第四图案中的任一个独立地包括不是无规则的孔的图案。
[0039] 在实施方式中,例如孔的第一图案、孔的第二图案、孔的第三图案或孔的第四图案中的任一个独立地通过选自由激光切割光刻、蚀刻、铸造、钻孔、模制、冲压图案化、涂覆和这些的任何组合组成的组的工艺来制造。
[0040] 在实施方式中,第一高机械强度层、和/或第二高机械强度层、和/或第三高机械强度层、和/或第四高机械强度层是非导电的,例如这些层中的一个或多个包括电绝缘材料,以便防止电化学系统例如电化学电池的正电极和负电极之间的直接电接触。电绝缘高机械强度层可包括各种电绝缘材料例如Kapton、聚乙烯、聚丙烯、纤维状纤维素和/或涂有电绝缘体例如PE和PP涂层的金属层。在实施方式中,第一高机械强度层、和/或第二高机械强度层、和/或第三高机械强度层、和/或第四高机械强度层中的至少一个是导电的,例如其中这些层中的一个或多个包括电绝缘材料且这些层中的一个或多个包括导电材料。第一高机械强度层、和/或第二高机械强度层、和/或第三高机械强度层、和/或第四高机械强度层包括以形状记忆特性为特征的材料例如形状记忆聚合物或以超弹性的特性为特征的材料。
[0041] 在实施方式中,例如第一高机械强度层和第二高机械强度层彼此不完全物理接触,例如以一种配置设置,其中在第一高机械强度层和第二高机械强度层之间有至少一些空间以使电解质有例如由具有彼此接触的粗糙表面的第一高机械强度层和第二高机械强度层提供的离子转移,使得在一些点处它们物理地连接,但在一些其它点处在它们之间有一些空间。在实施方式中,第一高机械强度层和第二高机械强度层不物理接触。在实施方式中,例如第一高机械强度层和第二高机械强度层分隔开选自20nm到2mm的范围的一段距离。在实施方式中,例如第一高机械强度层或第二高机械强度层与第三高机械强度层或第四高机械强度层分隔开选自20nm到2mm的范围的一段距离。
[0042] 在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层、第四高机械强度层、一个或多个低离子电阻层和一个或多个化学屏障层中的任一个和可选地全部独立地具有在10nm到1mm的范围上选择、且可选地对于一些应用在1μm到500μm的范围上选择、且可选地对于一些应用在10nm到50μm的范围上选择的平均厚度。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层、第四高机械强度层、一个或多个低离子电阻层和一个或多个化学屏障层中的任一个和可选地全部独立地具有在5μm到1mm的范围上选择、且可选地对于一些应用在25μm到5mm的范围上选择、且可选地对于一些应用在100μm到2mm的范围上选择、且可选地对于一些应用在500μm到1mm的范围上选择的平均厚度。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层、第四高机械强度层、一个或多个低离子电阻层和一个或多个化学屏障层中的任一个和可选地全部独立地具有在10nm到2μm的范围上选择或在2μm到50μm的范围上选择的平均厚度。
[0043] 在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个和可选地全部独立地具有在500MPa到500GPa的范围上选择的杨氏模量。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个和可选地全部独立地具有在5MPa到1000MPa的范围上选择的屈服强度。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个和可选地全部独立地具有在0.005N到10N的范围上选择的传播撕裂强度(propagating tear strength)、优选地对于一些应用大于0.01N的传播撕裂强度。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个和可选地全部独立地具有在10N到500N的范围上选择的引发撕裂强度(initiating tear strength)、优选地对于一些应用大于50N的引发撕裂强度。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个和可选地全部独立地具有在50MPa到2GPa的范围上选择的抗拉强度。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个和可选地全部独立地具有在10N cm到1000N cm的范围上选择的冲击强度。
[0044] 在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个和可选地全部独立地包括以平行配置设置的平面层。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个和可选地全部独立地包括以同心配置设置的中空圆柱形层。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层、第四高机械强度层、一个或多个低离子电阻层和一个或多个化学屏障层中的任一个和可选地全部独立地包括化学上抗性的材料(chemically resistant material)。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层、第四高机械强度层、一个或多个低离子电阻层和一个或多个化学屏障层独立地与设置成与它接触的电解质化学上相容和/或独立地与设置成与它接触的电极化学上相容。
[0045] 在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个和可选地全部独立地包括具有大于或等于100摄氏度的熔点的材料。在实施方式中,例如高机械强度层中的至少两个具有相差至少30摄氏度的不同的熔化温度,可选地,其中高机械强度层的熔化温度的差异提供关闭机制,所述关闭机制是通过熔化所述层中的一个,电化学电池的两个电极之间的离子路径闭合;或可选地,其中高机械强度层的熔化温度的差异结果不提供关闭机制,所述关闭机制是通过熔化所述层中的一个,电化学电池的两个电极之间的离子路径闭合。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个和可选地全部独立地包括具有小于或等于50ppm/℃的热膨胀导热系数的材料。
[0046] 本发明的分隔物系统的第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层可包括针对特定的应用例如电化学电池的类型而选择的各种材料。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层独立地包括化学上抗性的材料。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层独立地包括热稳定的材料。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个和可选地全部独立地包括选自由聚合物、金属、合金、陶瓷、木材、玻璃、半导体、纺织材料和非纺织材料组成的组的一种或多种材料。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个和可选地全部独立地包括具有大于或等于50的介电常数的材料。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个和可选地全部独立地包括导电材料。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个和可选地全部独立地包括选自由凝胶电解质、固体电解质和聚合物电解质组成的组的一种或多种材料。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个和可选地全部独立地包括选自由聚丙烯酸(PAA)、交联聚乙烯(PEX、XLPE)、聚乙烯(PE)、聚对苯二甲酸乙二酯(PET、PETE)、聚苯醚(PPE)、聚氯乙烯(PVC)、聚偏二氯乙烯(PVDC)、聚乳酸(PLA)、聚丙烯(PP)、聚丁烯(PB)、聚对苯二甲酸丁二酯(PBT)、聚酰胺(PA)、聚酰亚胺(PI)、聚酸酯(PC)、聚四氟乙烯(PTFE)、聚苯乙烯(PS)、聚酯(PU)、聚酯(PE)、丙烯腈-丁二烯-苯乙烯(ABS)、聚(甲基丙烯酸甲酯)(PMMA)、聚甲(POM)、聚砜(PES)、苯乙烯-丙烯腈(SAN)、乙烯-醋酸乙烯酯(EVA)、苯乙烯-顺丁烯二酸酐(SMA)、PVDF、PEO PVDF、LIPON PVDF、LISICON PVDF、四甲基氢氧化铵五水合物(CH3)4NOH·5H2O、聚(氧化乙烯)(PEO)、环氧氯丙烷和环氧乙烷的共聚物P(ECH-共-EO)和聚(乙烯醇)、PEO–PVA–玻璃纤维聚合物电解质、硫化锌、二氧化硅、PVA和PSA、PVA/V6/PSS;PVAN6/(PSS+PAA);V6/PVA/(PSS+PAA);PVMPSS+PAA(35%))/(PSS+PAA(35%));(PSS+PAA(35%))/PVA/(PSS+PAA(35%));
或(PSS+PAA(35%))/(PVA(10%)+PSS(20%相对于PVA))/(PSS+PAA(35%))、聚乙二醇、聚丙二醇、聚丁二醇、烷基-聚乙二醇、烷基-聚丙二醇、烷基-聚丁二醇、其共聚物、PEO材料或PVA材料和其任何组合组成的组的一种或多种材料。
[0047] 在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个的表面能够以电解质润湿。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个的表面涂覆有能够以电解质润湿的涂层。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个的表面的至少一部分涂覆有粘合剂涂层,可选地覆盖表面的至少10%。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个的表面的至少一部分涂覆有具有小于5μm的厚度的粘合剂涂层。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个的至少一个表面具有表面粗糙度,例如以选自1nm到1000nm的范围的rms(均方根)为特征的表面粗糙度,这为在第一高机械强度层、第二高机械强度层、第三高机械强度层或第四高机械强度层的至少一部分之间的电解质提供空间。在实施方式中,例如分隔物系统是具有正电极和负电极的电化学电池中的部件;其中第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个的至少一个表面具有表面粗糙度,例如以选自1nm到1000nm的范围的rms为特征的表面粗糙度,这为在第一高机械强度层、第二高机械强度层、第三高机械强度层或第四高机械强度层和电化学电池的正电极或负电极之间的电解质提供空间。在实施方式中,例如表面粗糙度提供在高机械强度层中的两个的至少一部分之间或在高机械强度层和正电极或负电极的至少一部分之间的从5nm和5微米的范围选择的距离。
[0048] 在一个方面中,本发明提供分隔物系统,其中第一高机械强度层、第二高机械强度层、第三高机械强度层、第四高机械强度层、低离子电阻层、框架层、隔板、化学屏障层中的2
至少一些或这些的任何组合具有高表面能,优选地对于一些应用大于或等于10mJ/m 的表面能。在实施方式中,例如这些部件中的任一个的表面能利于层对于电解质的可润湿性。在实施方式中,例如这些部件中的任一个的表面能帮助层连接到彼此或连接到电化学电池的电极。
[0049] 在一个方面中,分隔物还包括设置在第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个上的一个或多个涂层。在实施方式中,例如一个或多个涂层独立地包括一个或多个非导电涂层。在实施方式中,例如一个或多个涂层独立地包括一个或多个疏水涂层和/或亲水涂层。在实施方式中,例如一个或多个涂层独立地包括聚乙二醇。实施方式中,例如一个或多个涂层防止材料从正电极转移到电化学电池的负电极。在实施方式中,例如一个或多个涂层独立地具有从10nm到2μm的范围选择的厚度。在实施方式中,例如分隔物用于具有基于硫的阴极的电化学电池,其中一个或多个涂层排斥疏水聚硫化物并增加电化学电池的性能和循环寿命。在实施方式中,为基于硫的阴极Li电池提供亲水或疏水涂层。基于硫的阴极Li电池的现有技术的问题是,电化学反应可溶解在电解质中,且因此可能有由于材料(中间聚硫化物)从硫电极穿过电解质传递到Li电极引起的明显的容量损失。为了防止这个问题,特定的实施方式的分隔物涂有聚乙二醇材料(亲水的),其排斥疏水聚硫化物,并因此阻碍材料通过和容量损失。在本发明的实施方式中的涂层的使用在保护Li阳极免受潮湿中也是有用的,比如通过例如在锂-空气和锂水电化学电池中的分隔物上的疏水涂层。
[0050] 在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层中的任一个独立地是可选地选自由Al、Ni、Cu和不锈组成的组的金属层。在实施方式中,例如涂层是可选地包括PTFE、PE、PP、PVC或聚酰亚胺的非导电涂层。
[0051] 本发明包括对各种电化学系统有用的分隔物系统。在实施方式中,例如本发明提供用于一次电化学电池或二次电化学电池的分隔物系统。在实施方式中,例如本发明提供用于锂电池、碱性电池、锌电池或铅酸电池的分隔物系统。在实施方式中,例如本发明提供用于锂金属-空气电池、锂离子电池、锂-空气电池、Fe-空气电池、Al-空气电池或锌-空气电池的分隔物系统。在实施方式中,例如本发明提供用于燃料电池、液流电池系统、半固体电池、3D电池、纳米电池、微电池或电化学电容器的分隔物系统。
[0052] 在另一方面中,本发明提供电化学电池,其包括:(i)负电极;(ii)正电极;(iii)设置在正电极和负电极之间的第一电解质;以及(iv)设置成与电解质接触并在负电极和正电极之间的本发明的分隔物系统;其中分隔物系统定位成使得电解质的离子能够在正电极和负电极之间转移。在一个方面中,分隔物系统防止正电极和负电极之间的电接触。如本领域中的技术人员将理解的,本文描述的任何分隔物系统可用于本发明的电化学系统,例如电化学电池。
[0053] 在实施方式中,例如分隔物系统设置成与正电极和负电极物理接触。在实施方式-3 -2中,例如分隔物系统提供等于或大于1x10 S/cm、可选地对于一些应用优选地大于1x10 S/cm的在正电极和负电极之间的离子电导率。在实施方式中,例如分隔物系统提供在0.5ohm
2 2 2
cm 到25ohm cm 的范围上选择的且优选地对于一些应用小于5ohm cm 的从正电极到负电极的净离子电阻。
[0054] 在实施方式中,电化学电池还包括设置在正电极和负电极之间的化学屏障层;电化学电池还包括设置在正电极和负电极之间的第二电解质,其中化学屏障层防止第一电解质和第二电解质的混合。
[0055] 在实施方式中,例如高机械强度层的偏移对准不提供在正电极和负电极之间的直接线性路径。在实施方式中,例如偏移对准防止通过在正电极或负电极上制造缺陷、外部物体或形成枝状晶体而经由正电极和负电极之间的电接触的短路。这个方面的实施方式例如对最小化或防止由枝状晶体的形成产生的从正电极到负电极的电短路或热逸散问题是有益的。这个方面的实施方式例如对提供能够增强循环和/或高放电率性能的电化学电池是有益的。
[0056] 在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层、第四高机械强度层、低离子电阻层、框架层、隔板、化学屏障层中的至少一个或这些的任何组合通过经由压力、加热、粘合剂涂覆、化学附着、等离子体处理或通过将一层沉积或涂覆在另一层上或电极上或这些的任何组合而至少部分地连接到正电极或负电极。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层、第四高机械强度层、低离子电阻层、框架层、隔板、化学屏障层中的至少一个或这些的任何组合通过经由胶水、环氧树脂、粘固剂、特氟隆涂层、固体电解质、凝胶电解质或聚合物电解质而至少部分地连接到正电极或负电极。在实施方式中,例如第一高机械强度层、第二高机械强度层、第三高机械强度层、第四高机械强度层、低离子电阻层、框架层、隔板、化学屏障层中的至少一个或这些的任何组合包括沉积在正电极或负电极的表面上的涂层。
[0057] 在实施方式中,例如本发明提供合并具有至少300次循环且优选地对于一些应用至少500次循环的循环容量的当前分隔物系统的电化学电池。在实施方式中,例如本发明-1提供合并具有在等于或大于C/5的放电率下等于或大于100mAh g 的比容量的当前分隔物系统的电化学电池。在实施方式中,例如本发明提供电化学电池。
[0058] 本发明的电化学电池和分隔物系统与各种电解质——包括液体电解质、固体电解质、凝胶电解质、非质子电解质、含水电解质和非水电解质——相容。在实施方式中,例如电解质包括固体带电介质或凝胶电极。在实施方式中,例如电解质包括聚合介质。在实施方式中,例如电解质包括聚氧化乙烯、聚四氟乙烯、聚偏二氟乙烯、含氟共聚物、聚丙烯腈和其任何组合。
[0059] 在实施方式中,例如电解质包括至少部分地溶解在一种或多种非水溶剂中的碱金属盐。在实施方式中,例如电解质包括溶剂和支持盐;其中溶剂选自由有机碳酸盐、醚、酯、甲酸盐、内酯、砜、环丁砜、1,3-二氧戊环、碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸丁烯酯、碳酸亚乙烯酯、氟代碳酸乙烯酯、氟代碳酸丙烯酯、y-丁内酯、二氟乙酸甲酯、二氟乙酸乙酯、二甲氧基乙烷、二甘醇二甲醚(双(2-甲氧基乙基)醚)、四氢呋喃、二氧戊环、2MeTHF、1,2-DME或高级甘醇二甲醚、环丁砜、甲酸甲酯、乙酸甲酯和其任何组合组成的组;且其中支持盐选自由LiPF6、LiBF4、LiAsF6、LiClO4、LiSO3CF3、LiN(CF3SO2)2、LiN(SO2C2F5)2和其任何组合组成的组。在实施方式中,例如电解质包括选自由PVdF、PVdF—HFP共聚物、PAN和PEO及其混合物组成的组的高尔夫剂(golfing agent);选自由EC、PC、DEC、DMC、EMC、THE、2MeTHF、1,2-DME及其混合物组成的组的增塑剂;以及选自由LiPF6、LiBF4、LiAsF6、LiClO4、LiSO3CF3、LiN(CF3SO2)2和LiN(SO2C2F5)2组成的组的Li盐。
[0060] 在一个方面中,本发明提供了具有在包括正电极的电池的第一侧上的第一电解质和在包括负电极的电池的第二侧上的第二电解质的电化学电池,其中第一电解质具有与第二电解质不同的组成,且其中电化学电池还包括一个或多个化学屏障层,其包括定位在正电极和负电极之间的离子传导保护膜。在这个方面的实施方式中,第一电解质是含水电解质,而第二电解质是非质子电解质。在这个方面的实施方式中,第一电解质和第二电解质中的至少一种是固体电解质。
[0061] 本发明的电化学电池和分隔物系统与具有各种组成、形状因子和设备几何结构的电极相容。在实施方式中,例如负电极、正电极或两者包括微米尺寸材料或纳米尺寸材料。如本文所使用的,纳米尺寸指具有在1nm到1000nm的范围上选择的至少一个物理尺寸(例如,长度、高度、宽度、直径等)的结构例如微粒或薄膜。如本文所使用的,微米尺寸指具有在
1μm到1000μm的范围上选择的至少一个物理尺寸(例如,长度、高度、宽度、直径等)的结构例如微粒或薄膜。在实施方式中,例如负电极或正电极是以粉末的形式,例如活性电极微粒和导电微粒的混合物。在实施方式中,例如负电极或正电极是以薄膜的形式。在实施方式中,例如本发明提供电化学电池,其中正电极或负电极中的至少一个是以溶剂化金属例如溶剂化锂或溶剂化锂合金的形式。实施方式中,例如本发明提供了电化学电池,其中正电极或负电极中的至少一个是以熔融金属的形式。
[0062] 在实施方式中,例如本发明提供电化学电池,其中负电极包括选自由锂、锌、、硅、、锑、铅、锗、镁、镉、铋、铟、钼、铌、钨、钽、、镍、锰、、过渡金属磷酸钠、混合金属磷酸钠、Li4/3Ti5/3O4、石墨、锡的合金、钴、碳、LiVO2、Li4Ti5O12、Li4/3Ti5/3O4、TiO2、WO2和MoO2组成的组的材料。实施方式中,例如本发明提供电化学电池,其中正电极包括选自由石墨、LiCoO_2NiO_8O2、LiNiO2、LiFePO4、LiMnPO4、LiCoPO4、LiMn2O4、LiCoO2、LiNiO_5Mn l.5O4、LiVPO4F、氧化、氧化镍、氧化钴、氧化锰、AgO、Ag2O3、Zn、ZnO AgO、Ag2O、Ag2O3、HgO、Hg2O、CuO、CdO、NiOOH、Pb2O4、PbO2、LiFePO4、Li3V2(PO4)3、V6O13、V2O5、Fe3O4、Fe2O3、MnO2、LiCoO2、LiNiO2、LiMn2O4、LiVO2、Li4Ti5O12、TiO2、WO2和MoO2组成的组的材料。实施方式中,例如本发明提供电化学电池,其中正电极包括选自由下列项组成的组的材料:(i)选自由LixCoO2、LixNiO2、LixMn2O4和LiFePO4组成的组的基于锂化的金属氧化物的阴极;(ii)选自由AgxV2O5、CuxV2O5、V2O5、V6O13、MnO2、CuO、Ag2CrO4和MoO3组成的组的基于未锂化的金属氧化物的阴极,其中x的范围从0到2;(iii)选自由FeS2、TiS2、FeS和CuS组成的组的基于锂化的金属氧化物的阴极;(iv)选自由元素硫、聚硫化物及其组合组成的组的活性硫阴极;以及(v)PEO/碳/金属氧化物型阴极结构,其包括选自由气态、液态和固态氧化剂及其组合例如过氧化物、过氧化氢、O2、SO2和NO2组成的组的含水电化学活性组分例如水或水溶性氧化剂,且水溶性固体氧化剂选自由NaNO2、KNO2、Na2SO3和K2SO3组成的组,其中阴极结构导电组分是多孔催化载体例如镍,且其中所述阴极结构电化学活性材料包括空气。
[0063] 本发明的电化学电池包括一次电化学电池和二次电化学电池。在实施方式中,例如本发明提供包括锂电池、碱性电池、锌电池、铅酸电池、锂金属-空气电池、锂离子电池、锂-空气电池、Fe-空气电池、Al-空气电池或锌-空气电池的电化学电池。在实施方式中,例如本发明提供包括燃料电池、液流电池系统、半固体电池、3D电池、纳米电池、微电池或电化学电容器的电化学电池。在实施方式中,例如本发明提供包括薄膜电池的电化学电池。在实施方式中,例如本发明提供作为碱金属离子电池的电化学电池。
[0064] 在实施方式中,例如本发明提供包括一个或多个电化学电池例如一个或多个锂离子电化学电池的电池组。如本领域中的技术人员将理解的,本文描述的分隔物系统和电化学电池中的任一个可用于本发明的碱金属燃料电池。
[0065] 在一个方面中,本发明提供碱金属燃料电池,其包括:(i)可再生阳极,其包括固体碱金属和溶解在溶剂中作为燃料的碱金属;(ii)阴极结构,其包括静态导电组分(static electronically conductive component)、包括碱金属的离子的电解质的离子传导组分和从电池的操作环境获得的流体氧化剂;以及(iii)设置在阳极和阴极结构之间的本发明的分隔物系统。如本领域的技术人员将理解的,本文描述的任何分隔物系统可用于本发明的碱金属燃料电池。
[0066] 在一个方面中,本发明提供制造电化学电池的方法,该方法包括下列步骤:(i)提供负电极;(ii)提供正电极;(iii)提供在正电极和负电极之间的电解质;以及(iv)提供位于正电极和负电极之间的分隔物系统,其中分隔物系统包括(i)第一高机械强度层,其具有完全穿过第一高机械强度层延伸并以第一图案设置的多个孔;以及(ii)第二高机械强度层,其具有完全穿过第二高机械强度层延伸并以第二图案设置的多个孔;第二图案具有相对于第一图案的偏移对准,使得第一高机械强度层的孔和第二高机械强度层的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴的重叠小于或等于20%;其中第一高机械强度层和第二高机械强度层定位成使得设置成与第一高机械强度层和第二高机械强度层接触的电解质的离子能够通过第一高机械强度层和第二高机械强度层转移。在实施方式中,分隔物系统与电解质至少部分地物理接触。在实施方式中,该方法还包括在正电极和负电极之间设置离子传导化学屏障;其中离子传导化学屏障将与正电极接触的第一电解质和与负电极接触的第二电解质分隔;其中第一电解质具有与第二电解质不同的组成;且其中离子传导化学屏障防止第一电解质和第二电解质的混合。如本领域中的技术人员将通常理解的,当前分隔物系统和本发明的系统中的任一个——包括所有特定的实施方式和本文描述的部件、材料和特性的组合——可在制造电化学电池的当前方法中被使用。
[0067] 在一个方面中,本发明提供产生电流的方法,该方法包括下列步骤:(i)提供电化学电池,其中电化学电池包括:(1)第一高机械强度层,其具有完全穿过第一高机械强度层延伸并以第一图案设置的多个孔;以及(2)第二高机械强度层,其具有完全穿过第二高机械强度层延伸并以第二图案设置的多个孔;第二图案具有相对于第一图案的偏移对准,使得第一高机械强度层的孔和第二高机械强度层的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴的重叠小于或等于20%;其中第一高机械强度层和第二高机械强度层定位成使得设置成与第一高机械强度层和第二高机械强度层接触的电解质的离子能够通过第一高机械强度层和第二高机械强度层转移;以及(ii)使电化学电池放电。在实施方式中,这个方面的方法还包括给电化学电池充电的步骤。在实施方式中,这个方面的方法还包括使电化学电池在多个充电和放电循环中循环的步骤。如本领域的技术人员将通常理解的,当前分隔物系统和本发明的系统中的任一个——包括所有特定的实施方式和本文描述的部件、材料和特性的组合——可在产生电流的当前方法中被使用。
[0068] 不希望被任何特定的理论束缚,在本文可能有与本发明有关的基本原理或机制的信念或理解的讨论。应认识到,不考虑任何解释或假设的最终正确性,本发明的实施方式可仍然是有效和有用的。
[0069] 附图的简要说明
[0070] 图1提供用于电化学系统的多层分隔物系统的侧透视图,多层分隔物系统包括具有孔的互补图案的平行的第一高机械强度层和第二高机械强度层,其中孔的第二图案具有相对于第一图案的偏移对准,使得第一图案的孔和第二图案的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴没有重叠。
[0071] 图2提供用于电化学系统的多层分隔物系统的侧透视图,多层分隔物系统包括具有孔的互补图案的平行的第一高机械强度层和第二高机械强度层,其中孔的第二图案具有相对于第一图案的偏移对准,使得第一图案的孔和第二图案的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴存在选定程度的重叠,例如选定程度的重叠最小化或避免穿过分隔物系统的枝状晶体生长。
[0072] 图3提供示出具有由含电解质层分隔的第一图案化高机械强度层和第二图案化高机械强度层的本发明的多层分隔物系统的横截面图的示意图。
[0073] 图4提供示出具有由含电解质层分隔的第一图案化高机械强度层、第二图案化高机械强度层和第三图案化高机械强度层的本发明的多层分隔物系统的横截面图的示意图。
[0074] 图5提供示出本发明的多层分隔物系统的横截面图的示意图,其示出由含电解质层分隔的第一图案化高机械强度层和第二图案化高机械强度层的孔和实心区域的方位。
[0075] 图6提供示出本发明的多层分隔物系统的横截面图的示意图,其示出由含电解质层分隔的第一图案化高机械强度层、第二图案化高机械强度层和第三图案化高机械强度层的孔和实心区域的方位。
[0076] 图7提供了提供本发明的锂电池的横截面图的示意图,锂电池包括带有具有孔的互补图案的两个图案化高机械强度层的分隔物系统。
[0077] 图8提供了提供本发明的锂电池的横截面图的示意图,锂电池包括带有具有孔的互补图案的四个图案化高机械强度层的分隔物系统。
[0078] 图9提供了提供本发明的电化学电池的横截面图的示意图,电化学电池包括带有具有孔的互补图案的三个图案化高机械强度层的分隔物系统。
[0079] 图10A提供了提供本发明的电化学电池的横截面图的示意图,电化学电池包括锂金属阳极、阴极和包括具有孔的互补图案的三个高机械强度层、两个低离子电阻层、两个含电解质孔隙和框架部件的分隔物系统。
[0080] 图10B提供了提供电化学电池(例如,对锂-空气、锂-水电池有用)的横截面图的示意图,电化学电池具有带有保护性固体电解质的分隔物,其中固体电解质传导期望的离+子(例如Li),但不可渗透水、空气、CO2、污染物和使电化学电池的性能恶化的材料。
[0081] 图10C提供了提供电化学电池(例如,对锂-空气、锂-水电池有用)的横截面图的示意图,电化学电池具有带有保护性固体电解质的分隔物,其中固体电解质传导期望的离+子(例如Li),但不可渗透水、空气、CO2、污染物和使电化学电池的性能恶化的材料。
[0082] 图10D提供了提供电化学电池(例如,对锂-硫电池有用)的横截面图的示意图,电化学电池具有带有保护性固体电解质的分隔物,其中固体电解质传导期望的离子(例如+Li),但对使电化学电池的性能恶化的在阴极和阳极之间的微粒通过是不可渗透的。
[0083] 图10E提供了提供具有分隔物的电化学电池的横截面图的示意图,其中紧邻阳极的分隔物的导电侧减小阳极损耗;例如通过阻止枝状晶体生长,在循环时减少例如在苔状沉积中的阳极损耗并阻止阴极材料到阳极的通过,这中断阳极微粒和电流收集器之间的电接触并使电化学电池的性能恶化。
[0084] 图10F提供了提供具有分隔物的电化学电池的横截面图的示意图,其中穿孔分隔物板和多孔层通过提供电极之间的电绝缘,然而经由流体电解质(含水或非质子的)提供电极之间的离子连接而充当分隔物。
[0085] 图10G提供了提供具有分隔物的电化学电池的横截面图的示意图,其中两个高机械强度层的形状记忆效应导致分隔物和电极之间的非常好的机械接触。
[0086] 图10H提供了提供具有分隔物的电化学电池的横截面图的示意图,其中两个高机械强度层的超弹性和/或形状记忆效应导致分隔物和电极之间的非常好的机械接触。
[0087] 图10I提供了提供具有分隔物的电化学电池的横截面图的示意图,其中两个高机械强度层的超弹性和/或形状记忆效应导致分隔物和电极之间的非常好的机械接触。
[0088] 图10J提供了提供具有分隔物的电化学电池的横截面图的示意图,其中在循环时分隔物的导电侧减少例如在硅的大变形中的阳极损耗,这中断阳极微粒和电流收集器之间的电接触并使电化学电池的性能恶化。
[0089] 图10K提供了提供具有分隔物的电化学电池的横截面图的示意图,其中在循环时靠近阳极的分隔物的导电侧减少例如在硅的大变形中的阳极损耗,这中断阳极微粒和电流收集器之间的电接触并使电化学电池的性能恶化。
[0090] 图11A和图11B提供本发明的一些分隔物系统的多孔图案化层的设计的例子。
[0091] 图12提供包括本发明的分隔物系统的电化学电池的横截面图的示意图。
[0092] 图13提供示出本发明的电化学系统中的枝状晶体生长的可能轨迹的示意图。
[0093] 图14(面板A-M)提供在本发明的分隔物系统的图案化高机械强度层中有用的孔的互补图案的例子。
[0094] 图15提供电化学电池的充电和放电容量(mAh/g)随循环的数量而变化的曲线图,电化学电池具有:(A)具有125微米的总厚度的本发明的多层分隔物系统,以及(B)具有25微米的厚度的Celgard分隔物。
[0095] 图16提供与具有常规分隔物的电化学电池(B,线2和3)比较的、具有本发明的多层分隔物系统、锂金属阳极和LiCoO2阴极的电化学电池(A,线1、5和6)的充电和放电容量(mAh/g)随循环的数量而变化的曲线图。
[0096] 图17提供与示出被制造有在两个Celgard层之间的穿孔Kapton的参考电极的(线F和D)和具有25微米的厚度的Celgard分隔物(线H和I)比较的、具有本发明的多层分隔物系统、锂金属阳极和LiCoO2阴极的电化学电池(线A、B和C)的充电和放电容量(mAh/g)随循环的数量而变化的曲线图。
[0097] 图18提供了示出具有多层分隔物的本发明的电化学电池的示意图,多层分隔物包括具有孔的互补图案的三个高机械强度层。
[0098] 图19提供示出穿过图18所示的多层分隔物的Li+离子的轨迹的示意图。
[0099] 图20提供从两个对称的(5/9)”锂芯片剥离的静电锂的电池电压(V相对于Li)相对于循环时间(h)的曲线图。
[0100] 图21提供电流[毫安培]相对于时间[h]以及电压[v]相对于时间[h]的曲线图。
[0101] 图22提供在制造有Li金属、LiFePO4阴极的CR2032电池中的电流[A](在顶部上)和电压[v](在底部上)随时间[s]而变化的曲线图。
[0102] 图23和图24提供在一些实施方式的分隔物系统中有用的穿孔层的照片。
[0103] 图25、图26、图27、图28、图29和图30提供在一些实施方式的分隔物系统中有用的穿孔层的照片。
[0104] 详细描述
[0105] 通常,本文使用的术语和短语具有其领域公认的意义,其可通过参考本领域中的技术人员已知的标准文本、期刊参考文献和上下文来找到。下面的定义被提供以阐明其在本发明的上下文中的特定使用。
[0106] 参考附图,相同的数字指示相同的元件,且在多于一个附图中出现的相同的数字指相同的元件。此外,在下文中,下面的定义适用:
[0107] 术语“电化学电池”指将化学能转换成电能或将电能转换成化学能的设备和/或设备部件。电化学电池具有两个或更多个电极(例如,正电极和负电极)和电解质,其中出现在电极表面处的电极反应导致电荷转移过程。电化学电池包括但不限于一次电池、二次电池和电解系统。在某些实施方式中,术语电化学电池包括燃料电池、超电容器、电容器、液流电池、金属-空气电池和半固体电池。一般电池和/或电池组结构在本领域中是已知的,见例如美国专利号6,489,055、4,052,539、6,306,540,Seel和Dahn J.Electrochem.Soc.147(3)892-898(2000)。
[0108] 术语“容量”是电化学电池的特征,其指电化学电池例如电池组能够保持的电荷的总量。容量一般以安培-小时的单位表示。术语“比容量”指电化学电池例如电池组每单-1位重量的容量输出。比容量一般以安培-小时kg 的单位表示。
[0109] 术语“放电率”指电化学电池被放电时的电流。放电率可以以安培的单位表示。可选地,放电率可被归一化为电化学电池的额定容量,并被表示为C/(X t),其中C是电化学电池的容量,X是变量,且t是等于1小时的如本文使用的规定的时间单位。
[0110] “电流密度”指每单位电极面积流动的电流。
[0111] 电极指电导体,其中离子和电子与电解质和外部电路交换。“正电极”和“阴极”在本描述中被同义地使用,并指具有在电化学电池中的较高电极电势(即,比负电极高)的电极。“负电极”和“阳极”在本描述中被同义地使用,并指具有在电化学电池中的较低电极电势(即,比正电极低)的电极。阴极还原指化学物质的电子的获得,而阳极氧化指化学物质的电子的损失。当前电化学电池的正电极和负电极还可包括导电稀释剂,例如乙炔黑炭黑、粉状石墨、焦炭碳纤维石墨烯金属粉末,和/或还可包括粘结剂,例如聚合物粘结剂。在一些实施方式中用于正电极的有用的粘结剂包括含氟聚合物,例如聚偏二氟乙烯(PVDF)。本发明的正电极和负电极可以如在电化学和电池科学的领域中已知的各种有用的配置和形状因子——包括薄电极设计例如薄膜电极配置——被提供。电极如在本文公开的和如在本领域中已知的被制造,包括如在例如美国专利号4,052,539、6,306,540和6,852,446中公开的。对于一些实施方式,一般通过将电极材料、导电惰性材料、粘结剂和液体载体的浆料沉积在电极电流收集器上并接着使载体蒸发以留下与电流收集器电接触的附着物来制造电极。
[0112] “电极电势”指由于在不同的氧化(化合价)状态下在化学物质的电极内的存在或与化学物质的电极接触而通常对照参考电极测量的电压。
[0113] “电解质”指可以以固体状态、液体状态(最常见)或更罕见地气体(例如,等离子体)的离子导体。
[0114] “标准电极电势”(E°)指当溶质的浓度为1M、气体压力是1atm且温度是25摄氏度时的电极电势。如本文所使用的,标准电极电势相对于标准氢电极被测量。
[0115] “活性材料”指参与电化学反应的电极中的材料,电化学反应存储和/或输送电化学电池中的能量。
[0116] “阳离子”指带正电的离子,而“阴离子”指带负电的离子。
[0117] “电接触”和“电连通”指一个或多个物体的布置,使得电流有效地从一个物体流到另一物体。例如,在一些实施方式中,具有小于100Ω的在它们之间的电阻的两个物体被考虑为彼此电连通。电接触也可以指用于建立与外部设备或电路电连通例如电连接的设备或物体的部件。“电连通”也指两种或更多种材料和/或结构能够例如以电子的转移的形式在它们之间转移电荷的能力。在一些实施方式中,电连通中的部件处于直接电连通中,其中电信号或电荷载体从一个部件直接传输到另一部件。在一些实施方式中,在电连通中的部件处于间接电连通中,其中电信号或电荷载体从一个部件经由一个或多个中间结构例如分隔部件的电路元件间接地传输到另一部件。
[0118] “热接触”和“热连通”被同义地使用,且指元件或材料例如电流收集器或传热棒和散热器或热源的方位或位置,使得相比于如果这两个元件被热隔离或热绝缘,在这两个元件之间有更有效的热传递。相比于如果元件或材料被热隔离或热绝缘,如果热在它们之间传输得快得多,则元件或材料可被认为处于热连通或接触中。处于热连通或接触的两个元件可达到热平衡或热稳定状态,且在一些实施方式中可被认为不变地处于与彼此的热平衡或热稳定状态下。在一些实施方式中,彼此处于热连通的元件由热传导材料或中间热传导材料或设备部件彼此分隔。在一些实施方式中,彼此处于热连通的元件分隔开1μm或更小的距离。在一些实施方式中,彼此处于热连通的元件设置成物理接触。
[0119] “高机械强度”指本发明的分隔物系统的部件的特性,例如第一高机械强度层、第二高机械强度层、第三高机械强度层和第四高机械强度层具有足以防止例如在二次电化学电池的充电和放电循环期间在电化学电池的正电极和负电极之间的枝状晶体生长的机械强度。在实施方式中,例如由于电极之间的枝状晶体的生长,高机械强度层具有足以防止刺穿的机械强度。在实施方式中,例如由于电极之间的枝状晶体的生长,高机械强度层具有足以防止电化学电池的正电极和负电极之间的短路的机械强度。在实施方式中,例如高机械强度层以大于或等于500MPa的杨氏模量、和可选地对于一些应用大于或等于1GPa的杨氏模量、和可选地对于一些应用大于或等于10GPa的杨氏模量、和可选地对于一些应用大于或等于100GPa的杨氏模量为特征。在实施方式中,例如高机械强度层以大于或等于5MPa的屈服强度、和可选地对于一些应用大于或等于50MPa的屈服强度、和可选地对于一些应用大于或等于100MPa的屈服强度、和可选地对于一些应用大于或等于500MPa的屈服强度为特征。在实施方式中,例如高机械强度层以大于或等于0.005N的传播撕裂强度、和可选地对于一些应用大于或等于0.05N的传播撕裂强度、大于或等于0.5N的传播撕裂强度、大于或等于1N的传播撕裂强度为特征。在实施方式中,例如高机械强度层以大于或等于10N的引发撕裂强度、和可选地对于一些应用大于或等于100N的引发撕裂强度为特征。在实施方式中,例如高机械强度层以大于或等于50MPa的抗拉强度、和可选地对于一些应用大于或等于100MPa的抗拉强度、和可选地对于一些应用大于或等于500MPa的抗拉强度、和可选地对于一些应用大于或等于1GPa的抗拉强度为特征。在实施方式中,例如高机械强度层以大于或等于10N cm的冲击强度、和可选地对于一些应用大于或等于50N cm的冲击强度、和可选地对于一些应用大于或等于100N cm的冲击强度、和可选地对于一些应用大于或等于500N cm的冲击强度为特征。
[0120] “化学上抗性的”指本发明的分隔物和电化学系统的部件例如层的特性,其中拉伸保留率和伸长保留率在电化学系统例如电化学电池的工作环境中为至少90%。
[0121] “热稳定的”指本发明的分隔物和电化学系统的部件例如层的特性,其中熔点大于100摄氏度,且优选地对于一些实施方式大于300摄氏度,以及可选地热膨胀系数小于50ppm/摄氏度。在实施方式中,热稳定指分隔物系统的部件的特性,使得它可在可再充电的电化学电池中执行,而在明显降低电化学电池的性能的温度下不经历尺寸或形状变化。
[0122] “孔隙率”指相应于微孔例如孔、通道、孔隙等的材料或部件例如高机械强度层的量。孔隙率可被表示为相应于微孔例如孔、通道、孔隙等的材料、结构或设备部件例如高机械强度层的体积相对于材料、结构或设备部件所占据的总体积的百分比。
[0123] 图1提供用于电化学系统的多层分隔物系统100(1)的侧透视图,多层分隔物系统100(1)包括具有孔的互补图案的平行的第一高机械强度层和第二高机械强度层,其中孔的第二图案具有相对于第一图案的偏移对准,使得第一图案的孔和第二图案的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴没有重叠。如图1所示,分隔物系统100(1)包括:第一高机械强度层102(1),其具有包括多个孔例如104(1)和104(4)的第一图案;以及第二高机械强度层102(2),其具有包括第二多个孔例如104(2)和104(3)的第二图案。第一层和第二层以平面几何结构和横向尺寸例如高度H、长度L和宽度或厚度W为特征。如图1所示,孔104完全穿过第一高机械强度层102(1)或第二高机械强度层102(2)的厚度延伸。每个孔104还以横向尺寸例如高度h、长度l和宽度或厚度(未示出)为特征。
[0124] 第一高机械强度层102(1)的图案到第二高机械强度层102(2)的叠加被示意性地示为在第二高机械强度层102(2)上的多个偏移虚线区域106(1),而第二高机械强度层102(2)的图案到第一高机械强度层102(1)的叠加被示意性地示为在第一高机械强度层
102(1)上的多个偏移虚线区域106(2)。在图1所示的实施方式中,第一图案和第二图案类似于棋盘图案,例如其中第一图案相应于黑方格而第二图案相应于棋盘的红方格。然而如对本领域中的技术人员明显的,其它图案例如蜂巢状图案、密集的圆图案、砖图案、三角形图案以及类似图案也是可能的,只要第一图案和第二图案具有相对于彼此的偏移对准,例如使得孔104沿着从第一高机械强度层102(1)垂直地延伸到第二高机械强度层102(2)的轴的重叠小于或等于50%、40%、30%、20%、10%、5%、2%或0%。在图1所示的实施方式中,第一图案的孔和第二图案的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴没有重叠。图1所示的箭头108(1)和108(2)被提供,以便示出沿着从第一高机械强度层102(1)垂直地延伸到第二高机械强度层102(2)的轴不重叠的孔的区域。第一高机械强度层的孔的第一图案和第二高机械强度层的孔的第二图案的偏移对准例如通过机械地阻止枝状晶体生长和/或需要涉及在热力学上和/或动力学上不利的弯曲轨迹的通路来防止穿过第一高机械强度层和第二高机械强度层的组合的枝状晶体生长。例如,枝状晶体可只穿过第二高机械强度层102(2)的孔104(3),如箭头A所示,因为它在点110(1)处被第一高机械强度层102(1)物理地阻挡。类似地,枝状晶体可只穿过第一高机械强度层
102(1)的孔104(4),如箭头B所示,因为它在点110(2)处被第二高机械强度层102(2)物理地阻挡。
[0125] 图2提供用于电化学系统的多层分隔物系统100(2)的侧透视图,多层分隔物系统100(2)包括具有孔的互补图案的平行的第一高机械强度层和第二高机械强度层,其中孔的第二图案具有相对于第一图案的偏移对准,使得第一图案的孔和第二图案的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴存在选定程度的重叠。如图2所示,分隔物系统100(2)包括:第一高机械强度层102(3),其具有包括多个孔例如104(5)和104(9)的第一图案;以及第二高机械强度层102(4),其具有包括第二多个孔例如104(6)、104(7)和104(8)的第二图案。第一高机械强度层和第二高机械强度层102以横向尺寸例如高度H、长度L和宽度或厚度W为特征。如图1所示,孔104完全穿过第一高机械强度层102(3)或第二高机械强度层102(4)的厚度延伸。每个孔104还以横向尺寸例如高度h、长度l和宽度或厚度(未示出)为特征。
[0126] 第一高机械强度层102(3)的第一图案到第二高机械强度层102(4)的叠加被示意性地示为在第二高机械强度层102(4)上的多个虚线区域106(3),而第二高机械强度层102(4)的第二图案到第一高机械强度层102(3)的叠加被示意性地示为在第一层102(3)上的多个虚线区域106(4)。在图2所示的实施方式中,第一图案和第二图案具有相对于彼此的偏移对准,使得孔104沿着从第一高机械强度层102(3)垂直地延伸到第二高机械强度层102(4)的轴具有选定重叠。在实施方式中,例如选定重叠小于或等于50%、40%、30%、20%、10%、5%或2%。在图2所示的实施方式中,第一图案的孔和第二图案的孔沿着从第一高机械强度层垂直地延伸到第二高机械强度层的轴的重叠大于零。图2所示的箭头被提供,以便示出孔的重叠区域112和沿着从第一高机械强度层102(3)垂直地延伸到第二高机械强度层102(4)的轴不重叠的孔的区域。第一高机械强度层的孔的图案和第二高机械强度层的孔的图案的偏移对准例如通过阻止枝状晶体生长和/或需要涉及在热力学上和/或动力学上不利的弯曲轨迹的通路来防止穿过第一高机械强度层和第二高机械强度层的组合的枝状晶体生长。
[0127] 可通过下面的非限制性实施例来进一步理解本发明。
[0128] 实施例1:用于电化学和化学系统例如用于电池组如用于可再充电锂电池且特别是防止Li金属电池中的枝状晶体短路的新颖分隔物
[0129] 图3提供示出具有第一高机械强度层和第二高机械强度层(层R和F)的本发明的多层分隔物系统的横截面图的示意图,第一高机械强度层和第二高机械强度层具有由含电解质层(层M)分隔的孔的互补图案。图4提供示出具有第一高机械强度层、第二高机械强度层和第三高机械强度层(层R和F)的本发明的多层分隔物系统的横截面图的示意图,第一高机械强度层、第二高机械强度层和第三高机械强度层具有由含电解质层(层M)分隔的孔的互补图案。在图3和4中,层(R)和层(F)是具有孔的图案的高机械强度层,孔的图案在被组合地提供时防止穿过分隔物系统的枝状晶体生长,例如当合并到电化学系统例如电化学电池中时。在图3和4中,含电解质层M设置在层F和R之间,且在一些实施方式中,含电解质层M优选地比层F和R厚。在电化学系统中,例如层M充当电解质的储器。在电化学系统中,例如层M充当分隔物,因此,防止正电极和负电极之间的电和/或物理接触同时允许正电极和负电极之间的离子转移,使得电化学电池可经历有效的放电和充电特性。在实施方式中,例如层M是低离子电阻层,例如导电微孔膜。在实施方式中,例如层M是聚乙烯(PE)膜或聚丙烯(PP)膜或两者的组合。
[0130] 在一些实施方式中,高机械强度层F和R起作用来防止电化学电池中的枝状晶体生长,以防止电池的电短路、热逸散和/或机械故障。作为例子,高机械强度层F和R可配置成通过防止在正电极和负电极之间的枝状晶体生长来防止锂金属电池中的短路和容量损失。在一些实施方式中,高机械强度层F和R提供互补屏障,每个屏障具有当与生长的枝状晶体接触时足以防止屏障的刺穿或机械故障的机械强度。
[0131] 在一些实施方式中,高机械强度层F和R设置有穿过层的整个厚度延伸的孔的互补图案。图5提供示出本发明的多层分隔物系统的横截面图的示意图,其示出由一个或多个低离子电阻层例如含电解质层M分隔的第一高机械强度层和第二高机械强度层的孔(被示意性示为虚线区域)和实心区域(被示意性示为填充的区域)。图6提供示出本发明的多层分隔物系统的横截面图的示意图,其示出由一个或多个低离子电阻层例如含电解质层M分隔的第一高机械强度层、第二高机械强度层和第三高机械强度层的孔和实心区域。作为例子,高机械强度层F可以以孔和实心区域的第一预选图案为特征,且高机械强度层R可以以与高机械强度层F的预选图案不同的孔和实心区域的第二预选图案为特征。在实施方式中,例如这两种图案是互补的,使得高机械强度层F和R中的每个具有允许离子和电解质从高机械强度层的任一侧转移的孔(例如,通孔、纳米孔、微孔、通道等),但在多层分隔物系统几何结构中的高机械强度层F和R的对准提供例如沿着从所述高机械强度层R垂直地延伸到高机械强度层F的轴与高机械强度层R的实心区域匹配的高机械强度层F的孔和与高机械强度层R的孔匹配的高机械强度层F的实心区域。在实施方式中,例如高机械强度层F和R的孔相对于彼此偏移,使得当它们组合地例如以平行或同心方向设置时,没有直线可通过这两个层F和R的孔。可例如通过考虑周期性图案例如具有白和黑方格的棋盘来视觉化这种空间布置,其中白方格相应于孔,且其中黑方格相应于高机械强度层的实心区域。在例子中,高机械强度层F可以以一般棋盘的形式,而高机械强度层R可以以反转棋盘、错位棋盘的形式,其中白(相应于孔)在黑方格(层F的实心部分)的位置上,而黑块(相应于实心区域)在白方格(层F的孔)的位置上。这个偏移对准导致至少两个高机械强度层,其中当设置在多层几何结构中时,所有孔被邻近层的实心区域阻挡。
[0132] 在高机械强度层F和R之间放置低离子电阻层M(典型分隔物)提供防止穿过分隔物系统延伸的枝状晶体的不需要的生长的分隔物系统。然而为了最小化分隔物系统对电池的电阻的影响,一些实施方式最小化高机械强度层F和R的厚度同时至少维持提供足以提供阻挡生长的枝状晶体的机械强度所必需的厚度是合乎需要的。
[0133] 在实施方式中,例如高机械强度层F和R非常薄(例如,小于或等于100μm的厚度和可选地对于一些实施方式小于或等于20μm的厚度),且因此可以可选地以在层M的前侧和/或后侧上的一个或多个涂层的形式。为给定的应用选择高机械强度层F和R中的孔的体积分数和表面分数,且对于一些应用,优选地,表面-体积的至少四分之一和可选地一半包括孔和包括不可渗透的实心区域的其余部分。在实施方式中,高机械强度层F和R包括不与电化学电池的其它部件起反应并且是化学上抗性的和热稳定的材料。在实施方式中,高机械强度层F和R包括电绝缘体。
[0134] 在对锂金属电池有用的特定实施方式中,高机械强度层F和R包括聚乙烯膜或聚丙烯膜或特氟隆或这些材料的混合物,其具有允许离子和电解质通过但防止电流直接在电化学电池的正电极和负电极之间通过的互补图案。在实施方式中,例如低离子电阻层M是多孔聚乙烯膜或多孔聚丙烯膜或这些的混合物。在实施方式中,低离子电阻层M具有选自10-200微米的范围、优选地对于一些应用等于80-120微米的厚度,且高机械强度层F和R各自独立地具有选自5-200微米的范围、优选地对于一些应用等于10-30微米的厚度。在实施方式中,高机械强度层L和M具有孔和实心区域的互补周期性图案,其中单元电池的表征孔和/或实心区域的一个或多个横向尺寸例如在1微米和1毫米、优选地对于一些应用
10-30微米的范围上选择。与层M的平均孔尺寸的10倍一样小的孔的单元电池的横向尺寸的较小尺寸对一些实施方式是优选的;但承认关于制造可以有大孔的实际优点,所以在孔的物理尺寸的选择中可以有折衷。
[0135] 如对本领域中的技术人员明显的,分隔物系统的部件的组成、物理尺寸(例如,厚度)和机械特性(例如,孔隙率)可取决于电化学或化学电池和/或应用的类型。在实施方式中,例如用于铅酸电池的分隔物系统可使用具有比用于锂金属电池的分隔物系统中的更大的孔尺寸的更厚的高机械强度层。
[0136] 除了图3和5中所示的所述R-M-F和F-M-R-M-F系统以外,其它分隔物几何结构对一些应用也是有用的。作为例子,本发明包括具有3、4、5、6、7、8个高机械强度层等的多层系统,这些高机械强度层具有被选择成防止枝状晶体生长的孔的图案。例如相应于图4和6所示的F-M-R-M-F系统的具有多于两个高机械强度层的多层系统对一些应用是优选的,因为它们可配置成有效地防止枝状晶体从正电极到负电极的生长,且然而对电池的增加的电阻可仍然维持足够低以提供有用的放电和充电性能。
[0137] 作为例子,本发明的高能可再充电锂电池包括:(1)包括锂金属或锂合金、或锂金属和/或锂合金和另一材料的混合物的阳极;(2)阴极;(3)布置在阳极和阴极之间的本发明的分隔物系统;以及(4)经由分隔物与阳极和阴极处于离子连通、可选地物理接触的一种或多种电解质。在实施方式中,例如电解质是固体、凝胶或液体(例如流体)。在一些实施方式中,电极是固体材料或半固体微粒(例如液体中的小固体微粒),例如在半固体电池中或在液流电池组中或在液流电池中使用的东西。分隔物系统的横截面几何形状可以是包括矩形、圆形、正方形等的各种形状。
[0138] 图7提供了提供本发明的锂电池的横截面图的示意图,锂电池包括带有具有孔的互补图案的两个高机械强度层的分隔物系统。电化学电池包括由包括电解质储器的多层分隔物系统分隔的阳极(例如,锂金属)和阴极。多层分隔物包括由低离子电阻层例如含电解质分隔物和/或隔板分隔的、具有孔的互补图案的两个高机械强度层。此外,非常多孔的介质设置在高机械强度层与阳极和阴极部件之间。如图7所示,高机械强度层具有包括交替的孔和实心区域的图案(例如,在图7中,填充的区域相应于高机械强度层的实心区域,而虚线区域相应于穿过高机械强度层延伸的孔)。在所示实施方式中,高机械强度层具有能够防止阴极和阳极之间的枝状晶体的生长的孔的互补图案,其中第一高机械强度层的开口区域(例如,孔)相应于沿着从层垂直延伸的轴的第二高机械强度层的实心区域,如图7所示。
[0139] 图8-10提供了示出本发明的额外的设备配置和设备部件的锂电池的其它实施方式的例子。图8提供了提供本发明的锂电池的横截面图的示意图,锂电池包括带有具有孔的互补图案的四个高机械强度层的分隔物系统。在图8所示的设备中,高机械强度层R设置成与阳极直接物理接触,且高机械强度层L设置成与阴极直接物理接触。在图8所示的实施方式中,两个层R具有孔的相同图案,且两个层F具有孔的相同图案。层R和F中的图案共同包括消除沿着从阴极垂直延伸到阳极的轴的在阳极和阴极之间的任何直接线性通路的互补图案,从而防止枝状晶体生长相关的短路。在图8所示的实施方式中,高机械强度层R设置成与阳极物理接触,以便允许离子穿过层R并与阳极表面相互作用;且高机械强度层F设置成与阴极物理接触,以便允许离子穿过层F并与阴极表面相互作用。
[0140] 图9提供了提供本发明的电化学电池的横截面图的示意图,电化学电池包括带有具有孔的互补图案的三个高机械强度层的分隔物系统。在图9所示的设备中,非常多孔的层(例如,孔隙率≥80%)设置在高机械强度层F和阳极之间,且非常多孔的层(例如,孔隙率≥80%)设置在高机械强度层F和阴极之间。在图9所示的设备中,高机械强度层R具有与高机械强度层F的孔的图案互补的孔的图案,且多孔层(例如,孔隙率≥50%)设置在高机械强度层R和高机械强度层F之间。在实施方式中,例如两个高机械强度层F以孔的相同图案为特征。在图9所示的实施方式中,两个层F具有孔的相同图案。层R和两个层F中的图案共同包括消除沿着从阴极垂直延伸到阳极的轴的在阳极和阴极之间的任何直接线性通路的互补图案,从而防止枝状晶体生长相关的短路。在图9所示的实施方式中,非常多孔的层(例如,孔隙率≥80%)设置成与阳极物理接触,以便允许离子穿过该多孔层并与阳极表面相互作用;且非常多孔的层(例如,孔隙率≥80%)设置成与阴极物理接触,以便允许离子穿过该多孔层并与阴极表面相互作用。
[0141] 图10A提供了提供本发明的电化学电池的横截面图的示意图,电化学电池包括锂金属阳极、阴极和包括具有孔的互补图案的三个高机械强度层、两个低离子电阻层、两个含电解质孔隙和框架部件的分隔物系统。在一些实施方式中,例如框架层提供物理地集成、连接和/或机械地支撑总多层布置的部件的手段。在图10所示的锂电池中,含电解质孔隙设置在阳极和具有孔的图案的第一高机械强度层之间,且含电解质孔隙设置在阴极和具有孔的图案的第二高机械强度层之间。在一些实施方式中,例如在电极和高机械强度层之间的含电解质孔隙的合并对避免减小电极表面积是有用的,以便利用电池的有用的放电和充电特性。在图10所示的设备中,高机械强度层R具有与高机械强度层F的孔图案互补的孔图案,且低离子电阻层(例如,孔隙率≥50%)设置在高机械强度层R和高机械强度层F之间。
[0142] 图10B提供了提供电化学电池(例如,对锂-空气、锂-水电池有用)的横截面图的示意图,电化学电池具有带有保护性固体电解质的分隔物,其中固体电解质传导期望的+离子(例如Li),但不可渗透水、空气、CO2、污染物和使电化学电池的性能恶化的材料。电化学电池包括阳极例如锂阳极;阴极例如碳-水阴极或碳-空气阴极;包括具有孔的互补图案的两个高机械强度层、三个低离子电阻层和固体电解质层例如LISICON层的分隔物系统。在图10B所示的设备中,高机械强度层是还电绝缘的可选地化学上抗性的和热稳定的穿孔层,例如穿孔Kapton层。包括Kapton的互补高机械强度层的使用在一些实施方式中对防止枝状晶体生长是有用的。如图10B所示,第一低离子电阻层例如非常多孔的层(例如,≥80%)设置在阳极和第一高机械强度层之间,且第二低离子电阻层例如非常多孔的层(例如,≥80%)设置在第一高机械强度层和第二高机械强度层之间,且第三低离子电阻层例如非常多孔的层(例如,≥80%)设置在第二高机械强度层和阴极之间。如图10B所示,固体电解质层例如LISICON层设置在第三低离子电阻层和阴极之间,使得离子能够转移到阴极表面。在实施方式中,例如固体电解质层设置成与阴极的表面物理接触。在一些实施方式中,固体电解质层(例如,LISICON层)的合并对保护阴极例如防止与阴极表面和电化学电池的部件例如除了固体电解质以外的电解质组分的不需要的化学反应是有用的。在一些实施方式中,固体电解质层(例如,LISICON层)提供分隔具有第一电解质的电化学电池的第一侧与具有不同于第一电解质的第二电解质的电化学电池的第二侧的化学屏障层。这个方面的实施方式因此可提供用于结合两种分开的电解质的手段,每种电解质特别适合于选定的阳极和阴极组成。
[0143] 图10C提供了提供电化学电池(例如,对锂-空气、锂-水电池有用)的横截面图的示意图,电化学电池具有带有保护性固体电解质的分隔物,其中固体电解质传导期望的离+子(例如Li),但不可渗透水、空气、CO2、污染物和使电化学电池的性能恶化的材料。电化学电池包括锂阳极;阴极例如碳-水阴极或碳-空气阴极;包括具有孔的互补图案的两个高机械强度层、三个低离子电阻层以及固体电解质层例如LISICON层的分隔物系统。图10C中的总电化学电池几何结构类似于图10B所示的总电化学电池几何结构,其中第一低离子电阻层例如非常多孔的层(例如,≥80%)设置在阳极和第一高机械强度层之间,且第二低离子电阻层例如非常多孔的层(例如,≥80%)设置在第一高机械强度层和第二高机械强度层之间,且第三低离子电阻层例如非常多孔的层(例如,≥80%)设置在第二高机械强度层和阴极之间,且其中固体电解质层例如LISICON层设置在第三低离子电阻层和阴极之间,使得离子能够转移到阴极表面。然而在图10C的电化学电池中,高机械强度层是具有在一些实施方式中对防止枝状晶体生长和减少例如在苔状沉积中的阳极损耗有用的孔的互补图案的穿孔金属层。类似于结合图10B的讨论,固体电解质层(例如,LISICON层)的合并对保护阴极例如防止与阴极表面和电化学电池的部件例如除了固体电解质以外的电解质组分的不需要的化学反应是有用的。在一些实施方式中,固体电解质层(例如,LISICON层)提供分隔具有第一电解质的电化学电池的第一侧与具有不同于第一电解质的第二电解质的电化学电池的第二侧的化学屏障层,且因此可提供用于结合两种分开的电解质的手段,每种电解质特别适合于选定的阳极和阴极组成。
[0144] 图10D提供了提供电化学电池(例如,对锂-硫电池有用)的横截面图的示意图,电化学电池具有带有保护性固体电解质的分隔物,其中固体电解质传导期望的离子(例如+Li),但对使电化学电池的性能恶化的在阴极和阳极之间的微粒通过是不可渗透的。电化学电池包括阳极例如锂阳极;阴极例如基于硫的阴极;包括具有孔的互补图案的两个高机械强度层、三个低离子电阻层和固体电解质层例如LISICON层的分隔物系统。图10C中的总电化学电池几何结构类似于图10B和10C所示的总电化学电池几何结构,其中第一低离子电阻层例如非常多孔的层(例如,≥80%)设置在阳极和第一高机械强度层之间,且第二低离子电阻层例如非常多孔的层(例如,≥80%)设置在第一高机械强度层和第二高机械强度层之间,且第三低离子电阻层例如非常多孔的层(例如,≥80%)设置在第二高机械强度层和阴极之间,且其中固体电解质层例如LISICON层设置在第三低离子电阻层和阴极之间,使得离子能够转移到阴极表面。然而在图10D的电化学电池中,高机械强度层是具有孔的互补图案的穿孔金属层,且阴极可选地是基于硫的阴极。在当前分隔物中的高机械强度金属层的合并在一些实施方式中对防止枝状晶体生长、减少例如在苔状沉积中的阳极损耗并阻止阴极微粒到阳极的通过是有用的。类似于结合图10B的讨论,固体电解质层(例如,LISICON层)的合并对保护阴极例如防止与阴极表面和电化学电池的部件例如除了固体电解质以外的电解质组分的不需要的化学反应是有用的。在一些实施方式中,固体电解质层(例如,LISICON层)提供分隔具有第一电解质的电化学电池的第一侧与具有不同于第一电解质的第二电解质的电化学电池的第二侧的化学屏障层,且因此可提供用于结合两种分开的电解质的手段,每种电解质特别适合于选定的阳极和阴极组成。
[0145] 图10E提供了提供具有分隔物的电化学电池的横截面图的示意图,其中紧邻阳极的分隔物的导电侧减小阳极损耗;例如通过阻止枝状晶体生长,在循环时减少例如在苔状沉积中的阳极损耗并阻止阴极材料到阳极的通过,这中断阳极微粒和电流收集器之间的电接触并使电化学电池的性能恶化。例如,紧邻阴极的导电侧增加阴极的导电性,其可导致较长的寿命周期、较高的功率和较厚的阴极和较高能量的阴极和因而较好的电化学电池。电化学电池包括阳极例如锂阳极;阴极例如LiFePO4、LiCoO2阴极;包括具有孔的互补图案的两个高机械强度层、三个低离子电阻层和机械上、化学上和热抗性的离子传导层例如炭黑层的分隔物系统。图10C中的总电化学电池几何结构类似于图10B、10C和10D所示的总电化学电池几何结构,其中第一低离子电阻层例如非常多孔的层(例如,≥80%)设置在阳极和第一高机械强度层之间,且第二低离子电阻层例如非常多孔的层(例如,≥80%)设置在第一高机械强度层和第二高机械强度层之间,且第三低离子电阻层例如非常多孔的层(例如,≥80%)设置在第二高机械强度层和阴极之间。然而在图10D的电化学电池中,第一高机械强度层包括穿孔金属层,而第二高机械强度层包括穿孔电绝缘层例如穿孔Kapton层。在该实施方式中,穿孔金属层和穿孔Kapton层具有孔的互补图案以防止晶体生长。此外,机械上、化学上和热抗性的离子传导炭黑层设置成相邻于阴极且可选地与阴极电接触和/或物理接触。
[0146] 图10F提供了提供具有分隔物的电化学电池的横截面图的示意图,其中穿孔分隔物板和多孔层通过提供电极之间的电绝缘,然而经由流体电解质(含水或非质子的)提供电极之间的离子连接而充当分隔物。电化学电池包括阳极例如硅、Li、Zn、ZnO、石墨或LTO阳极;阴极例如LiFePO4、LiCoO2、硫或Ag阴极;以及包括具有孔的互补图案的两个高机械强度层和三个低离子电阻层的分隔物系统。如图10F所示,第一低离子电阻层例如非常多孔的层(例如,≥80%)设置在阳极和第一高机械强度层之间,且第二低离子电阻层例如非常多孔的层(例如,≥80%)设置在第一高机械强度层和第二高机械强度层之间,且第三低离子电阻层例如非常多孔的层(例如,≥80%)设置在第二高机械强度层和阴极之间。然而在图10F的电化学电池中,第一高机械强度层和第二高机械强度层独立地包括机械上、化学上和热抗性的电绝缘层,例如具有一个或多个绝缘涂层例如PE或PP涂层的穿孔金属层。
[0147] 图10G提供了提供具有分隔物的电化学电池的横截面图的示意图,其中两个高机械强度层的形状记忆效应导致分隔物和电极之间的非常好的机械接触。电化学电池包括阳极例如硅、Li、Zn、ZnO、石墨或LTO阳极;阴极例如LiFePO4、LiCoO2、硫或Ag阴极;以及包括具有孔的互补图案的两个高机械强度层和三个低离子电阻层的分隔物系统。图10G中的总电化学电池几何结构类似于图10F所示的总电化学电池几何结构,其中第一低离子电阻层例如非常多孔的层(例如,≥80%)设置在阳极和第一高机械强度层之间,且第二低离子电阻层例如非常多孔的层(例如,≥80%)设置在第一高机械强度层和第二高机械强度层之间,且第三低离子电阻层例如非常多孔的层(例如,≥80%)设置在第二高机械强度层和阴极之间。然而在图10G的电化学电池中,第一高机械强度层和第二高机械强度层独立地包括展示形状记忆效应的机械上、化学上和热抗性的电绝缘层,例如可选地涂有PE或PP的穿孔Nitnonol层。
[0148] 图10H提供了提供具有分隔物的电化学电池的横截面图的示意图,其中两个高机械强度层的超弹性和/或形状记忆效应导致分隔物和电极之间的非常好的机械接触。例如在这个方面的实施方式中,在固体电解质和阴极之间提供增强的电接触。电化学电池包括阳极例如硅、Li、Zn、ZnO、石墨或LTO阳极;阴极例如LiFePO4、LiCoO2、硫、Ag、碳-空气、碳-水阴极;包括具有孔的互补图案的两个高机械强度层、三个低离子电阻层以及固体电解质层例如LISICON或PEO(聚氧化乙烯)层的分隔物系统。图10H中的总电化学电池几何结构类似于图10B、10C和10D所示的总电化学电池几何结构,其中第一低离子电阻层例如非常多孔的层(例如,≥80%)设置在阳极和第一高机械强度层之间,且第二低离子电阻层例如非常多孔的层(例如,≥80%)设置在第一高机械强度层和第二高机械强度层之间,且第三低离子电阻层例如非常多孔的层(例如,≥80%)设置在第二高机械强度层和阴极之间,且其中固体电解质层例如LISICON或PEO层设置在第三低离子电阻层和阴极之间,使得离子能够转移到阴极表面。然而在图10H的电化学电池中,高机械强度层是具有超弹性或形状记忆效应的机械上、化学上和热抗性的电绝缘层,例如可选地涂有PE或PP的穿孔Nitonol层。类似于结合图10B的讨论,固体电解质层(例如,LISICON或PEO层)的合并对保护阴极例如防止与阴极表面和电化学电池的部件例如除了固体电解质以外的电解质组分的不需要的化学反应是有用的。在一些实施方式中,固体电解质层(例如,LISICON层)提供分隔具有第一电解质的电化学电池的第一侧与具有不同于第一电解质的第二电解质的电化学电池的第二侧的化学屏障层,且因此可提供用于结合两种分开的电解质的手段,每种电解质特别适合于选定的阳极和阴极组成。
[0149] 图10I提供了提供具有分隔物的电化学电池的横截面图的示意图,其中两个高机械强度层的超弹性和/或形状记忆效应导致分隔物和电极之间的非常好的机械接触。例如在这个方面的实施方式中,在固体电解质和阴极之间提供增强的电接触。电化学电池包括阳极例如硅、Li、Zn、ZnO、石墨或LTO阳极;阴极例如LiFePO4、LiCoO2、硫、Ag、碳-空气、碳-水阴极;包括具有孔的互补图案的两个高机械强度层、三个低离子电阻层以及固体电解质层例如LISICON或PEO层的分隔物系统。图10I中的总电化学电池几何结构类似于图10B、10C和10D所示的总电化学电池几何结构,其中第一低离子电阻层例如非常多孔的层(例如,≥80%)设置在阳极和第一高机械强度层之间,且第二低离子电阻层例如非常多孔的层(例如,≥80%)设置在第一高机械强度层和第二高机械强度层之间,且第三低离子电阻层例如非常多孔的层(例如,≥80%)设置在第二高机械强度层和阴极之间,且其中固体电解质层例如LISICON层设置在第三低离子电阻层和阴极之间,使得离子能够转移到阴极表面。
然而在图10I的电化学电池中,高机械强度层是展示超弹性和/或形状记忆效应的机械上、化学上和热抗性的电绝缘层,例如穿孔形状记忆聚合物层。类似于结合图10B的讨论,固体电解质层(例如,LISICON或PEO层)的合并对保护阴极例如防止与阴极表面和电化学电池的部件例如除了固体电解质以外的电解质组分的不需要的化学反应是有用的。在一些实施方式中,固体电解质层(例如,LISICON或PEO层)提供分隔具有第一电解质的电化学电池的第一侧与具有不同于第一电解质的第二电解质的电化学电池的第二侧的化学屏障层,且因此可提供用于结合两种分开的电解质的手段,每种电解质特别适合于选定的阳极和阴极组成。
[0150] 图10J提供了提供具有分隔物的电化学电池的横截面图的示意图,其中在循环时分隔物的导电侧减少例如在硅的大变形中的阳极损耗,这中断阳极微粒和电流收集器之间的电接触并使电化学电池的性能恶化。电化学电池包括阳极例如硅阳极;阴极例如LiFePO4或LiCoO2阴极;以及包括具有孔的互补图案的两个高机械强度层和三个低离子电阻层的分隔物系统。图10J中的总电化学电池几何结构类似于图10F所示的总电化学电池几何结构,其中第一低离子电阻层例如非常多孔的层(例如,≥80%)设置在阳极和第一高机械强度层之间,且第二低离子电阻层例如非常多孔的层(例如,≥80%)设置在第一高机械强度层和第二高机械强度层之间,且第三低离子电阻层例如非常多孔的层(例如,≥80%)设置在第二高机械强度层和阴极之间。然而在图10J的电化学电池中,第一高机械强度层包括定位成接近阳极的机械上、化学上和热抗性的离子传导和电子传导层,例如穿孔金属层;而第二高机械强度层包括定位成接近阴极的机械上、化学上和热抗性的非导电穿孔层,例如穿孔Kapton层。
[0151] 图10K提供了提供具有分隔物的电化学电池的横截面图的示意图,其中在循环时靠近阳极的分隔物的导电侧减少例如在硅的大变形中的阳极损耗,这中断阳极微粒和电流收集器之间的电接触并使电化学电池的性能恶化。在这个方面的实施方式中,紧邻阴极的导电侧增加阴极的导电性,其可导致较长的寿命周期、较高的功率和较厚的阴极和较高能量的阴极和因而较好的电化学电池。电化学电池包括阳极例如硅阳极;阴极例如LiFePO4或LiCoO2阴极;以及包括具有孔的互补图案的三个高机械强度层和三个低离子电阻层的分隔物系统。如图10K所示的,第一低离子电阻层例如非常多孔的层(例如,≥80%)设置在阳极和第一高机械强度层之间,第二低离子电阻层例如非常多孔的层(例如,≥80%)设置在第一高机械强度层和第二高机械强度层之间,第三低离子电阻层例如非常多孔的层(例如,≥80%)设置在第二高机械强度层和第三高机械强度层之间。在图10K的电化学电池中,定位成分别接近阳极和阴极的第一高机械强度层和第三高机械强度层包括机械上、化学上和热抗性的层,例如穿孔金属层;且设置在所述第一高机械强度层和第二高机械强度层之间的第二高机械强度层包括机械上、化学上和热抗性的电绝缘和离子传导层,例如穿孔Kapton层。
[0152] 图11A和11B提供本发明的一些分隔物系统的多孔图案化层例如图2-10中的层F的设计的例子。例如在图11A和11B所示的实施方式中,有交替的多孔区域(被示意性地示为虚线区域)和实心区域(被示意性地示为填充区域)。在这些实施方式中,层R可提供层F的设计的孔的反转图案。在图11A和11B中,图案以交替的矩形多孔区域和实心区域为特征。
[0153] 实施例2:高性能廉价可再充电锂电池:设计分隔物和电极
[0154] 已知的最高能量电池到目前为止使用诸如锌和锂的金属,锌和锂是廉价的,并具有非常高的能量/功率密度。同时,给这些电池再充电造成主要的安全危险。对减轻安全问题的要求是可抵抗枝状晶体形成、事故和热逸散的非常强的然而高度导电的分隔物。
[0155] 在构造分隔物和电极中使用工程方法,本实施例的分隔物系统在各种电池化学结构中提供安全性、耐久性、功率和能量性能的明显提高。本发明的一种方法是将工程知识和方法应用于在电池工业中使用的最有效的化学结构。如在本实施例中示出的,本发明提供了制造友好的方法以制造超安全的高容量分隔物。由商业锂金属、LiFePO4和当前的分隔物系统制成的纽扣电池展示与常规Celgard分隔物可比较的电导率、固体的机械强度和-40到200摄氏度的工作温度范围。本实施例的分隔物系统可以是Li-硫、Li-空气、Zn-猛或Zn-空气电池的必需部分。
[0156] 本发明的某些方面的目标是提高现有的不可再充电高能化学结构例如锂金属和锌电池的可再充电性、安全性和循环寿命,并提供用于高能可再充电金属-空气电池的高级电化学系统,其提供对能量存储挑战的经济解决方案,特别是在效用级电池中。
[0157] 主要由于可导致内部短路和导致火灾和爆炸的枝状晶体形成,当前最新型的锂金属电池不是可再充电的。同时,硅作为潜在的高能阳极经历非常大的形状变化,并失去其与电流收集器的电接触,除非使用谨慎地在优选方向(不可缩放的)上生长的非常昂贵的纳米有机硅。很多不同的电解质和添加剂已被测试,且不能在工业级系统中是有用的。最近,各种固体电解质被引入以增强安全性,但它们具有比液体电解质-分隔物系统低几个数量级的电导率,且由于疲劳、裂缝和失去的电极-电解质接触而在非常少的循环之后失去其性能。
[0158] 使用新颖和可缩放的过程,本发明的方面提供具有抵抗枝状晶体生长的机械上刚硬的材料(例如大于1GPa的弹性模量和-200到400摄氏度的温度范围)的高度多孔的分隔-2物系统(例如在室温下对于液体电解质大于或等于10 S/cm的电导率)。当前分隔物系统的实施方式提供为各种化学结构实现高能量低成本效用级电池的新设备结构。当前分隔物系统的实施方式还提供事故安全输送电池。实验结果表明,例如集成当前的分隔物系统的电池可在没有容量损失或有最少的容量损失的情况下实现多于5,000次循环。此外,一些分隔物系统能够被容易实现为已经在当前的锂电池制造中使用的铸造和卷对卷处理方法。
[0159] 本发明的某些实施方式的重要特征是同时提供高电导率和高安全性的多层分隔物系统。图12提供包括本发明的分隔物系统的电化学电池的横截面图的示意图。如图12所示,电化学电池包括彼此由分隔物系统(5)分隔的阳极(3)和阴极(4)。在该实施方式中,分隔物系统(5)包括多个层,其包括包含坚实的材料并具有孔的图案和框架的穿孔层(1和1’)和/或非常多孔的层(2)。分隔物材料的穿孔层的高弹性模量防止枝状晶体直接刺穿屏障。图14提供在本发明的分隔物系统的穿孔层中有用的孔的图案的例子。如图14所示,分隔物系统的穿孔层可具有带有圆形形状的孔。图14还示出对防止枝状晶体生长、短路和机械故障有用的穿孔层的互补图案。例如,面板A和B提供当设置在某些分隔物系统的偏移对准中时不重叠的孔的互补图案。面板C提供示出面板A和B中的图案的叠加的示意图,表明偏移对准导致没有孔的重叠。类似地,面板F和G提供当设置在某些分隔物系统的偏移对准中时不重叠的孔的互补图案。类似地,面板H和I提供当设置在某些分隔物系统的偏移对准中时不重叠的孔的互补图案。类似地,面板J和K提供当设置在某些分隔物系统的偏移对准中时不重叠的孔的互补图案。类似地,面板L和M提供当设置在某些分隔物系统的偏移对准中时不重叠的矩形孔的互补图案。
[0160] 在穿孔层中的大量孔确保分隔物的高电导率,且在连续层中的孔的偏移对准确保在电极之间没有直接路径。来自在枝状晶体上的高机械强度层的力使枝状晶体生长慢下来或停止。在电化学电池中,这明显提高了电池的性能。图13提供示出本发明的电化学系统中的枝状晶体生长的可能轨迹的示意图。在本图中,枝状晶体被示为从阳极延伸到阴极的弯曲线。如图13所示,枝状晶体将必须产生几个弯曲以穿过穿孔层并产生短路。从严格机械的观点看,锂的弹性模量(5GPa)是太高的数量级,以致不能允许枝状晶体以小长度(小于0.1mm)的连续弯曲;使直线束弯曲的所需能量是 其中E是弹性模量,l是
惯性矩,且R(x)是在每个点处的曲率半径,最后,L是元件的长度。从化学工程观点看,枝状晶体具有太多的运动挫折以致不能克服这样的盘旋状生长路径。包括具有孔的互补图案的穿孔层的分层的分隔物系统有效地防止枝状晶体形成并因此防止短路。对这样的复合分隔物系统必要的材料和制造方法与当前的电池制造基础设施相容,允许低成本实现为当前电池制造。本发明提供具有非常慢的充电(例如,C/10)和非常快的放电(例如,4C)的非常适合于电网中的负载均衡的成本有效的、安全的和高能锂电池。本发明还提供制造分层分隔物的过程,导致以液体电解质的电导率、固体电解质的安全性、高循环寿命和低成本为特征的工业友好的电池。
[0161] 本发明的电化学系统也与工程电极例如预加压的电极的使用兼容。锂金属在平面外方向上被压缩时通过使其表面均衡(较少的苔状和较少的枝状晶体)而执行得明显更好。此外,在硅阳极中的平面外压缩导致与电流收集器的好得多的接触和高得多的寿命循环。本发明的这个方面通过维持电极和固体电解质之间的良好接触并增加循环寿命和性能在固态电池中也可以是有帮助的。
[0162] 为了进一步展示本发明的有益属性,合并复合层分隔物系统的超过100个纽扣电池被制造并评估。与0.025mm Celgard比较,一些被测试的分隔物目前是0.125mm厚并在C/2时保持75%容量。包括钝针(blunt nail)和高电流循环的安全性测试,55mA/cm2达300次循环,表明了,分隔物系统是坚固的,且电池在内部不短路。此外,在几百次循环之后没有可测量的劣化或容量损失,与被完全毁坏的5层Celgard分隔物(0.125mm厚)大不相同。本发明包括具有0.075mm的总厚度的分隔物系统。本发明包括对具有400Wh/kg能量和5000次循环的10kWh圆柱形18650锂金属电池组有用的分隔物系统的0.025mm厚滚筒。
[0163] 电网级能量存储目前由水电站支配,只在非常少的有限地点和应用处可能的当前存储的超过99%不适合于社会的增长的存储需要。其它解决方案具有明显的缺点。压缩空气技术遭受小于20%的非常低的往返效率。电化学电容器和飞轮具有非常低的能量/成本比。用作高功率和高能的组合的液流电池非常复杂和昂贵。当前电池还遭受高成本/能量和成本/功率比(大约$1/Wh)。最新型的高能锂-金属、锂-空气和纳米硅化学结构具有如早些时候提到的主要安全性/成本问题。
[0164] 在一些实施方式中,本发明的分隔物-电极设计实现当前不被认为是安全的和/或具有短循环寿命的各种可再充电高能化学结构。使用工业制造方法(例如,CNC、模制、铸造),本发明组合电化学与工程以解决最新电池技术的安全问题。与高能电极组合的当前的分隔物系统为电网存储以及还有电动车辆以工业规模提供安全的长循环寿命高能电池。
[0165] 当前的系统和方法是可缩放的和在工业上友好的。增强分隔物性能可经由服从当前系统和方法的几种途径来实现。通过制造较小的孔(0.010到0.100mm)并使用较薄的层(0.005mm)来提高导电性是用于获得高性能系统的有用方法。此外,维持所需的偏移对准并通过在边界和其它选定的区域处加热来连接层可用于获得提供增强的安全性的分隔物系统。
[0166] 图15提供电化学电池的充电和放电容量(mAh/g)随循环的数量而变化的曲线图,电化学电池具有:(A)具有125微米的总厚度的本发明的多层分隔物系统,以及(B)具有25微米的厚度的Celgard分隔物。所评估的CR2032纽扣电池由Li箔0.5mm厚的阳极、LiFePO4(0.0142g)阴极、以EC:DEC:DMC(1:1:1)的1M LiPF6制成。电压极限是3v(放电)和4v(充电)。形成物、以C/24的3次循环和C/2循环与容量的急剧下降可区分开。顶部线示出制造有作为机械坚实层的两个穿孔Kapton层和作为低电阻层的3个穿孔Celgard2325层的分隔物。底部线示出制造有作为机械坚实层的两个穿孔Kapton层和作为低电阻层的3个穿孔Celgard2325层的分隔物。电池在室温下被测试。在40-50次循环之后没有观察到可测量的容量下降。图15所示的实验结果表明当前的分隔物提供低电阻,且因此与各种电化学系统兼容。
[0167] 图16提供与具有常规分隔物的电化学电池(B)比较的、具有本发明的多层分隔物系统、锂金属阳极和LiCoO2阴极的电化学电池(A)的充电和放电容量(mAh/g)随循环的数量而变化的曲线图。电化学电池是纽扣电池并以C/2的放电率被评估。所评估的CR2032纽扣电池由Li箔0.5mm厚的阳极、LiCoO20.1mm厚的阴极、以EC:DEC:DMC(1:1:1)的1M LiPF6制成。电压极限是3v(放电)和4v(充电)。形成物、以C/24的5次循环和C/2循环与容量的急剧下降可区分开。红线(由字母B指示)1、5、6示出制造有分隔物的电池,分隔物制造有作为机械坚实层的两个穿孔Kapton层(2mm直径孔)和作为低电阻层的3个Celgard2325层。蓝线(由字母A指示)2、3示出制造有两个Celgard层之间的穿孔Kapton的参考电极。电池在室温下被测试。电池以C/2循环,并接着以C/24循环几次循环,且然后再次以C/2循环。实验结果表明,容量损失不是由于电池中的任何化学反应,且可能是由于所评估的电化学电池中的穿孔Kapton层的电阻。图16示出孔的均匀分布,且因此较小的孔对在一些实验条件下达到电池中的良好容量是必要的。
[0168] 图17提供与带有具有75微米的厚度的常规分隔物的电化学电池(B)和具有25微米的厚度的Celgard分隔物(c)比较的、具有本发明的多层分隔物系统、锂金属阳极和LiFePO4阴极的电化学电池(A)的充电和放电容量(mAh/g)随循环的数量而变化的曲线图。电化学电池是纽扣电池并以C/2的放电率被评估。所评估的CR2032纽扣电池由Li箔0.5mm厚的阳极、LiFePO40.1mm厚的阴极、以EC:DEC:DMC(1:1:1)的1M LiPF6制成。电压极限是
3v(放电)和4v(充电)。形成物、以C/24的5次循环和C/2循环与容量的急剧下降可区分开。线I、H示出制造有单个Celgard层的电池。线A、B、C示出具有制造有作为机械坚实层的两个穿孔Kapton层和作为低电阻层的3个Celgard2325层的分隔物的电池。线F和D示出制造有两个Celgard层之间的穿孔Kapton的参考电极。电池在室温下被测试。测试证明具有薄分隔物以达到电池中的高容量的重要性。
[0169] 图18提供了示出具有多层分隔物、阳极和阴极的本发明的电化学电池的示意图,多层分隔物包括具有孔的互补图案的三个高机械强度层。图19提供示出穿过图18所示的+ +多层分隔物的Li 离子的轨迹的示意图。虽然Li 离子能够有效地穿过如图19所示的多层分隔物,但枝状晶体不能产生相同的轨迹,且因此在本发明的某些实施方式中被防止。此外,来自高机械强度层的力使枝状晶体生长慢下来或甚至停止。
[0170] 图20提供从两个对称的(5/9)”锂芯片剥离的静电锂的电池电压(V相对于Li)相对于循环时间(h)的曲线图。
[0171] 图22示出图15的实验的电流[安培]相对于时间[s](顶部曲线)和电压[v]相对于时间[s](底部曲线)。这显示顶部红线。
[0172] 图23-30提供在一些实施方式的分隔物系统中有用的穿孔层的照片。图23例如提供在高电流下循环几天之后不同的分隔物材料(5-Celgard分隔物:a)和新分隔物b)-d)的图片:a)5-Celgard分隔物(从左上方到右下方:Li+Celgard、Li+Celgard、不锈钢电流收集器;b)在两个穿孔Kapton层之间的Celgard层;c)与锂电极接触的Celgard;d)穿孔Kapton。图24例如提供下列图片:顶部)由锂枝状晶体刺穿并毁坏的典型分隔物(Celgard)。如可看到的,分隔物不再是可识别的。底部)锂枝状晶体不能穿透新分隔物。
这里所示的新分隔物的Kapton层是完好无缺的,虽然Kapton层的右侧上的Celgard被毁坏。图25和26例如是以在本发明的分隔物系统中使用的激光切割制备的1密尔Kapton膜的图片。
[0173] 图23示出与作为壳体中的具有1/2”直径的制成的电池的参考分隔物的5个Celgard层(0.125mm厚)比较的、制造有作为高强度层的2个Kapton层和紧靠它们的作为低电阻层的3个Celgard层的新颖分隔物(0.125mm厚)的层。Celgard2325被使用。电池制造有作为电极的0.75mm Li箔和作为电解质的来自Novolte的以EC:DEC:DMC(1:1:1)的1M LiPF6。Kapton孔每个为2mm直径。电池在室温下被测试并在填充氩的干燥箱(H2O<0.5ppm)中在55mA下循环了45分钟充电-放电循环:(a)参考分隔物:示出5-Celgard参考分隔物:
电池被短路;(b)示出新分隔物。电池未被短路。(b1)新分隔物:与锂电极接触的Celgard显示严重的损坏;(b2)新分隔物:在两个穿孔Kapton层之间的Celgard层是完好无缺的;
(b3)新分隔物:穿孔Kapton是完好无缺的并维持其结构整体性,防止任何短路。该图示出多层分隔物可安全地阻止枝状晶体短路并防止甚至在非常高的电流下的灾难性故障。图24(放大)与图23(缩小)相同。顶部和底部图示出在每种设计中的两个相邻层。图25-30示出由Kapton制成的坚实层设计的几个例子。使用激光切割来制造孔。每个层的尺寸是1/2英寸。孔是1mm直径和2mm直径。图21提供电流[毫安培]相对于时间[h]以及相对于
Li的电压[v]相对于时间[h]的曲线图。
[0174] 实施例3:具有多层分隔物系统的锂电池
[0175] 该实施例提供包括本发明的多层分隔物系统的锂电池的例子的描述。
[0176] 实施例A:在本实施例中,两层Kapton膜(每个25微米厚)用于分隔物系统。每层被穿孔有笛卡尔(Cartesian)(垂直-水平)周期性孔,每个孔直径为1mm,且在壁之间有1mm距离。25微米的Celgard层放置在两个Kapton层之间。25微米的Celgard层放置在每个Kapton层和相邻的电极之间。电极是LiCoO2和锂金属膜。电解质是以EC-DMC-PC-DME的组合的LiPF6。
[0177] 实施例B:在本实施例中,两层Kapton膜(每个25微米厚)用于分隔物系统。每层被穿孔有用于分隔物系统的笛卡尔(垂直-水平)周期性孔,每个孔直径为1mm,且在壁之间有1mm距离。25微米的Celgard层放置在两个Kapton层之间。25微米的Celgard层放置在每个Kapton层和相邻的电极之间。电极是LiFePO4和锂金属膜。电解质是以EC-DMC-PC-DME的组合的LiPF6。
[0178] 实施例C:在本实施例中,两层Kapton膜(每个25微米厚)用于分隔物系统。每层被穿孔有用于分隔物系统的笛卡尔(垂直-水平)周期性孔,每个孔直径为1mm,且在壁之间有1mm距离。具有3个孔(每个孔1/8英寸)的25微米厚的穿孔Celgard层放置在两个Kapton层之间。具有3个孔(每个孔1/8英寸)的25微米厚的穿孔Celgard层放置在每个Kapton层和相邻的电极之间。电极是LiFePO4和锂金属膜。电解质是以EC-DMC-PC-DME的组合的LiPF6。
[0179] 实施例D:在本实施例中,两层Kapton膜(每个25微米厚和3/4英寸直径)用于分隔物系统。每层被穿孔有笛卡尔(垂直-水平)周期性孔,每个孔直径为1mm,且在壁之间有1mm距离。25微米厚的Celgard的环放置在两个Kapton层之间。25微米厚和外径3/4英寸及内径1/2英寸的Celgard的环放置在每个Kapton层和相邻的电极之间。电极是LiFePO4和锂金属膜。电解质是以EC-DMC-PC-DME的组合的LiPF6。
[0180] 实施例E:在本实施例中,两层Kapton膜(每个25微米厚和3/4英寸直径)用于分隔物系统。每层被穿孔有笛卡尔(垂直-水平)周期性孔,每个孔直径为1mm,且在壁之间有1mm距离。5微米厚的Celgard的环放置在两个Kapton层之间。5微米厚和外径3/4英寸及内径1/2英寸的Celgard的环放置在每个Kapton层和相邻的电极之间。电极是LiFePO4和锂金属膜。电解质是以EC-DMC-PC-DME的组合的LiPF6。
[0181] 实施例F:在本实施例中,两个不锈钢层(每个25微米厚)被使用。钢层被涂有非常薄的电绝缘层(在这里是1微米厚的特氟隆。也可使用Kapton)。每层被穿孔有笛卡尔(垂直-水平)周期性孔,每个孔直径为0.5mm,且在壁之间有0.5mm距离。5微米的Celgard层放置在两个不锈钢层之间。5微米的Celgard层放置在每个不锈钢层和相邻的电极之间。电极是LiFePO4和锂金属膜。电解质是以EC-DMC-PC-DME的组合的LiPF6。
[0182] 实施例G:在本实施例中,两层Kapton膜(每个5微米厚和3/4英寸直径)用于分隔物系统。每层被穿孔有笛卡尔(垂直-水平)周期性孔,每个孔直径为1mm,且在壁之间有1mm距离。5微米厚的Celgard的环放置在两个Kapton层之间。5微米厚和外径3/4英寸及内径1/2英寸的Celgard的环放置在紧靠锂金属膜阳极的Kapton层和Li电极之间。25微米厚和直径3/4英寸的LISICON层放置在第二Kapton和空气碳-阴极之间。LISICON的Li侧上的电解质是以EC-DMC-PC-DME的组合的LiClO4。LISICON的空气阴极侧上的电解质是含水电解质。
[0183] 实施例H:在本实施例中,两层PE膜(每个5微米厚和3/4英寸直径)用于分隔物系统。每层被穿孔有笛卡尔(垂直-水平)周期性孔,每个孔直径为0.1mm,且在壁之间有0.1mm距离。25微米厚和直径3/4英寸的LISICON层放置在第二PE和空气碳-阴极之间。
LISICON的Li侧上的电解质是以EC-DMC-PC-DME的组合的LiPF6。LISICON的空气阴极侧上的电解质是含水电解质。
[0184] 实施例I:在本实施例中,两个不锈钢层(每个5微米厚)被使用。钢层在内表面(逆着较靠近的电极的侧面)上被涂有非常薄的电绝缘层(在这里是1微米厚的特氟隆)。每层被穿孔有笛卡尔(垂直-水平)周期性孔,每个孔直径为0.1mm,且在壁之间有0.1mm距离。5微米的Celgard层放置在两个不锈钢层之间。5微米的Celgard层放置在每个不锈钢层和相邻的电极之间。电极是部分锂化的Si和部分锂化的硫。具有这个分隔物的电池被预期显示较高的循环寿命和充电-放电(功率)速率。
[0185] 实施例J:在本实施例中,两个不锈钢层(每个5微米厚)被使用。钢层在内表面(逆着较靠近的电极的侧面)上被涂有1微米厚特氟隆的非常薄的电绝缘层和在外表面(面向较靠近的电极的侧面)上被涂有1微米厚的聚乙二醇。每层被穿孔有笛卡尔(垂直-水平)周期性孔,每个孔直径为0.1mm,且在壁之间有0.1mm距离。5微米的纤维素分隔物层放置在两个不锈钢层之间。5微米的纤维素分隔物层放置在每个不锈钢层和相邻的电极之间。电极是Li金属和硫。预期聚乙二醇涂层增加电池的循环寿命。
[0186] 实施例K:在本实施例中,两层Kapton膜(每个5微米厚和3/4英寸直径)用于分隔物系统。每层被穿孔有笛卡尔(垂直-水平)周期性孔,每个孔直径为0.1mm,且在壁之间有0.1mm距离。5微米厚的Celgard的环放置在两个Kapton层之间。5微米厚和外径3/4英寸及内径1/2英寸的Celgard的环放置在每个Kapton层和相邻的电极之间。电极是锌阳极和基于碳的空气阴极。电解质是含水6M KOH。
[0187] 实施例L:在本实施例中,两层PP膜(每个5微米厚和3/4英寸直径)用于分隔物系统。每层被穿孔有笛卡尔(垂直-水平)周期性孔,每个孔直径为0.1mm,且在壁之间有0.1mm距离。电极是锌阳极和基于碳的空气阴极。电解质是含水6M KOH。
[0188] 实施例M:在本实施例中,两层Kapton膜(每个5微米厚和3/4英寸直径)用于分隔物系统。每层被穿孔有任意图案的孔,每个孔是40%多孔的,且当放置在每个其它孔的顶部上时,给出孔图案的小于5%的重叠,每个孔直径为0.1mm,且在壁之间有0.1mm距离。5微米厚的Celgard的环放置在两个Kapton层之间。5微米厚和外径3/4英寸及内径1/2英寸的Celgard的环放置在每个Kapton层和相邻的电极之间。电极是锌阳极和基于碳的空气阴极。电解质是含水6M KOH。
[0189] 实施例N:在本实施例中,两层Kapton膜(每个25微米厚和3/4英寸直径)用于分隔物系统。每层被穿孔有任意图案的孔,每个孔是40%多孔的,且当放置在每个其它孔的顶部上时,给出孔图案的小于5%的重叠,每个孔直径为1mm,且在壁之间有1mm距离。25微米厚的Celgard的环放置在两个Kapton层之间。25微米厚和外径3/4英寸及内径1/2英寸的Celgard的环放置在每个Kapton层和相邻的电极之间。电极是LiFePO4和锂金属膜。电解质是以EC-DMC-PC-DME的组合的LiPF6。
[0190] 实施例O:在本实施例中,两层Kapton膜(每个5微米厚和3/4英寸直径)用于分隔物系统。每层被穿孔有笛卡尔(垂直-水平)周期性孔,每个孔直径为0.01mm,且在壁之间有0.01mm距离。5微米厚的Celgard的环放置在两个Kapton层之间。5微米厚和外径3/4英寸及内径1/2英寸的Celgard的环放置在每个Kapton层和相邻的电极之间。电极是LiFePO4和锂金属膜。电解质是以EC-DMC-PC-DME的组合的LiPF6。
[0191] 实施例P:在本实施例中,两层Kapton膜(每个5微米厚和3/4英寸直径)用于分隔物系统。每层被穿孔有笛卡尔(垂直-水平)周期性孔,每个孔直径为0.001mm,且在壁之间有0.001mm距离。5微米厚的Celgard的环放置在两个Kapton层之间。5微米厚和外径3/4英寸及内径1/2英寸的Celgard的环放置在每个Kapton层和相邻的电极之间。电极是LiFePO4和锂金属膜。电解质是以EC-DMC-PC-DME的组合的LiPF6。
[0192] 实施例Q:当层在某些区域例如每侧的外部处通过PEO和PvDF连接到彼此时,与上述实施例中的任一个相同。
[0193] 实施例R相应于当LISICON为5微米时的实施例G,并沉积在锂-空气电池的空气阴极侧上的Kapton层上。
[0194] 在另一实施例中,多孔图案化层具有下面的物理尺寸、组成和机械特性:
[0195] ●厚度:125微米、75微米、50微米或25微米。
[0196] ●抗拉强度:150MPa各向同性(Celgard:15MPa TD;150MPA MD)
[0197] ●孔隙率:45%
[0198] ●弹性模量:2GPa
[0199] ●屈服强度:50MPa
[0200] ●密度:~1.3g/cm3
[0201] ●MIT耐折度:10000次循环
[0202] ●埃尔曼多夫撕裂强度:0.1N
[0203] ●格雷夫斯撕裂强度:15N
[0204] ●冲击强度:50N.cm
[0205] ●在150摄氏度下30分钟收缩率:0.2(Celgard:5-10%)
[0206] ●介电强度ASTM D-149-91:250V/m
[0207] ●介电常数:3.5
[0208] ●热膨胀系数:20ppm/摄氏度。
[0209] 包括带有具有这些特性的多孔图案化层的多层分隔物的电化学电池展示有用的性能特性。当测试半电池[纽扣电池]:LiFePO4|LP71|Li时,例如在200次循环之后:以C/5,容量是~140mAh/g;以C/2,~120mAh/g。使用外部压力的力偏移测试表明,电池不短路但停止起作用。以C/2在300次循环之后的分隔物系统的分析显示很少的劣化或没有劣化,且分隔物系统能够用在另一电池中。
[0210] 表1和2提供了本发明的某些实施方式的高机械强度层和分隔物系统的物理尺寸和特性的总结。
[0211] 表1:高机械强度层的物理尺寸和特性
[0212]实施方式1 实施方式2
过程 干燥 干燥
组成 PE & PP & Kapton PE & PP & Kapton
厚度(μm) 125 125
孔隙率(%) 40 40
离子电阻率(Ω.cm) 1800 400
离子电阻率(Ω.cm2) 22.5 5
[0213]熔化温度(℃) 135/165/300 135/165/300
抗拉强度,MD(Kg/cm2) 2000 2000
抗拉强度,TD(Kg/cm2) 2000 2000
MIT耐折度(循环) 10000 10000
冲击强度(N.cm) 50 50
热收缩率% 0.2 0.2
[0214] 表2:分隔物系统的物理尺寸和特性
[0215]
[0216] 分隔物的电阻率在1M LiPF6EC:EMC(按体积计30:70)中被测量。对于电化学评估,具有Al-Al电极的1/2”纽扣电池电化学电池用于表征分隔物。分隔物被制造为celgard/穿孔Kapton/celgard/穿孔kapton/celgard,每个25μm厚。
[0217] 实施例4:包括涂覆的金属网的分隔物
[0218] 在一些方面中,本发明的分隔物系统包括一个或多个多孔图案化层,其为涂覆的金属层,例如具有外部绝缘涂层的金属网。这个方面的实施方式对于明显增加电池的寿命是有益的。在实施方式中,例如金属网(Al、镍、铜、不锈钢)具有在非常宽的温度范围上的非常高的机械强度;金属分隔物是使电池的温度均匀并明显提高电池的安全性和寿命的导热材料。在实施方式中,分隔物的微孔层是PTFE涂覆的铝网层(例如,Al网,40%开口:3层,每层5微米,或2层,每层1/3密尔;在一个实施方式中,Al层涂覆有PTFE,例如在每侧上2微米厚。在另一实施方式中,只有紧靠阳极的Al层被涂覆。在另一实施方式中,Al层被涂覆,且侧面设置成与电极接触。
[0219] 关于通过引用的合并的陈述和变化形式
[0220] 在整个这个申请中的所有参考文献,例如专利文件——包括发布或授予的专利或等效文件;专利申请公布和非专利文献文件或其它源材料——据此通过引用被全部并入本文,好像单独地通过引用被并入一样,到每个参考文献至少部分地不与本申请中的公开不一致的程度上(例如,部分地不一致的参考文献通过引用被并入,除了参考文献的部分地不一致的部分以外)。
[0221] 这里使用的术语和措辞用作描述的而不是限制的术语,且在这样的术语和措辞的使用中没有意图排除所示和所述的特征的任何等效形式及其部分,但应认识到,各种修改在所主张的本发明的范围内是可能的。因此,应理解,虽然特别通过优选实施方式、示例性实施方式和可选的特征公开了本发明,但本领域中的技术人员可采取本文公开的概念的修改和变化形式,且这样的修改和变化形式被考虑为在如由所附权利要求界定的本发明的范围内。本文提供的特定实施方式是本发明的有用实施方式的例子,且对本领域中的技术人员将明显的是,本发明可使用在本描述中阐述的设备、设备部件、方法步骤的大量变化形式来实现。如对本领域中的技术人员明显的,对当前方法有用的方法和设备可包括大量可选的组成和处理元件及步骤。
[0222] 在说明书中提到的所有专利和出版物指示本发明所属的领域中的技术人员的技能水平。在本文引用的参考文献通过引用被全部并入本文以指示在一些情况下到其申请日时为止的技术状态,且意图是如果需要,该信息可在本文中用于排除(例如,否认)在现有技术中的特定实施方式。例如,当化合物被主张时,应理解,在现有技术中已知的化合物——包括在本文公开的参考文献中(特别是在所引用的专利文件中)公开的某些化合物——不被预期包括在权利要求中。
[0223] 当一组替代物在本文中被公开时,应理解,可使用替代物形成的那些组的所有单独成员和所有子组以及类被单独地公开。当在本文中使用Markush组或其它分组时,组的所有单独成员和所有组合以及组的可能子组合被预期单独地包括在本公开中。如本文中使用的,“和/或”意味着在由“和/或”分开的列表中的项目中的一个、全部或任何组合被包括在列表中;例如“1、2和/或3”等效于“1”或“2”或“3”或“1和2”或“1和3”或“2和3”或“1、2和3”。
[0224] 除非另外说明,否则所描述或例示的组分的每种配方或组合可用于实践本发明。材料的特定名称预期是示例性的,如已知的,本领域中的普通技术人员可不同地命名相同的材料。本领域中的普通技术人员将理解,除了特别例示的那些以外的方法、设备元件、起始材料和合成方法可在本发明的实践中使用,而不需采取过度的实验。任何这样的方法、设备元件、起始材料和合成方法的所有本领域中已知的功能等效形式预期包括在本发明中。
每当范围例如温度范围、时间范围或组成范围在说明书中被给出时,所有中间范围和子范围以及包括在给定范围内的所有单独的值预期包括在本公开中。
[0225] 必须注意,除非上下文另外清楚地规定,否则如在本文中和所附权利要求中使用的,单数形式“一(a)”、“一(an)”和“该(the)”包括复数指示物。因此,例如对“一个电池”的提及包括本领域中的技术人员已知的多个这样的电池及其等效形式,等等。术语“一(a)”(或“一(an)”)、“一个或多个”和“至少一个”也可在本文互换地使用。还应注意,术语“包括(comprising)”、“包括(including)”和“具有”可互换地使用。措辞“权利要求XX-YY中任一项”(其中XX和YY指权利要求号)预期提供以可选的形式的多个从属权利要求,且在一些实施方式中与措辞“如在权利要求XX-YY中任一项”可互换。
[0226] 除非另有规定,否则在本文使用的所有技术和科学术语具有与本发明所属的领域中的普通技术人员所通常理解的相同的意义。虽然类似或等效于本文描述的那些方法和材料的任何方法和材料可在本发明的实践或测试中使用,但现在描述优选的方法和材料。在本文没有任何东西应被解释为承认:本发明没有资格由于在先发明而先于这样的公开。
[0227] 每当在说明书中给出范围例如整数范围、温度范围、时间范围、组成范围或浓度范围时,所有中间范围和子范围以及包括在给定范围内的所有单独的值预期包括在本公开中。如在本文使用的,范围特别包括被提供为范围的端点值的值。如在本文使用的,范围特别包括范围的所有整数值。例如,1到100的范围特别包括1和100的端点值。将理解,包括在本文的描述中的任何子范围、或范围或子范围中的单独值可从本文的权利要求排除。
[0228] 如在本文使用的,“包括(comprising)”与“包括(including)”、“包含”或“特征在于”同义,且是包括端点的或开端的,且不排除额外的未列举出的元件或方法步骤。如在本文使用的,“由…组成”不包括未在权利要求要素中指定的任何元件、步骤或成分。如在本文使用的,“本质上由…组成”不排除不本质上影响权利要求的基本和新颖特征的材料或步骤。术语“包括”在本文的任何叙述——特别是在组成部件的描述中或在设备的元件的描述中——被理解为包括本质上由列举出的部件或元件组成和由列举出的部件或元件组成的那些组成和方法。在本文例证性地描述的本发明适当地可在没有在本文未特别公开的任一个或多个元件、任一个或多个限制时被实践。
[0229] 所采用的术语和措辞用作描述的而不是限制的术语,且在这样的术语和措辞的使用中没有意图排除所示和所述的特征的任何等效形式或其部分,但应认识到,各种修改在所主张的本发明的范围内是可能的。因此,应理解,虽然通过优选实施方式和可选的特征特别公开了本发明,但本领域中的技术人员可采用在本文公开的概念的修改和变化形式,且这样的修改和变化形式被考虑为在如由所附权利要求界定的本发明的范围内。
相关专利内容
标题 发布/更新时间 阅读量
无活动夹头杨氏模量仪 2020-05-11 495
杨氏模量仪 2020-05-11 716
杨氏模量测试仪 2020-05-11 147
卧式杨氏模量测量仪 2020-05-12 901
杨氏模量测量仪 2020-05-11 59
金属丝拉伸法杨氏模量测量方法 2020-05-12 357
一种杨氏模量测量仪及其测量方法 2020-05-12 848
杨氏模量仪 2020-05-12 507
杨氏模量测量仪 2020-05-12 287
杨氏模量测量仪 2020-05-12 148
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈