首页 / 专利库 / 表面处理和涂层 / 表面处理 / 涂层工艺 / 喷涂 / 热喷涂 / 等离子喷涂 / 通过等离子喷涂形成的物品

通过等离子喷涂形成的物品

阅读:1032发布:2020-05-14

专利汇可以提供通过等离子喷涂形成的物品专利检索,专利查询,专利分析的服务。并且公开了一种物品和形成该物品的方法。该物品包括基底、沉积在该基底上方的 覆盖 粘合涂层、和沉积在该粘合涂层上方的顶涂层。该物品的粘合涂层包括接近粘合涂层与顶涂层之间的界面的等离子影响区域,并且该等离子影响区域包括伸长粒间相。沉积的方法包括调整 等离子 喷涂 条件,以便形成接近粘合涂层与顶涂层之间的界面的等离子影响区域,和等离子影响区域中的伸长粒间相。,下面是通过等离子喷涂形成的物品专利的具体信息内容。

1.一种通过等离子喷涂形成的物品,包括:
基底;
粘合涂层,其沉积在所述基底上方;和
等离子喷涂的陶瓷顶涂层,其沉积在所述粘合涂层上方,
其中,所述粘合涂层包括:
MAlX合金、MCrAlX合金、或它们的组合,其中,M包括、钴、镍、或它们的合金,并且X包括铪、锆、钇、钽、铂、钯、铼、或它们的组合,以及
接近所述粘合涂层与所述顶涂层之间的界面的等离子影响区域,所述等离子影响区域包括伸长粒间相,该伸长粒间相具有大于5的长度与厚度比。
2.根据权利要求1所述的物品,其特征在于,在垂直于所述界面的截面处,所述等离子影响区域从所述界面延伸至所述粘合涂层的至少5微米的厚度。
3.根据权利要求2所述的物品,其特征在于,所述等离子影响区域包括所述伸长粒间相的浓度梯度,所述梯度作为在朝所述基底的方向上的距离的函数而从接近所述界面的较高浓度变成较低值。
4.根据权利要求1所述的物品,其特征在于,所述基底包括镍基超级合金。
5.根据权利要求1所述的物品,其特征在于,所述粘合涂层包括镍和
6.根据权利要求5所述的物品,其特征在于,所述粘合涂层还包括锆。
7.根据权利要求1所述的物品,其特征在于,所述伸长粒间相包括锆、铝、、或前述的任何组合。
8.根据权利要求1所述的物品,其特征在于,所述伸长粒间相的长度为至少5微米。
9.根据权利要求1所述的物品,其特征在于,所述伸长粒间相的长度与厚度比大于8。
10.根据权利要求1所述的物品,其特征在于,所述顶涂层的密度大于80%。
11.一种通过等离子喷涂形成的物品,包括:
基底,其包括镍;
粘合涂层,其包括镍-铝合金,形成在所述基底上方;和
等离子喷涂的陶瓷顶涂层,其沉积在所述粘合涂层上方,其中,所述粘合涂层包括:
等离子影响区域,所述等离子影响区域包括具有至少5微米的长度的伸长粒间相,以及MAlX合金、MCrAlX合金、或它们的组合,其中,M包括铁、钴、镍、或它们的合金,并且X包括铪、锆、钇、钽、铂、钯、铼、硅或它们的组合。
12.根据权利要求11所述的物品,其特征在于,所述伸长粒间相包括锆、铝和氧。
13.一种形成物品的方法,包括:
将粘合涂层沉积在基底上方,所述粘合涂层包括MAlX合金、MCrAlX合金、或它们的组合,其中,M包括铁、钴、镍、或它们的合金,并且X包括铪、锆、钇、钽、铂、钯、铼、硅或它们的组合;以及
通过使用如下等离子喷涂条件的等离子喷涂沉积在所述粘合涂层上方形成陶瓷顶涂层,所述等离子喷涂条件足以形成在所述粘合涂层内接近与所述顶涂层的界面的等离子影响区域,其中所述等离子影响区域包括伸长粒间相,该伸长粒间相具有大于5的长度与厚度比。
14.根据权利要求13所述的方法,其特征在于,用于所述沉积的等离子功率大于95 kW。
15.根据权利要求13所述的方法,其特征在于,等离子气体的流速大于300 slpm。
16.根据权利要求13所述的方法,其特征在于,形成所述顶涂层包括操作等离子喷涂喷枪,其中,从所述喷涂喷枪至所述基底的距离小于120 mm。
17.根据权利要求13所述的方法,其特征在于,所述粘合涂层包括镍和铝。

说明书全文

通过等离子喷涂形成的物品

技术领域

[0001] 本发明涉及用于沉积保护涂层的加工。更具体地,本发明涉及用于形成热障涂层系统的改善的粘合涂层的加工。

背景技术

[0002] 燃气涡轮发动机内的操作环境是既热不利又化学不利的。通过、镍和钴基超级合金的配方,已实现高温合金中的显著进步,尽管由此种合金形成的构件若定位燃气涡轮发动机的某些区段(例如涡轮、燃烧器和增强器)中则通常不能耐受长期使用暴露。通常的解决方案是为涡轮、燃烧器和增强器提供抑制化和热腐蚀的环境涂层,或将构件表面与其操作环境热隔绝的热障涂层(TBC)系统。TBC系统典型地包括陶瓷层(TBC),该陶瓷层粘附至如下构件,该构件具有也抑制构件表面的氧化和热腐蚀的金属粘合涂层。
[0003] 粘合涂层有益于在其中采用该粘合涂层的热障涂层系统的使用寿命,并且因而也有益于由涂层系统保护的构件的使用寿命。在暴露于燃气涡轮发动机内的氧化状态期间,粘合涂层在升高的温度下随着时间自然地持续氧化,这逐渐地损耗来自粘合涂层的并增加氧化物垢的厚度。最终,垢达到临界厚度,该临界厚度导致陶瓷层在粘合涂层与氧化物垢之间的界面处的散裂(spallation)。一旦散裂已发生,那么构件将迅速地恶化,并且因而必须以相当大的成本重新装备或废弃。从上述看来,存在对通过粘合涂层中的改善来改善这种热障涂层的抗散裂性的持续需求。

发明内容

[0004] 简要地,在一个实施例中,公开了一种物品。该物品包括基底、沉积在该基底上方的覆盖粘合涂层,和沉积在该粘合涂层上方的顶涂层。该物品的粘合涂层包括接近粘合涂层与顶涂层之间的界面的等离子影响区域,并且等离子影响区域包括伸长粒间相。
[0005] 在一个实施例中,公开了一种物品。该物品包括基底、沉积在该基底上方的覆盖粘合涂层,和沉积在该粘合涂层上方的顶涂层。物品的基底包括镍。覆盖粘合涂层形成于基底上方并且包括镍-铝合金。顶涂层沉积在粘合涂层上方。粘合涂层包括具有伸长粒间相的等离子影响区域,该伸长粒间相具有至少大约5微米的长度。
[0006] 在一个实施例中,公开了一种方法。该方法包括通过使用如下等离子喷涂条件的等离子喷涂沉积在覆盖粘合涂层上方形成顶涂层,该等离子喷涂条件足以形成在粘合涂层内接近与顶涂层的界面的等离子影响区域。附图说明
[0007] 当参照附图阅读下列详细描述时,本发明的这些和其他特征、方面和优点将变得更好理解,其中:
[0008] 图1根据本发明的实施例示意地描绘了包括覆盖粘合涂层的物品的2D截面图;
[0009] 图2根据本发明的实施例示意地描绘了包括覆盖粘合涂层的物品的3D截面图;
[0010] 图3根据本发明的实施例例示出物品的截面的电子显微视图,该截面具有包括较少数量的伸长粒间相的粘合涂层;并且
[0011] 图4根据本发明的实施例例示出物品的截面的电子显微视图,该截面具有包括许多伸长粒间相的粘合涂层。

具体实施方式

[0012] 本发明通常能够应用于如下构件,此种构件在特征在于相对高温的环境内操作,并且因而经历不利的氧化环境和严苛的热应和热循环。这种构件的显著实例包括燃气涡轮发动机的高压涡轮喷嘴叶片、围带、燃烧器衬套和增强器硬件。虽然将参照燃气涡轮发动机硬件描述本发明的优点,但是本发明的教导通常能够应用于在其上可使用热障涂层系统来保护构件不受其环境影响的任何构件。
[0013] 在下列说明书和随后的权利要求中,单数形式“一”、“一个”和“该”包括复数个指示物,除非上下文另外清楚地规定。
[0014] 简要地,在一个实施例中,公开了一种物品。该物品包括基底、沉积在基底上方的覆盖粘合涂层,和沉积在粘合涂层上方的顶涂层。物品的粘合涂层包括接近粘合涂层与顶涂层之间的界面的等离子影响区域,并且等离子影响区域包括伸长粒间相。
[0015] 作为环境涂层已经发现广泛用途的涂层材料包括扩散铝化物涂层和覆盖涂层。扩散铝化物涂层通常为通过扩散加工(例如包埋渗(pack cementation))形成的单层抗氧化层。扩散加工通常需要使构件的表面与包含铝的气体成分反应,以形成两个截然不同的区域,它们的最外是由MAl代表的包含耐环境金属间化合物的附加层,其中,取决于基底材料,M是铁、镍或钴。在附加层下面的是包括各种金属间和亚稳相的扩散区域,这些相在涂层反应期间由于基底局部区域中的元素可溶性的扩散梯度和变化而形成。在空气中的高温暴露期间,MAl金属间化合物形成抑制扩散涂层和下面的基底的氧化的保护氧化铝(矾土)垢或层。
[0016] 作为TBC粘合涂层和环境涂层已发现广泛用途的涂层材料包括覆盖合金涂层。覆盖合金涂层材料为包含各种金属合金的那些材料,金属合金诸如MCrAlX,其中,M是铁、钴、镍或它们的合金,并且其中,X是铪、锆、钇、钽、铂、钯、铼、或它们的组合。适当的覆盖合金涂层材料还可包括MAlX合金(即,没有铬),其中,M和X如前述那样限定。
[0017] 在沉积之后,通常通过清洗和磨料喷砂来移除表面污染物,使粘合涂层表面变粗糙、并且促进陶瓷层的附着,从而使粘合涂层的表面准备用于陶瓷层的沉积。其后,在升高的温度下在粘合涂层上形成保护性氧化垢,以进一步促进陶瓷层的附着。通常称为热生长氧化物(TGO)的氧化物垢首先因粘合涂层的铝和/或MAl组织的氧化而生成,并且抑制粘合涂层和下面的基底的进一步氧化。氧化物垢还用于将陶瓷层化学地粘合至粘合涂层。
[0018] 在本文中描述的实施例在用于金属基底的保护涂层中是有用的,该金属基底包括多种金属和金属合金(包括超级合金),并且用于在高温下操作或暴露于高温(尤其是在正常发动机操作期间发生的较高温度)的多种涡轮发动机(例如燃气涡轮发动机)部分和构件。这些涡轮发动机部分和构件可包括:涡轮翼形件,例如叶片和静叶、涡轮围带、涡轮喷嘴;燃烧器构件,例如衬套、偏导器和它们各自的罩(dome)组件;燃气涡轮发动机的增强器硬件等。在用于涡轮叶片和静叶(且尤其是这种叶片和静叶的翼形件部分)的保护涂层中,该实施例是尤其有用的。然而,虽然本发明的改善的粘合涂层的实施例的下列描述将参照涡轮叶片和静叶,并且尤其参照包括这些叶片和静叶的它们各自的翼形件部分,但是还应当理解的是,本发明的改善的粘合涂层对于包括要求保护涂层的金属基底的其他物品可能是有用的。
[0019] 在本发明的一个实施例中,提出了一种物品。该物品包括基底、覆盖粘合涂层和顶涂层。图1根据本发明的实施例显示了物品的2D截面示意图。参照图1,物品10包括用作基底的基体金属12。基底12可包括多种金属(或更典型地为金属合金)中的任一种。例如,基底12可包括高温、耐热合金,例如超级合金。这种高温合金在公开的文献中充分地公开。例示性高温镍基合金通过商品名Inconel®, Nimonic® , René®(例如René®80、René® N5合金),和Udimet®标明。
[0020] 本发明的保护涂层对于镍基超级合金是尤其有用的。如在本文中所使用的,“镍基”指成分具有比任何其他元素多的存在的镍。镍基超级合金典型地为通过γ'相的析出而加强的成分。更典型地,镍基合金具有如下成分:从大约4至大约20%的钴、从大约1至大约10%的铬、从大约5至7%的铝、从0至大约2%的钼、从大约3至大约8%的钨、从大约4至大约
12%的钽、从0至大约2%的、从0至大约8%的铼、从0至大约6%钌、从0至大约1%铌、从0至大约0.1%的、从0至大约0.01%的、从0至大约0.1%的钇、从0至大约1.5%铪、剩余为镍和附带的杂质。
[0021] 如图1所示,邻接并覆盖基底12的是大体指示为粘合涂层14的保护涂层。邻接粘合涂层14并在其上方的是顶涂层16。可通过形成粘合涂层的领域中技术人员公知的多种常规技术中的任一种使粘合涂层14应用、沉积、或以其他方式形成在基底12上。将覆盖粘合涂层14沉积在基底12上的方法的非限制性实例包括通过物理蒸汽沉积(PVD)方法(例如电子束物理蒸汽沉积(EB-PVD)技术)、和热喷涂技术、此种空气等离子喷涂(APS)和真空等离子喷涂(VPS)技术。
[0022] 还可利用本领域技术人员公知的各种类型的等离子喷涂技术来由陶瓷成分形成TBC。通常,典型的等离子喷涂技术涉及高温等离子的形成,这产生了热卷流(thermal plume)。将陶瓷涂层材料(例如陶瓷粉末)供给到该卷流中,并且朝粘合涂层14表面引导高速卷流。
[0023] 在一个实施例中,参照图1的物品10的顶涂层16通过空气等离子喷涂方法沉积。粘合涂层14具有颗粒20和颗粒边界22。通常,由覆盖粘合涂层材料形成的粘合涂层14在成分方面通常是基本均匀的,即,遍及粘合涂层的厚度,通常不存在离散的或明显的差别。在本发明的一个实施例中,物品的粘合涂层14包括颗粒边界22上的一些伸长粒间相30、32、34。如在本文中所使用的,“伸长粒间相”指如下相,此种相:与颗粒20在成分上不同;出现在颗粒边界22中;并且具有一维或二维结构。
[0024] 伸长粒间相可表现为二维截面图(例如图1)中的条或点。在一个实施例中,伸长粒间相在粘合涂层14中较接近粘合涂层14和顶涂层16的交汇处18地存在。
[0025] 不受任何特定理论限制,有可能由于粘合涂层材料的在顶涂层16的等离子沉积期间的迅速加热和冷却的动作,可能已形成在物品的粘合涂层区域14中发现的伸长粒间相。应用的等离子可影响界面18和界面附近的粘合涂层14的相邻区域。等离子可引发粘合涂层材料的颗粒边界22中的微裂缝,并且可引起粒间相在受影响的粘合涂层区域40中的形成。
因而,粘合涂层14的受到所应用的等离子影响的区域在本文中称为“等离子影响区域”40。
等离子影响区域可作为直接邻接于顶涂层16并与界面18接触的上部40而形成在粘合涂层
14中。等离子影响区域40可具有或可不具有与粘合涂层区域14的剩余部分不同的特性。在一个实施例中,伸长粒间相30、32、34出现在等离子影响区域中。因而,在一个实施例中,“等离子影响区域”可限定为如下区域,在此种区域中,在粘合涂层区域14中观察到伸长粒间相。
[0026] 在一个实施例中,伸长粒间相30、32、34具有包括以下的成分:锆、铝、氧或前述的任何组合。在一个实施例中,伸长粒间相30、32、34包括锆和铝的氧化物。在一个实施例中,伸长粒间相30、32、34基本上由锆铝氧化物构成。在二维截面观察(例如图1)中,伸长粒间相可表现为连接至界面18(30)的条、与界面18(30)分离的条,或粘合涂层区域14的等离子影响区域40中的点34。但是,不受任何理论限制,设想如果伸长粒间相30、32、34的位置具有去往表面(界面18)氧的通路(access),则伸长粒间相30、32、34的氧化物相可形成在等离子影响区域40中。因而,基于氧化物的伸长粒间相30、32、34可至少在形成时已具有去往表面的通路。
[0027] 在一个实施例中,伸长粒间相30、32、34连接至界面18。如图2所示,这可在粘合涂层区域14的三维示意图中更清楚地观察到。图2的立方体100显示了粘合涂层区域14的暴露于界面18(在图1中)的部分的三维截面。立方体100包括顶表面112,顶表面112可为与(图1的)顶涂层16的界面18。表面114和116是能够在示意图中观察到的前表面。三维颗粒120在颗粒边界122处彼此会合。伸长粒间相130、132和134示为二维粒间相。
[0028] 比较图1和图2,伸长粒间相30可与图2的伸长粒间相130等同。两相均视为连接至界面18(图1)或顶表面112(图2)。相似地,在图1中看上去与界面18不连接的伸长粒间相32可与图2的粒间相132相似。如果从前表面116观察,那么粒间相132看上去不连接至顶表面112。但是,立方体100的3D示意图显出该相132的通过立方体100内的颗粒边界122去往顶表面的连接。相似地,分别可从图2看出,看上去在图1中的点34和图2中的134可连接至顶表面
18或112。与伸长粒间相130、132和134的伸长粒间相一致,可存在一些其他的伸长粒间相
136,其在立方体100内并且连接至表面112,但是在二维截面图中的任一个中在前相114或
116中均未观察到。
[0029] 因而,在一个实施例中,伸长粒间相中的至少一些可认为是可存在于等离子影响区域40中的二维小片。在一个实施例中,伸长粒间相30、32、34(或130、132、134)具有长度、宽度和厚度。如在本文中所使用的,伸长粒间相的“长度”是在任意方向上的最长维度,“宽度”是垂直于长度的第二最长方向。伸长粒间相的“厚度”限定为在任意给定的颗粒边界处伸长粒间相的在垂直于相的长度和宽度的方向上的长短。在一个实施例中,伸长粒间相的厚度始终小于相邻颗粒的颗粒边界厚度。如在本文中所使用的,一对颗粒之间中的颗粒边界厚度限定为在任意给定位置处在这两个颗粒之间的最短距离。
[0030] 在一个实施例中,伸长粒间相的长度至少为3微米。在一个实施例中,长度为至少大约5微米,并且在其他实施例中,长度在从大约8微米至大约15微米的范围中。在一个实施例中,伸长粒间相的长度与厚度比大于大约5。在其他实施例中,长度与厚度比大于大约8。
[0031] 在一个实施例中,伸长粒间相的长度基本在垂直于粘合涂层14和顶涂层16的界面18(图1)的方向上。在该实施例中,从界面直到深入等离子影响区域40中测量伸长粒间相的长度。在一个实施例中,等离子影响区域40限定为粘合涂层区域14从界面18直至存在伸长粒间相处的该深度。因而,在一个实施例中,等离子影响区域40距界面18的深度的范围通过在垂直于界面18的截面处在粘合涂层14的厚度中的伸长粒间相的最深的存在而识别。在一个实施例中,等离子影响区域从界面延伸至进入粘合涂层14的厚度中至少大约5微米。在一个实施例中,等离子影响区域延伸至距界面18至少10微米。
[0032] 在一个实施例中,在等离子影响区域40内接近界面18观察到的伸长粒间相的数量相对于在等离子影响区域40中距界面18在内部深处的伸长粒间相的数量较高。因而,在一个实施例中,等离子影响区域40具有作为在从界面18朝基底12的方向上的距离的函数的伸长粒间相的浓度梯度。如在本文中所使用的,“浓度”限定为每单位长度的伸长粒间相的数量,该单位长度与在截面处平行于界面画出的线相交。由于可在等离子影响区域40内深处看到的等离子的降低的效果,或可能由于在等离子影响区域40的较深部分中的氧的降低的可利用性,伸长粒间相30、32、34的浓度梯度可上升。
[0033] 不由任何特定理论限制,相信伸长粒间相30、32、34的存在提高了顶涂层16与粘合涂层14的粘合强度,并且降低了顶涂层16在物品操作期间的散裂。此外,在一个实施例中,伸长粒间相在粘合涂层14中的存在增加了沉积在粘合涂层14上方的高密度顶涂层16的耐受性。即,沉积在具有伸长粒间相30、32、34的粘合涂层14上的致密顶涂层16的寿命比沉积在不具有伸长粒间相的粘合涂层上的顶涂层的寿命长。在一个实施例中,沉积在用于用在高温环境中的粘合涂层14上方的顶涂层16的密度大于顶涂层材料的理论密度的大约80%。在一个实施例中,提出了沉积物品的方法。本发明的方法的实施例在应用或修复用于如下多种涡轮发动机(例如燃气涡轮发动机)部分和构件的热障涂层中是有用的,这些部分和构件由包括多种金属和金属合金(包括超级合金)的金属基底形成,并且在高温下操作或暴露于高温(尤其是在正常发动机操作期间发生的较高温度)。这些涡轮发动机部分和构件可包括:涡轮翼形件(例如叶片和静叶)、涡轮围带、涡轮喷嘴、燃烧器构件(例如衬套)、偏导器和它们各自的罩组件、燃气涡轮发动机的增强器硬件等。
[0034] 在一个实施例中,该方法包括通过使用如下等离子喷涂条件的等离子喷涂沉积在覆盖粘合涂层上方形成顶涂层,该等离子喷涂条件足以形成在粘合涂层内接近与顶涂层的界面的等离子影响区域。如在本文中所使用的,“足以形成等离子影响区域的等离子喷涂条件”包括,在顶涂层16的沉积期间影响在粘合涂层14表面上操作的等离子功率的任何结构和操作参数。
[0035] 这种等离子喷涂涂层技术的各种细节将对于本领域技术人员将是公知的,细节包括各种相关步骤和加工参数(例如在沉积之前清洁粘合涂层14的表面18);磨料喷砂来移除氧化物并使表面变粗糙,基底温度、等离子喷涂参数(例如喷涂距离(喷枪至基底))、喷涂遍数的选择、粉末供给速率、粒子速度、喷灯功率、等离子气体选择、氧化控制来调整氧化物化学计量、沉积的度、应用的涂层的后处理;等等。通常喷灯功率可在从大约10千瓦至大约200千瓦的范围中变化。陶瓷涂层成分粒子流入等离子卷流(或等离子“射流”)的速度是通常十分密切地控制的另一参数。
[0036] 典型的等离子喷涂系统包括等离子喷枪阳极,该等离子喷枪阳极具有朝粘合涂层的沉积表面的方向指向的喷嘴。通常自动地控制等离子喷枪,例如通过机器人机构,其能够以各种模式使喷枪移动跨过粘合涂层的表面。等离子卷流在等离子喷枪阳极的出口与粘合涂层的表面之间沿轴向方向延伸。将一些种类的粉末喷射器件在阳极与粘合涂层表面之间布置在预先确定的、期望的轴向位置处。在这种系统的一些实施例中,粉末喷射器件与等离子卷流区域在径向方向上分开,并且用于粉末材料的喷射管位于以便其可将粉末以期望的角度引导入等离子卷流中的位置。载气中夹带的粉末粒子被推动穿过喷射器并进入等离子卷流中。然后在等离子中加热粒子并朝粘合涂层推动其。粒子熔化,冲击在粘合涂层上,并且迅速地冷却来形成TBC。
[0037] 在本发明的一个实施例中,用于顶涂层14的沉积的等离子功率大于大约95kW。在一个实施例中,功率大于100KW。在一个实施例中,等离子气体的流速大于大约每分钟300标准升(slpm),并且从喷涂喷枪至基底的距离小于大约120mm。
[0038] 实例
[0039] 下列实例根据具体实施例示出了比较方法、材料和结果,并且引出不应理解为对权利要求进行限制。
[0040] 在粘合涂层上方沉积顶涂层是通过使用变化的等离子喷涂条件来进行的,在下面详述了其中的两个代表方法。对结构和性质特点进行了测量和比较。
[0041] 在实例1中,将离子等离子沉积的镍铝合金用作镍基合金基底上的粘合涂层。使用具有d50=0.4微米的平均粒子尺寸的浆料沉积大约50微米厚的多孔7-8Wt%的钇稳定锆(YSZ)TBC。使用的等离子条件如下:85kW的功率、245slpm的气体、和大约75mm的喷枪至基底距离。50微米厚的多孔TBC涂层的密度为大约89%。在该多孔TBC上方,使用相同的浆料,但是在大约105kW的功率、大约350slpm的气体、和大约100mm的喷枪至基底距离的不同的操作等离子条件下沉积大约100微米厚的致密TBC涂层。100微米厚致密TBC涂层的密度为大约95%。
[0042] 在实例2中,基底和粘合涂层保持与实例1相同。使用包括双峰粒子尺寸分布的浆料沉积大约160微米厚的致密TBC涂层。浆料中的平均双峰粒子尺寸为大约0.7微米和大约1.1微米。操作等离子条件为大约105kW的功率、大约350slpm的气体、和大约100mm的喷枪至基底距离。该160微米厚的多孔TBC涂层的密度为大约95%。
[0043] 图3呈现了实例1的粘合涂层214-顶涂层216交汇区域的截面200的电子显微视图,其显示了颗粒220、颗粒边界222、和伸长粒间相234。图4是实例2的粘合涂层314-顶涂层316界面区域的截面300的电子显微视图,其显示了颗粒320、颗粒边界322、和等离子影响区域340中的伸长粒间相330、332和334。明显地,与实例1的相比,观察到更多的伸长粒间相与实例2的粘合涂层上方的直接、致密涂层对应地出现在图4中。
[0044] 在应用实例1的致密TBC之前使用多孔TBC来典型地降低TBC的散裂,因为已知致密顶涂层在粘合涂层上方的直接沉积典型地增加了TBC的散裂。令人惊讶的是,当在相似的条件下进行这两个涂层的熔炉循环试验(FCT)寿命测试来得知寿命时,发现实例2的直接致密涂层显示出与实例1的寿命相比两倍的寿命。与实例1的寿命相比实例2的TBC的增加的FCT寿命归结于与实例1的顶涂层216对粘合涂层214的附着相比,顶涂层316对粘合涂层314的更强附着。相信实例2的更强附着是由在粘合涂层(接近粘合涂层/TBC界面)中观察到的充足数量的伸长粒间相引起的。伸长粒间相330、332和334经历元素分析并且发现富含锆、铝和氧。
[0045] 在一个实施例中,相信伸长粒间相的数量和长度在确定顶涂层对粘合涂层的附着时起到重要作用。因而,假定如果与显示出相似数量的长的(>3微米)伸长粒间相的另一个物品微结构相比,物品微结构具有多个短的(<3微米)伸长粒间相,那么与具有相对较短的伸长粒间相的物品相比,具有较长伸长粒间相的物品具有更好的具有改善的附着的机会。
[0046] 在一些实施例中,与伸长粒间相一起,在图4中还观察到一些其他粒间相350。它们可为在外观和成分方面与特征如上所述的伸长粒间相截然不同的基本不可溶解的化合物。粒间相350可包括合金沉淀物、金属氧化物、金属氮化物、金属碳化物、和它们混合物。但是,在进行实例1和实例2的比较研究时,不有意地将其他粒间物质加至任何实例物品。
[0047] 虽然在本文中仅示出本发明的某些特征,但是本领域技术人员将想到许多修改和变化。因此,应理解的是,所附权利要求意图覆盖落入本发明的真正精神内的所有这种修改和变化。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈