首页 / 专利库 / 材料和表面特性 / 耐腐蚀性 / 铝或铝合金的壳体及其制造方法

或铝合金的壳体及其制造方法

阅读:0发布:2023-03-12

专利汇可以提供或铝合金的壳体及其制造方法专利检索,专利查询,专利分析的服务。并且一种壳体,包括 铝 或铝 合金 基体,该壳体还包括依次形成于该铝或 铝合金 基体上的铝膜层和防 腐蚀 膜层,该防腐蚀膜层为 碳 氮化铝梯度膜,其掺杂有铱 金属离子 ,所述碳氮化铝梯度膜中N和C的 原子 百分含量由靠近铝或铝合金基体向远离铝或铝合金基体的方向呈梯度增加,所述铱金属离子的掺杂方式为 离子注入 方式。该通过离子注入掺杂了铱金属离子的碳氮化铝梯度膜层组成的复合膜层显著地提高了所述壳体的 耐腐蚀性 。本 发明 还提供了上述壳体的制造方法。,下面是或铝合金的壳体及其制造方法专利的具体信息内容。

1.一种壳体,包括或铝合金基体,其特征在于:该壳体还包括依次形成于该铝或铝合金基体上的铝膜层和防腐蚀膜层,该防腐蚀膜层为氮化铝梯度膜,其掺杂有铱金属离子,所述碳氮化铝梯度膜中N和C的原子百分含量由靠近铝或铝合金基体向远离铝或铝合金基体的方向呈梯度增加,所述铱金属离子的掺杂方式为离子注入
2.如权利要求1所述的壳体,其特征在于:所述防腐蚀膜层的厚度为0.5~2.0μm。
3.如权利要求1所述的壳体,其特征在于:所述铝膜层的厚度为100~300nm。
4.一种壳体的制造方法,其包括如下步骤:
提供铝或铝合金基体;
于该铝或铝合金基体的表面磁控溅射铝膜层;
于铝膜层上磁控溅射碳氮化铝梯度膜层,所述碳氮化铝梯度膜层中N和C的原子百分含量由靠近铝或铝合金基体向远离铝或铝合金基体的方向呈梯度增加;
对该碳氮化铝梯度膜层注入铱金属离子,形成防腐蚀膜层。
5.如权利要求4所述的壳体的制造方法,其特征在于:磁控溅射所述碳氮化铝梯度膜层的工艺参数为:以氩气为工作气体,其流量为100~300sccm,以氮气和乙炔为反应气体,设置氮气和乙炔的初始流量分别为10~20sccm和10~100sccm,在铝或铝合金基体上施加-150~-500V的偏压;每沉积10~15min将氮气和乙炔的流量增大10~20sccm,沉积时间控制为30~90min。
6.如权利要求4所述的壳体的制造方法,其特征在于:对碳氮化铝梯度膜层注入铱金-4
属离子的工艺参数为:设置真空度为1×10 Pa,离子源电压为30~100kV,离子束流强度为
16 2 18 2
0.1~5mA,控制铱离子注入剂量在1×10 ions/cm 到1×10 ions/cm 之间。
7.如权利要求4所述的壳体的制造方法,其特征在于:沉积所述铝膜层的工艺参数为:
铝靶为靶材,通入氩气100~300sccm,开启铝靶,设置铝靶功率为2~8kw,设置铝或铝合金基体的偏压为-300~-500V,沉积5~10分钟。
8.如权利要求4所述的壳体的制造方法,其特征在于:所述壳体的制造方法还包括在沉积所述铝膜层之前对铝或铝合金基体进行等离子清洗的步骤。

说明书全文

或铝合金的壳体及其制造方法

技术领域

[0001] 本发明涉及一种壳体及其制造方法,特别涉及一种铝或铝合金的壳体及其制造方法。

背景技术

[0002] 铝或铝合金目前被广泛应用于航空、航天、汽车及微电子等工业领域。但铝或铝合金的标准电极电位很低,耐腐蚀差,暴露于自然环境中会引起表面快速腐蚀。
[0003] 提高铝或铝合金耐腐蚀性的方法通常是在其表面形成保护性的涂层。传统的阳极化、电沉积、化学转化膜技术及电等铝或铝合金的表面处理方法存在生产工艺复杂、效率低、环境污染严重等缺点。
[0004] 真空镀膜(PVD)为一清洁的成膜技术。然而,由于铝或铝合金的标准电极电位很低,且PVD涂层本身不可避免的会存在微小的孔隙,因此该PVD涂层难以较好的防止铝或铝合金基体发生电化学腐蚀,因此对铝或铝合金基体的耐腐蚀能的提高有限。

发明内容

[0005] 鉴于此,提供一种具有较好的耐腐蚀性的铝或铝合金的壳体。
[0006] 另外,还提供一种上述壳体的制造方法。
[0007] 一种壳体,包括铝或铝合金基体,该壳体还包括依次形成于该铝或铝合金基体上的铝膜层和防腐蚀膜层,该防腐蚀膜层为氮化铝梯度膜,其掺杂有铱金属离子,所述碳氮化铝梯度膜中N和C的原子百分含量由靠近铝或铝合金基体向远离铝或铝合金基体的方向呈梯度增加,所述铱金属离子的掺杂方式为离子注入
[0008] 一种壳体的制造方法,其包括如下步骤:
[0009] 提供铝或铝合金基体;
[0010] 于该铝或铝合金基体的表面磁控溅射铝膜层;
[0011] 于铝膜层上磁控溅射碳氮化铝梯度膜层,所述碳氮化铝梯度膜层中N和C的原子百分含量由靠近铝或铝合金基体向远离铝或铝合金基体的方向呈梯度增加;
[0012] 对该碳氮化铝梯度膜层注入铱金属离子,形成防腐蚀膜层。
[0013] 本发明所述壳体的制造方法,在铝或铝合金基体上依次形成铝膜层和防腐蚀膜层,该防腐蚀膜层为通过离子注入掺杂铱金属离子的碳氮化铝梯度膜层,铝膜层和防腐蚀膜层的复合膜层可显著提高所述壳体的耐腐蚀性,且该壳体的制造工艺简单、几乎无环境污染。附图说明
[0014] 图1是本发明较佳实施方式壳体的剖视示意图。
[0015] 图2是制作图1壳体所用镀膜机的俯视示意图。
[0016] 主要元件符号说明
[0017] 壳体 10
[0018] 铝或铝合金基体 11
[0019] 铝膜层 13
[0020] 防腐蚀膜层 15
[0021] 镀膜机 100
[0022] 镀膜室 20
[0023] 真空 30
[0024] 轨迹 21
[0025] 铝靶 22

具体实施方式

[0026] 请参阅图1,本发明一较佳实施例的壳体10包括铝或铝合金基体11、依次形成于该铝或铝合金基体11表面的铝膜层13和防腐蚀膜层15。
[0027] 该防腐蚀膜层15为碳氮化铝梯度膜层,其掺杂有铱金属离子。该铱金属离子可通过离子注入的方式掺杂于防腐蚀膜层15中。所述碳氮化铝梯度膜层中N和C的原子百分含量由靠近铝或铝合金基体11向远离铝或铝合金基体11的方向呈梯度增加。
[0028] 所述防腐蚀膜层15的厚度为0.5~2.0μm。
[0029] 所述铝膜层13的形成用以增强所述防腐蚀膜层15与铝或铝合金基体11之间的结合力。所述铝膜层13的厚度为100~300nm。
[0030] 所述壳体10的制造方法主要包括如下步骤:
[0031] 提供铝或铝合金基体11,该铝或铝合金基体11可以通过冲压成型得到,其具有待制得的壳体10的结构。
[0032] 将所述铝或铝合金基体11放入盛装有乙醇或丙溶液的声波清洗器中进行震动清洗,以除去铝或铝合金基体11表面的杂质和油污。清洗完毕后烘干备用。
[0033] 对经上述处理后的铝或铝合金基体11的表面进行氩气等离子清洗,进一步去除铝或铝合金基体11表面的油污,以改善铝或铝合金基体11表面与后续涂层的结合力。
[0034] 请参阅图2,提供一镀膜机100,该镀膜机100包括一镀膜室20及连接于镀膜室20的一真空泵30,真空泵30用以对镀膜室20抽真空。该镀膜室20内设有转架(未图示)、二铝靶22,转架带动铝或铝合金基体11沿圆形的轨迹21公转,且铝或铝合金基体11在沿轨迹21公转时亦自转。
[0035] 该等离子清洗的具体操作及工艺参数可为:对该镀膜室20进行抽真空处理至真-3空度为8.0×10 Pa,以300~500sccm(标准状态毫升/分钟)的流量向镀膜室20内通入纯度为99.999%的氩气(工作气体),于铝或铝合金基体11上施加-300~-800V的偏压,在所述镀膜室20中形成高频电压,使所述氩气离子化而产生氩气等离子体对铝或铝合金基体11的表面进行物理轰击,而达到对铝或铝合金基体11表面清洗的目的。所述氩气等离子清洗的时间为3~10min。
[0036] 采用磁控溅射的方式在铝或铝合金基体11表面依次形成铝膜层13及防腐蚀膜层15。形成该铝膜层13及防腐蚀膜层15的具体操作方法及工艺参数为:在所述等离子清洗完成后,通入高纯氩气100~300sccm,开启铝靶材22的电源,设置铝靶22功率为2~8kw,调节铝或铝合金基体11的偏压为-300~-500V,在铝或铝合金基体11表面沉积铝膜层13,沉积5~10分钟。
[0037] 形成所述铝膜层13后,以氩气为工作气体,其流量为100~300sccm,以氮气和乙炔为反应气体,设置氮气和乙炔的初始流量分别为10~20sccm和10~100sccm,在铝或铝合金基体11上施加-150~-500V的偏压,沉积所述防腐蚀膜层15。该防腐蚀膜层15为碳氮化铝梯度膜层,沉积所述防腐蚀膜层15时,每沉积10~15min将氮气和乙炔的流量增大10~20sccm,使氮原子和碳原子在碳氮化铝梯度膜层中的原子百分含量由靠近铝或铝合金基体11至远离铝或铝合金基体11的方向呈梯度增加。沉积该碳氮化铝梯度膜层的时间为30~90min。
[0038] 所述碳氮化铝梯度膜层在其形成过程中可形成致密的Al-C-N相,增强所述防腐蚀膜层15的致密性,以提高所述壳体10的耐腐蚀性。
[0039] 所述碳氮化铝梯度膜的N和C的原子百分含量由靠近铝或铝合金基体11至远离铝或铝合金基体11的方向呈梯度增加,可降低碳氮化铝梯度膜与铝膜层13或铝或铝合金基体11之间晶格不匹配的程度,有利于将溅射碳氮化铝梯度膜的过程中产生的残余应力向铝或铝合金基体11方向传递;又因为在碳氮化铝梯度膜和铝或铝合金基体11之间沉积了塑性较好的铝膜层13,可改善防腐蚀膜层15与铝或铝合金基体11之间的界面错配度,当碳氮化铝梯度膜中的残余应力较大时,可以借助于该铝膜层13以及铝或铝合金基体11的局部塑性变形实现残余应力的释放,从而减少所述碳氮化铝梯度膜内的残余应力,使壳体10不易发生应力腐蚀,以提高所述壳体10的耐腐蚀性。所述应力腐蚀是指在残余或/和外加应力及腐蚀介质的作用下,引起的金属失效现象。
[0040] 完成上述碳氮化铝梯度膜层的沉积后,于该碳氮化铝梯度膜表面离子注入铱离子,从而形成所述防腐蚀膜层15。所述的注入铱离子的过程是:将镀覆有所述碳氮化铝梯度膜的铝或铝合金基体11置于强流金属离子注入机(MEVVA)中,该离子注入机中采用铱金属靶材,该离子注入机首先将铱金属进行电离,使其产生铱金属离子蒸气,并经高压电场加速使该铱金属离子蒸气形成具有几万甚至几百万电子伏特能量的铱离子束,射入碳氮化铝梯度膜的表面,与其表层中及其表面的原子或分子发生物理作用,最终于该碳氮化铝梯度膜层中注入铱金属离子,形成所述防腐蚀膜层15。
[0041] 本实施例中注入所述铱离子的参数为:离子注入机的真空度为1×10-4Pa,离子源16 2
电压为30~100kV,离子束流强度为0.1~5mA,控制铱离子注入剂量在1×10 ions/cm 到
18 2
1×10 ions/cm 之间。
[0042] 所述铱金属离子与所述碳氮化铝梯度膜层中的原子为冶金结合,因此,该注入的铱金属离子不易脱落,且由于是在高能离子注入的条件下形成,该铱金属注入碳氮化铝梯度膜层中后形成为非晶态,由于非晶态结构具有各向同性、表面无晶界、无位错、偏析,均相体系等特点,故,经离子注入铱金属离子后的碳氮化铝梯度膜层使壳体10在腐蚀性介质中不易形成腐蚀微电池,发生电化学腐蚀的可能极小,大大提高了壳体10的耐蚀性。
[0043] 以下结合具体实施例对壳体10的制备方法及壳体10进行说明:
[0044] 实施例1
[0045] 等离子清洗:氩气流量为280sccm,铝或铝合金基体11的偏压为-300V,等离子清洗的时间为9分钟;
[0046] 溅镀铝膜层13:通入氩气100sccm,开启铝靶22,设置铝靶22功率为2kw,设置铝或铝合金基体11的偏压为-500V,沉积5分钟;
[0047] 溅镀防腐蚀膜层15:首先,溅镀形成一碳氮化铝梯度膜,其工艺参数为:以氩气为工作气体,其流量为100sccm,以氮气和乙炔为反应气体,设置氮气和乙炔的初始流量分别为10sccm和10sccm,在铝或铝合金基体11上施加-500V的偏压;每沉积10min将氮气和乙炔的流量增大10sccm,沉积时间控制为30min;
[0048] 之后,对碳氮化铝梯度膜层注入铱金属离子,工艺参数为:设置真空度-4为1×10 Pa,离子源电压为30kV,离子束流强度为0.1mA,控制铱离子注入剂量在
16 2
1×10 ions/cm。
[0049] 实施例2
[0050] 等离子清洗:氩气流量为230sccm,铝或铝合金基体11的偏压为-480V,等离子清洗的时间为7分钟;
[0051] 溅镀铝膜层13:通入氩气200sccm,开启铝靶22,设置铝靶22功率为5kw,设置铝或铝合金基体11的偏压为-400V,沉积7分钟;
[0052] 溅镀防腐蚀膜层15:首先,溅镀形成一碳氮化铝梯度膜,其工艺参数为:以氩气为工作气体,其流量为200sccm,以氮气和乙炔为反应气体,设置氮气和乙炔的初始流量分别为15sccm和60sccm,在铝或铝合金基体上施加-300V的偏压;每沉积12min将氮气和乙炔的流量增大15sccm,沉积时间控制为60min;
[0053] 之后,对碳氮化铝梯度膜层注入铱金属离子,工艺参数为:设置真空度为-4 171×10 Pa,离子源电压为60kV,离子束流强度为2mA,控制铱离子注入剂量在1×10 ions/
2
cm 之间。
[0054] 实施例3
[0055] 等离子清洗:氩气流量为160sccm,铝或铝合金基体11的偏压为-400V,等离子清洗的时间为6分钟;
[0056] 溅镀铝膜层13:通入氩气300sccm,开启铝靶22,设置铝靶22的功率为8kw,设置铝或铝合金基体11的偏压为-300V,沉积10分钟;
[0057] 溅镀防腐蚀膜层15:首先,溅镀形成一碳氮化铝梯度膜,其工艺参数为:以氩气为工作气体,其流量为300sccm,以氮气和乙炔为反应气体,设置氮气和乙炔的初始流量分别为20sccm和100sccm,在铝或铝合金基体上施加-150V的偏压;每沉积15min将氮气和乙炔的流量增大20sccm,沉积时间控制为90min;
[0058] 之后,对碳氮化铝梯度膜层注入铱金属离子,工艺参数为:设置真空度为-4 181×10 Pa,离子源电压为100kV,离子束流强度为5mA,控制铱离子注入剂量在1×10 ions/
2
cm 之间。
[0059] 本发明较佳实施方式的壳体10的制造方法,在铝或铝合金基体11上依次形成铝膜层13及防腐蚀膜层15,该防腐蚀膜层15为碳氮化铝梯度膜层,其掺杂有铱金属离子。该铝膜层13、防腐蚀膜层15组成的复合膜层显著地提高了所述壳体10的耐腐蚀性,且该制造工艺简单、几乎无环境污染。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈