首页 / 专利库 / 加工 / 磨料 / 超硬磨料 / 立方氮化硼 / 一种纳米切深高速单点划擦试验装置及其试验方法

一种纳米切深高速单点划擦试验装置及其试验方法

阅读:331发布:2022-01-22

专利汇可以提供一种纳米切深高速单点划擦试验装置及其试验方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种纳米切深高速单点划擦试验装置及其试验方法,所述装置包括 工作台 、气浮转台、试件夹具、试件、Z向进给装置、纳米运动平台、 力 传感器 和划擦工具,所述试件的待划擦 位置 制有长度、高度可控的微凸结构。本发明在划擦速度方面从μm/s提升至m/s,真实地还原了超精密磨削过程中磨粒的加工速度。本发明在高速划擦条件下准确采集不同纳米切深条件下的划擦力 信号 ,划擦力-划擦深度对应关系明确。本发明在试件表面构造微凸结构,避免了金刚石针尖在整个 晶圆 表面留下很长划痕,在较短划痕内提供了丰富的试验数据,极大地提高了单位划擦长度内有效信息的含量,有利于后续的划痕分析和残留划痕的特征识别,保证了划擦工具的完整性。,下面是一种纳米切深高速单点划擦试验装置及其试验方法专利的具体信息内容。

1.一种纳米切深高速单点划擦试验装置,其特征在于:包括:
基座(1);
平放置的工作台(2),固定安装在基座(1)顶面;
竖直放置的气浮转台(3),固定安装在工作台(2)上;
试件夹具(4),装接在气浮转台(3)顶部端面,且与气浮转台(3)同轴,通过气浮转台(3)带动试件夹具(4)旋转;所述试件夹具(4)是真空吸盘、磁吸盘或机械结构夹具;
试件(5),装接在试件夹具(4)上;
Z向进给装置(12),装接在工作台(2)顶面,沿气浮转台(3)回转轴线方向进给;所述Z向进给装置(12)通过螺纹连接的方式装接在工作台(2)顶面,其定位精度优于5μm;
纳米运动平台(10),通过纳米运动平台连接件(11)装接在Z向进给装置(12)上;
传感器(8),通过力传感器连接件(9)装接在纳米运动平台(10)上;所述力传感器(8)具有测量法向力和切向力功能,法向即Z向,切向即X向;
划擦工具(6),通过划擦工具连接件(7)装接在力传感器(8)上;
所述试件(5)为有色金属、黑色金属或硬脆材料,在试件(5)待划擦位置制作长度、高度可控的微凸结构(14),划擦深度d所对应的微凸结构(14)沿划擦方向的长度Lx满足下式:
其中,v为试验所需的划擦速度,m/s;q为有效划擦区域内、试验所需的力信号点数;f为力传感器(8)设定的采样频率,Hz;
所述微凸结构(14)沿径向的长度Ly不小于划擦过程中划擦工具(6)沿Y方向的进给步长ly;
所述微凸结构(14)沿Z向的最大高度H大于试验所需的最大切削深度dmax;
所述微凸结构(14)的Y截面形状呈圆弧状或折线状,根据划擦试验设定的划擦速度、划擦深度以及划擦长度,选取圆弧半径或直线斜率。
2.根据权利要求1所述的一种纳米切深高速单点划擦试验装置,其特征在于:所述气浮转台(3)采用伺服电机驱动,所述伺服电机安装在工作台(2)底面,所述气浮转台(3)通过皮带与伺服电机连接;所述气浮转台(3)为空气轴承机械气浮转台(3);所述气浮转台(3)的端面跳动量和径向跳动量均小于0.5μm;所述气浮转台(3)、试件夹具(4)和试件(5)三者在Z方向的相对位置固定。
3.根据权利要求1所述的一种纳米切深高速单点划擦试验装置,其特征在于:所述试件(5)的形状关于Z轴中心对称,在试件(5)待划擦位置制作长度、高度可控的微凸结构(14),通过试件夹具(4)固定安装在气浮转台(3)上,所述试件(5)的中心对称轴与转台回转轴线重合。
4.根据权利要求1或3所述的一种纳米切深高速单点划擦试验装置,其特征在于:所述试件(5)的形状关于Z轴中心对称且试件(5)的厚度小于1mm,在试件(5)背面粘贴长度不低于5mm、宽度不低于1mm、高度不低于10μm的弹性薄膜(13),采用具有平坦表面的磁力吸盘或真空吸盘进行装夹,在装夹的过程中,借助平坦的真空吸盘/磁力吸盘表面和弹性薄膜(13),通过真空吸附/磁力吸附作用,使得试件(5)表面产生弹性变形,形成长度、宽度和高度可控的微凸结构(14),所述试件(5)的中心对称轴与气浮转台(3)回转轴线重合。
5.根据权利要求1所述的一种纳米切深高速单点划擦试验装置,其特征在于:所述试件(5)为形状不规则的状试件(5),在试件(5)待划擦位置制作长度、高度可控的微凸结构(14);试件(5)通过试件夹具(4)装夹在气浮转台(3)端面;为了确保高速回转运动中气浮转台(3)端面的动态平衡,在试件夹具(4)上额外安装配重物块,所述配种物块的重心和试件(5)的重心关于气浮转台(3)的旋转轴线呈中心对称。
6.根据权利要求1所述的一种纳米切深高速单点划擦试验装置,其特征在于:所述划擦工具(6)包括单点工具和固定单点工具的固定座,所述单点工具的材料为比试件(5)硬度高且具有加工出微米/亚微米曲率半径尖点特性的材料,包括金刚石、立方氮化或陶瓷;所述单点工具通过粘接、钎焊或电固结在所述固定座的顶端。
7.根据权利要求1所述的一种纳米切深高速单点划擦试验装置,其特征在于:所述纳米运动平台(10)为纳米直线位移平台,在竖直方向即Z向和气浮转台(3)端面径向方向即Y向上实现纳米精度的直线位移;所述纳米直线位移平台通过纳米运动平台连接件(11)装接在Z向进给装置(12)上,其Z向闭环直线运动精度优于10nm,Z向闭环直线运动行程不低于10μm,Y向闭环直线运动精度优于100nm,Y向闭环直线运动行程不低于100μm。
8.根据权利要求1所述的一种纳米切深高速单点划擦试验装置,其特征在于:所述纳米运动平台(10)为纳米偏摆平台,在竖直方向即Z向上实现纳米精度的直线位移,并且绕X轴实现偏摆运动,通过调整偏摆半径,间接地在气浮转台(3)径向方向即Y向和竖直方向即Z向实现微量进给;其Z向闭环直线运动精度优于10nm,Z向闭环运动行程不低于10μm,X向闭环偏摆运动精度优于1μrad,X向闭环偏摆运动行程不低于±0.5mrad。
9.一种纳米切深高速单点划擦试验装置的试验方法,其特征在于:包括以下步骤:
A、装夹试件(5)
根据试件(5)形状选择装夹试件(5)的方式,如果试件(5)为轴对称形状试件,则转步骤A1,如果试件(5)为形状不规则的块状试件,则转步骤A2;
A1、对于轴对称形状试件,在试件(5)待划擦位置制作长度、高度可控的微凸结构(14),通过试件夹具(4)固定安装在气浮转台(3)上;转步骤B;
A2、对于形状不规则的块状试件,在试件(5)待划擦位置制作长度、高度可控的微凸结构(14),通过试件夹具(4)将试件(5)装夹在气浮转台(3)端面,并安装相应的配重物块,确保高速回转运动中气浮转台(3)端面的动态平衡,所述配种物块的重心和试件(5)的重心关于气浮转台(3)的旋转轴线呈中心对称;
B、通过Z向进给装置(12)控制划擦工具(6)向试件(5)表面逼近;
旋转气浮转台(3),使待划擦试件(5)表面的微凸结构(14)位于划擦工具(6)的正下方;
在试件(5)微凸结构(14)上粘贴厚度为T的保护薄膜,并控制划擦工具(6)沿径向方向运动至纳米运动平台(10)的负极限位置,借助在线显微观测系统,控制Z向进给装置(12)使划擦工具(6)快速向试件(5)微凸结构(14)逼近;
C、对刀
C1、打开Z向进给装置(12)的止机构,
C2、通过纳米运动平台(10)控制划擦工具(6)沿Z向以小于弹性薄膜(13)厚度T的步长向试件(5)步进;
C31、如果力传感器(8)检测到力信号明显上升,即划擦工具(6)接触到试件(5)微凸结构(14)粘贴的保护薄膜,转步骤C6;否则转步骤C32;
C32、如果纳米运动平台(10)步进至其Z向负极限位置,转步骤C4;否则,转步骤C2;
C4、解除Z向进给装置(12)的锁止机构,控制纳米运动平台(10)抬起至其Z向正极限位置;
C5、控制Z向进给装置(12)向试件(5)方向进给规定距离,所述距离不超过纳米运动平台(10)Z向的行程极限与Z向进给装置(12)定位精度的差值;转步骤C1;
C6、停止纳米运动平台(10)沿Z向的进给,揭下保护薄膜,完成对刀步骤;
D、对试件(5)进行划擦
启动气浮转台(3),根据以下公式计算并设定气浮转台(3)的转速n,单位为rpm:
其中,R为微凸结构(14)所在气浮转台(3)端面的回转半径,m;v为划擦试验所需的划擦速度,m/s;试件(5)装夹在试件夹具(4)上随气浮转台(3)按照设定的转速n做回转运动;
控制纳米运动平台(10)和Z向进给装置(12)实行交替划擦进给策略,所述交替划擦进给策略包括以下进给运动:
D1、打开Z向进给装置(12)的锁止机构;
D2、通过纳米运动平台(10),控制划擦工具(6)以10~1000nm的步长向试件(5)以步进的方式进给,所述步进式进给分解为Z向负方向的进给和Y向负方向的进给;如果是同一划痕的单次划擦,转步骤D21;如果是同一划痕的多次划擦,转步骤D22;
D21、对于同一划痕的单次划擦,气浮转台(3)带动试件(5)每旋转一周,所述划擦工具(6)步进式进给的步长在Z向的分量fz不小于划擦试验所需的最小切削深度dmin,且不大于划擦试验所需的最大切削深度dmax,即dmin≤fz≤dmax;所述划擦工具(6)步进式进给的步长在气浮转台(3)端面径向即Y向的分量fy不小于10μm,使得沿Y向分布的,且切深渐变的划痕彼此相互独立、互不干扰;转步骤D3;
D22、对于同一划痕的多次划擦,划擦工具(6)步进式进给运动完成一次步进后,停留时间t,直至达到试验所需的划擦次数s,再继续向试件(5)以步进方式进给,所述停留时间满足s/n≤t<(s+1)/n;所述划擦工具(6)步进式进给的步长在Z向的分量fz不小于划擦试验所需的最小切削深度dmin,且不大于划擦试验所需的最大切削深度dmax,即dmin≤fz≤dmax;所述划擦工具(6)步进式进给的步长在气浮转台(3)端面径向即Y向的分量fy不小于10μm,使得沿Y向分布的,且切深渐变的划痕彼此相互独立、互不干扰;
D3、如果所述的步进式进给在Z方向的累计位移超过了试验所需的最大切削深度,或者所述的纳米运动平台(10)行至其Y向负限位,或者所述的步进式进给在Z方向的累计位移达到了纳米运动平台(10)在Z向负限位,停止步进式进给,转步骤D31;否则,转步骤D2;
D31、分析进给期间力传感器(8)采集的力信号,如果检测到划擦力信号,即表明划擦工具(6)在在试件(5)的微凸结构(14)表面进行了高速划擦,转步骤D5;否则,转步骤D32;
D32、如果纳米运动平台(10)已行至其Y向负限位,制纳米运动平台(10)运动至其Y向正限位,转步骤D2;否则,转步骤D33;
D33、如果纳米运动平台(10)已行至其Z向负限位,转步骤D4;否则,转步骤D2;
D4、解除Z向进给装置(12)的锁止机构,通过所述Z向进给装置(12)控制划擦工具(6)向试件(5)表面进给,使划擦工具(6)进一步逼近试件(5)表面;为了避免逼近过程中划擦工具(6)接触到微凸结构(14),Z向进给装置(12)的进给量不超过纳米运动平台(10)Z向的行程与Z向进给装置(12)定位精度的差值,控制纳米运动平台(10)移动至其Z向正限位;转步骤D1;
D5、解除Z向进给装置(12)的锁止机构,通过所述Z向进给装置(12)控制划擦工具(6)向上抬起,停止所述气浮转台(3),完成划擦试验。
10.根据权利要求9所述的一种纳米切深高速单点划擦试验装置的试验方法,其特征在于:步骤A2所述的轴对称形状试件(5)如果厚度小于1mm时,在试件(5)背面粘贴长度不低于
5mm、宽度不低于1mm、高度不低于10μm的弹性薄膜(13),采用具有平坦表面的磁力吸盘或真空吸盘进行装夹,在装夹的过程中,借助平坦的真空吸盘/磁力吸盘表面和弹性薄膜(13),通过真空吸附/磁力吸附作用,使得试件(5)表面产生弹性变形,形成长度、宽度和高度可控的微凸结构(14)。

说明书全文

一种纳米切深高速单点划擦试验装置及其试验方法

技术领域

[0001] 本发明属于机械加工中的材料测试及超精密加工领域,具体涉及一种纳米切深高速单点划擦试验装置及其试验方法。

背景技术

[0002] 超精密磨削加工可以以纳米级切深高效地去除材料,从而获得较高的形状精度和表面质量,是精密零件加工的重要工艺之一。其加工机理的本质是磨具表面大量形状各异的磨粒以纳米量级的切削深度共同参与切削而实现的加工过程。因此,在超精密磨削机理的研究中,人们常常设计纳米切深单点划擦试验作为理解超精密磨削过程的重要手段。纵观国内外文献,不同材料的单点划擦试验已经得到了广泛和深入的研究,但是现有的试验设备和试验方案仍然存在着一些不足之处。
[0003] 最常见的纳米切深单点划擦试验一般基于原子显微镜(英语:Atomic Force Microscope,缩写为AFM)或在纳米压痕仪等精密仪器上进行。在名称为“Analysis of ductile mode and brittle transition of AFM nanomachining of silicon”的文章中(Lee,S.H.,Int.J.Mach.Tools Manuf.,2012,61,71-79),作者采用AFM装置,实现了不同划擦深度的纳米划擦试验,借助场发射扫描电子显微镜进一步观测分析了划擦试件在试验过程中弹塑性和脆塑性变形机理之间的转变。但是该试验所采取的划擦速度为μm/s量级(5μm/s),远远低于实际磨削过程中磨粒m/s量级的磨削速度。
[0004] 为了实现高速单点划擦试验,尽可能还原真实的加工状态。有学者采用单摆式划擦方法,在名称为“On the effect of crystallographic orientation on ductile material removal in silicon”的文章中(Brian P.O’Connor,Int.J.Precis.Eng.,2005.29(1):p.124-132.),作者O’Connor通过划擦工具的高速回转运动实现切深由浅入深再变浅的高速单点划擦。据文献报道,硬脆材料划擦过程中,切屑产生点和脆塑转变点等特征对应的临界切削深度通常在50nm以内(Lee,S.H.,Analysis of ductile mode and brittle transition of AFM nanomachining of silicon.International Journal of Machine Tools and Manufacture,2012.61:p.71-79.),受单摆式划擦方法采用的划擦工具回转半径的限制,切深在百纳米量级以内的残留划痕长度较短,受限于测力仪的采样频率(假设最大划擦深度取μm,单摆半径取150mm,会产生长度1095μm的划痕,切深小于100nm的塑性段划痕长度约为28μm,在划擦速度为1m/s的情况下,如果切深每变化10nm采一个数据,采样频率需要达到357kHz),单摆式划擦方法无法在高速(m/s量级)划擦条件下准确采集不同纳米切深条件下的切削力和划擦力信号
[0005] 中国专利CN201610077965.X公开了《一种单颗磨粒高速连续划擦试验机及其应用》,发明人基于球盘式划擦方法,利用电主轴带动试件的高速旋转产生高速划擦所需的高线速度;将单点工具的直线运动与圆周运动结合起来,同样实现了与实际磨削速度相仿的高速单点划擦。但是该专利提供的划擦的方法存在的问题主要表现在两个方面:首先,在高速划擦过程中无法准确实现将划擦深度控制在纳米量级,试验例中划擦轮廓测量结果表明:残留划痕的深度约为20微米,划擦工具可以实现的稳定切削深度为微米量级,即使专利中的Z轴设定器的定位精度优于100nm,综合考虑电主轴旋转过程中的端面跳动和待划擦工件的表面轮廓,仍然无法在在高速划擦条件下保证纳米量级切削深度的控制;另一方面,该划擦试验机利用端面跳动和工件表面轮廓的起伏固然可以实现切深渐变的高速划擦,但是对于微米/亚微米曲率半径单点工具,极有可能在划擦过程中遇到较大的工件起伏或端面跳动,磨粒切削深度急剧增加、导致划擦工具崩碎,长时间连续接触也容易导致单点工具磨损。因此,该专利提供的试验方法无法在高速划擦条件下,研究微米/亚微米曲率半径磨粒划擦硬脆材料的切屑产生点和脆塑转变点等特征。
[0006] 在超精密磨削加工领域,纳米切深高速单点划擦试验是揭示超精密磨削机理的重要手段。要实现这一试验方式,工艺方法和试验设备都有待进一步研究和改进,首先需要保证划擦长度可控,即:在保证不同切深均可以获得足量数据的前提下,尽量缩短划痕长度,减少试验后期在显微镜下寻找观测划痕的难度;此外,为了揭示超精密磨削过程中,磨粒以纳米量级的切削深度进行切削的加工机理,要近似地控制最大划擦深度在百纳米量级,并在长度有限的划痕上实现切深由浅入深再变浅的高速划擦试验过程;最后,还要保证大量的力信号数据点能够和残留划痕轮廓位置实现一一对应。中国专利CN201410324503.4公开了《一种亚微米曲率半径单颗粒金刚石针尖纳米深度高速划擦方法》,其利用片的平面度和磨床的端面跳动的组合偏差,完成亚微米曲率半径单颗粒金刚石针尖纳米深度高速划擦试验。该专利提供了整体上实现高速划擦的方法,但不能获取划擦过程中的力信号,并且划痕位置是随机的,观测定位困难。
[0007] 综上所述,为了进一步揭示超精密磨削机理,目前的单点划擦试验方法存在以下三点问题。
[0008] 1)基于AFM或在纳米压痕仪等精密仪器的单点划擦试验受直线划擦运动原理的限制,无法实现实际磨削过程中磨粒m/s量级的划擦速度。
[0009] 2)单摆式划擦方法受限于划擦工具回转半径以和测力仪的采样频率,无法在高速划擦条件下准确采集不同纳米切深条件下的划擦力信号。
[0010] 3)球盘式划擦方法受限于划擦工具的进给速度,无法在高速划擦条件下有效地控制划痕长度,使得划擦残留轮廓特征点在显微镜下的寻找过程变得十分困难。

发明内容

[0011] 为解决现有技术存在的上述问题,本发明要设计一种能够实现以下目的的纳米切深高速单点划擦试验装置及其试验方法:
[0012] 1)微米/亚微米曲率半径纳米切深高速单点划擦试验能有效地还原真实的超精密磨削状态,具体目的为:单点划擦工具的曲率半径尺度从mm量级降低至微米/亚微米量级,可以还原超精密磨削过程中磨粒的有效刃圆半径;切削深度控制在纳米量级,可以还原超精密磨削过程中磨粒的有效切削深度,并保证划擦工具在高速划擦中的完整性;划擦速度从μm/s提升至m/s,可以还原超精密磨削过程中磨粒的实际加工速度;
[0013] 2)高速划擦条件下准确采集不同纳米切深条件下的划擦力信号,划擦力-划擦深度对应关系明确;
[0014] 3)划擦长度可控,在保证划擦力-划擦深度对应关系明确以及划擦残留轮廓特征点清晰可辨的基础上,缩短划擦长度,方便划擦试验后在显微镜下观察划擦残留轮廓,分辨弹塑性、脆塑性转变点等特征,同时减少单点工具和工件作用时间,控制磨损。
[0015] 为了实现上述目的,本发明的技术方案如下:
[0016] 一种纳米切深高速单点划擦试验装置,包括:
[0017] 基座
[0018] 平放置的工作台,固定安装在基座顶面;
[0019] 竖直放置的气浮转台,固定安装在工作台上;
[0020] 试件夹具,装接在气浮转台顶部端面,且与气浮转台同轴,通过气浮转台带动试件夹具旋转;所述试件夹具是真空吸盘、磁力吸盘或机械结构夹具;
[0021] 试件,装接在试件夹具上;
[0022] Z向进给装置,装接在工作台顶面,沿气浮转台回转轴线方向进给;所述Z向进给装置通过螺纹连接的方式装接在工作台顶面,其定位精度优于5μm;
[0023] 纳米运动平台,通过纳米运动平台连接件装接在Z向进给装置上;
[0024] 力传感器,通过力传感器连接件装接在纳米运动平台上;所述力传感器具有测量法向力和切向力功能,法向即Z向,切向即X向;
[0025] 划擦工具,通过划擦工具连接件装接在力传感器上;
[0026] 所述试件为有色金属、黑色金属或硬脆材料,在试件待划擦位置制作长度、高度可控的微凸结构,划擦深度d所对应的微凸结构沿划擦方向的长度Lx满足下式:
[0027]
[0028] 其中,v为试验所需的划擦速度,m/s;q为有效划擦区域内、试验所需的力信号点数;f为力传感器设定的采样频率,Hz;
[0029] 所述微凸结构沿径向的长度Ly不小于划擦过程中划擦工具沿Y方向的进给步长ly;
[0030] 所述微凸结构沿Z向的最大高度H大于试验所需的最大切削深度dmax;
[0031] 所述微凸结构的Y截面形状呈圆弧状或折线状,根据划擦试验设定的划擦速度、划擦深度以及划擦长度,选取圆弧半径或直线斜率。
[0032] 进一步地,所述气浮转台采用伺服电机驱动,所述伺服电机安装在工作台底面,所述气浮转台通过皮带与伺服电机连接;所述气浮转台为空气轴承机械气浮转台;所述气浮转台的端面跳动量和径向跳动量均小于0.5μm;所述气浮转台、试件夹具和试件三者在Z方向的相对位置固定。
[0033] 进一步地,所述试件的形状关于Z轴中心对称,在试件待划擦位置制作长度、高度可控的微凸结构,通过试件夹具固定安装在气浮转台上,所述试件的中心对称轴与转台回转轴线重合。
[0034] 进一步地,所述试件的形状关于Z轴中心对称且试件的厚度小于1mm,在试件背面粘贴长度(Y方向)不低于5mm、宽度(X方向)不低于1mm、高度(Z方向)不低于10μm的弹性薄膜,此时,仅采用具有平坦表面的磁力吸盘或真空吸盘进行装夹,在装夹的过程中,借助平坦的真空吸盘/磁力吸盘表面和弹性薄膜,通过真空吸附/磁力吸附作用,使得试件表面产生弹性变形,形成长度、宽度和高度可控的微凸结构,所述试件的中心对称轴与气浮转台回转轴线重合。
[0035] 进一步地,所述试件为形状不规则的状试件,在试件待划擦位置制作长度、高度可控的微凸结构;试件通过试件夹具装夹在气浮转台端面;为了确保高速回转运动中气浮转台端面的动态平衡,在试件夹具上额外安装配重物块,所述配种物块的重心和试件的重心关于气浮转台的旋转轴线呈中心对称。
[0036] 进一步地,所述划擦工具包括单点工具和固定单点工具的固定座,所述单点工具的材料为比试件硬度高且具有加工出微米/亚微米曲率半径尖点特性的材料,包括金刚石、立方氮化(英文:Cubic Boron Nitride,缩写CBN)或陶瓷;所述单点工具通过粘接、钎焊或电固结在所述固定座的顶端。
[0037] 进一步地,所述纳米运动平台为纳米直线位移平台,在竖直方向即Z向和气浮转台端面径向方向即Y向上实现纳米精度的直线位移;所述纳米直线位移平台通过纳米运动平台连接件装接在Z向进给装置上,其Z向闭环直线运动精度优于10nm,Z向闭环直线运动行程不低于10μm,Y向闭环直线运动精度优于100nm,Y向闭环直线运动行程不低于100μm。
[0038] 进一步地,所述纳米运动平台为纳米偏摆平台,在竖直方向即Z向上实现纳米精度的直线位移,并且绕X轴实现偏摆运动,通过调整偏摆半径,间接地在气浮转台径向方向即Y向和竖直方向即Z向实现微量进给;其Z向闭环直线运动精度优于10nm,Z向闭环运动行程不低于10μm,X向闭环偏摆运动精度优于1μrad,X向闭环偏摆运动行程不低于±0.5mrad。
[0039] 进一步地,一种纳米切深高速单点划擦试验装置的试验方法,包括以下步骤:
[0040] A、装夹试件
[0041] 根据试件形状选择装夹试件的方式,如果试件为轴对称形状试件,则转步骤A1,如果试件为形状不规则的块状试件,则转步骤A2;
[0042] A1、对于轴对称形状的试件,在试件待划擦位置制作长度、高度可控的微凸结构,通过试件夹具固定安装在气浮转台上;转步骤B;
[0043] A2、对于形状不规则的块状试件,在试件待划擦位置制作长度、高度可控的微凸结构,通过试件夹具将试件装夹在气浮转台端面,并安装相应的配重物块,确保高速回转运动中气浮转台端面的动态平衡,所述配种物块的重心和试件的重心关于气浮转台的旋转轴线呈中心对称;
[0044] B、通过Z向进给装置控制划擦工具向试件表面逼近;
[0045] 旋转气浮转台,使待划擦试件表面的微凸结构位于划擦工具的正下方;
[0046] 在试件微凸结构上粘贴厚度为T的保护薄膜,并控制划擦工具沿径向方向(即Y向)运动至纳米运动平台的负极限位置,借助在线显微观测系统,控制Z向进给装置使划擦工具快速向试件微凸结构逼近;
[0047] C、对刀
[0048] C1、打开Z向进给装置的止机构,
[0049] C2、通过纳米运动平台控制划擦工具沿Z向以小于弹性薄膜厚度T的步长向试件步进;
[0050] C31、如果力传感器检测到力信号明显上升,即划擦工具接触到试件微凸结构粘贴的保护薄膜,转步骤C6;否则转步骤C32;
[0051] C32、如果纳米运动平台步进至其Z向负极限位置,转步骤C4;否则,转步骤C2;
[0052] C4、解除Z向进给装置的锁止机构,控制纳米运动平台抬起至其Z向正极限位置;
[0053] C5、控制Z向进给装置向试件方向进给规定距离,所述距离不超过纳米运动平台Z向的行程极限与Z向进给装置定位精度的差值;转步骤C1;
[0054] C6、停止纳米运动平台沿Z向的进给,揭下保护薄膜,完成对刀步骤(此时,划擦工具距离试件待划擦位置的距离不超过保护薄膜的厚度T);
[0055] D、对试件进行划擦
[0056] 启动气浮转台,根据以下公式计算并设定气浮转台的转速n,单位为rpm:
[0057]
[0058] 其中,R为微凸结构所在气浮转台端面的回转半径,m;v为划擦试验所需的划擦速度,m/s;试件装夹在试件夹具上随气浮转台按照设定的转速n做回转运动;
[0059] 控制纳米运动平台和Z向进给装置实行交替划擦进给策略,所述交替划擦进给策略包括以下进给运动:
[0060] D1、打开Z向进给装置的锁止机构;
[0061] D2、通过纳米运动平台,控制划擦工具以10~1000nm的步长向试件以步进的方式进给,所述步进式进给分解为Z向负方向的进给和Y向负方向的进给;如果是同一划痕的单次划擦,转步骤D21;如果是同一划痕的多次划擦,转步骤D22;
[0062] D21、对于同一划痕的单次划擦,气浮转台带动试件每旋转一周,所述划擦工具步进式进给的步长在Z向的分量fz不小于划擦试验所需的最小切削深度dmin,且不大于划擦试验所需的最大切削深度dmax,即dmin≤fz≤dmax;所述划擦工具步进式进给的步长在气浮转台端面径向即Y向的分量fy不小于10μm,使得沿Y向分布的,且切深渐变的划痕彼此相互独立、互不干扰;转步骤D3;
[0063] D22、对于同一划痕的多次划擦,划擦工具步进式进给运动完成一次步进后,停留时间t,直至达到试验所需的划擦次数s,再继续向试件以步进方式进给,所述停留时间满足s/n≤t<(s+1)/n;所述划擦工具步进式进给的步长在Z向的分量fz不小于划擦试验所需的最小切削深度dmin,且不大于划擦试验所需的最大切削深度dmax,即dmin≤fz≤dmax;所述划擦工具步进式进给的步长在气浮转台端面径向即Y向的分量fy不小于10μm,使得沿Y向分布的,且切深渐变的划痕彼此相互独立、互不干扰;
[0064] D3、如果所述的步进式进给在Z方向的累计位移超过了试验所需的最大切削深度,或者所述的纳米运动平台行至其Y向负限位,或者所述的步进式进给在Z方向的累计位移达到了纳米运动平台在Z向负限位,停止步进式进给,转步骤D31;否则,转步骤D2;
[0065] D31、分析进给期间力传感器采集的力信号,如果检测到划擦力信号,即表明划擦工具在在试件的微凸结构表面进行了高速划擦,转步骤D5;否则,转步骤D32;
[0066] D32、如果纳米运动平台已行至其Y向负限位,制纳米运动平台运动至其Y向正限位,转步骤D2;否则,转步骤D33;
[0067] D33、如果纳米运动平台已行至其Z向负限位,转步骤D4;否则,转步骤D2;
[0068] D4、解除Z向进给装置的锁止机构,通过所述Z向进给装置控制划擦工具向试件表面进给,使划擦工具进一步逼近试件表面。为了避免逼近过程中划擦工具接触到微凸结构,Z向进给装置的进给量不超过纳米运动平台Z向的行程与Z向进给装置定位精度的差值,控制纳米运动平台移动至其Z向正限位;转步骤D1;
[0069] D5、解除Z向进给装置的锁止机构,通过所述Z向进给装置控制划擦工具向上抬起,停止所述气浮转台,完成划擦试验。
[0070] 进一步地,步骤A2所述的轴对称形状试件如果厚度小于1mm时,在试件背面粘贴长度不低于5mm、宽度不低于1mm、高度不低于10μm的弹性薄膜,采用具有平坦表面的磁力吸盘或真空吸盘进行装夹,在装夹的过程中,借助平坦的真空吸盘/磁力吸盘表面和弹性薄膜,通过真空吸附/磁力吸附作用,使得试件表面产生弹性变形,形成长度、宽度和高度可控的微凸结构。
[0071] 本发明和背景技术相比,具有以下优点:
[0072] 1、真实地还原了超精密磨削过程中磨粒的加工速度。本发明选用空气轴承机械气浮转台,利用高精度、低端跳的高速回转运动实现高速划擦,利用划擦试件表面的微凸结构以及纳米运动平台和Z向进给装置组成分级精密运动系统,在纳米尺度上实现了划擦深度可控,与目前的划擦方式相比,本发明在划擦速度方面从μm/s提升至m/s,真实地还原了超精密磨削过程中磨粒的加工速度;在划擦深度方面实现了纳米尺度上的控制,在划擦工具尺寸方面,实现了微米/亚微米曲率半径划擦工具的高速划擦。
[0073] 2、高速划擦条件下准确采集不同纳米切深条件下的划擦力信号,划擦力-划擦深度对应关系明确。本发明在试件表面构造了微凸结构,相比于钟摆式划擦方法,有效地延长了纳米切深下的划擦长度,与此同时,待划擦区域的微凸结构还实现了划擦的过程中划擦深度渐变。进而在保证划擦力-划擦深度对应关系明确的基础上,准确地采集了足量不同切深对应的划擦力信号。
[0074] 3、划擦长度可控。本发明在试件表面构造了微凸结构,避免了金刚石针尖在整个晶圆表面留下很长的划痕,在较短的划痕内提供了丰富的试验数据,极大地提高了单位划擦长度内有效信息的含量,有利于后续的划痕分析和残留划痕的特征识别,同时,通过控制划痕总体长度,保证了划擦工具的完整性。附图说明
[0075] 图1是本发明试验装置的主视图。
[0076] 图2是图1的俯视图。
[0077] 图3是工件微凸结构的示意图。
[0078] 图4是图3的A-A剖视图。
[0079] 图5本发明试验方法的流程图
[0080] 图中:1、基座;2、工作台;3、气浮转台;4、试件夹具;5、试件;6、划擦工具;7、划擦工具连接件;8、力传感器;9、力传感器连接件;10、纳米运动平台;11、纳米运动平台连接件;12、Z向进给装置;13、弹性薄膜;14、微凸结构。

具体实施方式

[0081] 下面结合附图对本发明进行进一步地描述。如图1-4所示,一种纳米切深高速单点划擦试验装置,包括:
[0082] 基座1;
[0083] 水平放置的工作台2,固定安装在基座1顶面;
[0084] 竖直放置的气浮转台3,固定安装在工作台2上;
[0085] 试件夹具4,装接在气浮转台3顶部端面,且与气浮转台3同轴,通过气浮转台3带动试件夹具4旋转;所述试件夹具4是真空吸盘、磁力吸盘或机械结构夹具;
[0086] 试件5,装接在试件夹具4上;
[0087] Z向进给装置12,装接在工作台2顶面,沿气浮转台3回转轴线方向进给;所述Z向进给装置12通过螺纹连接的方式装接在工作台2顶面,其定位精度优于5μm;
[0088] 纳米运动平台10,通过纳米运动平台连接件11装接在Z向进给装置12上;
[0089] 力传感器8,通过力传感器连接件9装接在纳米运动平台10上;所述力传感器8具有测量法向力和切向力功能,法向即Z向,切向即X向;
[0090] 划擦工具6,通过划擦工具连接件7装接在力传感器8上;
[0091] 所述试件5为有色金属、黑色金属或硬脆材料,在试件5待划擦位置制作长度、高度可控的微凸结构14,划擦深度d所对应的微凸结构14沿划擦方向的长度Lx满足下式:
[0092]
[0093] 其中,v为试验所需的划擦速度,m/s;q为有效划擦区域内、试验所需的力信号点数;f为力传感器8设定的采样频率,Hz;
[0094] 所述微凸结构14沿径向的长度Ly不小于划擦过程中划擦工具6沿Y方向的进给步长ly;
[0095] 所述微凸结构14沿Z向的最大高度H大于试验所需的最大切削深度dmax;
[0096] 所述微凸结构14的Y截面形状呈圆弧状或折线状,根据划擦试验设定的划擦速度、划擦深度以及划擦长度,选取圆弧半径或直线斜率。
[0097] 进一步地,所述气浮转台3采用伺服电机驱动,所述伺服电机安装在工作台2底面,所述气浮转台3通过皮带与伺服电机连接;所述气浮转台3为空气轴承机械气浮转台3;所述气浮转台3的端面跳动量和径向跳动量均小于0.5μm;所述气浮转台3、试件夹具4和试件5三者在Z方向的相对位置固定。
[0098] 进一步地,所述试件5的形状关于Z轴中心对称,在试件5待划擦位置制作长度、高度可控的微凸结构14,通过试件夹具4固定安装在气浮转台3上,所述试件5的中心对称轴与转台回转轴线重合。
[0099] 进一步地,所述试件5的形状关于Z轴中心对称且试件5的厚度小于1mm,在试件5背面粘贴长度不低于5mm、宽度不低于1mm、高度不低于10μm的弹性薄膜13,采用具有平坦表面的磁力吸盘或真空吸盘进行装夹,在装夹的过程中,借助平坦的真空吸盘/磁力吸盘表面和弹性薄膜13,通过真空吸附/磁力吸附作用,使得试件5表面产生弹性变形,形成长度、宽度和高度可控的微凸结构14,所述试件5的中心对称轴与气浮转台3回转轴线重合。
[0100] 进一步地,所述试件5为形状不规则的块状试件5,在试件5待划擦位置制作长度、高度可控的微凸结构14;试件5通过试件夹具4装夹在气浮转台3端面;为了确保高速回转运动中气浮转台3端面的动态平衡,在试件夹具4上额外安装配重物块,所述配种物块的重心和试件5的重心关于气浮转台3的旋转轴线呈中心对称。
[0101] 进一步地,所述划擦工具6包括单点工具和固定单点工具的固定座,所述单点工具的材料为比试件5硬度高且具有加工出微米/亚微米曲率半径尖点特性的材料,包括金刚石、立方氮化硼或陶瓷;所述单点工具通过粘接、钎焊或电镀固结在所述固定座的顶端。
[0102] 进一步地,所述纳米运动平台10为纳米直线位移平台,在竖直方向即Z向和气浮转台3端面径向方向即Y向上实现纳米精度的直线位移;所述纳米直线位移平台通过纳米运动平台连接件11装接在Z向进给装置12上,其Z向闭环直线运动精度优于10nm,Z向闭环直线运动行程不低于10μm,Y向闭环直线运动精度优于100nm,Y向闭环直线运动行程不低于100μm。
[0103] 进一步地,所述纳米运动平台10为纳米偏摆平台,在竖直方向即Z向上实现纳米精度的直线位移,并且绕X轴实现偏摆运动,通过调整偏摆半径,间接地在气浮转台3径向方向即Y向和竖直方向即Z向实现微量进给;其Z向闭环直线运动精度优于10nm,Z向闭环运动行程不低于10μm,X向闭环偏摆运动精度优于1μrad,X向闭环偏摆运动行程不低于±0.5mrad。
[0104] 如图1-5所示,一种纳米切深高速单点划擦试验装置的试验方法,包括以下步骤:
[0105] B、装夹试件5
[0106] 根据试件5形状选择装夹试件5的方式,如果试件5为轴对称形状试件,则转步骤A1,如果试件5为形状不规则的块状试件,则转步骤A2;
[0107] A1、对于轴对称形状试件,在试件5待划擦位置制作长度、高度可控的微凸结构14,通过试件夹具4固定安装在气浮转台3上;转步骤B;
[0108] A2、对于形状不规则的块状试件,在试件5待划擦位置制作长度、高度可控的微凸结构14,通过试件夹具4将试件5装夹在气浮转台3端面,并安装相应的配重物块,确保高速回转运动中气浮转台3端面的动态平衡,所述配种物块的重心和试件5的重心关于气浮转台3的旋转轴线呈中心对称;
[0109] B、通过Z向进给装置12控制划擦工具6向试件5表面逼近;
[0110] 旋转气浮转台3,使待划擦试件5表面的微凸结构14位于划擦工具6的正下方;
[0111] 在试件5微凸结构14上粘贴厚度为T的保护薄膜,并控制划擦工具6沿径向方向运动至纳米运动平台10的负极限位置,借助在线显微观测系统,控制Z向进给装置12使划擦工具6快速向试件5微凸结构14逼近;
[0112] C、对刀
[0113] C1、打开Z向进给装置12的锁止机构,
[0114] C2、通过纳米运动平台10控制划擦工具6沿Z向以小于弹性薄膜13厚度T的步长向试件5步进;
[0115] C31、如果力传感器8检测到力信号明显上升,即划擦工具6接触到试件5微凸结构14粘贴的保护薄膜,转步骤C6;否则转步骤C32;
[0116] C32、如果纳米运动平台10步进至其Z向负极限位置,转步骤C4;否则,转步骤C2;
[0117] C4、解除Z向进给装置12的锁止机构,控制纳米运动平台10抬起至其Z向正极限位置;
[0118] C5、控制Z向进给装置12向试件5方向进给规定距离,所述距离不超过纳米运动平台10Z向的行程极限与Z向进给装置12定位精度的差值;转步骤C1;
[0119] C6、停止纳米运动平台10沿Z向的进给,揭下保护薄膜,完成对刀步骤;
[0120] D、对试件5进行划擦
[0121] 启动气浮转台3,根据以下公式计算并设定气浮转台3的转速n,单位为rpm:
[0122]
[0123] 其中,R为微凸结构14所在气浮转台3端面的回转半径,m;v为划擦试验所需的划擦速度,m/s;试件5装夹在试件夹具4上随气浮转台3按照设定的转速n做回转运动;
[0124] 控制纳米运动平台10和Z向进给装置12实行交替划擦进给策略,所述交替划擦进给策略包括以下进给运动:
[0125] D1、打开Z向进给装置12的锁止机构;
[0126] D2、通过纳米运动平台10,控制划擦工具6以10~1000nm的步长向试件5以步进的方式进给,所述步进式进给分解为Z向负方向的进给和Y向负方向的进给;如果是同一划痕的单次划擦,转步骤D21;如果是同一划痕的多次划擦,转步骤D22;
[0127] D21、对于同一划痕的单次划擦,气浮转台3带动试件5每旋转一周,所述划擦工具6步进式进给的步长在Z向的分量fz不小于划擦试验所需的最小切削深度dmin,且不大于划擦试验所需的最大切削深度dmax,即dmin≤fz≤dmax;所述划擦工具6步进式进给的步长在气浮转台3端面径向即Y向的分量fy不小于10μm,使得沿Y向分布的,且切深渐变的划痕彼此相互独立、互不干扰;转步骤D3;
[0128] D22、对于同一划痕的多次划擦,划擦工具6步进式进给运动完成一次步进后,停留时间t,直至达到试验所需的划擦次数s,再继续向试件5以步进方式进给,所述停留时间满足s/n≤t<(s+1)/n;所述划擦工具6步进式进给的步长在Z向的分量fz不小于划擦试验所需的最小切削深度dmin,且不大于划擦试验所需的最大切削深度dmax,即dmin≤fz≤dmax;所述划擦工具6步进式进给的步长在气浮转台3端面径向即Y向的分量fy不小于10μm,使得沿Y向分布的,且切深渐变的划痕彼此相互独立、互不干扰;
[0129] D3、如果所述的步进式进给在Z方向的累计位移超过了试验所需的最大切削深度,或者所述的纳米运动平台10行至其Y向负限位,或者所述的步进式进给在Z方向的累计位移达到了纳米运动平台10在Z向负限位,停止步进式进给,转步骤D31;否则,转步骤D2;
[0130] D31、分析进给期间力传感器8采集的力信号,如果检测到划擦力信号,即表明划擦工具6在在试件5的微凸结构14表面进行了高速划擦,转步骤D5;否则,转步骤D32;
[0131] D32、如果纳米运动平台10已行至其Y向负限位,制纳米运动平台10运动至其Y向正限位,转步骤D2;否则,转步骤D33;
[0132] D33、如果纳米运动平台10已行至其Z向负限位,转步骤D4;否则,转步骤D2;
[0133] D4、解除Z向进给装置12的锁止机构,通过所述Z向进给装置12控制划擦工具6向试件5表面进给,使划擦工具6进一步逼近试件5表面。为了避免逼近过程中划擦工具6接触到微凸结构14,Z向进给装置12的进给量不超过纳米运动平台10Z向的行程与Z向进给装置12定位精度的差值,控制纳米运动平台10移动至其Z向正限位;转步骤D1;
[0134] D5、解除Z向进给装置12的锁止机构,通过所述Z向进给装置12控制划擦工具6向上抬起,停止所述气浮转台3,完成划擦试验。
[0135] 进一步地,步骤A2所述的轴对称形状试件5如果厚度小于1mm时,在试件5背面粘贴长度不低于5mm、宽度不低于1mm、高度不低于10μm的弹性薄膜13,采用具有平坦表面的磁力吸盘或真空吸盘进行装夹,在装夹的过程中,借助平坦的真空吸盘/磁力吸盘表面和弹性薄膜13,通过真空吸附/磁力吸附作用,使得试件5表面产生弹性变形,形成长度、宽度和高度可控的微凸结构14。
[0136] 本发明不局限于本实施例,任何在本发明披露的技术范围内的等同构思或者改变,均列为本发明的保护范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈