首页 / 专利库 / 焊接,钎焊和锡焊 / 电弧焊 / 熔化极气体保护焊 / 用于燃料储存和运输系统的燃料储存容器、燃料储存和运输系统和方法

用于燃料储存和运输系统的燃料储存容器、燃料储存和运输系统和方法

阅读:475发布:2021-04-07

专利汇可以提供用于燃料储存和运输系统的燃料储存容器、燃料储存和运输系统和方法专利检索,专利查询,专利分析的服务。并且提供用于在约1035kPa(150psia)~7590kPa(1100psia)的压 力 约-123℃(-190)~-62℃(-80)的 温度 下储存加压 液化 天然气 (PLNG)并输送供 发动机 (24)燃烧使用的 汽化 的PLNG 燃料 的燃料储存和输送系统。该燃料储存和输送系统具有由含小于9%(重量)镍而且拉伸强度高于830MPa(120ksi)且DBTT小于约-73℃(-100)的超高强度低 合金 钢 制造的燃料储存容器。同时,没有受其限制,当其发动机(24)设计成能以燃烧天然气来运行时,本 发明 尤其可用于 汽车 、公共汽车、 卡车 和其它车辆。,下面是用于燃料储存和运输系统的燃料储存容器、燃料储存和运输系统和方法专利的具体信息内容。

1.适于供燃料储存和运输系统使用的燃料储存容器,该系统用于在约 1035kPa(150psia)~7590kPa(1100psia)的压和约-123℃(- 190°F)~-62℃(-80°F)的温度下储存加压液化天然气并根据发动机 燃烧的需求输送汽化的加压液化天然气燃料,其中所述的燃料储存 容器是由许多分立板连接构成的,所述分立板的材料包括含镍量小 于9%(重量)、拉伸强度高于830MPa(120ksi)而且DBTT小于约-73 ℃(-100°F)的超高强度低合金,并且其中所述分立板间的接缝 在所述压力和温度条件下具有足够的强度和韧性以盛载所述加压液 化天然气。
2.权利要求1的容器,其中所述接缝的拉伸强度至少约为所述超高强 度低合金钢拉伸强度的90%。
3.权利要求1的容器,其中所述接缝的DBTT低于约-73℃(-100°F)。
4.权利要求1的容器,其中所述接缝由气保护熔化电弧焊接形成。
5.权利要求1的容器,其中所述接缝由钨极惰性气体保护焊形成。
6.权利要求书1的燃料储存容器,其中所述的燃料储存容器连接到燃 料筒上,当在所述燃料储存容器中的所述加压液化天然气燃料的压 力超过预先设定的压力时,该燃料筒用于收集从所述燃料储存容器 中排放的蒸气形式的加压液化天然气燃料。
7.权利要求6的燃料储存容器,其中所述的燃料筒包括吸附剂。
8.权利要求7的燃料储存容器,其中所述的吸附剂为木炭吸附剂。
9.权利要求8的燃料储存容器,其中所述的燃料筒包括至少一个埋 入的用于再生所述木炭吸附剂的加热器。
10.一个系统,包括: a)至少一个燃料储存容器,该容器用于在约1035kPa(150psia)~ 7590kPa(1100psia)的压力和约-123℃(-190°F)~-62℃(-80°F)的温 度下储存加压液化天然气,其中所述的至少一个燃料储存容器是由许 多分立板连接构成的,所述分立板材料包括含镍量小于9%(重量)、 拉伸强度高于830MPa(120ksi)而且DBTT小于约-73℃(-100°F)的超 高强度低合金钢,并且其中所述分立板间的接缝在所述压力和温度条 件下具有足够的强度和韧性以盛载所述加压液化天然气;和 b)用于按照发动机燃烧的需求输送汽化的加压液化天然气燃料的装 置。
11.燃料储存和运输系统,包括: a)至少一个燃料储存容器,其中所述至少一个燃料储存容器具有足够 的强度和韧性以盛载在约1035kPa(150psia)~7590kPa(1100psia) 的压力和约-123℃(-190°F)~-62℃(-80°F)的温度下的加压液化天 然气; b)用于能在所述燃料储存容器和加油站之间传输加压液化天然气燃料 的注入和排泄; c)使液体加压液化天然气燃料能从所述的燃料储存罐流到汽化器的液 体管路; d)使汽化的加压液化天然气燃料能从所述的燃料储存罐流到所述汽化 器的蒸气管路; e)使所述汽化的加压液化天然气燃料能从所述的汽化器流到所述发动 机的燃料管路; f)燃料调节器,用于调节所述汽化的加压液化天然气燃料从所述的汽 化器到所述的发动机之间的流动,从而使所述燃料储存和运输系统适 于储存在约1035kPa(150psia)~7590kPa(1100psia)的压力和约-123 ℃(-190°F)~-62℃(-80°F)的温度下的所述加压液化天然气,并且按 照发动机燃烧的需求输送所述汽化的加压液化天然气燃料。
12.权利要求11的燃料储存和运输系统,还包括: (g)燃料筒,具有至少一个再生加热器,该燃料筒适于(i)当在所述 燃料储存容器中的压力超过第一个预先设定的压力时,收集来自所述 燃料储存容器中的过剩加压液化天然气燃料;(ii)储存所述过剩加压 液化天然气燃料;和(iii)当在所述燃料储存容器中的压力低于第二 个预先设定的压力时,该燃料筒将所述过剩加压液化天然气燃料驱回 到所述燃料储存容器中。
13.适于供燃料储存和运输系统使用的燃料储存容器,该系统用于 在约1035kPa(150psia)~7590kPa(1100psia)的压力和约-123℃ (-190°F)~-62℃(-80°F)的温度下储存加压液化天然气并根据发动 机燃烧的需求输送汽化的加压液化天然气燃料,其中所述的燃料储 存容器是由许多分立板连接构成的,所述分立板包括含镍量小于2% (重量)、并具有足够强度和断裂韧性来盛载所述的加压液化天然 气的超高强度低合金钢,并且其中所述分立板间的接缝在所述压力 和温度条件下具有足够的强度和韧性以盛载所述加压液化天然气。
14.一种方法,包括: a)将在约1035kPa(150psia)~7590kPa(1100psia)的压力和约-123℃ (-190°F)~-62℃(-80°F)的温度下的加压液化天然气燃料装入至少一 个燃料储存容器中,其中所述至少一个燃料储存容器在所述压力和温 度条件下具有足够的强度和韧性以盛载所述加压液化天然气;和 b)按照发动机燃烧的需求输送汽化的加压液化天然气燃料。
15.一个系统,包括: a)至少一个燃料储存容器,该容器用于在约1035kPa(150psia)~ 7590kPa(1100psia)的压力和约-123℃(-190°F)~-62℃(-80°F)的温 度下储存加压液化天然气,其中所述的至少一个燃料储存容器在所述 压力和温度条件下具有足够的强度和韧性以盛载所述加压液化天然 气;和 b)用于按照发动机燃烧的需求输送汽化的加压液化天然气燃料的装 置。

说明书全文

技术领域

发明涉及用于储存加压液化天然气(PLNG)燃料和输送供发动 机燃烧使用的汽化PLNG燃料的燃料储存和输送系统。更具体地讲本发 明涉及这样的燃料储存和输送系统:该燃料储存和输送系统包括由镍 含量小于9%(重量)的超高强度低合金制造的燃料储存容器,而且 该燃料储存容器有足够的强度和低温断裂韧性来容纳PLNG燃料。当其 发动机设计成以燃烧天然气来运行时,本发明尤其可用于(但不限于) 汽车、公共汽车、卡车和其它车辆。

背景技术

在下面的说明中定义了许多术语。为了方便起见,恰在权利要求 书的前面给出了一个术语表。
要求购买代用燃料驱动的车辆(AFV)的法律例如空气净化法规 (Clean Air Act(1990))和能源政策法规(Energy Policy Act(1992)) 已经激发了开发天然气车辆(NGV)的几个重要的商业动机。尽管这些 法律是由于空气质量问题而引发的,但是它们已经产生了经济上的动 ,已推动了使用NGV的客观能动性。因为天然气所固有的清洁燃烧 特性,当前NGV最具有竞争潜力来替代汽油动力车辆。
用于实现NGV-类型AFV的三个相互竞争的技术是压缩天然气 (CNG)、液化天然气(LNG)和液化石油气(LPG)。在CNG技术中, 气态(天然气)燃料在约为20684~24132kPa(3000~3500psia)的极 高压力下储存。限制CNG技术的成功推广应用的主要缺点至少有四个: 短的车辆驱动范围(由于每燃料储存容器体积能量储存低)、与高储 存压力有关的安全问题、运载工具上(并且一般是不一致的)的燃料 储存容器的重量和高成本、必须包括高压缩比压缩系统的加油站的高 成本。LNG技术克服了CNG低能量密度的缺点,因为每单位体积可储 存更多的能量。其它LNG优于CNG之处包括较低的车辆燃料系统重量 和较高的燃料储存体积能力。例如,典型的运载工具上注满CNG的燃 料储存系统的重量超过典型LNG系统重量的2.5倍。然而,LNG系统 要求极端冷的储存温度-162℃(-260°F)导致了燃料储存容器的高成 本,这些容器典型地由昂贵的特殊合金例如市售含镍钢(例如9%(重 量)镍)或合金(例如Al-5083)制造。而且,将加压天然气输送到 发动机燃料喷射器的要求增加了燃料输送系统的复杂性和成本。最近 从DOE的Brookhaven National Laboratory对用于NGV的LNG技术 的教导强调了用于中等压力的燃料喷射器的LNG输送系统的需求。具 有相似清洁燃烧特性的液化石油气(LPG)可以替代LNG。LPG在某些 方面克服了CNG和LNG二者的缺点,因为它提供了比CNG或LNG高的 每容器体积储存的能量,而且在与CNG相比工作在相对低的压力下(约 为827kPa(120psia))和室温下。然而,LPG的供应是有限的而且LPG 远远比LNG昂贵。
五个共同未决的美国临时专利申请(“PLNG专利申请”),各自 题为“Improved System for Processing,Storing,and Transporting Liquefied Natural Gas”,描述了用于储存和海上输送加压液化天然气 (PLNG)的容器及油轮,该加压液化天然气处于在约为 1035kPa(150psia)~约7590kPa(1100psia)的大压力范围内和约-123 ℃(-190°F)~约-62℃(-80°F)大的温度范围下。最近所述的PLNG专利 申请,其优先权日为1998年5月14日,该申请被申请人确定为案卷 No.97006P4,被美国专利商标局(USPTO)确定的申请号为60/085467。 所述PLNG专利申请的第一个,其优先权日为1997年6月20日,该申 请被美国美国专利商标局(USPTO)确定为的申请号为60/050280。所 述PLNG专利申请的第二个,其优先权日为1997年7月28日,该申请 被美国美国专利商标局(USPTO)确定的申请号为60/053966。所述PLNG 专利申请的第三个,其优先权日为1997年12月19日,该申请被美国 美国专利商标局(USPTO)确定的申请号为60/068226。所述PLNG专 利申请第四个,其优先权日为1998年3月30日,被美国美国专利商 标局(USPTO)确定的申请号为60/079904。此外,所述PLNG专利申 请描述了用于加工、储存和输送天然气的系统和容器。
PLNG提供了一种具有CNG、LNG和LPG清洁燃烧优点的替代性的、 成本效益好的车辆燃料能源。此外,PLNG提供了比CNG高的每燃料储 存容器体积的能量储存量,比LNG的加工便宜,而且克服了LPG供给 受限制的缺点。然而,就我们所知,目前没有可利用的用于经济地储 存PLNG燃料并输送汽化PLNG燃料以供发动机燃烧使用的燃料储存和 输送系统。如果可得到这种燃料储存和输送系统,那么PLNG将提供克 服了CNG、LNG和LPG的主要缺点的车辆燃料能源。存在着对于经济储 存PLNG燃料和输送汽化PLNG燃料以供发动机燃烧使用的燃料储存和 输送系统的需求。
因此,本发明的主要目的在于提供适用于储存PLNG燃料和输送汽 化PLNG燃料以供发动机燃烧使用的燃料储存和输送系统。

发明内容

与上面所述的本发明的目的相一致,提供用于储存加压液化天然 气(PLNG)燃料和输送供发动机燃烧使用的汽化PLNG燃料的燃料储存和 输送系统,该加压液化天然气燃料处于约为1035kPa(150psia)~约 7590kPa(1100psia)的压力范围和约-123℃(-190°F)~约-62℃(-80°F) 的温度范围下。储存PLNG燃料的压力和温度优选为:压力约 1725kPa(250psia)~约7590kPa(1100psia)和温度约-112℃(-170°F)~ 约-62℃(-80°F)。储存PLNG更优选的压力和温度为:压力约 2415kPa(350psia)~约4830kPa(700psia)和温度约-101℃(-150°F)~ 约-79℃(-110°F)。用于PLNG燃料甚至更优选的压力和温度的下限约 为2760kPa(400psia)和-96℃(-140°F)。本发明的燃料储存和输送系 统有燃料储存容器和其它系统组件,它们由包括含镍低于9%(重量) 的超高强度低合金钢的材料构成,该材料具有足够强度和断裂韧性来 容纳所述的加压液化天然气。该钢具有超高强度,如拉伸强度(如本 说明书的定义)大于830MPa(120ksi)且DBTT(如本说明书的定义)低于 约-73℃(-100°F)。
在一个实施方案中,本发明提供一种适于供燃料储存和运输系统使用的燃料储 存容器,该系统用于在约1035kPa(150psia)-7590kPa(1100psia)的压力和约-123℃(- 190°F)~-62℃(-80°F)的温度下储存加压液化天然气并根据发动机 燃烧的需求输送汽化的加压液化天然气燃料,其中所述的燃料储存 容器是由许多分立板连接构成的,所述分立板的材料包括含镍量小 于9%(重量)、拉伸强度高于830MPa(120ksi)而且DBTT小于约-73 ℃(-100°F)的超高强度低合金钢,并且其中所述分立板间的接缝 在所述压力和温度条件下具有足够的强度和韧性以盛载所述加压液 化天然气。
在另一实施方案中,本发明提供一种燃料储存和运输系统,该系统包括: a)至少一个燃料储存容器,该容器用于在约1035kPa(150psia)~ 7590kPa(1100psia)的压力和约-123℃(-190°F)~-62℃(-80°F)的温 度下储存加压液化天然气,其中所述的至少一个燃料储存容器是由许 多分立板连接构成的,所述分立板材料包括含镍量小于9%(重量)、 拉伸强度高于830MPa(120ksi)而且DBTT小于约-73℃(-100°F)的超 高强度低合金钢,并且其中所述分立板间的接缝在所述压力和温度条 件下具有足够的强度和韧性以盛载所述加压液化天然气;和 b)用于按照发动机燃烧的需求输送汽化的加压液化天然气燃料的装 置。
在又一个实施方案中,本发明提供一种燃料储存和运输系统,该系统包括: a)至少一个燃料储存容器,其中所述至少一个燃料储存容器具有足够 的强度和韧性以盛载在约1035kPa(150psia)~7590kPa(1100psia) 的压力和约-123℃(-190°F)~-62℃(-80°F)的温度下的加压液化天 然气; b)用于能在所述燃料储存容器和加油站之间传输加压液化天然气燃料 的注入和排泄; c)使液体加压液化天然气燃料能从所述的燃料储存罐流到汽化器的液 体管路; d)使汽化的加压液化天然气燃料能从所述的燃料储存罐流到所述汽化 器的蒸气管路; e)使所述汽化的加压液化天然气燃料能从所述的汽化器流到所述发动 机的燃料管路; f)燃料调节器,用于调节所述汽化的加压液化天然气燃料从所述的汽 化器到所述的发动机之间的流动,从而使所述燃料储存和运输系统适 于储存在约1035kPa(150psia)~7590kPa(1100psia)的压力和约-123 ℃(-190°F)~-62℃(-80°F)的温度下的所述加压液化天然气,并且按 照发动机燃烧的需求输送所述汽化的加压液化天然气燃料。
在又另一个实施方案中,本发明提供一种适于供燃料储存和运输系统使用的燃 料储存容器,该系统用于在约1035kPa(150psia)-7590kPa(1100psia)的压力和约-123℃ (-190°F)~-62℃(-80°F)的温度下储存加压液化天然气并根据发动 机燃烧的需求输送汽化的加压液化天然气燃料,其中所述的燃料储 存容器是由许多分立板连接构成的,所述分立板包括含镍量小于2% (重量)、并具有足够强度和断裂韧性来盛载所述的加压液化天然 气的超高强度低合金钢,并且其中所述分立板间的接缝在所述压力 和温度条件下具有足够的强度和韧性以盛载所述加压液化天然气。 在还又一个实施方案中,本发明提供一种燃料储存和运输方法,包括: a)将在约1035kPa(150psia)~7590kPa(1100psia)的压力和约-123℃ (-190°F)~-62℃(-80°F)的温度下的加压液化天然气燃料装入至少一 个燃料储存容器中,其中所述至少一个燃料储存容器在所述压力和温 度条件下具有足够的强度和韧性以盛载所述加压液化天然气;和 b)按照发动机燃烧的需求输送汽化的加压液化天然气燃料。
在还另一个实施方案中,本发明提供一种燃料储存和运输系统,包括: a)至少一个燃料储存容器,该容器用于在约1035kPa(150psia)~ 7590kPa(1100psia)的压力和约-123℃(-190°F)~-62℃(-80°F)的温 度下储存加压液化天然气,其中所述的至少-个燃料储存容器在所述 压力和温度条件下具有足够的强度和韧性以盛载所述加压液化天然 气;和 b)用于按照发动机燃烧的需求输送汽化的加压液化天然气燃料的装 置。
附图说明
参照附图及下列详细描述,可更好的了解本发明的优点,其中
图1给出了连接到发动机上的本发明燃料储存和输送系统的示意 图。
图2给出了用于本发明燃料储存和输送系统中的燃料控制的微处 理器(CPU)的示意图。
图3给出了在本发明燃料储存和输送系统中使用的燃料储存容器 和有关的燃料筒的详细示意图。
图4A说明了对于给定的缺陷长度的临界缺陷深度的曲线,该临界 缺陷深度为CTOD断裂韧性和残余应力的函数。
图4B说明了缺陷的几何尺寸(长度和深度)。
虽然本发明结合其优选的实施方案进行描述,但应该理解的是本 发明没有因此受到限制。相反,本发明试图覆盖所有的替代方案、修 改方案和等效方案。

具体实施方式

本发明涉及用于储存PLNG燃料和输送供发动机燃烧使用的汽化 PLNG燃料的燃料储存和输送系统及其各个组件。提供用于在约 1035kPa(150psia)~约7590kPa(1100psia)的压力范围和约-123℃(- 190°F)~约-62℃(-80°F)的温度范围下储存加压液化天然气(PLNG) 和输送供车辆发动机燃烧使用的汽化PLNG的燃料储存和输送系统,其 中该燃料储存和输送系统具有燃料储存容器和其它组件,它们由包括 含镍低于9%的超高强度低合金钢的材料构成,该材料的拉伸强度大于 830MPa(120ksi)且DBTT低于约-73℃(-100°F)。此外,提供用于在 1725kPa(250psia)~约4830kPa(700psia)的压力范围和约-112℃(- 170°F)~约-79℃(-110°F)的温度范围下储存加压液化天然气(PLNG) 燃料和输送供车辆发动机燃烧使用的汽化PLNG的燃料储存和输送系 统,其中该燃料储存和输送系统具有燃料储存容器和其它组件,它们 (i)由包括含镍低于9%的超高强度低合金钢的材料构成并且(ii)有 足够强度和断裂韧性来容纳所述的加压液化天然气。此外,提供用于 储存加压液化天然气(PLNG)燃料和输送供发动机燃烧使用的汽化PLNG 燃料的燃料储存和输送系统,其中该燃料储存和输送系统具有燃料储 存容器和其它组件,它们由包括含镍低于9%重量的超高强度低合金钢 的材料构成,该材料的拉伸强度大于830MPa(120ksi)且DBTT低于约- 73℃(-100°F)。此外,提供用于储存加压液化天然气(PLNG)燃料和 输送供车辆发动机燃烧使用的汽化PLNG燃料的燃料储存和输送系统, 其中该燃料储存和输送系统具有燃料储存容器和其它系统组件,它们 (i)由包括含镍低于9%(重量)的超高强度低合金钢的材料构成并(ii) 具有足够强度和断裂韧性来容纳所述的加压液化天然气。
用于制造燃料储存和输送系统的容器和其它组件的钢
根据这里所描述的已知的断裂力学原理,在操作条件下,任何其 镍含量低于9%(重量)的超高强度低合金钢,当其具有足够的韧性来容 纳低温流体例如PLNG时,可用于制造本发明燃料储存和输送系统的容 器和其它组件。本发明中所使用的一个示例钢,但本发明不受其限制, 为可焊接的超高强度低合金钢,其镍含量低于9%(重量)而且拉伸强度 高于830MPa(120ksi),而且该合金钢有足够的韧性来防止断裂的产生, 即在低温操作条件下发生的断裂现象。在本发明中所使用的另外一个 实例钢,但本发明不受其限制,为可焊接的超高强度低合金钢,其镍 含量低于约3%(重量)而且拉伸强度至少约为1000MPa(145ksi),而且 该合金钢具有足够的韧性来防止断裂的产生,即在低温操作条件下发 生的断裂现象。这些示例钢优选的DBTT低于约-73℃(-100°F)。
在炼钢技术上的最近进展使得制造具有优异低温韧性的新型超高 强度低合金钢成为可能。例如,授予Koo等人的三个美国专利5531842、 5545269和5545270,它们描述了新的钢和用于加工这些钢的方法来生 产具有拉伸强度约为830MPa(120ksi)、965MPa(140ksi)或更高的钢板。 为了制造在焊接时,不仅在基体钢中而且在热影响区(HAZ)都具有卓 越低温韧性的超高强度低合金钢,其所需化学特性和加工特性已通过 对在其中描述的钢和加工方法进行改进和修正而获得。这些超高强度 低合金钢同时具有改善的韧性从而优于标准市售的超高强度低合金 钢。对这种改良的描述参见:题为“Ultra-high strength steels with excellent cryogenic temperature toughness”的共同未决的美国临 时专利申请,其优先权日为1997年12月19日,该申请被美国美国专 利商标局(USPTO)确定的申请号为60/068194;题为“Ultra-high strength ausaged steels with excellent cryogenic temperature toughness”的共同未决的美国临时专利申请,其优先权日为1997年 12月19日,该申请被美国美国专利商标局(USPTO)确定的申请号为 60/068252;题为“Ultra-high strength dual phase steels with excelient cryogenic temperature toughness”的共同未决的美国临 时专利申请,其优先权日为1997年12月19日,该申请被美国美国专 利商标局(USPTO)确定的申请号为60/068816。(它们一起称为:“钢 专利申请”)。
在所述钢专利申请中描述的和下面的实例中所进一步描述的新型 钢尤其适于制造本发明的燃料储存和输送体系的容器和其它部件,其 原因是(优选厚度约为2.5厘米(1英寸)和更大尺寸的钢板)这些 钢具有下列特性:(i)在基体钢和焊接热影响区,DBTT小于约-73℃ (-100°F),优选低于约-107(-160°F);(ii)拉伸强度大于 830MPa(120ksi),优选是的拉伸强度大于约860MPa(125ksi),更优选 的拉伸强度大于约900MPa(130ksi);(iii)优良的可焊性;(iv)沿 厚度方向显微组织和性能基本均匀;和(v)相对于标准市售超高强度 低合金钢的韧性改善的韧性。甚至更优选的是,这些钢的拉伸强度大 于约930MPa(135ksi),或大于约965MPa(140ksi)或大于约1000MPa (145ksi)。
第一个钢实例
正如上面所讨论的,题为“Ultra-high strength steels with excellent cryogenic temperature toughness”的共同未决的美国临 时专利申请,其优先权日为1997年12月19日,该申请被美国专利商 标局(USPTO)确定的申请号为60/068194,该申请提供了适于本发明 的钢的描述。提供了制备超高强度钢板的一种方法,这种超高强度钢 板的显微组织主要包括回火细晶板条氏体、回火细晶下贝氏体或其 混合物,其中该方法包括以下步骤:(a)将钢坯加热到足够高的再加 热温度,使(i)钢坯充分均匀化(ii)钢坯中基本上所有铌和化 物、碳氮化物溶解,和(iii)在钢坯形成细化的初始奥氏体晶粒;(b) 在奥氏体发生再结晶的第一个温度范围下,将钢坯经一个或多个热轧 道次的轧制成形为钢板;(c)在高于约Ar3转变温度且低于约Tnr温 度的第二个温度范围下,经一个或多个热轧道次将钢板进一步轧制变 形;(d)约以10℃/秒~40℃/秒(18°F/秒~-72°F/秒)的冷却速率 淬火钢板,达到淬火停止温度,该淬火停止温度低于约Ms转变温度加 上200 ℃(360°F)的值;(e)停止淬火;并(f)将钢板回火处理, 回火温度约为400℃(752°F)~约Ac1转变温度,优选的回火温度接 近Ac1转变温度,但不包括Ac1转变温度,回火时间应足以使硬化粒子 析出,这些硬化粒子可以是一种或多种ε-,Mo2C,或铌和钒的碳化 物及碳氮化物。使硬化粒子析出的充足时间主要依赖于钢板的厚度、 钢板化学成分和回火温度,可由本领域熟练的技术人员来确定。(参 见术语表中有关:主要地、硬化粒子、Tnr温度、Ar3转变温度、Ms转 变温度、AC1转变温度和Mo2C的定义)
为了确保在室温和低温下的韧性,根据这个第一个钢实例的钢优 选具有这样显微组织:主要由回火细晶板条马氏体、回火细晶下贝氏 体或其混合物组成。优选基本上使形成的脆性成分如上贝氏体、孪晶 马氏体和MA减至最小程度。正如这个第一个钢实例所采用的,并在权 利要求中,“主要地”指的是至少为约50%(体积)。更优选的是, 所述显微组织包括至少约60%~80%(体积)回火细晶板条马氏体、回 火细晶下贝氏体或其混合物。甚至更优选的是该显微组织包括至少约 90%(体积)回火细晶板条马氏体、回火细晶下贝氏体或其混合物。最 优选的是包括基本上100%(体积)回火细晶板条马氏体的显微组织。
根据这个第一个钢实例加工的钢坯以常规方式制造,并在一个实 施方案中,该钢坯包含和下列合金元素,优选下列表I中给出的重 量范围:
表I 合金元素 范围(重量%) 碳(C) 0.04~0.12,更优选0.04~0.07 锰(Mn) 0.5~2.5,更优选1.0~1.8 镍(Ni) 1.0~3.0,更优选1.5~2.5 铜(Cu) 0.1~1.5,更优选0.5~1.0 钼(Mo) 0.1~0.8,更优选0.2~0.5 铌(Nb) 0.02~0.1,更优选0.03~0.05 (Ti) 0.008~0.03,更优选0.01~0.02 铝(Al) 0.001~0.05,更优选0.005~0.03 氮(N) 0.002~0.005,更优选0.002~0.003
有时在钢中添加钒(V),优选的钒含量最高达约0.10%(重量), 更优选的钒含量为约0.02%(重量)~0.05%(重量)。
有时在钢中添加铬(Cr),优选的铬含量最高达约1.0%(重量), 更优选的铬含量为约0.2%(重量)~0.6%(重量)。
有时在钢中添加(Si),优选的硅含量最高达约0.5%(重量), 更优选的硅含量为约0.01%(重量)~0.5%(重量),甚至更优选的 硅含量为约0.05%(重量)~0.1%(重量)。
有时在钢中添加(B),优选的硼含量最高达约0.0020%(重量), 更优选的硼含量为约0.0006%(重量)~0.0010%(重量)。
该钢优选包含至少约1%(重量)镍。如果需要提高焊接后的性能, 钢中的镍含量可增加到高于约3%(重量)。镍的重量每添加1%,钢的DBTT 预计降低约10℃(18°F)。镍含量优选低于9%(重量),更优选的镍 含量低于约6%(重量)。为了降低钢的成本,优选的镍含量为最低程 度的含量。如果镍含量增加到超过3%(重量),锰含量可降低到低于 约0.5%(重量)至0.0%(重量)。因此,从更广的意义上而言,优选 的锰含量最高约为2.5%(重量)。
另外,在钢中的残余物的含量优选为最低值。磷(P)的含量优选 为小于约0.01%(重量)。硫(S)的含量优选为小于约0.004%(重量)。 (O)的含量优选为小于约0.002%(重量)。
稍微更详细一点,根据这个第一个钢实例的钢,它的制备过程为: 首先形成如本文所述的所需组成的坯料;然后将坯料加热到约955℃~ 1065℃(1750°F~1950°F);在奥氏体发生再结晶的第一个温度范围下, 即高于Tnr温度,将钢坯经一个或多个道次的热轧成形为钢板,其轧制 压缩比为约30~70%,此时;然后在高于约Ar3转变温度且低于约Tnr 温度的第二个温度范围下,经一个或多个道次将钢板进一步热轧成形, 其轧制压缩比为约40~80%。随后以约10℃/秒~40℃/秒(18°F/秒~ -72°F/秒)的冷却速率淬火该热轧钢板,使其达到合适的QST(如术语 表中定义),该淬火停止温度低于Ms转变温度加上200℃(360°F)的 值,此时停止淬火。在这个第一个钢实例的一个实施方案中,随后将 钢板空冷至室温。这个过程用于生产优选主要包括细晶板条马氏体、 细晶下贝氏体或其混合物的显微组织,或更优选包括基本上100%细晶 板条马氏体的显微组织。
根据这个第一个钢实例的钢中直接淬火得到的马氏体具有高的强 度,但在约为400℃(752°F)~Ac1转变温度之间进行回火,可改善它 的韧性。在这个温度范围内对钢进行回火同时会减少淬火应力,而淬 火应力的减少反过来会提高韧性。在回火能提高钢的韧性的同时,通 常会显著降低钢的强度。在本发明中,可通过诱发析出相弥散强化来 弥补回火所造成的强度损失。在马氏体组织的回火过程中,细小的铜 析出物和混合的碳化物和/或碳氮化物产生的弥散强化用于优化强度和 韧性。这个第一个钢实例的钢的独特的化学性质允许回火在约400℃~ 650℃(752°F~1200°F)大的温度范围下进行,而不会造成淬火态的 强度的任何明显的降低。钢板优选在高于约400℃(752°F)~低于AC1 转变温度下回火足够时间以便析出硬化粒子(如本文中定义)。这个 处理促使钢板的显微组织转变为主要是回火细晶板条马氏体、回火细 晶下贝氏体或其混合物。此外,引起硬化粒子析出的充足时间主要依 赖于钢板的厚度、化学成分和回火温度,可由本领域熟练的技术人员 来确定。
第二个钢实例
正如上面所讨论的,题为“Ultra-high strength ausaged steels with excellent cryogenic temperature toughness”的共同未决的 美国临时专利申请,其优先权日为1997年12月19日,被美国美国专 利商标局(USPTO)确定的申请号为60/068252,该申请提供了其它适 于供本发明使用的钢的描述。提供了制备超高强度钢板的一种方法, 这种超高强度钢板具有微层状显微组织,该显微组织包括约2%(体积)~ 10%(体积)的奥氏体薄膜层和约90%(体积)~98%(体积)的主要 为细晶板条马氏体和细晶下贝氏体板条的显微组织,所述的方法包括 以下步骤:(a)将钢坯加热到足够高的再加热温度,使(i)钢坯基 本均匀化(ii)在钢坯中基本溶解所有铌和钒的碳化物、碳氮化物(iii) 在钢坯中形成细小的初始奥氏体晶粒;(b)在奥氏体发生再结晶的第一 个温度范围下,将钢坯经一个或多个道次的热轧成形为钢板,(c)在 高于约Ar3转变温度而低于约Tnr温度的第二个温度范围下,经一个或 多个道次将钢板进一步热轧变形;(d)以约10℃/秒~40℃/秒(18°F/ 秒~-72°F/秒)的冷却速率淬火钢板,使其达到淬火停止温度(QST), 该淬火停止温度低于约Ms转变温度加上100℃(180°F)的值但高于约 Ms转变温度;(e)停止淬火。在一个实施方案中,这个第二个钢实例 的方法还包括将钢板从QST空冷到室温这个步骤。在另外一个实施方 案中,这个第二个钢实例的方法还包括在将钢板空冷到室温前要将钢 板保持在与QST基本上等温条件下不超过约5分钟这个步骤。而在又 一个实施方案中,这个第二个钢实例的方法还包括在将钢板空冷到室 温前从QST开始以低于约1.0℃/秒(1.8°F/秒)的速率缓慢冷却钢板, 冷却时间最高达5分钟。而在再一个实施例中,本发明的方法还包括 在将钢板空冷到室温前从QST开始以低于约1.0℃/秒(1.8°F/秒)的 速率缓慢冷却钢板最高达5分钟。这种处理促使该钢板的显微组织转 变为约2%(体积)~10%(体积)的奥氏体薄膜层和约90%(体积)~ 98%(体积)的主要为细晶板条马氏体和细晶下贝氏体板条的显微组织。 (参见术语表中有关Tnr温度、Ar3转变温度、Ms转变温度的定义)
为了确保室温和低温下的韧性,微层状显微组织中的板条优选主 要包括下贝氏体和马氏体。优选基本上使形成的脆性成分如上贝氏体、 孪晶马氏体和MA减至最小程度。正如这个第二个钢实例所采用的,和 在权利要求中,“主要地”指的是至少为约50%(体积)。显微组织 的其余部分可以包括额外的细晶板条马氏体、额外的细晶下贝氏体或 铁素体。更优选的是,显微组织包括至少约60%~80%(体积)板条马 氏体和下贝氏体。甚至更优选的是显微组织包括至少约90%(体积) 下贝氏体或板条马氏体。
在一个实施方案中,根据这个第二个钢实例加工的钢坯在通常方 式下进行制造,该钢坯包含铁和下列合金元素,优选下列表II中给出 的重量范围: 表II 合金元素 范围(重量%) 碳(C) 0.04~0.12,更优选0.04~0.07 锰(Mn) 0.5~2.5,更优选1.0~1.8 镍(Ni) 1.0~3.0,更优选1.5~2.5 铜(Cu) 0.1~1.0,更优选0.2~0.5 钼(Mo) 0.1~0.8,更优选0.2~0.4 铌(Nb) 0.02~0.1,更优选0.02~0.05 钛(Ti) 0.008~0.03,更优选0.01~0.02 铝(Al) 0.001~0.05,更优选0.005~0.03 氮(N) 0.002~0.005,更优选0.002~0.003
有时在钢中添加钒(V),优选的钒含量最高达约1.0%(重量), 更优选的钒含量为约0.2%(重量)~0.6%(重量)。
有时在钢中添加硅(Si),优选的硅含量最高达约0.5%(重量), 更优选的硅含量为约0.01%(重量)~0.5%(重量),甚至更优选的 硅含量为约0.05%(重量)~0.1%(重量)。
有时在钢中添加硼(B),优选的硼含量最高达约0.0020%(重量), 更优选的硼含量为约0.0006%(重量)~0.0010%(重量)。
该钢优选包含至少约1%(重量)镍。如果想提高焊接后的性能, 该钢中的镍含量可增加到约为3%以上。镍的重量每增加1%,该钢的DBTT 预计降低约10℃(18°F)。镍含量优选低于9%(重量),更优选的镍 含量低于约6%(重量)。为了降低钢的成本,优选的镍含量为最低程 度的含量。如果镍含量增加到超过3%(重量),锰含量可能降低到约 0.5%(重量)~0.0%(重量)。因此,从更广的意义上而言,优选的 锰含量最高约为2.5%(重量)。
另外,在钢中的残余物的含量优选为最低值。磷(P)的含量优选 为小于约0.01%(重量)。硫(S)的含量优选为小于约0.004%(重量)。 氧(O)的含量优选为小于约0.002%(重量)。
稍微更详细一点,根据这个第二个钢实例的钢,它的制备过程为: 首先形成所需成分(如本文所述)的坯料;然后将坯料加热到约955 ℃~1065℃(1750°F~1950°F);在奥氏体发生再结晶的第一个温度范 围下,即高于约Tnr温度,将钢坯经一个或多个道次的热轧成形为钢板, 其轧制压缩比为约30~70%;然后在高于约Ar3转变温度而低于约Tnr 温度的范围下,经一个或多个道次将钢板进一步热轧变形,其轧制压 缩比为约40~80%。随后以约10℃/秒~40℃/秒(18°F/秒~72°F/秒) 的冷却速率淬火热轧钢板,使其达到合适的QST,该淬火停止温度低 于Ms转变温度加上100℃(180°F)的值但高于约Ms转变温度,此时停 止淬火。在这个第二个钢实例的一个实施方案中,淬火停止后,可将 钢板从QST空冷至室温。这个第二个钢实例的另外一个实施方案中, 淬火停止后,将钢板保持在与QST基本上等温下一定时间,优选等温 时间最高达约5分钟,此后将钢板空冷至室温。而在另外一个实施方 案中,以低于空冷的冷却速率缓慢冷却钢板,即低于约1.0℃/秒(1.8°F/ 秒)的速率,优选的冷却时间最高达约5分钟。而在这个第二个钢实 例的又一个实施方案中,从QST开始以低于空冷的冷却速率缓慢冷却 钢板,即低于约1.0℃/秒(1.8°F/秒)的速率,优选的冷却时间最高 达约5分钟。至少在这个第二个钢实例的一个实施方案中,Ms转变温 度约为350℃(662°F),而且因此Ms转变温度加上100℃(180°F)约 等于450℃(842°F)。
可通过任何适合的方法将该钢板在与QST基本上等温下保持,例 如在钢板上放置一热毛毡,而这些方法是熟练的技术人员所熟知的。 淬火停止后,可采用任何方法将钢板进行缓慢冷却,例如在钢板上放 置一绝热毛毡,而这些方法是熟练的技术人员所熟知的。
第三个钢实例
正如上面所讨论的,题为“Ultra-high strength dual phase steels with excellent cryogenic temperature toughness”的共同未决的 美国临时专利申请,其优先权日为1997年12月19日,该申请被美国 美国专利商标局(USPTO)确定的申请号为60/068816,该申请提供了 适于供本发明使用的其它钢的描述。提供了制备超高强度双相钢板的 一种方法,该钢板的显微组织包括约10%(体积)~40%(体积)的基 本为100%(体积)(大致纯的或“实质上”)铁素体的第一相和约60% (体积)~90%(体积)的主要为细晶板条马氏体和细晶下贝氏体或其 混合物的第二相,所述的方法包括以下步骤:(a)将钢坯加热到足够 高的再加热温度,使(i)该钢坯基本均匀化(ii)基本上溶解钢坯中 所有铌和钒的碳化物、碳氮化物(iii)在钢坯中形成细小的初始奥氏体 晶粒;(b)在奥氏体发生再结晶的第一个温度范围下,将钢坯经一个或 多个道次的热轧成形为钢板;(c)在高于约Ar3转变温度而低于Tnr 温度的第二个范围下,经一个或多个道次将钢板进一步热轧变形;(d) 在高于约Ar1转变温度而低于约Ar3转变温度的第三个温度范围下(例 如临界温度范围),经一个或多个道次将所述的钢板进一步热轧变形; (e)以约10℃/秒~40℃/秒(18°F/秒~72°F/秒)的冷却速率淬火 所述钢板,使其达到淬火停止温度(QST),该淬火停止温度低于约Ms 转变温度加上200℃(360F)的值;(f)停止所述淬火。在这个第三 个钢实例的另一个实施方案中,QST优选低于约Ms转变温度加上100 ℃(180°F)的值,而且更优选低于约350℃(662°F)的值。在这个第 三个钢实例的另外一个实施例中,在步骤(f)之后,可将钢空冷至室温。 这种处理促使钢板的显微组织的转变为约10%(体积)~40%(体积) 的铁素体的第一相和约60%(体积)~90%(体积)的主要为细晶板条 马氏体和细晶下贝氏体或其混合物的第二相的显微组织。(参见术语 表中有关Tnr温度、Ar3转变温度、Ar1转变温度的定义)
为了确保室温和低温下的韧性,这个第三个钢实例的钢中第二相 的显微组织主要为细晶下贝氏体和细晶板条马氏体或其混合物。优选 基本上使形成的脆性成分如上贝氏体、孪晶马氏体和MA在该第二相中 减至最小程度。正如这个第三个钢实例所采用的,和在权利要求书中, “主要地”指的是至少为约50%(体积)。第二相显微组织的其余部 分可以包括额外的细晶板条马氏体、额外的细晶下贝氏体或铁素体。 更优选的是,第二相的显微组织至少包括约60%~80%(体积)细晶下 贝氏体、细晶板条马氏体或其混合物。甚至更优选的是第二相的显微 组织包括至少约90%(体积)细晶下贝氏体、细晶板条马氏体或其混 合物。
在一个实施方案中,根据这个第三个钢实例加工的钢坯在通常方 式下进行制造,该钢坯包含铁和下列合金元素,优选下列表III中给 出的重量范围: 表III 合金元素 范围(重量%) 碳(C) 0.04~0.12,更优选0.04~0.07 锰(Mn) 0.5~2.5,更优选1.0~1.8 镍(Ni) 1.0~3.0,更优选1.5~2.5 铌(Nb) 0.02~0.1,更优选0.02~0.05 钛(Ti) 0.008~0.03,更优选0.01~0.02 铝(Al) 0.001~0.05,更优选0.005~0.03 氮(N) 0.002~0.005,更优选0.002~ 0.003
有时在钢中添加铬(Cr),优选的铬含量最高达约1.0%(重量), 更优选的铬含量为约0.2%(重量)~0.6%(重量)。
有时在钢中添加钼(Mo),优选的钼含量最高达约0.8%(重量), 更优选的钼含量为约0.1%(重量)~0.3%(重量)。
有时在钢中添加硅(Si),优选的硅含量最高达约0.5%(重量), 更优选的硅含量为约0.01%(重量)~0.5%(重量),甚至更优选的 硅含量为约0.05%(重量)~0.1%(重量)。
有时在钢中添加铜(Cu),优选其含量约0.1%(重量)~1.0%(重 量),更优选的铜含量为约0.2%(重量)~0.4%(重量)。
有时在钢中添加硼(B),优选的硼含量最高达约0.0020%(重量), 更优选的硼含量为约0.0006%(重量)~0.0010%(重量)。
该钢优选包含至少约1%(重量)镍。如果想提高焊接后的性能, 钢中的镍含量可增加到约为3%以上。镍的重量每增加1%,钢的DBTT 预计降低约10℃(18°F)。镍含量优选低于9%(重量),更优选的镍 含量低于约6%(重量)。为了降低钢的成本,优选的镍含量为最低程 度的含量。如果镍含量增加到超过3%(重量),锰含量可能降低到低 于约0.5%(重量)~0.0%(重量)。因此,从更广的意义上而言,优 选的锰含量最高约为2.5%(重量)。
另外,在钢中的残余物的含量优选基本为最低值。磷(P)的含量 优选为小于约0.01%(重量)。硫(S)的含量优选为小于约0.004%(重 量)。氧(O)的含量优选为小于约0.002%(重量)。
稍微更详细一点,根据这个第三个钢实例的钢的制备过程为:首 先形成如本文所述的所需成分的坯料;然后将坯料加热到约955℃~ 1065℃(1750°F~1950°F);在奥氏体发生再结晶的第一个温度范围下, 即高于Tnr温度,将钢坯经一个或多个道次的热轧成形为钢板,其轧制 压缩比为约30~70%;然后在高于约Ar3转变温度而低于约Tnr温度的 第二个温度范围下,经一个或多个道次进行钢板的热轧变形,其轧制 压缩比为约40-80%;并在高于约Ar1转变温度而低于约Ar3转变温度 的临界温度范围内,经一个或多个道次对钢板进行终轧,其轧制压缩 比为约15~50%。在随后以约10℃/秒~40℃/秒(18°F/秒~72°F/秒) 冷却速率淬火热轧钢板,使其达到合适的淬火停止温度QST,QST优选 低于Ms转变温度加上200℃(360°F)的值,此时停止淬火。在本发明 又一实施方案中,该QST优选低于约Ms转变温度加上100℃(180°F) 而且更优选低于约350℃(662°F)的值。在这个第三个钢实例的一个 实施方案中,在淬火停止后,可将钢板空冷至室温。
在上面的三个实例钢中,因为镍(Ni)是一种昂贵的合金元素, 所以为了将钢的成本减至基本最低程度,钢中的镍含量优选小于约3.0% (重量),更优选的镍含量为小于约2.5%(重量),还更优选的镍含 量为小于约2.0%(重量),甚至更优选的镍含量为小于约1.8%。
其它适于本发明使用的钢在其它公开中给予了描述,这些公开描 述了镍含量小于约1%(重量)的超高强度度低合金钢,该合金钢的拉 伸强度高于830MPa(120ksi),同时具有卓越的低温韧性。例如,在1997 年2月5日公开的欧洲专利申请中所描述的钢,该专利申请的国际申 请号为PCT/JP96/00157,它的国际公开号为WO96/23909(08.08.1996 Gazette1996/36)(这些钢优选的铜含量为0.1%(重量)~1.2%(重 量)),而且还可参见悬置的美国临时专利申请(优先权日为1997年7 月28日),其标题为“Ultra-high strength,weldable steels with excellent ultra-low temperature toughness”,该申请被USPTO确定 的申请号为No.60/053915。
对于任何上面所参考的钢,本领域熟练的技术人员都明白,这里 所采用的“厚度压缩百分比”指的是在上述轧制压缩前的钢坯厚度的 压缩百分比。在此仅是为了解释,并没有因此限制本发明,在第一个 温度范围下,将一约为25.4厘米(10英寸)厚的钢坯压缩约50%(50% 压缩),则达到约12.7厘米(5英寸)厚度;随后在第二个温度范围 下,再压缩约80%(80%的压缩),达到的厚度约为2.5厘米(1英寸)。 此外,在此仅是为了解释,并没有因此限制本发明,在第一个温度范 围下,将一约为25.4厘米(10英寸)厚的钢坯压缩约30%(30%的压 缩),达到的厚度约为17.8厘米(7英寸)厚度;随后在第二个温度 范围下,再压缩约80%(80%的压缩),达到的厚度约为3.6厘米(1.4 英寸);然后在第三个温度范围下,再压缩约30%(30%的压缩),达 到的厚度约为2.5厘米(1英寸)。正如这里所采用的,“板坯”指 的是任意尺寸的钢。
对于任何上面所参考的钢,本领域熟练的技术人员都明白,优选 采用合适的方法对钢坯再加热,将基本上整个钢坯、优选整个钢坯的 温度提高到所希望的再加热温度,例如在加热炉中将钢坯放置一定时 间。用于任何上面所参考的钢成分的具体再加热温度可由本领域熟练 的技术人员方便地确定,或者通过实验来确定,或者通过合适的模型 来计算该温度。此外,用于将基本上整个钢坯、优选整个钢坯的温度 提高到所希望的再加热温度所需的加热炉温度和再加热时间,可由本 领域熟练的技术人员通过参考标准工业出版物来方便地确定。
对于任何上面所参考的钢,本领域熟练的技术人员都明白,定义 再结晶范围与未再结晶范围边界的温度-Tnr温度依赖于钢的化学成 分,而且更具体的讲,它依赖于轧制前的再加热温度、碳的浓度、铌 的浓度和在轧制道次中给定的压缩量。本领域熟练的技术人员可通过 实验或模型计算来确定各个钢成分的这个温度。同样,这里所参考各 个钢成分的Ac1转变温度、Ac3转变温度、Ar3转变温度和Ms转变温度 均可由本领域熟练的技术人员来确定,或者通过实验或模型计算来确 定。
对于任何上面所参考的钢,本领域熟练的技术人员都明白,除了 用于基本上整个钢坯的再加热温度以外,在描述本发明的处理方法中 随后的温度为测定的钢的表面温度。例如,通过光学高温计可测量钢 的表面温度,或者采用适于测量钢的表面温度的任何其它合适的仪器。 本文中冷却速率指的是处于板厚度的中心或基本中心部位的冷却速 率;而且淬火停止温度(QST)为淬火停止后,因为来自板厚度中间的 热传导板的表面温度达到最高值或基本最高值。例如根据这里所提供 的实例的一种钢成分的实验热过程中,通过在板厚度的中心或基本中 心放置热电偶来测定中心温度,而采用光学高温计来测量钢的表面温 度。于是可建立中心温度和表面温度之间的关系,从而用于处理后来 的相同或基本相同的钢成分,这样通过直接测定表面温度便可确定中 心温度。同时,达到所希望的加速冷却速率淬火液体所需的温度和流 动速率均可由本领域熟练的技术人员通过参考标准工业出版物确定。
本领域熟练的技术人员应具有所需知识和技能,利用这里所提供 的信息来生产超高强度低合金钢板,该钢板具有高的强度和韧性,可 用于制造本发明的燃料储存和运送系统容器和其它组件。也可能存在 或以后开发其它合适的钢,但所有这些钢均处于本发明发范围之内。
本领域熟练的技术人员应具有所需的知识和技能,利用这里所提 供的信息来生产超高强度低合金钢板,与根据这里所提供的实例而生 产的钢板厚度相比,该钢板的厚度可以修改,同时生产的钢板依然具 有合适的高强度和合适的低温韧性以供本发明的系统使用。例如,本 领域熟练的技术人员可利用这里所提供的信息来生产有合适的高强度 和合适的低温韧性的钢板,该钢板厚度约为2.54厘米(1英寸),可 用于制造本发明的容器和其它组件。可能存在或随后开发其它合适的 钢。所有这些钢均处于本发明发范围之内。
当双相钢用于制造本发明的燃料储存和输送系统容器和其它部件 时,双相钢优选采用这样的方式进行处理:在加速冷却和淬火步骤前, 将钢在临界温度范围内保持一定时间以形成双相组织。优选的处理为 钢在Ar3转变温度~Ar1转变温度之间冷却时形成双相钢组织。用于制 造本发明容器的钢的另外优选为:在完成加速冷却和淬火步骤时,钢 的拉伸强度高于830MPa(120ksi)而且DBTT小于约-73℃(-100°F), 即无需任何额外的要求钢再加热的处理,例如回火。更优选的是,在 完成淬火和冷却步骤时,钢的拉伸强度高于约860MPa(125ksi),更优 选高于约900MPa(130ksi)。在一些应用中,在完成淬火和冷却步骤时, 钢的拉伸强度优选高于约930MPa(135ksi)或高于约965MPa(140ksi)或 高于约1000MPa(145ksi)。 用于制造燃料储存和输送系统的容器和其它组件的连接方法
为了制造本发明的燃料储存和输送系统容器和其它组件,需要一 种合适的连接钢板的方法。任何连接方法只要它能使用于本发明的接 头具有足够的强度和韧性,如上所述,该方法便可认为是合适的。用 于制造本发明的容器和其它组件的焊接方法优选适于提供足够的强度 和韧性来容纳所包含或输送的液体。这样的焊接方法优选包括合适的 自耗焊丝、合适的自耗气体、合适的焊接方法及合适的焊接工艺过程。 例如,气保护熔化电弧焊(GMAW)和钨极惰性气体保护焊(TIG), 二者在炼钢工业中为人们所熟知,只要采用合适的自耗焊丝-气体组 合,二者均可用于连接所述钢板。
在第一个示例焊接方法中,采用了气保护熔化极电弧焊接(GMAW) 来生成焊缝,该焊缝金属的化学成分包括:铁和约0.07%(重量)的 碳、约为2.05%(重量)的锰、约为0.32%(重量)的硅、约为2.20% (重量)的镍、约为0.45%(重量)的铬、约为0.56%(重量)的钼、 约小于110ppm的磷和约小于50ppm的硫。采用含小于约1%(重量) 的氧的氩基保护气体来焊接钢,例如上面所描述的任何钢。焊接的热 输入量处于约0.3kJ/mm~1.5kJ/mm(7.6kJ/英寸~38kJ/英寸)范围 之内。采用这种方法进行焊接使得焊接件(见术语表)的拉伸强度高 于约900MPa(1130ksi),优选高于约930MPa(135ksi),更优选高于约 965MPa(140ksi),甚至更优选至少约为1000MPa(145ksi)。此外,采 用这种方法进行焊接使得焊缝金属的DBTT低于约-73℃(-100°F),优 选的DBTT低于约-96℃(-140°F),更优选的DBTT低于约-106℃(- 160°F),甚至更优选的DBTT低于约-115℃(-175°F)。
在第二个示例焊接方法中,采用了气保护熔化极电弧焊接(GMAW) 来生成焊缝,该焊缝金属的化学成分包括:铁、约0.10%(重量)的 碳(优选小于约0.10%(重量)碳,更优选的碳含量为约0.07%(重量)~ 0.08%(重量))、约为1.60%(重量)的锰、约为0.25%(重量)的硅、 约为1.87%(重量)的镍、约为0.87%(重量)的铬、约为0.51%(重 量)的钼、约小于75ppm的磷和约小于100ppm的硫。焊接的热输入量 处于约0.3kJ/mm~1.5kJ/mm(7.6kJ/英寸~38kJ/英寸)范围之内, 而且采用约100℃(212°F)的预热。采用含小于约1%(重量)氧的氩 基保护气来焊接钢,例如上面所描述的任何钢。采用这种方法进行焊 接使得焊接件(见术语表)的拉伸强度高于约900MPa(130ksi),优选 高于约930MPa(135ksi),更优选的拉伸强度高于约965MPa(140ksi), 甚至更优选的拉伸强度至少约为1000MPa(145ksi)。此外,采用这种 方法进行焊接使焊缝金属的DBTT低于约-73℃(-100°F),优选的DBTT 低于约-96℃(-140°F),更优选的DBTT低于约-106℃(-160°F),甚至 更优选的DBTT低于约-115℃(-175°F)。
在另外一个示例焊接方法中,采用了钨极惰性气体保护焊(TIG) 来生成焊缝,该焊缝金属的化学成分包括:铁、约0.07%(重量)的 碳(优选小于约0.07%(重量)的碳)、约为1.80%(重量)的锰、约 为0.20%(重量)的硅、约为4.00%(重量)的镍、约为0.5%(重量) 的铬、约为0.40%(重量)的钼、约为0.02%(重量)的铜、约为0.02% (重量)的铝、约为0.010%(重量)的钛、约为0.015%(重量)的锆 (Zr)、约小于50ppm的磷和约小于30ppm的硫。焊接的热输入量处于 约0.3kJ/mm~1.5kJ/mm(7.6kJ/英寸~38kJ/英寸)范围之内,而且 采用100℃(212°F)的预热。采用含小于约1%(重量)氧的氩基保护 气体来焊接钢,例如上面所描述的任何钢。采用这种方法进行焊接使 得焊接件的拉伸强度高于约900MPa(130ksi),优选的拉伸强度高于约 930MPa(135ksi),更优选的拉伸强度高于约965MPa(140ksi),甚至更 优选的拉伸强度至少约为1000MPa(145ksi)。此外,采用这种方法进 行焊接使得焊缝金属的DBTT低于约-73℃(-100°F),优选的DBTT低于 约-96℃(-140°F),更优选的约DBTT低于约-106℃(-160°F),甚至更 优选的DBTT约低于约-115℃(-175°F)。
采用GMAW或者采用TIG焊接方法能够获得与那些示例中相类似的 焊缝金属化学组成。然而可以预料,TIG焊缝比GMAW焊缝的杂质含量 低而且显微组织更高度细化,而且因此低温韧性得到了改善。
本领域熟练的技术人员应具有所需的知识和技能,利用这里所提 供的信息来焊接超高强度低合金钢板,使其产生的接缝具有合适的高 强度和合适的断裂韧性以用于制造本发明的容器和其它组件。可能存 在或以后开发其它合适的连接或焊接方法,但所有这些连接或焊接方 法均处于本发明发范围之内。 燃料储存和输送系统的容器和其它组件的制造
没有因此限制本发明:提供燃料储存和输送系统的容器和其它组 件,它们:(i)由包括含镍低于9%(重量)的超高强度低合金钢的材料 制造(ii)具有足够强度和低温断裂韧性来容纳PLNG;而且提供的容器 和其它组件由包括含镍低于9%(重量)的超高强度低合金钢的材料制 造,该合金钢的拉伸强度大于830MPa(120ksi)且DBTT低于约-73℃(- 100°F);此外,提供的容器和其它组件(i)由含镍低于约3%(重量)的超 高强度低合金钢制造并(ii)具有足够强度和低温断裂韧性来容纳 PLNG;而且,提供的容器和其它组件(i)包括含镍低于约3%(重量)的 超高强度低合金钢的材料制造(ii)该合金钢的拉伸强度大于约 1000MPa(145ksi)且DBTT低于约-73℃(-100°F)。这样燃料储存和输送 系统的容器和其它组件优选由这里所描述的具有卓越低温韧性的超高 强度低合金钢制造。
本发明燃料储存和输送系统的容器和其它组件优选由具有卓越低温 韧性的超高强度低合金钢的分立板制造。在适当场合,所述容器和其它 组件的接头优选具有与超高强度低合金钢板相同的强度和韧性。在一些 情况下,强度的不足匹配在数量级为5%~10%时可认为是低应力部位。具 有优选性能的接头可由任何合适的连接技术来完成。这里所描述的示例 连接技术,其副标题为“制造容器和其它部件的连接方法”。
对于本领域熟练的技术人员而言,这将是很熟悉的,在设计用于 储存加压的低温流体例如PLNG的容器时,采用夏氏V形切口(CVN) 测试,更具体地讲是通过采用韧性-脆性转变温度(DBTT)来评价断裂 韧性并控制断裂。DBTT描述了结构钢中的两种断裂方式。当温度低于 DBTT时,夏氏V形切口测试中的破坏趋向于以低能量解理(脆性)断 裂的形式发生;当温度高于DBTT时,破坏趋向于以高能量韧性断裂的 形式发生。由用于储存PLNG和其它承载、低温用途的焊接钢制造的容 器,正如通过夏氏V形切口测试所确定的,其DBTT必须低于结构的使 用温度以避免发生脆性断裂。根据设计、使用条件和/或可适用船级社 的要求,所要求的DBTT温度可在低于使用温度5℃~30℃(9°F~54°F) 之间变化。
对于本领域熟练的技术人员而言,这将是很熟悉的,在设计由焊 接钢制造供储存和输送加压的低温流体例如PLNG使用的容器时,应考 虑的操作条件包括操作压力和温度以及可能施加到钢和焊接件(参见 术语表)的附加应力等。标准的断裂力学测试,例如(i)临界应力强 度因子(KIC),它用来测量平面应变的断裂韧性(ii)裂纹尖端张开位 移(CTOD),它可用于测量弹塑性断裂韧性,熟练的技术人员对二者是 很熟悉的,二者可以用于确定钢和焊接件的断裂韧性。例如,正如在 BSI上发表“Guidance on methods for assessing the acceptability of flaws in fusion welded structures”一文中所介绍的,一般适 用于钢结构的设计的工业代码经常称定为“PD6493:1991”,根据钢和 焊接件(包括HAZ)的断裂韧性和施加到容器上的应力,它可用于确 定容器的最大允许缺陷尺寸。本领域熟练的技术人员可以通过以下内 容来开发断裂控制程序从而减轻断裂的发生,这些包括:(i)合理设 计容器以便使施加的应力最小(ii)合理控制制造质量以便使缺陷达 到最小程度(iii)合理控制施加到容器上的寿命周期载荷和压力(iv) 适当的检测程序以便用于可靠地检测容器中的裂纹和缺陷。用于本发 明系统的优选设计原则是“破坏前泄漏”,对于本领域熟练的技术人 员而言,这是很熟悉的。这里的这些考虑一般参考了本文中的“已知 的断裂力学原理”。
下列是的一个非限制实例,在一个程序中应用这些已知的断裂力 学原理来计算给定的缺陷(裂纹)长度下的临界缺陷深度,用于断裂 控制设计使用以便于防止根据本发明的容器产生断裂。
图4B给出了一个长315深310的裂纹。根据下列用于压力容器的 设计条件,PD6493用于计算如图4A所示的临界缺陷尺寸曲线300的 值: 容器直径 4.57米(15英尺) 容器壁厚 25.4毫米(1.00英寸) 设计压力 3445kPa(500psi) 许用圆周应力 333MPa(48.3ksi)
对于这个实例来说,假定表面缺陷长度为100毫米(4英寸), 例如位于滚焊中的轴向缺陷。参照图4A,对于残余应力平为屈服应 力的15%、50%和100%而言,曲线300给出了临界缺陷深度的值,它是 CTOD断裂韧性和残余应力的函数。残余应力可在制造和焊接时产生; 而且除非采用例如焊接后热处理(PWHT)或机械应力释放将焊接应力 减轻,PD6493推荐在焊缝中(包括焊接HAZ)采用屈服应力100%的残 余应力值。
根据钢在最低使用温度下的CTOD断裂韧性,容器的制造应适于降 低残余应力,而且可执行检测程序(用于初始检测和使用期检测)来 将探测并测定的缺陷与临界缺陷尺寸进行比较。在这个实例中,如果 钢在最低服役温度下的CTOD韧性为0.025毫米(通过实验试样测定) 而且残余应力减至钢的屈服应力的15%,那么临界缺陷深度的值约为4 毫米(见图4A中的点320)。使用相似的计算过程,这对于本领域熟 练的技术人员是非常熟悉的,可针对不同的缺陷长度和缺陷形状确定 临界缺陷深度。通过这个信息,可以开发质量控制程序和检测程序(技 术、可探测的缺陷尺寸、频率)来确保缺陷在达到临界缺陷深度或在 达到设计载荷之前将缺陷探测出并进行补救。根据公开的CVN、KIC和 CTOD断裂韧性之间的经验关系,0.025毫米的CTOD断裂韧性一般对应 于37J的CVN值。这个实例决没有试图限制本发明。
对于容器和其它组件要求将钢弯曲成例如用于容器的圆柱形状或 用于管道的管状,该钢优选在室温下弯曲成所需形状,以避免对钢的 卓越的低温韧性造成不利影响。如果钢弯曲后必须加热才能获得所需 形状,那么该钢优选加热到不高于约600℃(1112°F)从而保证上述钢的 显微组织的有益效果。
燃料储存和输送系统实例
下面将详细描述根据本发明用于储存PLNG燃料和输送供发动机燃 烧使用的汽化PLNG燃料的燃料储存和输送系统的一个实施方案和与此 相关的独特优点。该燃料储存和输送系统的组件例如燃料储存容器、 液体管路、蒸气管路、和汽化器,优选由这里所描述的具有卓越低温 韧性的超高强度低合金钢制造,或由具有这里所描述的所需特性的其 它钢制造。对于要求将钢弯曲成例如用于容器的圆柱形状或用于管道 的管状的组件,钢优选在室温下弯曲成所需形状,以避免对钢的卓越 的低温韧性造成不利影响。如果钢弯曲后必须加热才能获得所需形状, 那么该钢优选加热到不高于约600℃(1112°F)从而保证上述钢的显微组 织的有益效果。
燃料储存和输送系统的组件
参照图1,本实例的燃料储存和输送系统包括一个燃料储存容器 10。燃料储存容器10优选为绝热的杜瓦(Dewar)-型容器。连接燃料储 存容器10以便注入和排气阀13需分别通过(i)蒸气孔11、蒸气 管路9(虚线)、和蒸气阀门14和(ii)液体孔12、液体管路8(实 线)和液体阀门15。在燃料储存容器10和注入及排气阀门13之间, 分别在液体管路8和蒸气管路9上插入压力传感器16和17。通过液 体孔12、液体管路8、液体电磁阀18、汽化器20、燃料管路4(虚线 -点-点)和燃料调节器22,燃料储存容器10与发动机24的入口歧管 相连接。还通过蒸气孔11、蒸气管路9、蒸气电磁阀19、汽化器20、 燃料管路4,温度传感器21和燃料调节器22,燃料储存容器10与发 动机的入口歧管相连接。燃料储存容器10通过蒸气孔11和蒸气管路 9与安全减压阀26相连接。本实例的燃料储存和输送系统同时包括压 力开关和燃料计量器29。正如在下面的燃料储存和输送系统的操作的 描述中所使用的,除非有其它说明,与阀有关的“开”意味着“至少 部分打开”。
燃料储存容器的初始注入
在初始注入前,燃料储存容器10典型处于大气压和室温下。燃料 储存容器10的初始注入可优选由规定顺序控制。例如,对于初始注入 的规定顺序优选预先编程到CPU30(图1没有给出,见图2),而且在一 个实施方案中它由人工操纵开关(附图没有给出)来控制。
典型地,规定顺序包括按下列顺序陈述的步骤。首先,在燃料储 存容器10的冷却循环中,打开蒸气阀14使蒸气PLNG燃料产生从加油 站(附图没有给出)经注入和排气阀13、蒸气管路9和蒸气孔11到 燃料储存容器10的流动。直到燃料储存容器10的温度达到预先设定 的温度值,蒸气PLNG的这种流动才会停止。预先设定的温度值主要由 冷却曲线和制造燃料储存容器10的材料的热收缩特性得到,而且本领 域熟练的技术人员可通过参考标准工业出版物来确定。蒸气PLNG燃料 到储存容器10的这种流动同时增加了储存容器10的压力。当燃料储 存容器10的温度达到预先设定的温度值时,打开液体阀15使液体PLNG 燃料产生从加油站经注入和排气阀13、液体管路8和液体孔12到燃 料储存容器10的流动,从而完成最终阶段的冷却循环过程。当液体PLNG 燃料冷却燃料储存容器10时,液体PLNG燃料汽化并使得压力增加。 当储存容器10中的PLNG燃料的压力达到预先设定的值后,根据燃料 储存容器10和加油站之间的压力差,蒸气PLNG燃料会通过蒸气阀14 反向流动(例如从燃料储存容器10到加油站),而且随后蒸气阀14 优选完全打开以维持燃料储存容器10和加油站之间的压力平衡。当储 存容器10中的温度达到预先设定的温度值时,即当冷却循环完成时, 液体阀15优选完全打开。液体PLNG燃料继续从加油站流到燃料储存 容器10,从燃料储存容器10移动基本相等体积的蒸气PLNG燃料返回 到加油站,直到水平传感器(附图没有给出)探测出燃料储存容器10 中的液体PLNG燃料已经达到预先设定的量或体积,此时蒸气阀14和 液体阀15都关闭以终止初始注入过程。对于低温液体储存容器,当初 始注入完成时,一般地优选在燃料储存容器10中可得到至少约为10% 蒸气空间,这个对于低温液体储存领域中熟练的技术人员是很熟悉的。
系统再注入过程
在再注入开始之前,蒸气阀14和液体阀15关闭而且注入和排气 阀13打开,此时压力传感器16测定加油站中的PLNG燃料的压力并以 输入信号31将压力传达给CPU30(图1中没有给出,参见图2)。同 时,在再注入开始之前,通过压力传感器17测定燃料储存容器10中 的压力并以输入信号31将压力传达给CPU30,在再注入过程中优选连 续监测。在再注入过程中,与料储存容器10中的压力相比,加油站的 PLNG燃料的压力基本保持恒定。此外,在再注入过程中,CPU30连续 监测加油站和燃料储存容器10之间的压力差。此外,CPU30优选通过 水平传感器例如调谐比重计(图中没有给出)来连续监测燃料储存容 器10中的液体PLNG燃料的水平7,即以输入信号31接收。同时,CPU30 优选预先用设定的最小再注入压力差进行编程,即在没有采用的情 况下确保从加油站到储存容器10之间的期望的液体PLNG燃料流量所 必须的最小压力差。如果在再注入开始之前,加油站与储存容器10之 间的压力差小于所述设定的最小再注入压力差,或者在再注入过程中 二者的压力差减小到小于所述给定的最小再注入压力差,那么CPU30 可适当地控制再注入过程以确保形成所述设定的最小再注入压力差。 在CPU30中使用的这些压力、压力差、液体水平和设定的最小再注入 压力差值,可适当地通过操纵(开/关)阀14、15、18和19来控制再 注入过程。
这个实例的燃料储存和输送系统中所采用的再注入顺序依赖于储 存容器10中的PLNG燃料的热力学状态。正如下面将进一步解释的, 顺序的启动变化依赖于增加到最小再注入压力差的储存容器10中的 PLNG燃料的压力是低于、等于、还是高于加油站中的PLNG燃料的压 力。
当与设定的最小再注入压力相加的燃料储存容器的压力高于加油 站的压力时,启动
当传送给CPU30的输入信号31表明与设定的最小再注入压力差相 加的储存容器10中的PLNG燃料的压力高于加油站中的PLNG燃料的压 力时,首先打开蒸气阀14,使蒸气PLNG从燃料储存容器10经过蒸气 孔11、蒸气管路9和注入和排气阀13流到加油站。当储存容器10中 的PLNG燃料的压力与加油站中的PLNG燃料的压力基本平衡时,打开 液体阀15。此外,通过本领域熟练的技术人员所熟知的方法例如电子 信号,CPU30传递信息给加油站使PLNG燃料压力增加至少所述设定的 最小再注入压力差,从而使液体PLNG燃料产生从加油站经注入和排气 阀13、液体管路8和液体孔12到燃料储存容器10中的流动。
当与设定最小再注入压力相加的燃料储存容器的压力低于或等于 加油站的压力时,启动
当传送给CPU30的输入信号31表明与设定的最小再注入压力差相 加的储存容器10中的PLNG燃料的压力低于或等于加油站中的PLNG燃 料的压力时,首先打开将液体阀15,使液体PLNG燃料产生从加油站 经注入和排气阀13、液体管路8到燃料储存容器10的流动,并增加 储存容器10中的PLNG燃料的压力。随后,打开蒸气阀14使储存容器 10的蒸气PLNG燃料流到加油站。
优选对CPU30采用加油站PLNG的燃料与储存容器10的PLNG燃料 之间的设定最大压力差进行预先编程。如果超过了这个设定的最大再 注入压力差,为了避免由于Joule-Thomson冷却导致储存容器10的PLNG 燃料温度过分下降,可采用关闭蒸气阀14和液体阀15,使来自储存 容器10的液体PLNG燃料在汽化器20中汽化,当燃料调节器22完全 关闭,并通过适当操作(开/关)液体电磁阀18和蒸气电磁阀19将其 返回到燃料储存容器10用于加压。以这种方式使用汽化器20具有相 对短的液体管路8和蒸气管路9,其功能上等效于在储存容器中具有 压力保持设备如加热器。当加油站PLNG燃料与储存容器10中PLNG燃 料之间的压力差减少到低于设定最大压力差时,电磁阀18和电磁阀19 关闭。随后,打开液体阀15使液体PLNG燃料产生从加油站到燃料储 存容器10的流动。然后,打开蒸气阀14使储存容器10的蒸气PLNG 燃料流到加油站。 再注入过程的完成
在所有情况下,在再注入过程中,如果储存容器10的PLNG燃料 压力减少到低于预先设定的最小压力值(该值同时优选预先编程到 CPU30中),蒸气阀14暂且关闭以使储存容器10的PLNG燃料的压力 增加,优选增加到至少预先设定的最小压力值。或者,当液体PLNG燃 料流动到燃料储存容器10中时,蒸气PLNG燃料将从燃料储存容器10 经蒸气孔11、蒸气管路9、蒸气阀14和注入和排气阀13移动到加油 站。直到水平传感器(附图中没有给出)检测出储存容器10的液体PLNG 燃料已经达到预先设定的量或体积时,蒸气PLNG燃料的移动才会停 止,此时将蒸气阀14和液体阀15关闭以完成再注入过程。对于低温 流体储存领域中容器,当再注入过程完成时,一般地优选在燃料储存 容器10中可得到至少约为10%蒸气空间,这个对于低温流体储存领域 中熟练的技术人员是很熟悉的。
发动机/车辆的操作
正常的发动机/车辆的操作
发动机24需要的PLNG燃料优选由CPU30控制。在CPU30出现故 障的情况下,压力开关28通过电源接头5来超驰控制电磁阀18和19。 在正常的发动机24操作过程中,输入到CPU30中的典型信号31包括 发动机24的参数例如:rpm和载荷;在储存容器10中的PLNG燃料的 正常操作条件,例如PLNG燃料的正常操作温度和压力;汽化器20出 口温度;燃料调节器22的状态(例如关闭,10%的开等等)。CPU30 利用这些输入信号31来产生用于控制燃料调节器22、安全减压阀26 和电磁阀18和19的输出信号32(见图2),从而提供经蒸气孔11、 蒸气管路9、液体孔12、液体管路8、汽化器20、燃料管路4、和PLNG 燃料调节器22到发动机24的PLNG燃料。
例如,用于发动机24加速需要的PLNG燃料可由储存容器10的液 体PLNG燃料的供给得到满足。打开液体电磁阀18,使液体PLNG燃料 产生经液体孔12和液体管路8到汽化器20的的流动,在汽化器中汽 化并测量经燃料管路4和燃料调节器22流到发动机24入口歧管的液 体PLNG燃料。汽化PLNG燃料直接供给入口歧管中的燃料喷射器。例 如,燃料喷射器可以是为本领域熟练的技术人员所熟知的脉动型。发 动机24对PLNG燃料的特别高的需求导致了来自储存容器10的液体 PLNG燃料的相应的高流出,这在正常操作条件下导致了储存容器10 中的PLNG燃料的压力显著降低。与高压力降低相关的是温度降低。在 本发明的一个实施方案中,为了避免任何对制造燃料储存容器10的材 料性能的不利影响,例如由储存容器10中的液体PLNG燃料温度显著 低于所述制造材料的DBTT所造成的不利影响,打开蒸气电磁阀19使 得较高温度汽化的PLNG燃料返回到燃料储存容器10的蒸气空间中, 因此基本上使储存容器10中的PLNG燃料的压力和温度标准化。在本 发明的另外一个实施方案中,压力保持设备(图1没有给出)例如加 热器是燃料储存容器10中的一个组成部分。
在可转换为正常PLNG燃料需求的发动机24正常操作条件下,从 燃料储存容器10供给发动机24适当数量的液体PLNG燃料。打开液体 电磁阀18使液体PLNG燃料产生经液体孔12和液体管路8到汽化器20 的流动,并在汽化器20中,汽化并测量经燃料管路4和燃料调节器22 流到发动机入口歧管的液体PLNG燃料。汽化的PLNG燃料直接供给入 口歧管中的燃料喷射器。而且,如果必须协助调节储存容器10中的PLNG 燃料的压力和温度,那么可监测燃料储存容器10的PLNG燃料的压力, 而且打开蒸气电磁阀19使得汽化的PLNG燃料流回到储存容器10中。 发动机空载操作
在降低的发动机载荷条件下例如空载过程中,发动机24所需PLNG 燃料相应降低。在储存容器10的PLNG燃料的压力和温度的正常操作 条件下,优选这个降低了的PLNG燃料需求可由从燃料储存容器10经 蒸气孔11、蒸气管路9、汽化器20(以穿过为基础)、燃料管路4和 燃料调节器22流动的蒸气PLNG燃料供给满足,同时关闭液体电磁阀 18。
当储存容器10的PLNG燃料的压力低于正常操作压力时,储存容 器10的蒸气PLNG燃料典型地比液体PLNG燃料更富含甲烷(和氮)。在 PLNG燃料中的氮含量相当大的情况下,蒸气PLNG燃料的热值一般低 于发动机24的平稳运行所需值。在这些情况下,当储存容器10中的 PLNG燃料的压力低于正常操作压力时,用于空载的PLNG燃料由液体 PLNG燃料供给,而且燃料调节器22用于控制发动机24空载过程中所 需的小量的汽化液体PLNG燃料。同时,为了增加压力,打开蒸气电磁 阀19使得汽化的PLNG燃料还流入储存容器10中。优选的,CPU30控 制阀18和19的操作顺序以提供给发动机24合适的汽化的液体PLNG 燃料的数量,并控制储存容器10中的PLNG燃料的压力。
相反,当储存容器10的PLNG燃料的压力高于正常操作压力时, 储存容器10的蒸气PLNG燃料和液体PLNG燃料之间的成分差异降低, 从而所述两相热值之间的差异相应降低。在这个特殊的情况下,蒸气 PLNG燃料优选直接从储存容器10经蒸气孔11、蒸气管路9、汽化器20 (以穿过为基础)、燃料管路4和燃料调节器22提供给发动机24, 从而将储存容器10中的PLNG燃料的压力降低到正常操作压力。 发动机启动操作
启动发动机24时,储存容器10中的PLNG燃料的热值依赖于PLNG 燃料的初始压力即恰启动前的压力。这个压力越低,蒸气PLNG燃料比 液体PLNG燃料更富含易挥发性成分例如甲烷和氮的可能性越高。具体 地讲,如果蒸气PLNG燃料的氮含量相当大,蒸气PLNG燃料相的热值 可能低于启动发动机24所需的值。在这样的较低的压力条件下,用于 发动机24启动的PLNG燃料优选由储存容器10中的液体PLNG燃料提 供。CPU30优选用于控制控制阀18和19的操作,以便提供给发动机 24PLNG燃料合适的相例如气态或液态下的合适数量,从而间接将PLNG 燃料的合适成分供给发动机。
相反,当储存容器10的PLNG燃料的压力增加时,蒸气PLNG燃料 和液体PLNG燃料之间的成分差异相应降低,而且所述两相的热值之间 的差异相应降低。在这个特殊的情况下,蒸气PLNG燃料优选直接从储 存容器10经蒸气管路9、汽化器20(以穿过为基础)、燃料调节器22 和燃料管路4提供给发动机24,从而降低储存容器10中的PLNG燃料 的压力。 燃料储存罐
参照图13,燃料储存容器10优选设计成能将液体PLNG燃料的汽 化减至最低程度。在一个实施方案中,燃料储存容器10由真空绝热间 隙33(还参见隔片40)来真空绝热使对流造成的热泄漏减至最低程度, 而且在内容器35的外表面34上采用了适当的高辐射率的涂料,这样 使辐射热造成的泄漏减至最低程度。仅用作示例,并没有因此限制本 发明,用于外表面34的高辐射率的涂料包括一种铝化聚酯薄膜的单包 层。这显著地将泄漏到燃料储存容器10中的热限制为由于穿透内容器 35而导致的传导热泄漏。在这个实施方案中,通过采用两个双用途管 路—液体管路8和蒸气管路9来使总的穿透最小化。液体管路8既可 用于从储存容器10中注入液体PLNG燃料,又可用于从储存容器10中 排出液体PLNG燃料;蒸气管路9既可从从储存容器10中注入蒸气PLNG 燃料,又可用于从储存容器10中排出蒸气PLNG燃料。对于低温工程 设计领域中的熟练技术人员所熟知的是,这些特殊的设计方案将泄漏 到储存容器10中的热减至最低程度,但没有彻底去除。因此,当发动 机24(图1)没有运转时,例如在不用时停放的由发动机24驱动的车 辆,在储存容器10中存在着连续的PLNG燃料汽化。该连续汽化导致 储存容器10中的PLNG燃料的压力增加。在一个实施方案中,燃料储 存容器10的设计压力最佳为使PLNG燃料存放最长而且使燃料储存容 器10的重量最小。燃料储存容器10的重量较高势必会减少车辆的燃 料效率(例如英里/加仑)。优选的是,燃料储存容器10不要设计成 能包含完全汽化产生的满程压力和将储存容器10的PLNG燃料加热到 室温,因为那将对车辆燃料效率产生极其不利的重大影响。因此,优 选提供燃料排气机构。 燃料排气孔
这个实例的燃料储存和输送系统优选安装燃料排气机构,借此蒸 气PLNG燃料从燃料储存容器10中排出,但不是排放到大气中。在一 个实施方案中,为了实现这个目的,采用了两级保护。首先,燃料储 存容器10优选设计成能将压力增加到操作压力的约两倍。依据储存容 器10中的液体PLNG燃料的起始水平7,这个高压力设计优选能容许 至少约为10天的液体汽化和伴随的压力增加,即至少约10天的不使 用的燃料储存和输送系统,无需将蒸汽PLNG燃料排放到储存容器10外。 然而,当开始时燃料储存容器10基本上注满了液体PLNG燃料,非使 用期限较长这种相当特殊的情况,积累的压力可能会超过燃料储存容 器10的设计压力。燃料筒36提供了一种用于将超过设计压力时的压 力释放装置。
现在参照图3,燃料筒36通过燃料蒸气孔11和蒸气管路9与燃 料储存容器10相连接。正常打开的电磁阀38是燃料筒36的一个组成 部分。然而,燃料筒36通常通过单向阀37与储存容器10和蒸气管路 9中的蒸气PLNG燃料相隔开。打开单向阀37的CPU30设定点压力依 赖于燃料储存容器10的设计压力。单向阀37设计为仅允许蒸气PLNG 燃料从燃料储存容器10流向燃料筒36而阻止蒸气PLNG燃料经蒸气管 路9反向流到发动机24或燃料储存容器10中。在一个实施方案中, 燃料筒36包含了吸附剂例如木炭吸附剂39,吸附剂优选在环境条件 的压力和温度下能够吸附超过其固定体积(dead volume)的150倍。 吸附到木炭吸附剂39上的蒸气PLNG燃料的数量根据木炭吸附剂39所 处的温度和压力而变化。当燃料筒36中的温度降低时,木炭吸附剂39 的蒸气PLNG燃料留存能力增加。当燃料筒36中压力增加时,木炭吸 附剂留存蒸气PLNG燃料的能力也增大。在极不可能和极端情况时,此 时储存容器10的蒸气PLNG燃料压力超过设计值时,蒸气PLNG燃料被 排泄到燃料筒36中来消除压力的进一步增加。在一个实施方案中,燃 料筒36有意地用于由于紧随再注入过程后长时间不使用而造成的不大 可能发生的紧急排放事件。因此,作为一般发动机维修的部分,在这 种长时间不使用的过后,优选替换燃料筒36。在一个实施方案中,因 为通过热输入简单再生木炭吸附剂39后,燃料筒36可再次使用,所 以替换的成本极小。在燃料筒36除去之前和除去过程中,关闭通常打 开的电磁阀38,而且保持关闭状态一直到再生过程再打开。
在本发明的另外一个实施方案中,燃料筒36是PLNG燃料储存系 统的一个活动部分,因此燃料筒36仅是一个用于额外储存PLNG燃料 的吸附筒。在这个实施方案中,具有木炭吸附剂39的燃料筒36装有 再生加热器(附图没有给出)。单向阀37由通常关闭的电磁阀(附图 没有给出)替代,当储存容器10中的PLNG燃料的压力达到预先设定 的值时,该电磁阀打开,使得蒸气PLNG燃料流动到燃料筒36中,这 个预先设定的值优选适当低于设计压力。一旦储存容器10中的PLNG 燃料的压力低于燃料筒36中的蒸气PLNG燃料的压力,那么燃料筒36 中插入的再生加热器开始再生木炭吸附剂39,将蒸气PLNG燃料驱回 到储存容器10中用于随后向发动机24传输。
PLNG供给燃料的车辆和本发明的燃料储存和输送系统提供了与目 前汽油发动机相当的两次加油之间的驱动范围。与CNG相比低的储存 压力和与LNG相比高的储存温度使得安全问题减至最小程度。与LNG 相比,PLNG高压储存使得可方便地供给中等压力燃料喷射器燃料,因 此不再需要在LNG中要求低温泵的复杂和昂贵的输送系统。最后,不 同于LPG的是,PLNG以全世界丰富供给的天然气为基础的。
尽管已经根据一个或多个优选的实施方案描述了发明,那些本领 域普通技术人员应该理解的是,除了那些这里专门提及的以外,可进 行各种的改变、改进、添加和应用均没有脱离本发明的范围。
术语表 Ac1转变温度 加热过程中奥氏体开始形成的温度 Ac3转变温度 加热过程中铁素体向奥氏体转变完成时的温度 Ar1转变温度 冷却过程中奥氏体向铁素体或铁素体+渗碳体转变完 成时的温度 Ar3转变温度 冷却过程中奥氏体向铁素体开始转变的温度 低温 温度低于约-40℃(-40°F) CTOD 裂纹尖端张开位移 CVN 夏氏V形切口 DBTT(韧性到脆性的转变温度) 描述结构钢中两种断裂方式;当温度低于DBTT时, 破坏趋于以低能解理(脆性)断裂生;当温度高于DBTT 时,破坏趋于以高能韧性断裂方式发生 实质上 基本100%(体积) Gm3 10亿立方米 GMAW 气保护熔化极电弧焊 硬化粒子 ε-铜,Mo2C,或铌和钒的碳化物及碳氮化物中的一 种或多种 HAZ 热影响区 临界温度范围 加热时为约Ac1转变温度约~Ac3转变温度,冷却时 为约Ar3转变温度~约Ar1转变温度 KIC 临界应力强度因子 KJ 千焦 KPa 千帕斯卡 Ksi 千磅/平方英寸 低合金钢 含铁及合金添加剂总含量少于10%(重量)的钢 MA 马氏体-奥氏体 最大允许缺陷尺寸 临界缺陷长度和深度 Mo2C 钼的碳化物的一种形式 MPa 106帕斯卡 Ms转变温度 冷却过程中奥氏体向马氏体开始转变的温度 打开的(与阀有关) 除非有其它说明,至少是部分打开的 PLNG 加压液化天然气 主要地 至少约50%(体积) ppm 百万分之一 psia 磅/每平方英寸的绝对值 淬火 与空气冷却相反,通过任何方式进行的加速冷却, 但选用了趋于增加钢的冷却速率的流体。 淬火率(冷却率) 板厚心部冷却速率或基本在心部的冷却速率 淬火停止温度 淬火停止后,因为从板的心部传递而来的热量,板 的表面达到的最高或基本最高温度 QST 淬火停止温度 板坯 任何尺寸的钢 TCF 万亿立方英尺 拉伸强度 拉伸测试中,最大载荷与初始横界面面积的比 TIG焊 钨极惰性气体保护焊 Tnr温度 奥氏体发生再结晶的最低温度 USPTO 美国专利商标局 焊接件 一种焊接接头,包括:(i)焊缝金属,(ii)热影 响区(HAZ),和(iii)与HAZ“邻接”的基体金属。 被认为是与HAZ“邻接”范围内的基体金属部分,因 而也是该焊接件的一部分,依赖本领域熟练技术人 员所知的因素而变化,例如:但不限于,焊接件的 宽度、被焊接物的尺寸、要求制造该被焊接物的焊 接件数量及焊接件之间的距离。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈