首页 / 专利库 / 成型和铸造 / 砂模铸造 / 湿型铸造 / 具有交联亲水涂层的硅氧烷水凝胶透镜

具有交联亲涂层的烷水凝胶透镜

阅读:601发布:2021-06-19

专利汇可以提供具有交联亲涂层的烷水凝胶透镜专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种制备其上具有交联亲 水 涂层的 硅 氧 烷水凝胶透镜的划算方法。本发明方法涉及将硅氧烷水凝胶 接触 透镜在水溶液中在具有正电性氮杂环 丁烷 基团的 水溶性 、高度支化可热交联亲水性 聚合物 材料的存在下加热至40‑140℃的 温度 并在40‑140℃的温度下足够的时间以使可热交联亲水性聚合物材料通过各自在一个氮杂环丁烷基团与硅氧烷水凝胶接触透镜表面上和/或附近的一个 反应性 官能团之间形成的共价键共价附着于硅氧烷水凝胶接触透镜表面上,由此在硅氧烷水凝胶接触透镜上形成交联亲水涂层。这种方法可有利地在压 热处理 期间直接在密封透镜 包装 中执行。,下面是具有交联亲涂层的烷水凝胶透镜专利的具体信息内容。

1.一种易使用凝胶接触透镜,其包含:
包含在接触透镜表面上或附近或两者的基和/或羧基的预成型硅氧烷水凝胶接触透镜;和
其上的交联亲水涂层,
其中预成型硅氧烷水凝胶接触透镜通过透镜配制剂的铸造模塑获得,所述透镜配制剂包含选自如下的至少一种组分:含硅氧烷乙烯基单体、含硅氧烷预聚物、亲水性乙烯基单体、疏水性乙烯基单体及其组合,
其中交联亲水涂层由水溶性且可热交联亲水性聚合物材料与预成型硅氧烷水凝胶接触透镜在40-140℃的温度下的交联反应中形成,
其中水溶性且可热交联亲水性聚合物材料包含:
(i)20至95重量%的衍生自表氯醇官能化聚胺或聚酰胺型胺的第一聚合物链,
(ii)5至80重量%的衍生自至少一种亲水性增强剂的亲水性结构部分或第二聚合物链,所述亲水性增强剂具有至少一个选自氨基、羧基、硫醇基及其组合的反应性官能团,其中亲水性结构部分或第二聚合物链通过各自在表氯醇官能化聚胺或聚酰胺型胺的一个氮杂环丁烷 基团与亲水性增强剂的一个氨基、羧基或硫醇基之间形成的一个或多个共价键共价附着于第一聚合物链上,和
(iii)正电性氮杂环丁烷 基团,其为第一聚合物链的一部分或共价附着于第一聚合物链上的侧基或端基,
其中在交联反应中,水溶性且可热交联亲水性聚合物材料的一个正电性氮杂环丁烷基团与预成型硅氧烷水凝胶接触透镜表面上或附近的一个氨基或羧基反应形成一个中性含羟基共价键,其中易使用硅氧烷水凝胶接触透镜具有特征为具有90度或更小的平均水接触的表面亲水性/润湿性
2.根据权利要求1的易使用硅氧烷水凝胶接触透镜,其中易使用硅氧烷水凝胶接触透镜具有特征为具有80度或更小的平均水接触角的表面亲水性/润湿性。
3.根据权利要求1的易使用硅氧烷水凝胶接触透镜,其中易使用硅氧烷水凝胶接触透镜具有特征为具有70度或更小的平均水接触角的表面亲水性/润湿性。
4.根据权利要求1的易使用硅氧烷水凝胶接触透镜,其中易使用硅氧烷水凝胶接触透镜具有特征为具有60度或更小的平均水接触角的表面亲水性/润湿性。
5.根据权利要求1的易使用硅氧烷水凝胶接触透镜,其中水溶性且可热交联亲水性聚合物材料包含35至90重量%的第一聚合物链。
6.根据权利要求1-5中任一项的易使用硅氧烷水凝胶接触透镜,其中预成型硅氧烷水凝胶接触透镜透镜通过将硅氧烷水凝胶透镜配制剂聚合而制备,所述配制剂包含0.1至10重量%的反应性乙烯基单体,所述反应性乙烯基单体选自(甲基)丙烯酸氨基-C2-C6烷基酯、(甲基)丙烯酸C1-C6烷基氨基-C2-C6烷基酯、烯丙胺、乙烯胺、氨基-C2-C6烷基(甲基)丙烯酰胺、C1-C6烷基氨基-C2-C6烷基(甲基)丙烯酰胺、丙烯酸、C1-C12烷基丙烯酸、N,N-2-丙烯酰氨基羟基乙酸、β甲基-丙烯酸、α-苯基丙烯酸、β-丙烯酰氧基丙酸、山梨酸、当归酸、肉桂酸、1-羧基-4-苯基-1,3-丁二烯、衣康酸、柠康酸、中康酸、戊烯二酸、乌头酸、来酸、富马酸、三羧基乙烯及其组合。
7.根据权利要求1-5中任一项的易使用硅氧烷水凝胶接触透镜,其中所述亲水性增强剂为具有一个或多个氨基、羧基和/或硫醇基的亲水聚合物,其中作为亲水性增强剂的亲水聚合物中具有氨基、羧基或硫醇基的单体单元的含量基于亲水聚合物的总重量为小于40重量%。
8.根据权利要求7的易使用硅氧烷水凝胶接触透镜,其中作为亲水性增强剂的亲水聚合物为:具有一个唯一氨基、羧基或硫醇基的聚乙二醇;具有两个末端氨基、羧基和/或硫醇基的聚乙二醇;具有一个或多个氨基、羧基和/或硫醇基的多臂聚乙二醇;具有一个或多个氨基、羧基和/或硫醇基的聚乙二醇树枝状聚合物;或其组合。
9.根据权利要求7的易使用硅氧烷水凝胶接触透镜,其中作为亲水性增强剂的亲水聚合物为共聚物,所述共聚物为包含如下组分的组合物的聚合产物:(1)60重量%或更少的至少一种反应性乙烯基单体和(2)至少一种非反应性亲水乙烯基单体和/或至少一种含磷酸乙烯基单体;或其组合;
其中反应性乙烯基单体选自(甲基)丙烯酸氨基-C1-C6烷基酯、(甲基)丙烯酸C1-C6烷基氨基-C1-C6烷基酯、烯丙胺、乙烯胺、氨基-C1-C6烷基(甲基)丙烯酰胺、C1-C6烷基氨基-C1-C6烷基(甲基)丙烯酰胺、丙烯酸、C1-C12烷基丙烯酸、N,N-2-丙烯酰氨基羟基乙酸、β-甲基-丙烯酸、α-苯基丙烯酸、β-丙烯酰氧基丙酸、山梨酸、当归酸、肉桂酸、1-羧基-4-苯基-1,3-丁二烯、衣康酸、柠康酸、中康酸、戊烯二酸、乌头酸、马来酸、富马酸、三羧基乙烯及其组合;
其中非反应性亲水乙烯基单体选自丙烯酰胺、甲基丙烯酰胺、N,N-二甲基丙烯酰胺、N,N-二甲基甲基丙烯酰胺、N-乙烯基吡咯烷、甲基丙烯酸N,N-二甲基氨基乙酯、丙烯酸N,N-二甲基氨基乙酯、N,N-二甲基氨基丙基甲基丙烯酰胺、N,N-二甲基氨基丙基丙烯酰胺、甲基丙烯酸甘油酯、3-丙烯酰氨基-1-丙醇、N-羟乙基丙烯酰胺、N-[三(羟甲基)甲基]-丙烯酰胺、N-甲基-3-亚甲基-2-吡咯烷酮、1-乙基-3-亚甲基-2-吡咯烷酮、1-甲基-5-亚甲基-2-吡咯烷酮、1-乙基-5-亚甲基-2-吡咯烷酮、5-甲基-3-亚甲基-2-吡咯烷酮、5-乙基-3-亚甲基-
2-吡咯烷酮、(甲基)丙烯酸2-羟基乙酯、(甲基)丙烯酸羟基丙酯、重均分子量为至多1500道尔顿的C1-C4烷氧基聚乙二醇(甲基)丙烯酸酯、N-乙烯基甲酰胺、N-乙烯基乙酰胺、N-乙烯基异丙酰胺、N-乙烯基-N-甲基乙酰胺、烯丙醇、乙烯醇(共聚物中乙酸乙烯酯的水解形式)及其组合。
10.根据权利要求7的易使用硅氧烷水凝胶接触透镜,其中作为亲水性增强剂的亲水聚合物为选自如下的非反应性亲水乙烯基单体的单氨基-、单羧基-、二氨基-或二羧基封端的均聚物或共聚物:丙烯酰胺、N,N-二甲基丙烯酰胺、N-乙烯基吡咯烷酮、N-乙烯基-N-甲基乙酰胺、(甲基)丙烯酸甘油酯、(甲基)丙烯酸羟基乙酯、N-羟基乙基(甲基)丙烯酰胺、(甲基)丙烯酰氧基乙基磷酸胆碱、重均分子量为至多400道尔顿的C1-C4烷氧基聚乙二醇(甲基)丙烯酸酯、乙烯醇、N-甲基-3-亚甲基-2-吡咯烷酮、1-甲基-5-亚甲基-2-吡咯烷酮、5-甲基-3-亚甲基-2-吡咯烷酮、(甲基)丙烯酸N,N-二甲基氨基乙酯、N,N-二甲基氨基丙基(甲基)丙烯酰胺及其组合。
11.根据权利要求7的易使用硅氧烷水凝胶接触透镜,其中作为亲水性增强剂的亲水聚合物为含氨基或羧基的多糖、透明质酸、硫酸软骨素或其组合。
12.根据权利要求7的易使用硅氧烷水凝胶接触透镜,其中作为亲水性增强剂的亲水聚合物的重均分子量Mw为500-1,000,000。
13.根据权利要求1-5中任一项的易使用硅氧烷水凝胶接触透镜,其中所述亲水性增强剂为:含氨基、羧基或硫醇基的单糖;含氨基、羧基或硫醇基的低聚糖;或其组合。
14.根据权利要求1-5中任一项的易使用硅氧烷水凝胶接触透镜,其中易使用硅氧烷水凝胶接触透镜具有至少一种选自如下的特性:至少40barrer的透氧性;1.5MPa或更小的弹性模量;和当完全水合时18-70重量%的水含量;及其组合。
15.根据权利要求1-5中任一项的易使用硅氧烷水凝胶接触透镜,其中所述亲水性增强剂为具有一个或多个氨基、羧基和/或硫醇基的亲水聚合物,其中作为亲水性增强剂的亲水聚合物中具有氨基、羧基或硫醇基的单体单元的含量基于亲水聚合物的总重量为小于40重量%。
16.根据权利要求15的易使用硅氧烷水凝胶接触透镜,其中作为亲水性增强剂的亲水聚合物为:具有一个唯一氨基、羧基或硫醇基的聚乙二醇;具有两个末端氨基、羧基和/或硫醇基的聚乙二醇;具有一个或多个氨基、羧基和/或硫醇基的多臂聚乙二醇;具有一个或多个氨基、羧基和/或硫醇基的聚乙二醇树枝状聚合物;或其组合。
17.根据权利要求15的易使用硅氧烷水凝胶接触透镜,其中作为亲水性增强剂的亲水聚合物为共聚物,所述共聚物为包含如下组分的组合物的聚合产物:(1)60重量%或更少的至少一种反应性乙烯基单体和(2)至少一种非反应性亲水乙烯基单体和/或至少一种含磷酸胆碱乙烯基单体;或其组合;
其中反应性乙烯基单体选自(甲基)丙烯酸氨基-C1-C6烷基酯、(甲基)丙烯酸C1-C6烷基氨基-C1-C6烷基酯、烯丙胺、乙烯胺、氨基-C1-C6烷基(甲基)丙烯酰胺、C1-C6烷基氨基-C1-C6烷基(甲基)丙烯酰胺、丙烯酸、C1-C12烷基丙烯酸、N,N-2-丙烯酰氨基羟基乙酸、β-甲基-丙烯酸、α-苯基丙烯酸、β-丙烯酰氧基丙酸、山梨酸、当归酸、肉桂酸、1-羧基-4-苯基-1,3-丁二烯、衣康酸、柠康酸、中康酸、戊烯二酸、乌头酸、马来酸、富马酸、三羧基乙烯及其组合;
其中非反应性亲水乙烯基单体选自丙烯酰胺、甲基丙烯酰胺、N,N-二甲基丙烯酰胺、N,N-二甲基甲基丙烯酰胺、N-乙烯基吡咯烷酮、甲基丙烯酸N,N-二甲基氨基乙酯、丙烯酸N,N-二甲基氨基乙酯、N,N-二甲基氨基丙基甲基丙烯酰胺、N,N-二甲基氨基丙基丙烯酰胺、甲基丙烯酸甘油酯、3-丙烯酰氨基-1-丙醇、N-羟乙基丙烯酰胺、N-[三(羟甲基)甲基]-丙烯酰胺、N-甲基-3-亚甲基-2-吡咯烷酮、1-乙基-3-亚甲基-2-吡咯烷酮、1-甲基-5-亚甲基-2-吡咯烷酮、1-乙基-5-亚甲基-2-吡咯烷酮、5-甲基-3-亚甲基-2-吡咯烷酮、5-乙基-3-亚甲基-
2-吡咯烷酮、(甲基)丙烯酸2-羟基乙酯、(甲基)丙烯酸羟基丙酯、重均分子量为至多1500道尔顿的C1-C4烷氧基聚乙二醇(甲基)丙烯酸酯、N-乙烯基甲酰胺、N-乙烯基乙酰胺、N-乙烯基异丙酰胺、N-乙烯基-N-甲基乙酰胺、烯丙醇、乙烯醇及其组合。
18.根据权利要求15的易使用硅氧烷水凝胶接触透镜,其中作为亲水性增强剂的亲水聚合物为选自如下的非反应性亲水乙烯基单体的单氨基-、单羧基-、二氨基-或二羧基封端的均聚物或共聚物:丙烯酰胺、N,N-二甲基丙烯酰胺、N-乙烯基吡咯烷酮、N-乙烯基-N-甲基乙酰胺、(甲基)丙烯酸甘油酯、(甲基)丙烯酸羟基乙酯、N-羟基乙基(甲基)丙烯酰胺、(甲基)丙烯酰氧基乙基磷酸胆碱、重均分子量为至多400道尔顿的C1-C4烷氧基聚乙二醇(甲基)丙烯酸酯、乙烯醇、N-甲基-3-亚甲基-2-吡咯烷酮、1-甲基-5-亚甲基-2-吡咯烷酮、5-甲基-
3-亚甲基-2-吡咯烷酮、(甲基)丙烯酸N,N-二甲基氨基乙酯、N,N-二甲基氨基丙基(甲基)丙烯酰胺或其组合。
19.根据权利要求15的易使用硅氧烷水凝胶接触透镜,其中作为亲水性增强剂的亲水聚合物为含氨基或羧基的多糖、透明质酸、硫酸软骨素或其组合。
20.根据权利要求15的易使用硅氧烷水凝胶接触透镜,其中作为亲水性增强剂的亲水聚合物的重均分子量Mw为500-1,000,000。
21.根据权利要求1-5中任一项的易使用硅氧烷水凝胶接触透镜,其中所述亲水性增强剂为:含氨基、羧基或硫醇基的单糖;或含氨基、羧基或硫醇基的低聚糖。
22.根据权利要求1-5中任一项的易使用硅氧烷水凝胶接触透镜,其中易使用硅氧烷水凝胶接触透镜具有至少一种选自如下的特性:至少40barrer的透氧性;1.5MPa或更小的弹性模量;和当完全水合时18-70重量%的水含量;及其组合。
23.一种易使用硅氧烷水凝胶接触透镜,其包含:
预成型硅氧烷水凝胶接触透镜;
在预成型硅氧烷水凝胶接触透镜上的反应性底涂层,其中反应性底涂层包含氨基和/或羧基;和
交联亲水涂层,其由水溶性且可热交联亲水性聚合物材料与反应性底涂层在40-140℃的温度下的交联反应中形成,
其中水溶性且可热交联亲水性聚合物材料包含:
(i)20至95重量%的衍生自表氯醇官能化聚胺或聚酰胺型胺的第一聚合物链,
(ii)5至80重量%的衍生自至少一种亲水性增强剂的亲水性结构部分或第二聚合物链,所述亲水性增强剂具有至少一个选自氨基、羧基、硫醇基及其组合的反应性官能团,其中亲水性结构部分或第二聚合物链通过各自在表氯醇官能化聚胺或聚酰胺型胺的一个氮杂环丁烷 基团与亲水性增强剂的一个氨基、羧基或硫醇基之间形成的一个或多个共价键共价附着于第一聚合物链上,和
(iii)正电性氮杂环丁烷 基团,其为第一聚合物链的一部分或共价附着于第一聚合物链上的侧基或端基,
其中在交联反应中,水溶性且可热交联亲水性聚合物材料的一个正电性氮杂环丁烷基团与反应性底涂层的一个氨基或羧基反应形成一个中性含羟基共价键,
其中易使用硅氧烷水凝胶接触透镜具有(1)80度或更小的平均水接触角;(2)至少
40barrer的透氧性;(3)1.5MPa或更小的弹性模量;和(4)当完全水合时18-70重量%的水含量。
24.根据权利要求23的易使用硅氧烷水凝胶接触透镜,其中所述反应性底涂层包含至少一层具有侧氨基和/或羧基的反应性聚合物,其中反应性聚合物为:氨基-C1-C4烷基(甲基)丙烯酰胺、(甲基)丙烯酸氨基-C1-C4烷基酯、C1-C4烷基氨基-C1-C4烷基(甲基)丙烯酰胺、(甲基)丙烯酸C1-C4烷基氨基-C1-C4烷基酯、烯丙胺或乙烯胺的均聚物;聚乙烯亚胺;具有侧氨基的聚乙烯醇;线性或支化聚丙烯酸;C1-C12烷基丙烯酸的均聚物;氨基-C2-C4烷基(甲基)丙烯酰胺、(甲基)丙烯酸氨基-C2-C4烷基酯、C1-C4烷基氨基-C2-C4烷基(甲基)丙烯酰胺、(甲基)丙烯酸C1-C4烷基氨基-C2-C4烷基酯、丙烯酸、C1-C12烷基丙烯酸、马来酸和/或富马酸,与至少一种非反应性亲水乙烯基单体的共聚物;含羧基纤维素;透明质酸盐;硫酸软骨素;聚(谷氨酸);聚(天冬氨酸);或其组合。
25.根据权利要求24的易使用硅氧烷水凝胶接触透镜,其中反应性聚合物为聚丙烯酸、聚甲基丙烯酸、聚(C2-C12烷基丙烯酸)、聚[丙烯酸-co-甲基丙烯酸]、聚[C2-C12烷基丙烯酸-co-(甲基)丙烯酸]、聚(N,N-2-丙烯酰氨基羟基乙酸)、聚[(甲基)丙烯酸-co-丙烯酰胺]、聚[(甲基)丙烯酸-co-乙烯基吡咯烷酮]、聚[C2-C12烷基丙烯酸-co-丙烯酰胺]、聚[C2-C12烷基丙烯酸-co-乙烯基吡咯烷酮]、水解聚[(甲基)丙烯酸-co-乙酸乙烯酯]、水解聚[C2-C12烷基丙烯酸-co-乙酸乙烯酯]、或其组合。
26.根据权利要求24的易使用硅氧烷水凝胶接触透镜,其中反应性聚合物为聚丙烯酸、聚甲基丙烯酸、聚(C2-C12烷基丙烯酸)、聚[丙烯酸-co-甲基丙烯酸]、或其组合。
27.根据权利要求23的易使用硅氧烷水凝胶接触透镜,其中反应性底涂层包含等离子底涂层。
28.根据权利要求23的易使用硅氧烷水凝胶接触透镜,其中水溶性且可热交联亲水性聚合物材料包含35至90重量%的第一聚合物链。
29.根据权利要求23-28中任一项的易使用硅氧烷水凝胶接触透镜,其中所述亲水性增强剂为具有一个或多个氨基、羧基和/或硫醇基的亲水聚合物,其中作为亲水性增强剂的亲水聚合物中具有氨基、羧基或硫醇基的单体单元的含量基于亲水聚合物的总重量为小于40重量%。
30.根据权利要求29的易使用硅氧烷水凝胶接触透镜,其中作为亲水性增强剂的亲水聚合物为:具有一个唯一氨基、羧基或硫醇基的聚乙二醇;具有两个末端氨基、羧基和/或硫醇基的聚乙二醇;具有一个或多个氨基、羧基和/或硫醇基的多臂聚乙二醇;具有一个或多个氨基、羧基和/或硫醇基的聚乙二醇树枝状聚合物;或其组合。
31.根据权利要求29的易使用硅氧烷水凝胶接触透镜,其中作为亲水性增强剂的亲水聚合物为共聚物,所述共聚物为包含如下组分的组合物的聚合产物:(1)60重量%或更少的至少一种反应性乙烯基单体和(2)至少一种非反应性亲水乙烯基单体和/或至少一种含磷酸胆碱乙烯基单体;或其组合;
其中反应性乙烯基单体选自(甲基)丙烯酸氨基-C1-C6烷基酯、(甲基)丙烯酸C1-C6烷基氨基-C1-C6烷基酯、烯丙胺、乙烯胺、氨基-C1-C6烷基(甲基)丙烯酰胺、C1-C6烷基氨基-C1-C6烷基(甲基)丙烯酰胺、丙烯酸、C1-C12烷基丙烯酸、N,N-2-丙烯酰氨基羟基乙酸、β-甲基-丙烯酸、α-苯基丙烯酸、β-丙烯酰氧基丙酸、山梨酸、当归酸、肉桂酸、1-羧基-4-苯基-1,3-丁二烯、衣康酸、柠康酸、中康酸、戊烯二酸、乌头酸、马来酸、富马酸、三羧基乙烯及其组合;
其中非反应性亲水乙烯基单体选自丙烯酰胺、甲基丙烯酰胺、N,N-二甲基丙烯酰胺、N,N-二甲基甲基丙烯酰胺、N-乙烯基吡咯烷酮、甲基丙烯酸N,N-二甲基氨基乙酯、丙烯酸N,N-二甲基氨基乙酯、N,N-二甲基氨基丙基甲基丙烯酰胺、N,N-二甲基氨基丙基丙烯酰胺、甲基丙烯酸甘油酯、3-丙烯酰氨基-1-丙醇、N-羟乙基丙烯酰胺、N-[三(羟甲基)甲基]-丙烯酰胺、N-甲基-3-亚甲基-2-吡咯烷酮、1-乙基-3-亚甲基-2-吡咯烷酮、1-甲基-5-亚甲基-2-吡咯烷酮、1-乙基-5-亚甲基-2-吡咯烷酮、5-甲基-3-亚甲基-2-吡咯烷酮、5-乙基-3-亚甲基-
2-吡咯烷酮、(甲基)丙烯酸2-羟基乙酯、(甲基)丙烯酸羟基丙酯、重均分子量为至多1500道尔顿的C1-C4烷氧基聚乙二醇(甲基)丙烯酸酯、N-乙烯基甲酰胺、N-乙烯基乙酰胺、N-乙烯基异丙酰胺、N-乙烯基-N-甲基乙酰胺、烯丙醇、乙烯醇(共聚物中乙酸乙烯酯的水解形式)及其组合。
32.根据权利要求29的易使用硅氧烷水凝胶接触透镜,其中作为亲水性增强剂的亲水聚合物为选自如下的非反应性亲水乙烯基单体的单氨基-、单羧基-、二氨基-或二羧基封端的均聚物或共聚物:丙烯酰胺、N,N-二甲基丙烯酰胺、N-乙烯基吡咯烷酮、N-乙烯基-N-甲基乙酰胺、(甲基)丙烯酸甘油酯、(甲基)丙烯酸羟基乙酯、N-羟基乙基(甲基)丙烯酰胺、(甲基)丙烯酰氧基乙基磷酸胆碱、重均分子量为至多400道尔顿的C1-C4烷氧基聚乙二醇(甲基)丙烯酸酯、乙烯醇、N-甲基-3-亚甲基-2-吡咯烷酮、1-甲基-5-亚甲基-2-吡咯烷酮、5-甲基-
3-亚甲基-2-吡咯烷酮、(甲基)丙烯酸N,N-二甲基氨基乙酯、N,N-二甲基氨基丙基(甲基)丙烯酰胺或其组合。
33.根据权利要求29的易使用硅氧烷水凝胶接触透镜,其中作为亲水性增强剂的亲水聚合物为含氨基或羧基的多糖、透明质酸、硫酸软骨素或其组合。
34.根据权利要求29的易使用硅氧烷水凝胶接触透镜,其中作为亲水性增强剂的亲水聚合物的重均分子量Mw为500-1,000,000。
35.根据权利要求23-28中任一项的易使用硅氧烷水凝胶接触透镜,其中所述亲水性增强剂为:含氨基、羧基或硫醇基的单糖;含氨基、羧基或硫醇基的低聚糖;或其组合。
36.根据权利要求23-28中任一项的易使用硅氧烷水凝胶接触透镜,其中所述亲水性增强剂为具有一个或多个氨基、羧基和/或硫醇基的亲水聚合物,其中作为亲水性增强剂的亲水聚合物中具有氨基、羧基或硫醇基的单体单元的含量基于亲水聚合物的总重量为小于40重量%。
37.根据权利要求36的易使用硅氧烷水凝胶接触透镜,其中作为亲水性增强剂的亲水聚合物为:具有一个唯一氨基、羧基或硫醇基的聚乙二醇;具有两个末端氨基、羧基和/或硫醇基的聚乙二醇;具有一个或多个氨基、羧基和/或硫醇基的多臂聚乙二醇;具有一个或多个氨基、羧基和/或硫醇基的聚乙二醇树枝状聚合物。
38.根据权利要求36的易使用硅氧烷水凝胶接触透镜,其中作为亲水性增强剂的亲水聚合物为共聚物,所述共聚物为包含如下组分的组合物的聚合产物:(1)60重量%或更少的至少一种反应性乙烯基单体和(2)至少一种非反应性亲水乙烯基单体和/或至少一种含磷酸胆碱乙烯基单体;或其组合;
其中反应性乙烯基单体选自(甲基)丙烯酸氨基-C1-C6烷基酯、(甲基)丙烯酸C1-C6烷基氨基-C1-C6烷基酯、烯丙胺、乙烯胺、氨基-C1-C6烷基(甲基)丙烯酰胺、C1-C6烷基氨基-C1-C6烷基(甲基)丙烯酰胺、丙烯酸、C1-C12烷基丙烯酸、N,N-2-丙烯酰氨基羟基乙酸、β-甲基-丙烯酸、α-苯基丙烯酸、β-丙烯酰氧基丙酸、山梨酸、当归酸、肉桂酸、1-羧基-4-苯基-1,3-丁二烯、衣康酸、柠康酸、中康酸、戊烯二酸、乌头酸、马来酸、富马酸、三羧基乙烯及其组合;
其中非反应性亲水乙烯基单体选自丙烯酰胺、甲基丙烯酰胺、N,N-二甲基丙烯酰胺、N,N-二甲基甲基丙烯酰胺、N-乙烯基吡咯烷酮、甲基丙烯酸N,N-二甲基氨基乙酯、丙烯酸N,N-二甲基氨基乙酯、N,N-二甲基氨基丙基甲基丙烯酰胺、N,N-二甲基氨基丙基丙烯酰胺、甲基丙烯酸甘油酯、3-丙烯酰氨基-1-丙醇、N-羟乙基丙烯酰胺、N-[三(羟甲基)甲基]-丙烯酰胺、N-甲基-3-亚甲基-2-吡咯烷酮、1-乙基-3-亚甲基-2-吡咯烷酮、1-甲基-5-亚甲基-2-吡咯烷酮、1-乙基-5-亚甲基-2-吡咯烷酮、5-甲基-3-亚甲基-2-吡咯烷酮、5-乙基-3-亚甲基-
2-吡咯烷酮、(甲基)丙烯酸2-羟基乙酯、(甲基)丙烯酸羟基丙酯、重均分子量为至多1500道尔顿的C1-C4烷氧基聚乙二醇(甲基)丙烯酸酯、N-乙烯基甲酰胺、N-乙烯基乙酰胺、N-乙烯基异丙酰胺、N-乙烯基-N-甲基乙酰胺、烯丙醇、乙烯醇(共聚物中乙酸乙烯酯的水解形式)及其组合。
39.根据权利要求36的易使用硅氧烷水凝胶接触透镜,其中作为亲水性增强剂的亲水聚合物为选自如下的非反应性亲水乙烯基单体的单氨基-、单羧基-、二氨基-或二羧基封端的均聚物或共聚物:丙烯酰胺、N,N-二甲基丙烯酰胺、N-乙烯基吡咯烷酮、N-乙烯基-N-甲基乙酰胺、(甲基)丙烯酸甘油酯、(甲基)丙烯酸羟基乙酯、N-羟基乙基(甲基)丙烯酰胺、(甲基)丙烯酰氧基乙基磷酸胆碱、重均分子量为至多400道尔顿的C1-C4烷氧基聚乙二醇(甲基)丙烯酸酯、乙烯醇、N-甲基-3-亚甲基-2-吡咯烷酮、1-甲基-5-亚甲基-2-吡咯烷酮、5-甲基-
3-亚甲基-2-吡咯烷酮、(甲基)丙烯酸N,N-二甲基氨基乙酯、N,N-二甲基氨基丙基(甲基)丙烯酰胺或其组合。
40.根据权利要求36的易使用硅氧烷水凝胶接触透镜,其中作为亲水性增强剂的亲水聚合物为含氨基或羧基的多糖、透明质酸、硫酸软骨素或其组合。
41.根据权利要求36的易使用硅氧烷水凝胶接触透镜,其中作为亲水性增强剂的亲水聚合物的重均分子量Mw为500-1,000,000。
42.根据权利要求23-28中任一项的易使用硅氧烷水凝胶接触透镜,其中所述亲水性增强剂为:含氨基、羧基或硫醇基的单糖;或含氨基、羧基或硫醇基的低聚糖。

说明书全文

具有交联亲涂层的烷水凝胶透镜

[0001] 本申请是申请号为201180037428.8、申请日为2011年7月29日、发明名称为“具有交联亲水涂层的硅氧烷水凝胶透镜”的专利申请的分案申请。

技术领域

[0002] 本发明一般性地涉及将交联亲水涂层应用于硅氧烷水凝胶接触透镜上以改进它的亲水性和润滑性的具有成本效率和时间效率的方法。另外,本发明提供眼用透镜产品。

背景技术

[0003] 软硅氧烷水凝胶接触透镜由于其高透氧性和舒适性而变得日益流行。但是,硅氧烷水凝胶材料通常具有疏水性(不可润湿)且容易吸附来自眼睛环境的类脂或蛋白质并可附着于眼睛上的表面或其表面的至少一些面积。因此,硅氧烷水凝胶接触透镜通常需要表面改性。
[0004] 改进相对疏水性接触透镜材料的亲水性的已知路线是通过使用等离子体处理,例TM TM TM如商业透镜如Focus NIGHT&DAY 和O2OPTIX (CIBA VISION)和PUREVISION (Bausch&Lomb)在其生产方法中使用该路线。等离子体涂层的优点,例如可在Focus NIGHT&DAYTM中发现的那些是它的耐久性、相对高亲水性/润湿性,和对类脂和蛋白质沉积和吸附的低敏感性。但是,硅氧烷水凝胶接触透镜的等离子体处理可能不具有成本效率,因为通常在等离子体处理以前必须将接触透镜干燥且因为与等离子体处理设备相关的相对高资本投资。
[0005] 改进硅氧烷水凝胶接触透镜的表面亲水性的另一途径是将润湿剂(亲水聚合物)并入拥有制备硅氧烷水凝胶接触透镜的透镜配制剂中,如美国专利Nos.6,367,929、6,822,016、7,052,131和7,249,848所述。该方法可能不需要在硅氧烷水凝胶接触透镜的铸造成型以后改进透镜的表面亲水性的另外后面方法。然而,润湿剂可能与透镜配制剂中的硅氧烷组分不相容且不相容性可能赋予所得透镜浑浊性。另外,这种表面处理可能对类脂沉积和吸附敏感。另外,这种表面处理可能不提供就长期佩戴而言的耐久性表面。
[0006] 改进相对疏水性接触透镜材料的亲水性的另一路线是逐层(LbL)聚离子材料沉积技术(例如参见美国专利Nos.US 6,451,871、US 6,717,929、US 6,793,973、US 6,884,457、US 6,896,926、US 6,926,965、US 6,940,580和US 7,297,725,和美国专利申请公开Nos.US 2007/0229758A1、US 2008/0174035A1和US 2008/0152800A1)。尽管LbL沉积技术可提供用于赋予硅氧烷水凝胶透镜可润湿的划算方法,LbL涂层可能不如等离子体涂层耐久并可能具有相对高的表面电荷密度;这可妨碍接触透镜清洁和消毒溶液。为改进耐久性,共有未决美国专利申请公开Nos.2008/0226922A1和2009/0186229A1(通过引用将其全部内容并入本文中)中提出了接触透镜上LbL涂层的交联。然而,交联LbL涂层可具有劣于初始LbL涂层(在交联以前)的亲水性和/或润湿性且仍具有相对高表面电荷密度。
[0007] 改进相对疏水性接触透镜材料的亲水性的又一路线是根据各种机理将亲水聚合物附着于接触透镜上(例如参见美国专利No.6,099,122、6,436,481、6,440,571、6,447,920、6,465,056、6,521,352、6,586,038、6,623,747、6,730,366、6,734,321、6,835,410、6,
878,399、6,923,978、6,440,571和6,500,481,美国专利申请公开Nos.2009/0145086A1、
2009/0145091A1、2008/0142038A1和2007/0122540A1,通过引用将其所有的全部公开内容并入本文中)。尽管这些技术可用于赋予硅氧烷水凝胶透镜可润湿性,但它们可能就批量生产环境中执行而言不具有成本效率和/或时间效率,因为它们通常需要相对长的时间和/或涉及费的多步骤以得到亲水性涂层。
[0008] 因此,仍需要以具有成本效率和时间效率的方式生产具有可润湿且耐久性涂层(表面)的硅氧烷水凝胶接触透镜的方法。

发明内容

[0009] 在一个方面中,本发明提供一种生产各自其上具有交联亲水涂层的硅氧烷水凝胶接触透镜的方法,本发明方法包括如下步骤:(a)得到硅氧烷水凝胶接触透镜和水溶性且可热交联亲水性聚合物材料,其中接触透镜包含在接触透镜表面上和/或附近的基和/或羧基,其中亲水性聚合物材料包含:(i)约20至约95重量%的衍生自表氯醇官能化聚胺或聚酰胺型胺的第一聚合物链,(ii)约5至约80重量%的衍生自至少一种亲水性增强剂的亲水性结构部分或第二聚合物链,所述亲水性增强剂具有至少一个选自氨基、羧基、硫醇基及其组合的反应性官能团,其中亲水性结构部分或第二聚合物链通过各自在表氯醇官能化聚胺或聚酰胺型胺的一个氮杂环丁烷 基团与亲水性增强剂的一个氨基、羧基或硫醇基之间形成的一个或多个共价键共价附着于第一聚合物链上,和(iii)氮杂环丁烷 基团,其为第一聚合物链的一部分或共价附着于第一聚合物链上的侧基或端基;和(b)将接触透镜在水溶液中在亲水性聚合物材料的存在下加热至约40至约140℃的温度并在约40至约140℃的温度下保持足够的时间以使亲水性聚合物材料通过各自在亲水性聚合物材料的一个氮杂环丁烷 基团与接触透镜表面上和/或附近的一个氨基和/或羧基之间形成的第二共价键共价附着于接触透镜表面上,由此在接触透镜上形成交联亲水涂层。
[0010] 在另一方面中,本发明提供根据本发明方法得到的硅氧烷水凝胶接触透镜,其中硅氧烷水凝胶接触透镜具有至少约40barrer的透氧性,特征是约100度或更小的水接触的表面润湿性,和特征是经得住手指摩擦试验的良好涂层耐久性。
[0011] 在另一方面中,本发明提供一种包含灭菌并密封的透镜包装的眼用产品,其中透镜包装包含:后压热处理的透镜包装溶液和浸入其中的易使用硅氧烷水凝胶接触透镜,其中易使用硅氧烷水凝胶接触透镜包含通过将在初始硅氧烷水凝胶接触透镜的表面上和/或附近具有氨基和/或羧基的初始硅氧烷水凝胶接触透镜在含有水溶性且可热交联亲水性聚合物材料的预压热处理包装溶液中压热处理而得到的交联亲水涂层,其中亲水性聚合物材料包含(i)约20至约95重量%的衍生自表氯醇官能化聚胺或聚酰胺型胺的第一聚合物链,(ii)约5至约80重量%的衍生自至少一种亲水性增强剂的亲水性结构部分或第二聚合物链,所述亲水性增强剂具有至少一个选自氨基、羧基、硫醇基及其组合的反应性官能团,其中亲水性结构部分或第二聚合物链通过各自在表氯醇官能化聚胺或聚酰胺型胺的一个氮杂环丁烷 基团与亲水性增强剂的一个氨基、羧基或硫醇基之间形成的一个或多个共价键共价附着于第一聚合物链上,和(iii)氮杂环丁烷 基团,其为第一聚合物链的一部分或共价附着于第一聚合物链上的侧基或端基,其中亲水性聚合物材料通过各自在硅氧烷水凝胶接触透镜的表面上和/或附近的氨基或羧基与亲水性聚合物材料的一个氮杂环丁烷基团之间形成的第二共价键共价附着于硅氧烷水凝胶接触透镜上,其中后压热处理包装溶液包含足以保持约6.0至约8.5的pH的量的至少一种缓冲剂,和亲水性聚合物材料的水解产物,且具有约200至约450毫渗透分子(mOsm)的张力和约1至约20厘泊的粘度
[0012] 在又一方面中,本发明提供一种水溶性且可热交联亲水性聚合物材料,其包含:(a)约20至约95重量%的衍生自表氯醇官能化聚胺或聚酰胺型胺的第一聚合物链;(b)约5至约80重量%的衍生自至少一种亲水性增强聚合物试剂的第二聚合物链,所述试剂具有至少一个选自氨基、羧基、硫醇基及其组合的反应性官能团,其中第二聚合物链通过各自在表氯醇官能化聚胺或聚酰胺型胺的一个氮杂环丁烷 基团与亲水性增强聚合物试剂的一个氨基、羧基或硫醇基之间形成的一个或多个共价键共价附着于第一聚合物链上;和(c)氮杂环丁烷 基团,其为第一聚合物链的一部分或共价附着于第一聚合物链上的侧基或端基。
[0013] 本发明的这些和其它方面由目前优选实施方案的以下描述获悉。详细描述仅为对本发明的说明,且不限制所附权利要求书及其等效物限定的本发明范围。如本领域技术人员获悉,本发明的许多变化和改进可不偏离本公开内容的新概念的精神和范围而进行。

具体实施方式

[0014] 现在详细地提及本发明的实施方案。本领域技术人员了解可不偏离本发明的范围或精神而做出本发明的各种改进、变化和组合。例如,作为一个实施方案的一部分阐述或描述的特征可用在另一实施方案以得到又一实施方案。因此,本发明意欲涵盖归于所附权利要求书和它们的等效物范围内的这类改进、变化和组合。本发明的其它目的、特征和方面公开于或从以下详细说明中获悉。本领域技术人员应当理解本讨论仅为典型实施方案的描述,且不意欲限制更宽的本发明范围。
[0015] 除非另外指定,本文所用所有技术和科学术语具有与本发明所属的领域中技术人员通常理解相同的含义。通常,本文所用命名和实验室程序是熟知的且常用于本领域中。常规方法用于这些程序,例如本领域和各一般参考文献中提供的那些。如果术语以单数提供,则发明人还预期该术语的复数。本文所用命名和下文所述实验室程序为本领域中熟知且常用的那些。
[0016] “硅氧烷水凝胶接触透镜”指包含硅氧烷水凝胶材料的接触透镜。“硅氧烷水凝胶”指含硅氧烷聚合物材料,其在完全水合时可吸收至少10重量%水,并通过包含至少一种含硅氧烷乙烯基单体或至少一种含硅氧烷乙烯基大分子单体或至少一种具有烯属不饱和基团的含硅氧烷预聚物的可聚合物组合物共聚而得到。
[0017] 如文所用,“乙烯基单体”指具有一个唯一烯属不饱和基团并可光化或热聚合的化合物。
[0018] 术语“烯键式不饱和基团”或“烯属不饱和基团”以宽泛的意义用于本文中并意欲包括任何含有至少一个>C=C<基团的基团。典型烯属不饱和基团包括但不限于(甲基)丙烯酰基(即 和/或 )、烯丙基、乙烯基 苯乙烯基或其它含C=C基团。
[0019] 术语“(甲基)丙烯酰胺”指甲基丙烯酰胺和/或丙烯酰胺。
[0020] 术语“(甲基)丙烯酸酯”指甲基丙烯酸酯和/或丙烯酸酯。
[0021] 如本文所用,“亲水性乙烯基单体”指作为均聚物通常得到水溶性或当完全水合时可吸收至少10重量%水的聚合物的乙烯基单体。
[0022] 如文所用,“疏水性乙烯基单体”指作为均聚物通常得到不溶于水并可吸收小于10重量%水的聚合物的乙烯基单体。
[0023] “大分子单体”或“预聚物”指含有两个或更多个烯属不饱和基团的中和高分子量化合物或聚合物。中和高分子量通常意指大于700道尔顿的平均分子量。
[0024] “交联剂”指具有至少两个烯属不饱和基团的化合物。“交联剂”指分子量为约700道尔顿或更小的交联剂。
[0025] “聚合物”意指通过使一种或多种单体或大分子单体或预聚物聚合/交联形成的材料。
[0026] 除非另外具体指出或除非另外指出试验条件,如本文所用,聚合物材料(包括单体或大分子单体材料)的“分子量”指重均分子量。
[0027] 除非另外具体指出,术语“氨基”指式–NHR’的伯或仲氨基,其中R’为氢或C1-C20未取代或取代的线性或支化烷基。
[0028] “表氯醇官能化聚胺”或“表氯醇官能化聚酰胺型胺”指通过使聚胺或聚酰胺型胺与表氯醇反应以将聚胺或聚酰胺型胺的所有或实质百分数的胺基团转化成氮杂环丁烷基团而得到的聚合物。
[0029] “氮杂环丁烷 基团”指 的正电性基团。
[0030] 涉及聚合物材料或官能团的术语“可热交联”意指聚合物材料或官能团可在较高温度(例如约40至约140℃)下经受与另一材料或官能团的交联(或偶联)反应,而对于约1小时时间,聚合物材料或官能团在室温(即约22至约28℃,优选约24至约26℃,特别是在约25℃下)不能经受与另一材料或官能团的相同交联反应(或偶联反应)至可检测到的程度。
[0031] 术语“磷酸”指 的两性离子基团,其中n为1-5的整数,且R1、R2和R3相互独立地为C1-C8烷基或C1-C8羟基烷基。
[0032] 术语“反应性乙烯基单体”指具有羧基或氨基(即伯或仲氨基)的乙烯基单体。
[0033] 术语“非反应性亲水乙烯基单体”指不含任何羧基或氨基(即伯或仲氨基)的亲水性乙烯基单体。非反应性乙烯基单体可包含叔或季氨基。
[0034] 提及聚合物的术语“水溶性”意指聚合物可溶于水中至足以形成在室温(以上定义)下浓度为多达约30重量%的聚合物水溶液的程度。
[0035] “水接触角”指平均水接触角(即通过固着液滴法测定的接触角),其通过至少3个独立的接触透镜平均测量接触角而得到。
[0036] 提及硅氧烷水凝胶接触透镜上的涂层的术语“完整性”意欲描述在实施例1所述苏丹黑染色试验中接触透镜可被苏丹黑染色的程度。硅氧烷水凝胶接触透镜上的涂层的良好完整性意指接触透镜实际上没有苏丹黑染色。
[0037] 提及硅氧烷水凝胶接触透镜上的涂层的术语“耐久性”意欲描述硅氧烷水凝胶接触透镜上的涂层经得住手指摩擦试验。
[0038] 如本文所用,提及接触透镜上的涂层的“经得住手指摩擦试验”或“经得住耐久性试验”意指在根据实施例1所述程序手指摩擦透镜以后,手指摩擦的透镜上的水接触角仍为约100度或更小,优选约90度或更小,更优选约80度或更小,最优选约70度或更小。
[0039] 材料的本征“透氧性”Dk为氧气通过材料的速率。根据本发明,提及水凝胶(硅氧烷或非硅氧烷)或接触透镜的术语“透氧性(Dk)”意指透氧性(Dk),将其根据下文实施例中所示程序就由边界层效应导致的氧气通量的表面耐性校正。透氧性惯常地以Barrer单位表示,其中“barrer”定义为[(cm3氧)(mm)/(cm2)(sec)(mm Hg)]×10-10。
[0040] 透镜或材料的“氧透过率”Dk/t为氧气在测量的面积上通过平均厚度为t(以mm为单位)的具体透镜或材料的速率。氧透过率惯例地以Barrer/mm单位表示,其中“barrer/mm”定义为[(cm3氧)/(cm2)(sec)(mm Hg)]×10-9。
[0041] 透镜的“离子渗透性”与离子流扩散系数关联。离子流扩散系数D(以[mm2/min]为单位)通过应用如下菲克法则测定:
[0042] D=-n’/(A×dc/dx)
[0043] 其中n’=离子传输速率[mol/min];A=暴露的透镜面积[mm2];dc=浓度差[mol/L];dx=透镜厚度[mm]。
[0044] 如本文所用,“眼用相容”指可与眼睛环境密切接触延长的时间期间而不显著损害眼睛环境且不具有显著使用者不适的材料或材料的表面。
[0045] 关于用于消毒和储存接触透镜的包装溶液的术语“眼用安全”意指储存在该溶液中的接触透镜对直接放入眼睛上而言是安全的而不在压热处理以后冲洗且该溶液是安全的并对借助接触透镜与眼睛每日接触而言是足够舒适的。压热处理以后的眼用安全包装溶液具有与眼睛相容的张力和pH且根据国际ISO标准和美国FDA法规基本不含眼睛刺激或眼睛细胞毒性材料。
[0046] 本发明一般性地涉及通过使用具有氮杂环丁烷 基团的水溶性且可热交联亲水性聚合物材料制备具有耐久性亲水涂层的硅氧烷水凝胶接触透镜的具有成本效率和时间效率的方法。
[0047] 本发明部分地基于令人惊讶的发现:水溶性含氮杂环丁烷 且可热交联亲水性聚合物材料,其为聚胺-表氯醇或聚酰胺型胺-表氯醇与至少一种亲水性增强剂的部分反应产物,所述亲水性增强剂具有至少一个选自氨基、羧基、硫醇基及其组合的反应性官能团,可用于在表面上或附近具有羧酸和/或氨基的硅氧烷水凝胶接触透镜上形成具有良好表面亲水性和/或润湿性、良好亲水性和良好完整性的交联涂层。在相对升高的温度(以上定义)下,正电性氮杂环丁烷 基团与官能团如氨基、硫醇基和羧酸根离子–COO-(即羧基的去质子化形式)反应形成中性含羟基共价键,如方案I所述:
[0048]
[0049] 其中R为化合物的.其余部分,L为–NR’–,其中R’为氢、C1-C20未被取代或被取代的线性或支化烷基或聚合物链–S–,或–OC(=O)–。由于氮杂环丁烷 基团的热可控反应性,聚胺-表氯醇或聚酰胺型胺-表氯醇(PAE)广泛用作湿补强剂。然而,PAE未成功地用于在接触透镜上形成交联涂层,可能是由于交联PAE涂层可能不能赋予接触透镜理想的亲水性、润湿性和润滑性。这里,令人惊讶地发现PAE可被具有一个或多个各自在“热预处理”或“预处理”方法中能与一个氮杂环丁烷 基团反应的官能团的亲水性增强剂(尤其是亲水聚合物)化学改性以得到水溶性含氮杂环丁烷 聚合物材料。这种聚合物材料因为氮杂环丁烷基团的存在仍是可热交联(反应)的,可用于在表面上和/或附近具有反应性官能团(例如氨基、羧基、硫醇基或其组合)的硅氧烷水凝胶接触透镜上形成交联涂层。并且,惊讶地发现接触透镜上所得衍生自水溶性含氮杂环丁烷 聚合物材料的交联涂层具有相对于通过单独使用未改性(原始或初始)PAE或通过使用PAE与亲水性增强剂(未经受热预处理以用于制备水溶性含氮杂环丁烷 聚合物材料)的混合物得到的对照涂层改进的表面亲水性、润湿性和/或润滑性。
[0050] 认为亲水性增强剂在提高所得交联涂层的性能中起至少两个作用:将亲水聚合物链加成于聚胺或聚酰胺型胺聚合物链上以形成具有悬聚合物链和/或链段的高度支化亲水性聚合物材料;和通过显著降低可交联聚合物材料(涂料)的氮杂环丁烷 基团数目而降低交联涂层的交联密度。认为具有疏松结构和悬聚合物链和/或链段的涂层赋予良好表面亲水性、润湿性和/或润滑性。
[0051] 本发明还部分地基于发现:本发明交联涂层可有利地在水溶性含氮杂环丁烷聚合物材料的存在下直接在透镜包装中在硅氧烷水凝胶接触透镜上形成,所述透镜包装包含有浸入透镜包装溶液中的接触透镜。含氮杂环丁烷 聚合物材料的存在可通过将含氮杂环丁烷 聚合物材料加入透镜包装溶液中或在封装以前在室温下将一层含氮杂环丁烷聚合物材料物理沉积于接触透镜表面上而实现。
[0052] 通常,必须将水合并封装在包装溶液中的接触透镜灭菌。生产和封装期间水合透镜的灭菌通常通过压热处理实现。压热处理方法涉及将接触透镜的包装在压力下加热至约118至约125℃的温度约20-40分钟。发现在压热处理期间,水溶性含氮杂环丁烷 聚合物材料可以有效地与硅氧烷水凝胶接触透镜表面上和/或附近的官能团(例如氨基、硫醇基和/或羧酸基团)交联以形成可润湿且眼用相容的交联涂层。认为在压热处理期间,未参与交联反应的那些氮杂环丁烷 基团可水解成2,3-二羟基丙基(HO–CH2–CH(OH)–CH2–)且如果合适的话,存在于透镜包装溶液中的含氮杂环丁烷 聚合物材料可转化成能改进透镜的插入舒适性的非反应性聚合物润湿材料。
[0053] 通过使用本发明方法,涂覆方法可在硅氧烷水凝胶接触透镜的生产中与灭菌步骤(压热处理)组合。所得接触透镜不仅可具有高表面亲水性/润湿性,不具有或具有最小的表面变化、良好完整性和良好耐久性,而且由于包装溶液的眼用相容性,病人可直接由透镜包装中使用而不经洗涤和/或冲洗。
[0054] 在一个方面中,本发明提供一种生产其上各自具有交联亲水涂层的硅氧烷水凝胶接触透镜的方法,本发明方法包括如下步骤:(a)得到硅氧烷水凝胶接触透镜和水溶性且可热交联亲水性聚合物材料,其中接触透镜包含在接触透镜表面上和/或附近的氨基和/或羧基,其中亲水性聚合物材料包含:(i)约20至约95重量%的衍生自表氯醇官能化聚胺或聚酰胺型胺的第一聚合物链,(ii)约5至约80重量%的衍生自至少一种亲水性增强剂的亲水性结构部分或第二聚合物链,所述亲水性增强剂具有至少一个选自氨基、羧基、硫醇基及其组合的反应性官能团,其中亲水性结构部分或第二聚合物链通过各自在表氯醇官能化聚胺或聚酰胺型胺的一个氮杂环丁烷 基团与亲水性增强剂的一个氨基、羧基或硫醇基之间形成的一个或多个共价键共价附着于第一聚合物链上,和(iii)氮杂环丁烷 基团,其为第一聚合物链的一部分或共价附着于第一聚合物链上的侧基或端基,和(b)将接触透镜在水溶液中在亲水性聚合物材料的存在下加热至约40至约140℃的温度并在约40至约140℃的温度下保持足够的时间以使亲水性聚合物材料通过各自在亲水性聚合物材料的一个氮杂环丁烷 基团与接触透镜表面上和/或附近的一个氨基和/或羧基之间形成的第二共价键共价附着于接触透镜表面上,由此在接触透镜上形成交联亲水涂层。
[0055] 本领域技术人员非常熟知如何制备接触透镜。例如,接触透镜可以在例如如美国专利No.3,408,429所述常规“旋转铸造模塑”,或通过如美国专利Nos.4,347,198;5,508,317;5,583,463;5,789,464;和5,849,810所述静态形式的全铸造模塑方法中生产。在铸造模塑中,通常将透镜配制剂分散于模具中并在模具中固化(即聚合和/或交联)以制备接触透镜。对于硅氧烷水凝胶接触透镜的生产,用于接触透镜的铸造模塑的透镜配制剂通常包含如本领域技术人员熟知至少一种选自如下的组分:含硅氧烷乙烯基单体、含硅氧烷乙烯基大分子单体、含硅氧烷预聚物、亲水性乙烯基单体、亲水性乙烯基大分子单体、疏水性乙烯基单体及其组合。硅氧烷水凝胶接触透镜配制剂还可包含本领域技术人员已知的其它必须组分,例如交联剂、UV吸收剂、能见度着色剂(例如染料、颜料或其混合物)、抗生物剂(例如优选纳米颗粒)、生物活性试剂、可浸出润滑剂、可浸出眼泪稳定剂及其混合物,如本领域技术人员已知。然后可使模塑硅氧烷水凝胶接触透镜经受用萃取溶剂萃取以从模塑透镜上除去未聚合的组分和经受水合方法,如本领域技术人员已知。大量硅氧烷水凝胶透镜配制剂描述于在本申请的提交日期前公开的大量专利和专利申请中。
[0056] 根据本发明,硅氧烷水凝胶接触透镜可固有地包含或被改性以包含在其表面上和/或附近的氨基和/或羧基。
[0057] 如果硅氧烷水凝胶接触透镜固有地包含在其表面上和/或附近的氨基和/或羧基,则它通过使包含反应性乙烯基单体的硅氧烷水凝胶透镜配制剂聚合而得到。
[0058] 优选的反应性乙烯基单体的实例包括但不限于(甲基)丙烯酸氨基-C2-C6烷基酯、(甲基)丙烯酸C1-C6烷基氨基-C2-C6烷基酯、烯丙胺、乙烯胺、氨基-C2-C6烷基(甲基)丙烯酰胺、C1-C6烷基氨基-C2-C6烷基(甲基)丙烯酰胺、丙烯酸、C1-C12烷基丙烯酸(例如甲基丙烯酸、乙基丙烯酸、丙基丙烯酸、丁基丙烯酸等)、N,N-2-丙烯酰氨基羟基乙酸、β甲基-丙烯酸(巴豆酸)、α-苯基丙烯酸、β-丙烯酰氧基丙酸、山梨酸、当归酸、肉桂酸、1-羧基-4-苯基-1,3-丁二烯、衣康酸、柠康酸、中康酸、戊烯二酸、乌头酸、来酸、富马酸、三羧基乙烯及其组合。优选,硅氧烷水凝胶接触透镜由包含至少一种选自如下的反应性乙烯基单体的透镜配制剂制备:(甲基)丙烯酸氨基-C2-C6烷基酯、(甲基)丙烯酸C1-C6烷基氨基-C2-C6烷基酯、烯丙胺、乙烯胺、氨基-C2-C6烷基(甲基)丙烯酰胺、C1-C6烷基氨基-C2-C6烷基(甲基)丙烯酰胺、丙烯酸、C1-C12烷基丙烯酸、N,N-2-丙烯酰氨基羟基乙酸及其组合。透镜配制剂优选包含约
0.1至约10%,更优选约0.25至约7%,甚至更优选约0.5至约5%,最优选约0.75至约3重量%的反应性乙烯基单体。
[0059] 还可使硅氧烷水凝胶接触透镜经受表面处理以在接触透镜表面上形成具有氨基和/或羧基的反应性底涂层。表面处理的实例包括但不限于通过能(例如等离子体、静电荷、辐射或其它能源)表面处理、化学处理、化学蒸气沉积、亲水性乙烯基单体或大分子单体接枝于制品表面上、根据美国专利序列号6,451,871、6,719,929、6,793,973、6,811,805和6,896,926和美国专利申请公开Nos.2007/0229758A1、2008/0152800A1和2008/0226922A1(通过引用将其全部内容并入本文中)所述方法得到的逐层涂层(“LbL涂层”)。如本文所用“LbL涂层”指未共建附着于接触透镜的聚合物基体上并通过带电或可充电(通过质子化或去质子化)和/或不带电材料逐层(“LbL”)沉积于透镜上而得到的涂层。LbL涂层可由一层或多层组成。
[0060] 优选,表面处理为LbL涂覆方法。在该优选实施方案(即反应性LbL底涂层实施方案)中,所得硅氧烷水凝胶接触透镜包含含有至少一层反应性聚合物(即具有侧氨基和/或羧基的聚合物)的反应性LbL底涂层,其中反应性LbL底涂层通过使接触透镜与反应性聚合物溶液接触而得到。接触透镜与反应性聚合物的涂渍溶液的接触可通过将它浸入涂渍溶液中或通过将它用涂渍溶液喷雾而进行。一种接触方法涉及仅将接触透镜浸入涂渍溶液浴中一段时间或作为选择将接触透镜顺序地浸入一系列涂渍溶液浴中对各浴而言固定的较短时间。另一接触方法涉及仅喷雾涂渍溶液。然而,大量可选方案涉及可由本领域技术人员设计的喷雾和浸渍步骤的各种组合。接触透镜与反应性聚合物的涂渍溶液的接触时间可持续至多约10分钟,优选约5至约360秒,更优选约5至约250秒,甚至更优选约5至约200秒。
[0061] 根据该反应性LbL底涂层实施方案,反应性聚合物可以为具有侧氨基和/或羧基的线性或支化聚合物。任何具有侧氨基和/或羧基的聚合物可作为反应性聚合物用于在硅氧烷水凝胶接触透镜上形成底涂层。这类反应性聚合物的实例包括但不限于:反应性乙烯基单体的均聚物;两种或更多种反应性乙烯基单体的共聚物;反应性乙烯基单体与一种或多种非反应性亲水乙烯基单体(即不含任何羧基或(伯或仲)氨基的亲水性乙烯基单体)的共聚物;聚乙烯亚胺(PEI);具有侧氨基的聚乙烯醇;含羧基纤维素(例如羧甲基纤维素、羧乙基纤维素、羧丙基纤维素);透明质酸盐;硫酸软骨素;聚(谷氨酸);聚(天冬氨酸);及其组合。
[0062] 优选的反应性乙烯基单体的实例为上述那些,其中含羧酸乙烯基单体是最优选的反应性乙烯基单体以制备用于形成反应性LbL底涂层的反应性聚合物。
[0063] 不含羧基或氨基的非反应性亲水乙烯基单体的优选实例包括但不限于丙烯酰胺(AAm)、甲基丙烯酰胺、N,N-二甲基丙烯酰胺(DMA)、N,N-二甲基甲基丙烯酰胺(DMMA)、N-乙烯基吡咯烷(NVP)、甲基丙烯酸N,N,-二甲基氨基乙酯(DMAEM)、丙烯酸N,N-二甲基氨基乙酯(DMAEA)、N,N-二甲基氨基丙基甲基丙烯酰胺(DMAPMAm)、N,N-二甲基氨基丙基丙烯酰胺(DMAPAAm)、甲基丙烯酸甘油酯、3-丙烯酰氨基-1-丙醇、N-羟基乙基丙烯酰胺、N-[三(羟甲基)甲基]-丙烯酰胺、N-甲基-3-亚甲基-2-吡咯烷酮、1-乙基-3-亚甲基-2-吡咯烷酮、1-甲基-5-亚甲基-2-吡咯烷酮、1-乙基-5-亚甲基-2-吡咯烷酮、5-甲基-3-亚甲基-2-吡咯烷酮、5-乙基-3-亚甲基-2-吡咯烷酮、(甲基)丙烯酸2-羟基乙酯、(甲基)丙烯酸羟基丙酯、重均分子量为至多1500道尔顿的C1-C4烷氧基聚乙二醇(甲基)丙烯酸酯、N-乙烯基甲酰胺、N-乙烯基乙酰胺、N-乙烯基异丙酰胺、N-乙烯基-N-甲基乙酰胺、烯丙醇、乙烯醇(共聚物中乙酸乙烯酯的水解形式)、含磷酸胆碱乙烯基单体(包括(甲基)丙烯酰氧基乙基磷酸胆碱和美国专利No.5,461,433所述那些,通过引用将其全部内容并入本文中)及其组合。
[0064] 优选用于形成反应性LbL底涂层的反应性聚合物为聚丙烯酸、聚甲基丙烯酸、聚(C2-C12烷基丙烯酸)、聚[丙烯酸-co-甲基丙烯酸]、聚(N,N-2-丙烯酰氨基羟基乙酸)、聚[(甲基)丙烯酸-co-丙烯酰胺]、聚[(甲基)丙烯酸-co-乙烯基吡咯烷酮]、聚[C2-C12烷基丙烯酸-co-丙烯酰胺]、聚[C2-C12烷基丙烯酸-co-乙烯基吡咯烷酮]、水解聚[(甲基)丙烯酸-co-乙酸乙烯酯]、水解聚[C2-C12烷基丙烯酸-co-乙酸乙烯酯]、聚乙烯亚胺(PEI)、聚烯丙胺氢氯化物(PAH)均聚物或共聚物、聚乙烯胺均聚物或共聚物或其组合。
[0065] 用于形成反应性LbL底涂层的反应性聚合物的重均分子量Mw为至少约10,000道尔顿,优选至少约50,000道尔顿,更优选约100,000至约5,000,000道尔顿。
[0066] 用于在接触透镜上形成反应性LbL底涂层的反应性聚合物溶液可通过将一种或多种反应性聚合物溶于水、水与一种或多种水溶混性有机溶剂的混合物、有机溶剂或一种或多种有机溶剂的混合物中而制备。优选,将反应性聚合物溶于水与一种或多种有机溶剂的混合物、有机溶剂或一种或多种有机溶剂的混合物中。认为含有至少一种有机溶剂的溶剂体系可使硅氧烷水凝胶接触透镜溶胀使得一部分反应性聚合物可透入硅氧烷水凝胶接触透镜中并提高反应性底涂层的耐久性。
[0067] 任何有机溶剂可用于制备反应性聚合物溶液。优选的有机溶剂的实例包括但不限于四氢呋喃、三丙二醇甲醚、二丙二醇甲醚、乙二醇正丁基醚、酮(例如丙酮、甲乙酮等)、二甘醇正丁基醚、二甘醇甲醚、乙二醇苯醚、丙二醇甲醚、丙二醇甲醚乙酸酯、二丙二醇甲醚乙酸酯、丙二醇正丙醚、二丙二醇正丙醚、三丙二醇正丁基醚、丙二醇正丁基醚、二丙二醇正丁基醚、三丙二醇正丁基醚、丙二醇苯醚、二丙二醇二甲醚、聚乙二醇、聚丙二醇、乙酸乙酯、乙酸丁酯、乙酸戊酯、乳酸甲酯、乳酸乙酯、乳酸异丙酯、二氯甲烷、甲醇、乙醇、1-或2-丙醇、1-或2-丁醇、叔丁醇、叔戊醇、薄荷醇、环己醇、环戊醇和外降片、2-戊醇、3-戊醇、2-己醇、3-己醇、3-甲基-2-丁醇、2-庚醇、2-辛醇、2-壬醇、2-癸醇、3-辛醇、降冰片、2-甲基-2-戊醇、2,3-二甲基-2-丁醇、3-甲基-3-戊醇、1-甲基环己醇、2-甲基-2-己醇、3,7-二甲基-3-辛醇、1-氯-2-甲基-2-丙醇、2-甲基-2-庚醇、2-甲基-2-辛醇、2-2-甲基-2-壬醇、2-甲基-2-癸醇、3-甲基-3-己醇、3-甲基-3-庚醇、4-甲基-4-庚醇、3-甲基-3-辛醇、4-甲基-4-辛醇、3-甲基-3-壬醇、4-甲基-4-壬醇、3-甲基-3-辛醇、3-乙基-3-己醇、3-甲基-3-庚醇、4-乙基-4-庚醇、4-丙基-4-庚醇、4-异丙基-4-庚醇、2,4-二甲基-2-戊醇、1-甲基环戊醇、1-乙基环戊醇、1-乙基环戊醇、3-羟基-3-甲基-1-丁烯、4-羟基-4-甲基-1-环戊醇、2-苯基-2-丙醇、2-甲氧基-
2-甲基-2-丙醇2,3,4-三甲基-3-戊醇、3,7-二甲基-3-辛醇、2-苯基-2-丁醇、2-甲基-1-苯基-2-丙醇和3-乙基-3-戊醇、1-乙氧基-2-丙醇、1-甲基-2-吡咯烷酮、N,N-二甲基丙酰胺、二甲基甲酰胺、二甲基乙酰胺、二甲基丙酰胺、N-甲基吡咯烷酮及其混合物。
[0068] 在另一优选实施方案中,硅氧烷水凝胶固有地包含在其表面上和/或附近的氨基和/或羧基并进一步经受表面处理以形成其中具有氨基和/或羧基的反应性LbL底涂层。
[0069] 在另一优选实施方案(反应性等离子体底涂层)中,使硅氧烷水凝胶接触透镜经受等离子体处理以在接触透镜上形成共价附着的反应性等离子体底涂层,即使一种或多种反应性乙烯基单体(前文所述那些中的任一种)在通过放电产生的等离子体的作用下聚合(所谓的等离子体诱导聚合)。术语“等离子体”表示电离气体,例如通过辉光放电产生的,其可由电子、具有任何极性的离子、任何激发形式的基态或任何高级状态的气体原子和分子,以及质子组成。它通常被称为“低温等离子体”。关于等离子体聚合和它的用途,参考R.Hartmann“Plasma polymerisation”:Grundlagen,Technika和Anwendung,Jahrb.(1993)49,第283-296页,Battelle-Inst.e.V.Frankfurt/Main Germany;H.Yasuda“Glow Discharge Polymerization”,Journal of Polymer Science:
Macromolecular Reviews,第16卷(1981),第199-293页;H.Yasuda,“Plasma Polymerization”,Academic Press,Inc.(1985);Frank Jansen,“Plasma Deposition Processes”在“Plasma Deposited Thin Films”中,T.Mort和F.Jansen编辑,CRC Press Boca Raton(19);O.Auciello等人(编辑)“Plasma-Surface Interactions and Processing of Materials”,Kluwer Academic Publishers以NATO ASI系列出版;系列E:
Applied Sciences,第176卷(1990),第377-399页;和N.Dilsiz和G.Akovali“Plasma Polymerization of Selected Organic Compounds”,Polymer,第37卷(1996)第333-341页。优选,等离子体诱导聚合为如WO98028026(通过引用将其全部内容并入本文中)所述的“余辉”等离子体诱导聚合。就“余辉”等离子体诱导聚合而言,将接触透镜的表面首先用不可聚合的等离子体(例如H2、He或Ar)处理,然后在随后的步骤中将因此活化的表面暴露于具有氨基或羧基的乙烯基单体(任何上述反应性乙烯基单体)下,同时切断等离子体电源。
该活化导致表面上基团的等离子体诱导形成,其在随后的步骤中引发其上的乙烯基单体聚合。
[0070] 根据本发明,含有氮杂环丁烷 基团的水溶性且可热交联亲水性聚合物材料包含(即具有包含如下的组成):约20至约95%,优选约35至约90%,更优选约50至约85重量%的衍生自表氯醇官能化聚胺或聚酰胺型胺的第一聚合物链,和约5至约80%,优选约10至约65%,甚至更优选约15至约50重量%的衍生自至少一种亲水性增强剂的亲水性结构部分或第二聚合物链,所述亲水性增强剂具有至少一个选自氨基、羧基、硫醇基及其组合的反应性官能团。亲水性聚合物材料的组成由用于根据以上方案I所示交联反应制备可热交联亲水性聚合物材料的反应物混合物的组成(基于反应物的总重量)决定。例如,如果反应物混合物包含基于反应物的总重量约75重量%的表氯醇官能化聚胺或聚酰胺型胺和约25重量%的至少一种亲水性增强剂,则所得亲水性聚合物材料包含约75重量%的衍生自表氯醇官能化聚胺或聚酰胺型胺的第一聚合物链和约25重量%的衍生自所述至少一种亲水性增强剂的亲水性结构部分或第二聚合物链。可热交联亲水性聚合物材料的氮杂环丁烷 基团为不参与交联反应以制备可热交联亲水性聚合物材料的那些氮杂环丁烷 基团(表氯醇官能化聚胺或聚酰胺型胺的)。
[0071] 表氯醇官能化聚胺或聚酰胺型胺可通过使表氯醇与聚胺聚合物或含有伯或仲氨基的聚合物反应而得到。例如,为衍生自聚胺和二羧酸的缩聚物(例如己二酸-二亚乙基三胺共聚物)的聚(亚烷基亚胺)或聚(酰胺胺)可与表氯醇反应以形成表氯醇官能化聚合物。类似地,(甲基)丙烯酸氨基烷基酯、(甲基)丙烯酸单-烷基氨基烷基酯、氨基烷基(甲基)丙烯酰胺或单-烷基氨基烷基(甲基)丙烯酰胺也可与表氯醇反应以形成表氯醇官能化聚胺。
聚胺或聚酰胺型胺聚合物的表氯醇官能化的反应条件教导于EP1465931(通过引用将其全部内容并入本文中)中。优选的表氯醇官能化聚合物为聚氨基酰胺-表氯醇(PAE)(或聚酰胺-聚胺-表氯醇或聚酰胺-表氯醇),例如来自Hercules的 或 树脂
(表氯醇官能化己二酸-二亚乙基三胺共聚物)或来自Servo/Delden的 或
树脂。
[0072] 任何合适的亲水性增强剂可用于本发明中,条件是它们含有至少一个氨基、至少一个羧基和/或至少一个硫醇基。
[0073] 一类优选的亲水性增强剂包括但不限于:含氨基、含羧基或含硫醇基单糖(例如3-氨基-1,2-丙二醇、1-硫代甘油、5-酮-D-葡糖酸、半乳糖胺、葡糖胺、半乳糖酸、葡糖酸、氨基葡萄糖酸、甘露糖胺、葡糖二酸1,4-内酯、糖酸、尤罗索尼克酸(Ketodeoxynonulosonic acid)、N-甲基-D-葡糖胺、1-氨基-1-脱氧-β-D-半乳糖、1-氨基-1-脱氧山梨糖醇、1-甲基氨基-1-脱氧山梨糖醇、N-氨基乙基葡糖酰胺);含氨基、含羧基或含硫醇基二糖(例如软骨素二糖钠盐、二(β-D-吡喃木糖基(xylopyranosyl))胺、二半乳糖醛酸、肝素二糖、透明质酸二糖、乳糖酸);和含氨基、含羧基或含硫醇基低聚糖(例如羧甲基-β-环糊精钠盐、三半乳糖醛酸);及其组合。
[0074] 另一类优选的亲水性增强剂为具有一个或多个氨基、羧基和/或硫醇基的亲水聚合物。更优选,作为亲水性增强剂的亲水聚合物中具有氨基(–NHR’,其中R’如上所定义)、羧基(–COOH)和/或硫醇(–SH)基团的单体单元的含量基于亲水聚合物的总重量为小于约40%,优选小于约30%,更优选小于约20%,甚至更优选小于约10重量%。
[0075] 作为亲水性增强剂的一类优选的亲水聚合物为含氨基或含羧基多糖,例如羧甲基纤维素(具有约40%或更少的羧基含量,其基于重复单元─[C6H10-mO5(CH2CO2H)m]─的组成估算,其中m为1-3)、羧乙基纤维素(具有约36%或更少的羧基含量,其基于重复单元─[C6H10-mO5(C2H4CO2H)m]─的组成估算,其中m为1-3)、羧丙基纤维素(具有约32%或更少的羧基含量,其基于重复单元─[C6H10-mO5(C3H6CO2H)m]─的组成估算,其中m为1-3)、透明质酸(具有约11%的羧基含量,其基于重复单元─(C13H20O9NCO2H)─的组成估算)、硫酸软骨素(具有约9.8%的羧基含量,其基于重复单元─(C12H18O13NS CO2H)─的组成估算),或其组合。
[0076] 作为亲水性增强剂的另一类优选的亲水聚合物包括但不限于:具有一个唯一的氨基、羧基或硫醇基的聚(乙二醇)(PEG)(例如PEG-NH2、PEG-SH、PEG-COOH);H2N-PEG-NH2;HOOC-PEG-COOH;HS-PEG-SH;H2N-PEG-COOH;HOOC-PEG-SH;H2N-PEG-SH;具有一个或多个氨基、羧基或硫醇基的多臂PEG;具有一个或多个氨基、羧基或硫醇基的PEG树枝状聚合物;非反应性亲水乙烯基单体的二氨基-或二羧基封端的均聚物或共聚物;非反应性亲水乙烯基单体的单氨基-或单羧基封端的均聚物或共聚物;为包含如下组分的组合物的聚合产物的共聚物:(1)约50重量%或更少,优选约0.1至约30%,更优选约0.5至约20%,甚至更优选约
1至约15重量%的一种或多种反应性乙烯基单体和(2)至少一种非反应性亲水乙烯基单体和/或至少一种含磷酸胆碱乙烯基单体;及其组合。反应性乙烯基单体和非反应性亲水乙烯基单体为前文所述那些。
[0077] 更优选,作为亲水性增强剂的亲水聚合物为PEG-NH2;PEG-SH;PEG-COOH;H2N-PEG-NH2;HOOC-PEG-COOH;HS-PEG-SH;H2N-PEG-COOH;HOOC-PEG-SH;H2N-PEG-SH;具有一个或多个氨基、羧基或硫醇基的多臂PEG;具有一个或多个氨基、羧基或硫醇基的PEG树枝状聚合物;选自如下的非反应性亲水乙烯基单体的单氨基-、单羧基-、二氨基-、二羧基封端的均聚物或共聚物:丙烯酰胺(AAm)、N,N-二甲基丙烯酰胺(DMA)、N-乙烯基吡咯烷酮(NVP)、N-乙烯基-N-甲基乙酰胺、(甲基)丙烯酸甘油酯、(甲基)丙烯酸羟基乙酯、N-羟基乙基(甲基)丙烯酰胺、重均分子量为至多400道尔顿的C1-C4烷氧基聚乙二醇(甲基)丙烯酸酯、乙烯醇、N-甲基-3-亚甲基-2-吡咯烷酮、1-甲基-5-亚甲基-2-吡咯烷酮、5-甲基-3-亚甲基-2-吡咯烷酮、(甲基)丙烯酸N,N-二甲基氨基乙酯、N,N-二甲基氨基丙基(甲基)丙烯酰胺、(甲基)丙烯酰氧基乙基磷酸胆碱及其组合;为包含如下组分的组合物的聚合产物的共聚物:(1)约0.1至约30%,优选约0.5至约20%,更优选约1至约15重量%的(甲基)丙烯酸、C2-C12烷基丙烯酸、乙烯胺、烯丙胺和/或(甲基)丙烯酸氨基-C2-C4烷基酯,和(2)(甲基)丙烯酰氧基乙基磷酸胆碱和/或至少一种选自如下的非反应性亲水乙烯基单体:丙烯酰胺、N,N-二甲基丙烯酰胺、N-乙烯基吡咯烷酮、N-乙烯基-N-甲基乙酰胺、(甲基)丙烯酸甘油酯、(甲基)丙烯酸羟基乙酯、N-羟基乙基(甲基)丙烯酰胺、重均分子量为至多400道尔顿的C1-C4烷氧基聚乙二醇(甲基)丙烯酸酯、乙烯醇及其组合。
[0078] 最优选,作为亲水性增强剂的亲水性增强剂为PEG-NH2;PEG-SH;PEG-COOH;单氨基-、单羧基-、二氨基-或二羧基封端的聚乙烯基吡咯烷酮;单氨基-、单羧基-、二氨基-或二羧基封端的聚丙烯酰胺;单氨基-、单羧基-、二氨基-或二羧基封端的聚(DMA);单氨基-或单羧基-、二氨基-或二羧基封端的聚(DMA-co-NVP);单氨基-、单羧基-、二氨基-或二羧基封端的聚(NVP-co-(甲基)丙烯酸N,N-二甲基氨基乙酯));单氨基-、单羧基-、二氨基-或二羧基封端的聚(乙烯醇);单氨基-、单羧基-、二氨基-或二羧基封端的聚[(甲基)丙烯酰氧基乙基磷酸胆碱]均聚物或共聚物;单氨基-、单羧基-、二氨基-或二羧基封端的聚(NVP-co-乙烯醇);单氨基-、单羧基-、二氨基-或二羧基封端的聚(DMA-co-乙烯醇);具有约0.1至约30%,优选约0.5至约20%,更优选约1至约15重量%的(甲基)丙烯酸的聚[(甲基)丙烯酸-co-丙烯酰胺];具有约0.1至约30%,优选约0.5至约20%,更优选约1至约15重量%的(甲基)丙烯酸的聚[(甲基)丙烯酸-co-NVP);为包含如下组分的组合物的聚合产物的共聚物:(1)(甲基)丙烯酰氧基乙基磷酸胆碱和(2)约0.1至约30%,优选约0.5至约20%,更优选约1至约15重量%的含羧酸乙烯基单体和/或含氨基乙烯基单体;及其组合。
[0079] 具有官能团的PEG和具有官能团的多臂PEG可由多个商业供应商如Polyscience和Shearwater Polymers,Inc.等得到。
[0080] 一种或多种非反应性亲水乙烯基单体或含磷酸胆碱乙烯基单体的单氨基-、单羧基-、二氨基-或二羧基封端的均聚物或共聚物可根据美国专利No.6,218,508所述程序制备,通过引用将其全部内容并入本文中。例如,为制备非反应性亲水乙烯基单体的二氨基或二羧基封端均聚物或共聚物,使非反应性乙烯基单体、具有氨基或羧基的链转移剂(例如2-氨基乙硫醇、2-巯基丙酸、巯基乙酸、硫羟乳酸或其它羟基硫醇、氨基硫醇或含羧基硫醇)和任选其它乙烯基单体与反应性乙烯基单体(具有氨基或羧基)在自由基引发剂的存在下共聚(热或光化)。通常,链转移剂与不同于反应性乙烯基单体的所有乙烯基单体的摩尔比为约1:5至约1:100,而链转移剂与反应性乙烯基单体的摩尔比为1:1。在该制备中,具有氨基或羧基的链转移剂用于控制所得亲水聚合物的分子量并形成所得亲水聚合物的末端,以提供给所得亲水聚合物一个末端氨基或羧基,同时反应性乙烯基单体提供给所得亲水聚合物另一末端羧基或氨基。类似地,为制备非反应性亲水乙烯基单体的单氨基-或单羧基封端均聚物或共聚物,使非反应性乙烯基单体、具有氨基或羧基的链转移剂(例如2-氨基乙硫醇、2-巯基丙酸、巯基乙酸、硫羟乳酸或其它羟基硫醇、氨基硫醇或含羧基硫醇)和任选其它乙烯基单体在不存在任何反应性乙烯基单体下共聚(热或光化)。
[0081] 如本文所用,非反应性亲水乙烯基单体的共聚物指非反应性亲水乙烯基单体与一种或多种其它乙烯基单体的聚合产物。包含非反应性亲水乙烯基单体和反应性乙烯基单体(例如含羧基乙烯基单体)的共聚物可根据任何熟知的自由基聚合方法制备或由商业供应商得到。包含甲基丙烯酰氧基乙基磷酸胆碱和含羧基乙烯基单体的共聚物可由NOP Corporation得到(例如 -A和-AF)。
[0082] 具有至少一个氨基、羧基或硫醇基的亲水聚合物(作为亲水性增强剂)的重均分子量Mw优选为约500至约1,000,000,更优选约1,000至约500,000。
[0083] 根据本发明,亲水性增强剂与表氯醇官能化聚胺或聚酰胺型胺之间的反应在约40至约100℃的温度下进行足够的时间(约0.3至约24小时,优选约1至约12小时,甚至更优选约2至约8小时)以形成含有氮杂环丁烷 基团的水溶性且可热交联亲水性聚合物材料。
[0084] 根据本发明,必须选择亲水性增强剂相对于表氯醇官能化聚胺或聚酰胺型胺的浓度以不赋予所得亲水性聚合物材料水不溶性(即在室温下溶解度小于0.005g/100mL水)且不消耗表氯醇官能化聚胺或聚酰胺型胺的多于约99%,优选约98%,更优选约97%,甚至更优选约96%的氮杂环丁烷 基团。
[0085] 根据本发明,加热步骤优选通过将在密封透镜包装中浸入包装溶液(即缓冲水溶液)中的硅氧烷水凝胶接触透镜在约118至约125℃的温度下压热处理约20-90分钟而进行。根据本发明这一实施方案,包装溶液为在压热处理以后眼用安全的缓冲水溶液。
[0086] 透镜包装(或容器)是本领域技术人员熟知用于压热处理和储存软接触透镜的。任何透镜包装可用于本发明中。优选透镜包装为泡罩包装,其包含基底和覆盖物,其中覆盖物可拆卸地密封基底,其中基底包括用于接收灭菌包装溶液和接触透镜的空穴。
[0087] 在分配给使用者以前将透镜封装在单独的包装中,密封并灭菌(例如在约120℃或更高下压热处理至少30分钟)。本领域技术人员应当理解如何将透镜包装密封和灭菌。
[0088] 根据本发明,包装溶液含有至少一种缓冲剂和一种或多种本领域技术人员已知的其它成分。其它成分的实例包括但不限于张力剂、表面活性剂抗菌剂防腐剂和润滑剂(或水溶性增粘剂)(例如纤维素衍生物、聚乙烯醇、聚乙烯基吡咯烷酮)。
[0089] 包装溶液含有足以保持包装溶液的pH在所需范围内,优选在约6至约8.5的生理可接受范围内的量的缓冲剂。可使用任何已知的生理相容性缓冲剂。作为本发明接触透镜护理组合物的组分的合适缓冲剂是本领域技术人员已知的。实例为酸、硼酸盐如硼酸钠、柠檬酸、柠檬酸盐如柠檬酸酸氢盐如碳酸氢钠、TRIS(2-氨基-2-羟基甲基-1,3-丙二醇)、双-三(双-(2-羟乙基)-亚氨基-三-(羟甲基)-甲烷)、双氨基多元醇、三乙醇胺、ACES(N-(2-羟乙基)-2-氨基乙磺酸)、BES(N,N-双(2-羟乙基)-2-氨基乙磺酸)、HEPES(4-(2-羟乙基)-1-哌嗪乙磺酸)、MES(2-(N-吗啉)乙磺酸)、MOPS(3-[N-吗啉]-丙磺酸)、PIPES(哌嗪-N,N’-双(2-乙磺酸)、TES(N-[三(羟甲基)甲基]-2-氨基乙磺酸)、其盐、磷酸盐缓冲剂如Na2HPO4、NaH2PO4和KH2PO4或其混合物。优选的双氨基多元醇为1,3-双(三[羟甲基]-甲基氨基)丙烷(双-TRIS-丙烷)。包装溶液中各缓冲剂的量优选为0.001-2%,优选0.01-1%;最优选约0.05至约0.30重量%。
[0090] 包装溶液具有约200至约450毫渗透分子(mOsm),优选约250至约350mOsm的张力。包装溶液的张力可通过加入影响张力的有机或无机物质调整。合适的眼睛可接受张力剂包括但不限于氯化钠氯化钾、甘油、丙二醇、多元醇、甘露糖醇、山梨糖醇、木糖醇及其混合物。
[0091] 本发明包装溶液具有在25℃下约1至约20厘泊,优选约1.2至约10厘泊,更优选约1.5至约5厘泊的粘度。
[0092] 在优选实施方案中,包装溶液包含优选约0.01至约2%,更优选约0.05至约1.5%,甚至更优选约0.1至约1%,最优选约0.2至约0.5重量%的本发明水溶性且可热交联亲水性聚合物材料。
[0093] 本发明包装溶液可含有增粘聚合物。增粘聚合物优选为非离子的。提高溶液粘度在透镜上提供一层膜,该膜可促进接触透镜的舒适佩戴。增粘组分还可用于缓冲插入期间对眼睛表面的影响以及用于减轻眼睛刺激。
[0094] 优选的增粘聚合物包括但不限于水溶性纤维素醚(例如甲基纤维素(MC)、乙基纤维素、羟甲基纤维素、羟乙基纤维素(HEC)、羟丙基纤维素(HPC)、羟丙基甲基纤维素(HPMC)或其混合物)、水溶性聚乙烯醇(PVA)、分子量大于约2000(至多10,000,000道尔顿)的高分子量聚(氧化乙烯)、分子量为约30,000至约1,000,000道尔顿的聚乙烯基吡咯烷酮、N-乙烯基吡咯烷酮与至少一种具有7-20个碳原子的(甲基)丙烯酸二烷基氨基烷基酯的共聚物,及其组合。水溶性纤维素醚和乙烯基吡咯烷酮与甲基丙烯酸二甲基氨基乙酯的共聚物是最优选的增粘聚合物。N-乙烯基吡咯烷酮与甲基丙烯酸二甲基氨基乙酯是市售的,例如来自ISP的Copolymer 845和Copolymer937。
[0095] 增粘聚合物以基于包装溶液的总量约0.01至约5重量%,优选约0.05至约3重量%,甚至更优选约0.1至约1重量%的量存在于包装溶液中。
[0096] 包装溶液可进一步包含分子量为约1200或更小,更优选600或更小,最优选约100至约500道尔顿的聚乙二醇。
[0097] 如果交联涂层和包装溶液中至少一种含有具有聚乙二醇链段的聚合物材料,则包装溶液优选包含足以对聚乙二醇链段氧化降解具有降低敏感度的量的α-含氧多酸或其盐。共有未决专利申请(美国申请公开No.2004/0116564A1,将其全部内容并入本文中)公开了含氧多酸或其盐可降低对含PEG聚合物材料的氧化降解的敏感度。
[0098] 典型的α-含氧多酸或其生物相容性盐包括但不限于柠檬酸、2-酮戊二酸或苹果酸或其生物相容性(优选眼用相容性)盐。更优选,α-含氧多酸为柠檬酸或苹果酸或其生物相容性(优选眼用相容性)盐(例如钠、钾等)。
[0099] 根据本发明,包装溶液可进一步包含粘蛋白状材料、眼用有益材料和/或表面活性剂。
[0100] 典型的粘蛋白状材料包括但不限于聚乙醇酸、聚交酯等。粘蛋白状材料可用作客体材料,其可经延长的时间连续且缓慢地释放到眼睛的眼球表面以治疗干眼症。粘蛋白状材料优选以有效量存在。
[0101] 典型的眼用有益材料包括但不限于2-吡咯烷酮-5-羧酸(PCA)、氨基酸(例如磺酸、甘氨酸等)、α羟基酸(例如羟基乙酸、乳酸、苹果酸、酒石酸扁桃酸和柠檬酸及其盐等)、亚油酸和γ亚油酸,和维生素(例如B5、A、B6等)。
[0102] 表面活性剂可以为基本任何眼睛相容性表面活性剂,包括非离子、阴离子和两性表面活性剂。优选的表面活性剂的实例包括但不限于泊洛沙姆(例如 F108、F88、F68、F68LF、F127、F87、F77、P85、P75、P104和P84)、poloamines(例如 707、
1107和1307)、脂肪酸的聚乙二醇酯(例如 20、 80)、C12-C18链烷的聚
氧化乙烯或聚氧化丙烯醚(例如 35)、聚氧化乙烯硬脂酸酯( 52)、聚氧化乙烯丙二醇硬脂酸酯( G 2612),和在商品名 和 下的两性表面
活性剂。
[0103] 根据本发明方法得到的硅氧烷水凝胶接触透镜具有特征是具有优选约90度或更小,更优选约80度或更小,甚至更优选约70度或更小,最优选约60度或更小的平均水接触角的表面亲水性/润湿性。
[0104] 在另一优选实施方案中,本发明方法可进一步包括在加热步骤以前的步骤:在室温下使硅氧烷水凝胶接触透镜与可热交联亲水性聚合物材料的水溶液接触以在硅氧烷水凝胶接触透镜表面上形成可热交联亲水性聚合物材料顶层(即LbL涂层),将具有可热交联亲水性聚合物材料顶层的硅氧烷水凝胶接触透镜浸入透镜包装中的包装溶液中,密封透镜包装;和将其中具有硅氧烷水凝胶接触透镜的透镜包装压热处理以在硅氧烷水凝胶接触透镜上形成交联亲水涂层。由于带正电荷,认为可热交联亲水性聚合物材料能在硅氧烷水凝胶接触透镜上形成LbL涂层,所述涂层没有共价键合于硅氧烷水凝胶接触透镜表面上(即通过物理相互作用),尤其是表面上具有负电性羧基的接触透镜。
[0105] 应当理解尽管本发明各个实施方案,包括优选实施方案可分别为上述的,但它们可以以任何理想的方式组合和/或一起使用以得到用于生产其上具有交联亲水涂层的硅氧烷水凝胶接触透镜的本发明方法。
[0106] 在另一方面中,本发明提供根据上述本发明方法得到的硅氧烷水凝胶接触透镜。
[0107] 在另一方面中,本发明提供包含灭菌和密封透镜包装的眼用产品,其中透镜包装包含后压热处理透镜包装溶液和浸入其中的易使用硅氧烷水凝胶接触透镜,其中易使用硅氧烷水凝胶接触透镜包含通过将初始硅氧烷水凝胶接触透镜表面上和/或附近具有氨基和/或羧基的初始硅氧烷水凝胶接触透镜在含有水溶性且可热交联亲水性聚合物材料的预压热处理包装溶液中压热处理而得到的交联亲水涂层,其中亲水性聚合物材料包含:(i)约20至约95%,优选约35至约90%,更优选约50至约85重量%的衍生自表氯醇官能化聚胺或聚酰胺型胺的第一聚合物链,(ii)约5至约80%,优选约10至约65%,甚至更优选约15至约
50重量%的衍生自至少一种亲水性增强剂的亲水性结构部分或第二聚合物链,所述亲水性增强剂具有至少一个选自氨基、羧基、硫醇基及其组合的反应性官能团,其中亲水性结构部分或第二聚合物链通过各自在表氯醇官能化聚胺或聚酰胺型胺的一个氮杂环丁烷 基团与亲水性增强剂的一个氨基、羧基或硫醇基之间形成的一个或多个共价键共价附着于第一聚合物链上,和(iii)氮杂环丁烷 基团,其为第一聚合物链的一部分或共价附着于第一聚合物链上的侧基或端基,其中亲水性聚合物材料通过各自在硅氧烷水凝胶接触透镜表面上和/或附近的一个氨基或羧基与可热交联亲水性聚合物材料的一个氮杂环丁烷 基团之间形成的第一共价键共价附着于硅氧烷水凝胶接触透镜上,其中后压热处理包装溶液包含至少一种足够量的缓冲剂以保持约6.0至约8.5的pH且具有约200至约450毫渗透分子(mOsm),优选约250至约350mOsm的张力和在25℃下约1至约20厘泊,优选约1.2厘泊至约10厘泊,更优选约1.5至约5厘泊的粘度,其中后压热处理包装溶液包含为压热处理以后可热交联亲水性聚合物材料的水解产物的聚合物润湿材料,其中易使用硅氧烷水凝胶接触透镜具有特征是具有约90度或更小,优选约80度或更小,更优选约70度或更小,甚至更优选约60度或更小,最优选约50度或更小的平均水接触角的表面亲水性/润湿性。
[0108] “易使用硅氧烷水凝胶接触透镜”指为眼用相容并通过压热处理灭菌的硅氧烷水凝胶接触透镜。“初始硅氧烷水凝胶接触透镜”指缺少交联亲水涂层且未通过压热处理灭菌的硅氧烷水凝胶接触透镜。
[0109] 固有地具有氨基和/或羧基的硅氧烷水凝胶接触透镜,具有反应性底涂层的硅氧烷水凝胶接触透镜,用于形成反应性LbL底涂层、等离子体涂层的反应性乙烯基单体、非反应性乙烯基单体、反应性聚合物,表氯醇官能化聚胺或聚酰胺型胺,亲水性增强剂,具有氮杂环丁烷 基团的水溶性亲水性聚合物材料,加热步骤,包装溶液,和本发明具有交联亲水涂层的硅氧烷水凝胶接触透镜的表面润湿性的各个实施方案,包括优选实施方案为上述的并可组合和/或一起用于本发明这两个方面中。
[0110] 本发明易使用硅氧烷水凝胶接触透镜具有至少约40barrer,优选至少约50barrer,更优选至少约60barrer,甚至更优选至少约70barrer的透氧性;约30至约200μm,更优选约40至约150μm,甚至更优选约50至约120μm,最优选约60至约110μm的中心厚度;约
1.5MPa或更小,优选约1.2MPa或更小,更优选约1.0或更小,甚至更优选约0.3至约1.0MPa的弹性模量;优选至少约1.5×10-6mm2/min,更优选至少约2.6×10-6mm2/min,甚至更优选至少约6.4×10-6mm2/min的离子流扩散系数D;当完全水合时优选约18至约70%,更优选约20至约60重量%的水含量;或其组合。
[0111] 硅氧烷水凝胶接触透镜的水含量可根据如US  5,849,811所公开的Bulk Technique测定。
[0112] 在又一方面中,本发明提供一种水溶性且可热交联亲水性聚合物材料,其包含:(a)约20至约95%,优选约35至约90%,更优选约50至约85重量%的衍生自表氯醇官能化聚胺或聚酰胺型胺的第一聚合物链;(b)约5至约80%,优选约10至约65%,甚至更优选约15至约50重量%的衍生自至少一种亲水性增强聚合物试剂的第二聚合物链,所述亲水性增强聚合物试剂具有至少一个选自氨基、羧基、硫醇基及其组合的反应性官能团,其中第二聚合物链通过各自在表氯醇官能化聚胺或聚酰胺型胺的一个氮杂环丁烷 基团与亲水性增强聚合物试剂的一个氨基、羧基或硫醇基之间形成的一个或多个共价键共价附着于第一聚合物链上;和(c)氮杂环丁烷 基团,其为第一聚合物链的一部分或共价附着于第一聚合物链上的侧基。
[0113] 反应性乙烯基单体、非反应性乙烯基单体、表氯醇官能化聚胺或聚酰胺型胺和作为亲水性增强剂的亲水聚合物的各个实施方案,包括优选实施方案可以以任何方式组合和/或一起用于本发明这一方面中。
[0114] 先前的公开内容能使本领域技术人员实践本发明。可作出对本文所述各个实施方案的各种改进、变化和组合。为了更好地使读者理解具体实施方案及其优点,提出对以下实施例的参考。说明书和实施例意欲被认为是示例性的。
[0115] 尽管已使用了具体术语、器件和方法描述了本发明的各个实施方案,但这种描述仅用于说明目的。所用措辞为描述而不是限制性措辞。应当理解本领域技术人员可不偏离以下权利要求书所述本发明精神或范围地作出改变和变化。另外,应当理解各个实施方案的方面可全部或部分地互换或可以以任何方式组合和/或一起使用。因此,所附权利要求书的精神和范围应不限于本文所含优选变化方案的描述。
[0116] 实施例1
[0117] 透氧性测量
[0118] 透镜的表观透氧性和透镜材料的氧透过率根据类似于美国专利No.5,760,100和Winterton等人的文章,(The Cornea:Transactions of the World Congress on the Cornea 111,H.D.Cavanagh Ed.,Raven Press:New York 1988,第273-280页)所述的技术测定,通过引用将二者的全部内容并入本文中。氧通量(J)使用Dk1000仪器(可由Applied Design and Development Co.,Norcross,GA得到)或类似的分析仪器在湿池(即将空气流保持在约100%相对湿度下)中在34℃下测量。使具有已知百分数的氧气(例如21%)的空气流以约10-20cm3/min的速率通过透镜的一面,同时使氮气流以约10-20cm3/min的速率通过透镜的相对面。在测量以前将试样在规定试验温度下在试验介质(即盐水或蒸馏水)中平衡至少30分钟但不大于45分钟。在测量以前将作为重叠层使用的任何试验介质在规定试验温度下平衡至少30分钟但不大于45分钟。搅拌电机速度设置为1200±50rpm,相当于步进式电机控制器上400±15的指定设置。测量围绕系统的大气压Pmeasured。暴露以测试的面积中透镜的厚度(t)通过用Mitotoya测微计VL-50或类似仪器测量约10个位置并将测量值求平均而测定。氮气流中的氧气(即扩散通过透镜的氧气)浓度使用DK1000仪器测量。透镜材料的表观透氧性Dkapp由下式测定:
[0119] Dkapp=Jt/(Poxygen)
[0120] 其中J=氧通量[微升O2/cm2–分钟]
[0121] Poxygen=(Pmeasured-Pwater vapor)=(空气流中的%O2)[mm Hg]=空气流中的氧分压[0122] Pmeasured=大气压(mm Hg)
[0123] Pwater vapor=在34℃下0mm Hg(在干池中)(mm Hg)
[0124] Pwater vapor=在34℃下40mm Hg(在湿池中)(mm Hg)
[0125] t=暴露的试验面积上透镜的平均厚度(mm)
[0126] Dkapp以Barrer为单位表示。
[0127] 材料的表观氧透过率(Dk/t)可通过将表观透氧性(Dkapp)除以透镜的平均厚度(t)计算。
[0128] 上述测量不对所谓的边界层效应校正,所述边界层效应可归因于氧通量测量期间在接触透镜顶部的水或盐水浴的使用。边界层效应导致关于硅氧烷水凝胶材料的表观Dk报告的值低于实际本征Dk值。另外,边界层效应的相对影响对于较薄的透镜比对较厚的透镜更大。当它应保持恒定时,净效果是报告的Dk显现出作为透镜厚度的函数变化。
[0129] 透镜的本征Dk值可如下基于关于边界层效应导致的氧通量的表面耐性校正的Dk值评估。
[0130] 使用相同设备测量参比lotrafilcon A(来自CIBA VISION CORPORATION的TM)或lotrafilcon B(来自CIBA VISION CORPORATION的AirOptix )透镜
的表观透氧性值(单点)。参比透镜具有与试验透镜类似的屈光力并与试验透镜同时测量。
[0131] 使用相同设备根据上述用于表观Dk测量的程序测量通过厚度系列的lotrafilcon A或lotrafilcon B(参比)透镜的氧通量以得到参比透镜的本征Dk值(Dki)。厚度系列应涵盖约100μm或更大的厚度范围。优选,参比透镜厚度的范围包括实验透镜厚度。这些参比透镜的Dkapp必须在与试验透镜相同的设备上测量并应理想地与试验透镜同时测量。设备设置和测量参数应在整个实验中保持恒定。如果需要的话可将各个试样测量多次。
[0132] 在计算中使用方程式1由参比透镜结果测定残余氧阻力值Rr。
[0133]
[0134] 其中t为试验透镜(即也指参比透镜)的厚度,且n为测量的参比透镜的数目。绘出残余氧阻力值Rr相对于t数据,并拟合具有形式Y=a+bX的曲线,其中对于jth透镜,Yj=(ΔP/J)j且X=tj。残余氧阻力Rr等于a。
[0135] 基于方程式2使用以上测定的残余氧阻力值计算试验透镜的校正透氧性Dkc(估算的本征Dk)。
[0136] Dkc=t/[(t/Dka)–Rr]   (2)
[0137] 试验透镜的估算本征Dk可用于基于方程式3计算在相同试验环境中标准厚度透镜的表观Dk(Dka_std)。lotrafilcon A的标准厚度(tstd)=85μm。lotrafilcon B的标准厚度=60μm。
[0138] Dka_std=tstd/[(tstd/Dkc)+Rr_std]   (3)
[0139] 离子渗透性测量
[0140] 透镜的离子渗透性根据美国专利No.5,760,100(通过引用将其全部内容并入本文中)所述程序测量。以下实施例中报告的离子渗透性值为关于作为参比材料的透镜材料Alsacon的离子流扩散系数(D/Dref)。Alsacon具有0.314×10-3mm2/min的离子流扩散系数。
[0141] 润滑性评估
[0142] 润滑性评定是使用0-5的标度的定性评级方案,其中0或更低的数表示较好的润滑性,1指定为OasysTM/TruEyeTM商业透镜,5指定为商业Air OptixTM透镜。在评估以前将试样用过量DI水冲洗至少3次,然后转移至PBS中。在评估以前,将手用肥皂溶液冲洗,用DI水广泛冲洗,然后用 毛巾弄干。将试样在手指之间处理,并相对于上述以上标准透镜对各试样指定数值。例如,如果测定透镜仅稍微好于Air OptixTM透镜,则将它们指定为数字4。为了一致,所有评定值独立地由相同的两个操作员收集以避免偏好,数据迄今显示评估中非常好的定性一致性和相容性。
[0143] 表面亲水性/润湿性试验.接触透镜上的水接触角是接触透镜的表面亲水性(或润湿性)的一般测量。特别是,低水接触角对应于更亲水的表面。接触透镜的平均接触角(固着液滴法)使用来自位于马萨诸塞州波士顿的AST,Inc.的VCA 2500XE接触角测量设备测量。该设备能测量前进或后退接触角或固着(静)接触角。测量如下在全水合接触透镜上且在沾污-干燥以后立即进行。将接触透镜从小瓶中取出并在~200ml新鲜DI水中洗涤3次以从透镜表面上除去疏松地结合的包装添加剂。然后将透镜放在无绒清洁布(Alpha Wipe TX1009)上,好好地轻拍以除去表面水,安装在接触角测量台架上,用干空气鼓吹干,最后使用生产商提供的软件自动测量固着液滴接触角。用于测量接触角的DI水具有>18MΩcm的电阻率,且所用液滴体积为2μl。通常,未涂覆的硅氧烷水凝胶透镜(在压热处理以后)具有约120度的固着液滴接触角。在与接触透镜接触以前将镊子和台架用异丙醇良好地洗涤并用DI水冲洗。
[0144] 水破裂时间(WBUT)试验.透镜(在压热处理以后)的润湿性还通过测定在透镜表面上的水膜开始破裂所需的时间而估定。简言之,将透镜从小瓶中取出并在~200ml新鲜DI水中洗涤3次以从透镜表面上除去疏松结合的包装添加剂。将透镜从溶液中取出并保持背对明亮的光源。视觉上记录水膜破裂(除湿),暴露下面的透镜材料所需的时间。未涂覆的透镜通常在从DI水中取出时立即破裂并指定为0秒的WBUT。显示出WBUT≥5秒的透镜被认为是良好润湿性并预期显示出在眼睛上足够的润湿性(能支持泪膜)。
[0145] 涂层完整性试验.接触透镜表面上涂层的完整性可如下根据苏丹黑染色试验测试。将具有涂层(LbL涂层、等离子体涂层或任何其它涂层)的接触透镜浸入苏丹黑染料溶液(苏丹黑在维生素E油中)中。苏丹黑染料为疏水性的,且具有被疏水性材料吸收或吸收到疏水透镜表面或疏水透镜(例如SiHy接触透镜)的部分涂覆表面上的疏水点上。如果疏水透镜上的涂层是完整的,则在透镜上或透镜中应观察不到污点。所有试验透镜是完全水合的。
[0146] 涂层耐久性试验.将透镜用 多功能透镜护理液手指摩擦30次,然后用盐水冲洗。将以上程序重复给定次数,例如1-30次(即模拟清洁和浸泡循环的连续手指摩擦试验的数目)。然后使透镜经受苏丹黑试验(即上述涂层完整性试验)以检查涂层是否仍完整。为经得住手指摩擦试验,不存在显著提高的污点(例如污点覆盖不大于约5%的总透镜表面积)。测量水接触角以测定涂层耐久性。
[0147] 碎片附着试验.具有高带电表面的接触透镜可能容易受到病人处理期间提高的碎片附着。用纸巾摩擦戴手套的手,然后将透镜两面用手指摩擦以将任何碎片转移到透镜表面上。将透镜简单地冲洗,然后在显微镜下观察。0(无碎片附着)至4(相当于PAA涂覆对照透镜的碎片附着)的定性评定量表用于评定各透镜。具有“0”或“1”的分数的透镜被认为是可接受的。
[0148] 表面裂纹试验.涂层的过度交联可导致在摩擦透镜以后在暗场显微镜下可见的表面裂纹。将透镜翻转,摩擦并注意任何裂纹线。0(无裂纹)至2(严重裂纹)的定性评定用于评定透镜。任何严重的裂纹线被认为是不可接受的。
[0149] 氮杂环丁烷 含量的测定.PAE中的氮杂环丁烷 含量可根据如下试验中一个测定。
[0150] PPVS试验.PAE电荷密度(即氮杂环丁烷 含量)可根据PPVS试验测定,该试验为比色滴定试验,其中滴定剂为乙烯基硫酸钾(PPVS)且甲苯胺蓝为指示剂。参见S-K Kam和J.Gregory,“Charge determination of synthetic cationic polyelectrolytes by colloid titration”,Colloid&Surface A:Physicochem.Eng.Aspect,159:165-179(1999)。PPVS粘合正电性物种,例如甲苯胺蓝和PAE的氮杂环丁烷 基团。甲苯胺蓝吸收强度的降低是成比例的PAE电荷密度(氮杂环丁烷 含量)的指示。
[0151] PES-Na试验.PES-Na试验为用于测定PAE电荷密度(氮杂环丁烷 含量)的另一比色滴定试验。在该试验中,滴定剂为聚乙烯磺酸钠(PES-Na)而不是PPVS。该试验与上述PPVS实验相同。
[0152] PCD试验.PCD试验为用于测定PAE电荷密度(氮杂环丁烷 含量)的电位滴定试验。滴定剂为聚乙烯磺酸钠(PES-Na)、PPVS或其它滴定剂。PAE电荷通过电极,例如使用来自BTG的Mütek PCD-04粒子电荷检测器测定。该检测器的测量原理可在BTG的网站http://www.btg.com/products.asp?langage=1&appli=5&numProd=357&ca t=prod)中找到。
[0153] NMR方法.PAE中的活性正电性结构部分为氮杂环丁烷 基团(AZR)。NMR比方法为AZR特异性质子的数目相对于非AZR相关质子的数目之比。该比为PAE的电荷或AZR密度的指示。
[0154] 实施例2
[0155] CE-PDMS大分子单体的制备
[0156] 在第一步骤中,通过使49.85g的α,ω-双(2-羟基乙氧基丙基)-聚二甲基硅氧烷与11.1g的IPDI在150g干甲乙酮(MEK)中在0.063g二月桂酸二丁(DBTDL)的存在下反应而将α,ω-双(2-羟基乙氧基丙基)-聚二甲基硅氧烷(Mn=2000,Shin-Etsu,KF-6001a)用异佛尔酮二异氰酸酯(IPDI)封端。将反应在40℃下保持4.5小时,形成IPDI-PDMS-IPDI。在第二步骤中,将164.8gα,ω-双(2-羟基乙氧基丙基)-聚二甲基硅氧烷(Mn=3000,Shin-Etsu,KF-
6002)与50g干MEK的混合物逐滴加入IPDI-PDMS-IPDI溶液中,向其中加入另外0.063g DBTDL。将反应器保持在约40℃下4.5小时,形成HO-PDMS-IPDI-PDMS-IPDI-PDMS-OH。然后在降低的压力下除去MEK。在第三步骤中,通过在第三步骤中加入7.77g甲基丙烯酸异氰酸根合乙酯(IEM)和另外0.063g DBTDL而将末端羟基用甲基丙烯酰氧基乙基封住,形成IEM-PDMS-IPDI-PDMS-IPDI-PDMS-IEM(CE-PDMS大分子单体)。
[0157] CE-PDMS大分子单体的可选制备
[0158] 将240.43g KF-6001加入装配有搅拌器、温度计、低温恒温器、滴液漏斗和氮气/真空入口转接器的1-L反应器中,然后通过施加高真空(2×10-2毫巴)而干燥。然后,在干氮气气氛下,然后将320g蒸馏MEK加入反应器中,并将混合物彻底搅拌。将0.235g DBTDL加入反应器中。在将反应器加热至45℃以后,在温和搅拌下通过添加漏斗经10分钟将45.86g IPDI加入反应器中。将反应在60℃下保持2小时。然后加入溶于452g蒸馏MEK中的630g KF-6002并搅拌直至形成均匀溶液。加入0.235g DBTDL,并将反应器在干氮气覆盖层下在约55℃下保持整夜。第二天,通过闪蒸除去MEK。将反应器冷却,然后将22.7g IEM装入反应器中,其后装入约0.235gDBTDL。在约3小时以后,加入另外3.3g IEM,并使反应进行整夜。第二天,将反应混合物冷却至约18℃以得到具有末端甲基丙烯酸酯基团的CE-PDMS大分子单体。
[0159] 实施例3
[0160] 透镜配制剂的制备
[0161] 透镜配制剂通过将组分溶于1-丙醇中以具有如下组成而制备:33重量%实施例2中制备的CE-PDMS大分子单体、17重量%N-[三(三甲基甲硅烷氧基)-甲硅烷基丙基]丙烯酰胺(TRIS-Am)、24重量%N,N-二甲基丙烯酰胺(DMA)、0.5重量%N-(羰基-甲氧基聚乙二醇-2000)-1,2-二硬脂酰-sn-甘油-3-磷乙醇胺,钠盐)(L-PEG)、1.0重量%Darocur 1173(DC1173)、0.1重量%visitint(在三(三甲基甲硅烷氧基)甲硅烷基丙基甲基丙烯酸酯,TRIS中的5%酞菁蓝颜料分散体)和24.5重量%1-丙醇。
[0162] 透镜的制备
[0163] 透镜通过在类似于美国专利Nos.7,384,590的图1-6和7,387,759(图1-6)所示模具的可重复使用模具中由以上制备的透镜配制剂铸造模塑而制备。模具包含由石英(或CaF2)构成的阴半模和由玻璃(或PMMA)构成的阳半模。UV辐射源为具有WG335+TM297截止滤光器、强度约4mW/cm2的Hamamatsu灯。将模具中的透镜配制剂用UV辐射照射约25秒。将铸造模塑的透镜用异丙醇(或甲乙酮,MEK)萃取,用水冲洗,通过将透镜浸入PAA的丙醇溶液(0.1重量%,用甲酸酸化至约pH 2.5)中而用聚丙烯酸(PAA)涂覆,并在水中水合。测定其上具有反应性PAA-LbL底涂层的所得透镜具有如下性能:相对于Alsacon透镜材料约8.0至约9.0的离子渗透率;约90-100的表观Dk(单点);约30至约33%的水含量;和约0.60至约0.65MPa的弹性模量。
[0164] 实施例4
[0165] 包装内涂覆(IPC)盐水通过将0.2%聚酰胺型胺-表氯醇(PAE,Kymene)加入磷酸盐缓冲盐水(PBS)中而制备,然后将pH调整至7.2-7.4。
[0166] 来自实施例3的透镜放入具有0.6mL IPC盐水(一半的IPC盐水在插入透镜以前加入)的聚丙烯透镜包装壳中。然后将气泡(blister)用箔密封并在121℃下压热处理约30分钟,在透镜上形成交联涂层(PAA-x-PAE涂层)。
[0167] 然后评估透镜的碎片附着、表面裂纹、润滑性、接触角和水破裂时间(WBUT)。试验透镜(在IPC盐水中包装/压热处理,即其上具有PAA-x-PAE涂层的透镜)显示没有碎片附着,而对照透镜(在PBS中包装/压热处理,即其上具有PAA-LbL底涂层的透镜)显示严重的碎片附着。试验透镜的水接触角(WCA)是低的(~20度),但WBUT小于2秒。当在暗场显微镜下观察时,严重的裂纹线在透镜的处理(透镜反转和在手指间摩擦)以后是可见的。如通过定性手指摩擦试验判断,试验透镜比对照透镜更不光滑(4的润滑性评定值)。
[0168] 实施例5
[0169] 聚(丙烯酰胺-co-丙烯酸)偏钠盐(~80%固体含量,聚(AAm-co-AA)(80/20),Mw.520,000,Mn 150,000)购自Aldrich并直接使用。
[0170] IPC盐水通过将0.02%聚(AAm-co-AA)(80/20)和0.2%PAE(Kymene)溶于PBS中而制备。将pH调整至7.2~7.4。PBS通过将0.76%NaCl、0.044%NaH2PO4·H2O和0.388%Na2HPO4·2H2O溶于水中而制备。
[0171] 将实施例3中制备的其上具有PAA-LbL底涂层的透镜放入具有0.6mL IPC盐水(一半的盐水在插入透镜以前加入)的聚丙烯透镜包装壳中。然后将气泡用箔密封并在约121℃下压热处理约30分钟。认为在压热处理期间在透镜上形成由三层PAA-x-PAE-x-聚(AAm-co-AA)组成的交联涂层。
[0172] 试验透镜(在IPC盐水中封装/压热处理,即其上具有PAA-x-PAE-x-聚(AAm-co-AA)涂层的透镜)不具有碎片附着且具有长于10秒的WBUT。当在暗场显微镜下观察时,裂纹线在摩擦试验透镜以后是可见的。试验透镜比来自实施例4的试验透镜光滑得多,但仍不与封装在PBS中的对照透镜一样光滑(1-2的润滑性评定值)。
[0173] 实施例6
[0174] IPC盐水通过将0.02%聚(AAm-co-AA)(80/20)和0.2%PAE(Kymene)溶于PBS中并将pH调整至7.2~7.4而制备。然后通过加热至并在约70℃下4小时(热预处理)而处理盐水,在IPC盐水中形成含有氮杂环丁烷 基团的水溶性且可热交联亲水性聚合物材料。在热预处理以后,使用0.22μm聚醚砜(PES)膜滤器将IPC盐水过滤并冷却回室温。
[0175] 将实施例3中制备的其上具有PAA-LbL底涂层的透镜放入具有0.6mL IPC盐水(一半的盐水在插入透镜以前加入)的聚丙烯透镜包装壳中。然后将气泡用箔密封并在约121℃下压热处理约30分钟,在透镜上形成交联涂层(PAA-x-亲水性聚合物材料)。
[0176] 试验透镜(封装在热预处理的IPC盐水中,即其上具有PAA-x-亲水性聚合物材料的透镜)显示在摩擦纸巾以后没有碎片附着,而对照透镜(封装在PBS中,即其上具有非共价附着的PAA层的透镜)显示严重的碎片附着。试验透镜具有长于10秒的WBUT。当在暗场显微镜下观察时,在摩擦试验透镜以后没有看见裂纹线。试验透镜在手指摩擦试验中非常光滑且等于对照透镜(0的润滑性评定值)。
[0177] 进行一系列实验以研究IPC盐水的热预处理条件(持续时间和/或温度)对涂有IPC盐水的所得透镜的表面性能的影响。取决于PAE的含氮杂环丁烷 官能度和所用PAE的浓度,在约70℃下约6小时或更长的热处理时间产生类似于对照透镜对碎片附着敏感的透镜。在50℃下仅热处理4小时产生在手指间摩擦以后在暗场显微镜下显示出表面裂纹线的透镜,其类似于其中没有将IPC盐水热预处理的实施例5中的试验透镜。
[0178] 实施例7
[0179] 聚(丙烯酰胺-co-丙烯酸)偏钠盐(~90%固体含量,聚(AAm-co-AA)90/10,Mw 200,000)购自Polysciences,Inc.并直接使用。
[0180] IPC盐水通过将0.07%PAAm-PAA(90/10)和0.2%PAE(Kymene)溶于PBS中并将pH调整至7.2~7.4而制备。然后将盐水在约70℃下预热处理约4小时(热预处理),形成含有氮杂环丁烷 基团的水溶性且可热交联亲水性聚合物材料。在热预处理以后,使用0.22μm聚醚砜[PES]膜滤器将IPC盐水过滤并冷却回室温。
[0181] 将实施例3中制备的其上具有PAA-LbL底涂层的透镜和浸入PAA的酸性丙醇溶液(约0.1%,pH~2.5)中的未涂覆Lotrafilcon B透镜放入具有0.6mL预热处理IPC盐水(一半的IPC盐水在插入透镜以前加入)的聚丙烯透镜包装壳中。然后将气泡用箔密封并在121℃下压热处理约30分钟,在透镜上形成交联涂层(PAA-x-亲水性聚合物材料)。
[0182] 试验透镜(Lotrafilcon B和其上具有PAA-x-亲水聚合物的实施例3透镜)不具有碎片附着。试验透镜具有长于10秒的WBUT。当在暗场显微镜下观察时,在手指间摩擦透镜以后没有看见裂纹线。在定性手指摩擦试验中,透镜是极光滑的(0的润滑性评定值)。
[0183] 实施例8
[0184] 在实验设计(DOE)中,在PBS中制备IPC盐水以含有约0.05至约0.09%PAAm-PAA和约0.075至约0.19%PAE(Kymene)。将IPC盐水在60℃下热处理8小时并将来自实施例3的透镜封装在热预处理的IPC盐水中。没有观察到最终透镜表面性能的差别,且所有透镜显示出优异的润滑性、耐碎片附着性、优异的润湿性,且没有关于表面裂纹的证据。
[0185] 实施例9
[0186] 在实验设计(DOE)中,制备IPC盐水以含有约0.07%PAAm-PAA和足够的PAE以提供约9毫摩尔当量/升的初始氮杂环丁烷 含量(~0.15%PAE)。热预处理条件在中心复合设计中从50至70℃变化,且预反应时间从约4至约12小时变化。还测试在60℃下24小时预处理时间。然后将10ppm过氧化氢加入盐水中以防止生物负荷增长并使用0.22μm聚醚砜[PES]膜滤器将IPC盐水过滤。
[0187] 将来自实施例3的透镜封装在热预处理IPC盐水中,然后将气泡在121℃下压热处理45分钟。所有透镜都具有优异的润滑性、润湿性和耐表面裂纹性。一些透镜显示来自纸巾的碎片附着,如表1所示。
[0188] 表1
[0189]
[0190] 实施例10
[0191] 在包装内涂覆体系中与PAE组合评估甲基丙烯酰氧基乙基磷酸胆碱(MPC)与一种含羧基乙烯基单体(CH2=CH(CH3)C(O)OC2H4OC(O)C2H4COOH(MS),甲基丙烯酸(MA))的共聚物。
[0192] 制备含有NaCl(0.75重量%)、NaH2PO4·H2O(0.0536重量%)、Na2HPO4·2H2O(0.3576重量%)和DI水(97.59重量%)的PBS并加入0.2%PAE(polycup 3160)。将pH调整至约7.3。
[0193] 然后加入0.25%的几种MPC共聚物中的一种以形成IPC盐水并将IPC盐水在70℃下热预处理4小时,形成含有氮杂环丁烷 基团的水溶性可热交联亲水性聚合物材料。在4小时以后,通过0.2μm聚醚砜[PES}膜滤器(Fisher Scientific catalog#09-741-04,Thermo Scientific nalgene#568-0020(250ml))将热预处理的IPC盐水过滤。
[0194] 将实施例3中制备的其上具有PAA-LbL底涂层的透镜封装在热预处理的IPC盐水中并在121℃下压热处理约30分钟。表2显示所有透镜具有优异的表面性能。
[0195] 表2
[0196]MPC共聚物* D.A. 裂纹 润滑性 润湿性WBUT1
聚(MPC/MA)90/10 合格 合格 优异 优异
聚(MPC/BMA/MA)40/40/20 合格 合格 优异 优异
聚(MPC/BMA/MA)70/20/10 合格 合格 优异 优异
聚(MPC/BMA/MS)70/20/10 合格 合格 优异 优异
[0197] *数字为共聚物中单体单元的摩尔百分数。D.A.=碎片附着
[0198] 1.“优异”意指WBUT为10秒或更长。
[0199] 实施例11
[0200] PAA-涂覆透镜.将根据实施例3所述模塑方法由实施例3中制备的透镜配制剂铸造模塑的透镜通过浸入以下浴系列中而萃取并涂覆:3个MEK浴(22、78和224秒);DI水浴(56秒);2个PAA涂渍溶液浴(通过将3.6gPAA(M.W.:450kDa,来自Lubrizol)溶于975ml 1-丙醇和25ml甲酸中而制备)分别44和56秒;和3个DI水浴各自56秒。
[0201] PAE/PAA-涂覆透镜.将以上制备的其上具有PAA底涂层的透镜连续地浸入以下浴中:2个PAE涂渍溶液浴分别44和56秒,所述涂渍溶液通过将0.25重量%PAE(Polycup 172,来自Hercules)溶于DI水中并使用氢氧化钠将pH调整至约5.0,最后使用5μm过滤器过滤所得溶液而制备;和3个DI水浴各自56秒。在该处理以后,透镜具有一层PAA层和一层PAE层。
[0202] 其上具有PAA-x-PAE-x-CMC涂层的透镜.将一批其上具有一层PAA层和一层PAE层的透镜封装在磷酸盐缓冲盐水(PBS)中的0.2%羧甲基纤维素钠(CMC,产品号7H 3SF PH,Ashland Aqualon)中,然后将pH调整至7.2-7.4。然后将气泡密封并在121℃下压热处理约30分钟,在透镜上形成交联涂层(PAA-x-PAE-x-CMC)。
[0203] 其上具有PAA-x-PAE-x-HA涂层的透镜.将另一批其上具有一层PAA层和一层PAE层的透镜封装在磷酸盐缓冲盐水(PBS)中的0.2%透明质酸(HA,产品号6915004,Novozymes)中,然后将pH调整至7.2-7.4。然后将气泡密封并在121℃下压热处理约30分钟,在透镜上形成交联涂层(PAA-x-PAE-x-HA)。
[0204] 所得其上具有PAA-x-PAE-x-CMC涂层或PAA-x-PAE-x-HA涂层的透镜在显微镜检查下显示出没有苏丹黑着色、没有碎片附着且没有裂纹。其上具有PAA-x-PAE-x-CMC涂层的透镜具有30±3度的平均接触角,而其上具有PAA-x-PAE-x-HA涂层的透镜具有20±3度的平均接触角。
[0205] 实施例12
[0206] IPC溶液制备.反应混合物通过将2.86重量%平均MW 2000的甲氧基-聚(甘醇)-硫醇(产品号MPEG-SH-2000,Laysan Bio Inc.)连同2重量%PAE(Kymene)溶于PBS中而制备并将最终pH调整至7.5。将溶液在45℃下热处理约4小时,通过与PAE中的氮杂环丁烷 基团反应而形成含有化学接枝于聚合物上的MPEG-SH-2000基团的可热交联亲水性聚合物材料。在热处理以后,将溶液用含有0.25%柠檬酸钠的PBS稀释10倍,将pH调整至7.2~7.4,然后使用0.22μm聚醚砜(PES)膜滤器过滤。最终IPC盐水含有0.286重量%亲水性聚合物材料(由约59重量%MPEG-SH-2000链和约41重量%PAE链组成)和0.25%柠檬酸钠。PBS通过将
0.74%NaCl、0.053%NaH2PO4.H2O和0.353%Na2HPO4.2H2O溶于水中而制备。
[0207] 其上具有交联涂层的透镜.将来自实施例11的PAA涂覆透镜封装在聚丙烯透镜包装壳中的以上IPC盐水中,然后在约121℃下压热处理约30分钟,在透镜上形成交联涂层。
[0208] 在摩擦透镜以后,最终透镜显示出没有碎片附着、没有裂纹线。透镜在手指摩擦试验中与对照PAA涂覆透镜相比是非常光滑的。
[0209] 进行一系列实验以研究条件(反应时间和mPEG-SH2000的溶液浓度(以恒定的PAE浓度2%))对所得涂有IPC盐水的透镜的表面性能的影响。结果显示于表3中。
[0210] 表3
[0211]
[0212]
[0213] D.A.=碎片附着;WCA=水接触角。
[0214] 1.PAE浓度:2重量%。
[0215] 当mPEG-SH 2000的溶液浓度提高时,透镜润滑性因此提高。认为表面的接触角提高可能是由于随着接枝密度提高,表面上的末端甲基的密度提高。在高接枝密度,相当于0.6%的溶液浓度下,接触角方法测量在接枝的平面基质上的聚乙二醇(PEG)单层上得到(参考:Langmuir 2008,24,10646-10653)。
[0216] 实施例13
[0217] 进行一系列实验以研究mPEG-SH的分子量的影响。IPC盐水类似于实施例12所述程序制备,但使用以下mPEGSH中的一种制备:mPEG-SH1000、mPEG-SH 2000、mPEG-SH 5000和mPEG-SH 20000。使所有盐水经受在45℃下热处理4小时和10倍稀释。结果和反应条件显示于表4中。
[0218] 表4
[0219]
[0220] D.A.=碎片附着;WCA=水接触角。*在热预处理和10倍稀释以前其中具有2%PAE的IPC盐水中MPEG-SH的初始浓度。
[0221] 实施例14
[0222] 反应混合物通过将2.5%平均MW 2000的甲氧基-聚(甘醇)-硫醇(产品号MPEG-SH-2000,Laysan Bio Inc.)、10%PAE(Kymene)溶于PBS和0.25%柠檬酸钠二水合物中而制备。
然后将该最终溶液的pH调整至7.5,以及通过将氮气鼓泡通过容器而除气2小时以使硫醇氧化最小化。稍后将该溶液在45℃下热处理约6小时,通过与PAE中的氮杂环丁烷 基团反应而形成含有化学接枝在聚合物上的MPEG-SH-2000基团的可热交联亲水性聚合物材料。在热处理以后,将溶液使用含有0.25%柠檬酸钠的PBS稀释50倍,将pH调整至7.2~7.4,然后使用0.22μm聚醚砜(PES)膜滤器过滤。最终IPC盐水含有约0.30重量%聚合物材料(由约17重量%MPEG-SH-2000和约83重量%PAE组成)和0.25%柠檬酸钠二水合物。
[0223] 将来自实施例11的PAA涂覆透镜封装在聚丙烯透镜包装壳中的以上IPC盐水中,然后在约121℃下压热处理约30分钟,在透镜上形成交联涂层。
[0224] 在摩擦透镜以后,最终透镜显示没有碎片附着、没有裂纹线。试验透镜在手指摩擦试验中与对照PAA涂覆透镜相比是非常光滑的。
[0225] 实施例15
[0226] 反应混合物通过将3.62%平均MW 550的甲氧基-聚(甘醇)-胺(产品号MPEG-NH2-550,Laysan Bio Inc.)连同2%PAE(Kymene)溶于PBS中而制备并将最终pH调整至10。将溶液在45℃下热处理约4小时,通过与PAE中的氮杂环丁烷 基团反应而形成含有化学接枝在聚合物上的MPEG-NH2-550基团的可热交联亲水性聚合物材料。在热处理以后,将溶液使用含有0.25%柠檬酸钠的10倍PBS稀释,将pH调整至7.2~7.4,然后使用0.22μm聚醚砜(PES)膜滤器过滤。最终IPC盐水含有约0.562重量%聚合物材料(由64重量%MPEG-SH-2000和约36重量%PAE组成)和0.25%柠檬酸钠二水合物。PBS通过将0.74%氯化钠、0.053%NaH2PO4.H2O和0.353%Na2HPO4.2H2O溶于水中而制备。
[0227] 将来自实施例11的PAA涂覆透镜封装在聚丙烯透镜包装壳中的以上IPC盐水中,然后在约121℃下压热处理约30分钟,在透镜上形成交联涂层。
[0228] 在摩擦透镜以后最终透镜显示没有碎片附着且没有裂纹线。
[0229] 实施例16
[0230] 直接使用泊洛沙姆(Poloxamer)108(试样)和nelfilcon A(CIBA VISION)。Nelfilcon A为通过在环状缩醛形成反应条件下将聚乙烯醇(例如来自Nippon Gohsei的Gohsenol KL-03等)用N-(2,2-二甲氧基乙基)丙烯酰胺改性而得到的可聚合聚乙烯醇(Bühler等人,CHIMIA,53(1999),269-274,通过引用将其全部内容并入本文中)。nelfilcon A中的约2.5%乙烯醇单元被N-(2,2-二甲氧基乙基)丙烯酰胺改性。
[0231] IPC盐水通过将0.004%泊洛沙姆108、0.8%nelfilcon A、0.2%PAE(Kymene,Polycup 3160)、0.45%NaCl和1.1%Na2HPO4.2H2O溶于DI水中而制备。将盐水通过在约65-70℃下搅拌2小时而热预处理。在热预处理以后,使盐水冷却至室温,然后使用0.2μm PES过滤器过滤。
[0232] 将实施例3中制备的透镜放入具有0.6mL IPC盐水(一半的盐水在插入透镜以前加入)的聚丙烯透镜包装壳中。然后将气泡用箔密封并在121℃下压热处理约30分钟。
[0233] 试验透镜在摩擦纸巾以后没有显示碎片附着。透镜具有10秒以上的WBUT。当在暗场显微镜下观察时,在手指间摩擦透镜以后没有看见裂纹线。透镜比来自实施例4的透镜光滑得多,但仍不如封装在PBS中的对照透镜光滑。
[0234] 实施例17
[0235] A.80%烯属官能化链增长聚硅氧烷的合成
[0236] 分别将KF-6001A(α,ω-双(2-羟基乙氧基丙基)-聚二甲基硅氧烷,Mn=2000,来自Shin-Etsu)和KF-6002A(α,ω-双(2-羟基乙氧基丙基)-聚二甲基硅氧烷,Mn=3400,来自Shin-Etsu)在单颈烧瓶中在高真空下在约60℃下干燥12小时(或整夜)。通过羟基的滴定测定KF-6001A和KF-6002A的OH摩尔当量,并用于计算待用于合成中的毫摩尔当量。
[0237] 将1升反应容器抽空整夜以除去水分,并用干氮气打破真空。将75.00g(75meq)干KF6001A装入反应器中,然后将16.68g(150meq)新蒸馏IPDI加入反应器中。将反应器用氮气吹扫并随着搅拌加热至45℃,然后加入0.30g DBTDL。将反应器密封,并保持积极氮气流。发生放热,其后使反应混合物冷却并在55℃下搅拌2小时。在达到放热以后,将248.00g(150meq)干KF6002A加入55℃下的反应器中,然后加入100μLDBTDL。将反应器搅拌4小时。停止加热,并使反应器冷却整夜。停止氮气鼓泡,并随着温和搅拌使反应器对大气开放30分钟。形成具有3个聚硅氧烷链段的羟基封端链增长聚硅氧烷,HO-PDMS-IPDI-PDMS-IPDI-PDMS-OH(或HO-CE-PDMS-OH)。
[0238] 对于80%烯属官能化聚硅氧烷,将18.64g(120meq)IEM连同100μLDBTDL加入反应器中。将反应器搅拌24小时,然后将产物(80%IEM-封端CE-PDMS)倒出并冷冻储存。
[0239] B.非UV吸收两性支化聚硅氧烷预聚物的合成
[0240] 将1-L夹套反应器装配500-mL添加漏斗、顶入式搅拌器、具有氮气/真空入口转接器的回流冷凝器、温度计和取样适配器。将反应器中装入45.6g以上制备的80%IEM封端CE-PDMS并密封。将0.65g甲基丙烯酸羟乙酯(HEMA)、25.80g DMA、27.80g(三(三甲基甲硅烷基))-甲硅烷氧基丙基)甲基丙烯酸酯(TRIS)在279g乙酸乙酯中的溶液装入添加漏斗中。将反应器在<1毫巴下在RT下用高真空除气30分钟。将单体溶液在100毫巴和RT下除气10分钟三个周期,在除气周期之间用氮气打破真空。然后将单体溶液装入反应器中,然后将反应混合物搅拌并加热至67℃。当加热时,将溶于39g乙酸乙酯中的1.50g巯基乙醇(链转移剂,CTA)和0.26g偶氮异丁腈的溶液装入添加漏斗中并在100毫巴、RT下脱氧10分钟三次。当反应器温度达到67℃时,将引发剂/CTA溶液加入反应器中的PDMS/单体溶液中。使反应进行8小时,然后停止加热并在15分钟内使反应器温度达到室温。
[0241] 然后将所得反应混合物虹吸到具有气密盖的干单颈烧瓶中,并随0.21gDBTDL加入4.452g IEM。将混合物在室温下搅拌24小时,形成非UV吸收两性支化聚硅氧烷预聚物。向该混合物溶液中,加入100μL羟基-四亚甲基胡椒基氧基的乙酸乙酯(2g/20mL)溶液。然后在30℃下使用旋转式蒸发器将溶液浓缩至200g(~50%)并通过1μm孔径大小滤纸过滤。在将溶剂换成1-丙醇以后,将溶液进一步浓缩至所需浓度。
[0242] C.UV吸收两性支化聚硅氧烷预聚物的合成
[0243] 将1-L夹套反应器装配500-mL添加漏斗、顶入式搅拌器、具有氮气/真空入口转接器的回流冷凝器、温度计和取样适配器。然后将反应器中装入45.98g以上制备的80%IEM-封端CE-PDMS并将反应器密封。将0.512gHEMA、25.354g DMA、1.38g Norbloc甲基丙烯酸酯、26.034g TRIS在263g乙酸乙酯中的溶液装入添加漏斗中。将反应器在<1毫巴下在RT下用高真空泵除气30分钟。将单体溶液在100毫巴和RT除气10分钟三个周期,在除气周期之间用氮气打破真空。然后将单体溶液装入反应器中,然后将反应混合物搅拌并加热至67℃。当加热时,将溶于38g乙酸乙酯中的1.480g巯基乙醇(链转移剂,CTA)和0.260g偶氮异丁腈的溶液装入添加漏斗中并在100毫巴、室温下脱氧10分钟三次。当反应器温度达到67℃时,将引发剂/CTA溶液加入反应器中的PDMS/单体溶液中。使反应进行8小时,然后停止加热并在15分钟内使反应器温度达到室温。
[0244] 然后将所得反应混合物虹吸到具有气密盖的干单颈烧瓶中,并随0.15gDBTDL加入3.841g丙烯酸异氰酸根合乙酯。将混合物在室温下搅拌24小时,形成UV吸收两性支化聚硅氧烷预聚物。向该混合物溶液中,加入100μL羟基-四亚甲基胡椒氧基的乙酸乙酯(2g/20mL)溶液。然后在30℃下使用旋转式蒸发器将溶液浓缩至200g(~50%)并通过1μm孔径大小滤纸过滤。
[0245] D-1:具有非UV吸收聚硅氧烷预聚物的透镜配制剂
[0246] 在100mL琥珀烧瓶中,加入4.31g的在实施例C-2中制备的合成大分子单体溶液(在1-丙醇中82.39%)。在20mL小瓶中,将0.081g TPO和0.045gDMPC溶于10g1-丙醇中,然后转移至大分子单体溶液中。在30℃下使用旋转式蒸发器将混合物浓缩至5.64g以后,加入
0.36g DMA,并将配制剂在室温下均化。得到6g清澈透镜配制剂D-1。
[0247] D-2:具有UV吸收聚硅氧烷预聚物(4%DMA)的透镜配制剂
[0248] 在100mL琥珀烧瓶中,加入24.250g的在实施例D-2中制备的大分子单体溶液(在乙酸乙酯中43.92%)。在50mL小瓶中,将0.15g TPO和0.75gDMPC溶于20g1-丙醇中,然后转移至大分子单体溶液中。在30℃下使用旋转式蒸发器除去20g溶剂,其后加入20g 1-丙醇。在两个周期以后,将混合物浓缩至14.40g。将0.6g DMA加入该混合物中,并将配制剂在室温下均化。得到15g清澈透镜配制剂D-2。
[0249] D-3:具有UV吸收聚硅氧烷预聚物(2%DMA/2%HEA)的透镜配制剂
[0250] 在100mL琥珀烧瓶中,加入24.250g的在实施例D-2中制备的大分子单体溶液(在乙酸乙酯中43.92%)。在50mL小瓶中,将0.15g TPO和0.75gDMPC溶于20g1-丙醇中,然后转移至大分子单体溶液中。在30℃下使用旋转式蒸发器除去20g溶剂,其后加入20g 1-丙醇。在两个周期以后,将混合物浓缩至14.40g。将0.3g DMA和0.3g HEA加入该混合物中,并将配制剂在室温下均化。得到15g清澈透镜配制剂D-3。
[0251] 实施例18
[0252] 实施例E:改性PAE涂层聚合物的共价附着
[0253] 含有胺基团的单体:N-(3-氨基丙基)甲基丙烯酰胺氢氯化物(APMAA-HCl)或N-(2-氨基乙基)甲基丙烯酰胺氢氯化物(AEMAA-HCl)购自Polysciences并直接使用。聚(酰胺胺表氯醇)(PAE)作为水溶液由Ashland得到并直接使用。来自Polysciences的聚(丙烯酰胺-co-丙烯酸)(聚(AAm-co-AA)(90/10)、来自Laysan Bio的mPEG-SH和来自NOF的聚(MPC-co-AeMA)(即甲基丙烯酰氧基乙基磷酸胆碱(MPC)与甲基丙烯酸氨基乙酯(AeMA)的共聚物)直接使用。
[0254] 将APMAA-HCl单体溶于甲醇中并加入透镜配制剂D-1、D-2和D-3(实施例17中制备)中以实现1重量%浓度。
[0255] 反应性包装盐水通过将表5所列组分连同合适的缓冲剂盐溶于DI水中而制备。在热预处理以后,使盐水冷却至室温,然后使用0.2μm PES过滤器过滤。
[0256] 表5
[0257]
[0258] 将实施例17中制备的透镜配制剂D-1、D-2和D3通过加入APMAA-HCl单体(APMMA-HCL在甲醇中的储液)而改性。将DSM透镜用330nm滤光器在16mW/cm2下固化,同时将LS透镜2
用380nm滤光器在4.6mW/cm下固化。
[0259] DSM透镜.将聚丙烯透镜模具的阴模部分用约75μl如上制备的透镜配制剂填充,并将模具用聚丙烯透镜模具的阳模部分(基线模具)封闭。接触透镜通过用UV辐射源(具有330nm截止滤光器、强度为约16mW/cm2的Hamamatsu灯)将封闭的模具固化约5分钟而得到。
[0260] LS透镜.LS透镜通过在类似于美国专利Nos.7,384,590的图1-6和7,387,759(图1-6)所示模具的可重复使用模具中由如上制备的透镜配制剂铸造模塑而制备。模具包含由石英(或CaF2)构成的阴半模和由玻璃(或PMMA)构成的阳半模。UV辐射源为具有380nm截止滤光器、强度为约4.6mW/cm2的Hamamatsu灯。将模具中的透镜配制剂用UV辐射照射约30秒。
[0261] 将用APMAA-HCl改性的透镜配制剂D-1根据上述DSM和LS方法固化,同时将透镜配制剂D-2或D-3根据上述LS方法固化。
[0262] 将模塑的透镜用甲乙酮萃取,水合并封装在表5中所述一种盐水中。将透镜放入具有0.6mL IPC盐水(一半的盐水在插入透镜以前加入)的聚丙烯透镜包装壳中。然后将气泡用箔密封并在121℃下压热处理30分钟。
[0263] 透镜表面的评估显示所有试验透镜不具有碎片附着。当在暗场显微镜下观察时,在手指间摩擦透镜以后没有看见裂纹线。
[0264] 测量透镜表面润湿性(WBUT)、润滑性和接触角,结果汇总于表6中。除非另外说明,透镜根据DSM方法制备。润滑性相对于0-4的定性标度评定,其中较低的数表示较大的润滑性。通常,在应用包装内涂层以后,透镜表面性能稍微改进。
[0265] 表6
[0266]
[0267]
[0268] 1.数字为表5所示包装盐水编号。
[0269] 2.LS透镜
[0270] 实施例19
[0271] 透镜使用其中加入APMAA单体至1%的浓度的透镜配制剂D-2(实施例17)制造。LS透镜通过在类似于美国专利Nos.7,384,590的图1-6和7,387,759(图1-6)所示模具的可重复使用模具中由如上制备的透镜配制剂铸造模塑而制备。模具包含由玻璃构成的阴半模和由石英构成的阳半模。UV辐射源为具有380nm截止滤光器、强度为约4.6mW/cm2的Hamamatsu灯。将模具中的透镜配制剂用UV辐射照射约30秒。
[0272] 将铸造模塑的透镜用甲乙酮(MEK)萃取,用水冲洗,通过将透镜浸入PAA的丙醇溶液(0.0044重量%,用甲酸酸化至约pH 2.5)中而用聚丙烯酸(PAA)涂覆,并在水中水合。
[0273] IPC盐水根据实施例9所述组成以在约60℃下8小时的预反应条件制备。将透镜放入具有0.6mL IPC盐水(一半的盐水在插入透镜以前加入)的聚丙烯透镜包装壳中。然后将气泡用箔密封并在121℃下压热处理30分钟。
[0274] 透镜表面的评估显示所有试验透镜不具有碎片附着。当在暗场显微镜下观察时,在手指之间摩擦透镜以后没有看见裂纹线。透镜表面润湿性(WBUT)为大于10秒,润滑性评定为“1”,且接触角为约20°。
[0275] 实施例20
[0276] 透镜配制剂的制备
[0277] 透镜配制剂通过将组分溶于1-丙醇中以具有如下组成而制备:约32重量%的实施例2中制备的CE-PDMS大分子单体、约21重量%的TRIS-Am、约23重量%的DMA、约0.6重量%的L-PEG、约1重量%的DC1173、约0.1重量%的visitint(在TRIS中5%酞菁铜蓝颜料分散体)、约0.8重量%的DMPC、约200ppm H-tempo和约22重量%的1-丙醇。
[0278] 透镜的制备.透镜通过在类似于美国专利Nos.7,384,590的图1-6和7,387,759(图1-6)所示模具的可重复使用模具(石英阴半模和玻璃阳半模)中由以上制备的透镜配制剂
2
铸造模塑而制备。将模具中的透镜配制剂用UV辐射(13.0mW/cm)照射约24秒。
[0279] PAA涂渍溶液.PAA涂渍溶液通过将一定量的PAA(M.W.:450kDa,来自Lubrizol)溶于给定体积的1-丙醇中以具有约0.36-0.44重量%的浓度而制备并将pH用甲酸调整至约1.7-2.3。
[0280] PAA涂覆透镜.将如上铸造模塑的接触透镜通过浸入以下浴系列中而萃取并涂覆:DI水浴(约56秒);6个MEK浴(分别约44、56、56、56、56和56秒);DI水浴(约56秒);一个在
100%1-丙醇中的PAA涂渍溶液(约0.36-0.44重量%,用甲酸酸化至约pH1.7-2.3)浴(约44秒);一个水/1-丙醇50%/50%混合物浴(约56秒);4个DI水浴各自约56秒;一个PBS浴约56秒,一个DI水浴约56秒。
[0281] IPC盐水.聚(AAm-co-AA)(90/10)偏钠盐(~90%固体含量,聚(AAm-co-AA)90/10,Mw 200,000)购自Polysciences,Inc.并直接使用。PAE(Kymene,用NMR检验氮杂环丁烷含量为0.46)作为水溶液购自Ashland并直接使用。IPC盐水通过将约0.07%w/w聚(AAm-co-AA)(90/10)和约0.15%PAE(初始氮杂环丁烷 毫摩尔当量为约8.8毫摩尔)溶于PBS(约0.044w/w%NaH2PO4·H2O、约0.388w/w/%Na2HPO4·2H2O、约0.79w/w%NaCl)中并将pH调整至7.2~7.4而制备。然后将IPC盐水在约70℃下热预处理约4小时(热预处理)。在该热预处理期间,聚(AAm-co-AA)和PAE彼此部分交联(即不消耗PAE的所有氮杂环丁烷 基团)以在IPC盐水中形成支化聚合物网络内含有氮杂环丁烷 基团的水溶性且可热交联亲水性聚合物材料。在热预处理以后,使用0.22μm聚醚砜[PES]膜滤器将IPC盐水过滤并冷却回室温。
然后将10ppm过氧化氢加入最终IPC盐水中以防止生物负荷增长并使用0.22μmPES膜滤器过滤。
[0282] 交联涂层的应用.将以上制备的其上具有PAA-LbL底涂层的透镜放入具有0.6mL IPC盐水(一半的盐水在插入透镜以前加入)的聚丙烯透镜包装壳(一透镜每壳)中。然后将气泡用箔密封并在约121℃下压热处理约30分钟,形成其上具有交联涂层(PAA-x-亲水性聚合物材料)的SiHy接触透镜。
[0283] SiHy透镜的表征.所得其上具有交联涂层(PAA-x-亲水性聚合物材料)的SiHy接触透镜在摩擦纸巾以后显示出没有碎片附着,而对照透镜(封装在PBS中,即其上具有非共价附着PAA层的透镜)显示出严重的碎片附着。透镜具有约146barrer的透氧性(Dkc或估算本征Dk)、约0.76MPa的体积弹性模量、约32重量%的水含量、约6的相对离子渗透率(相对于Alsacon透镜)、约34-47度的接触角、长于10秒的WBUT。当在暗场显微镜下观察时,在摩擦试验透镜以后没有看见裂纹线。透镜在手指摩擦试验中非常光滑且等于对照透镜。
[0284] 实施例21
[0285] 使实施例6、14和20中制备的压热处理以后透镜包装中的SiHy透镜和IPC盐水经受以下生物相容性研究。
[0286] 体外细胞毒性评估.通过USP直接接触材料试验评估SiHy透镜。通过USP MEM洗提和ISO CEN细胞生成抑制试验评估透镜提取物,并通过改性洗提试验评估压热处理以后包装内的IPC盐水。评估的所有透镜和透镜提取物适当地在各试验的接受标准内且没有观察到不可接受的细胞毒性。
[0287] 体内试验.老鼠的ISO内吸毒性显示不存在透镜提取物对老鼠的内吸毒性的证明。兔子中的ISO眼睛刺激研究显示透镜提取物被认为不是对兔子眼睛组织的刺激物。兔子中的ISO眼睛刺激研究显示压热处理以后包装中的IPC盐水被认为不是对兔子眼睛组织的刺激物。以日抛性佩戴模式佩戴透镜连续22天对兔子模型不刺激,且用试验透镜处理的眼睛类似于用对照透镜处理的眼睛。ISO过敏研究(包装溶液的天竺鼠最大化试验(Guinea Pig Maximization Testing of Packaging Solutions))显示压热处理以后的IPC盐水不会导致天竺鼠中任何延时皮肤接触过敏。ISO过敏研究(透镜提取物的天竺鼠最大化试验(Guinea Pig Maximization Testing of Lens Extracts))显示透镜的氯化钠和芝麻油提取物不会导致天竺鼠中的延时皮肤接触过敏。
[0288] 基因毒性试验.当在细菌回复突变试验(Ames Test)中测试来自透镜包装的IPC盐水和SiHy透镜提取物时,发现透镜提取物和IPC盐水被认为是对鼠伤寒沙氏菌(Salmonella typhimurium)试验菌株TA98、TA100、TA1535和TA1537和大肠杆菌(Escherichia coli)WPuvrA而言是非诱变性的。当在哺乳动物红血球微核试验中测试SiHy透镜提取物时,它们不具有断裂剂活性并在老鼠骨髓微核试验中是否定的。当根据染色体畸变试验在中国仓鼠卵巢中测试来自透镜包装的IPC盐水时,IPC盐水对在非活化和S9活化试验系统中使用CHO细胞引发结构和数量染色体畸变试验而言是否定的。当根据细胞基因突变试验(老鼠淋巴瘤基因突变试验)测试SiHy透镜提取物时,透镜提取物在老鼠淋巴瘤基因突变试验中显示是否定的。
[0289] 实施例22
[0290] 通过用X射线光电子光谱(XPS)表征真空干燥的接触透镜而测定预成型的SiHy接触透镜(即不具有任何涂层且在应用PAA底涂层以前的SiHy接触透镜)、具有PAA涂层的SiHy接触透镜(即在密封并在具有IPC盐水的透镜包装中压热处理以前的那些透镜)和其上具有交联涂层的SiHy接触透镜的表面组成,其全部根据实施例20所述程序制备。XPS为以约10nm的取样深度测量透镜的表面组成的方法。三类透镜的表面组成报告于表7中。
[0291] 表7
[0292]
[0293] *:氟很可能在真空干燥方法XPS分析期间由表面污染物检测到。
[0294] 表7显示当将PAA涂层应用于SiHy透镜(预成型而不具有涂层)上时,碳和氧原子组成接近PAA(60%C和40%O)的那些,且硅原子组成实质性降低(从12.1%到4.5%)。当进一步将交联涂层应用于PAA涂层上时,表面组成由碳、氮和氧占优势,这是三种原子组成(氢除外,因为XPS没有将氢计算在表面组成中)。这类结果表明具有交联涂层的SiHy接触透镜的最外层可能基本由亲水性聚合物材料组成,所述亲水性聚合物材料为聚(AAm-co-AA)(90/10)(60%C、22%O和18%N)和PAE的反应产物。
[0295] 还使真空干燥的以下商业SiHy透镜经受XPS分析。那些商业SiHy接触透镜的表面组成报告于表8中。
[0296] 表8
[0297]
[0298] *:氟也在Advance、Oasys和TruEye透镜中检测到,很可能在真空干燥方法XPS分析期间来自表面污染物。
[0299] 发现本发明SiHy接触透镜具有表面层中约1.4%的标称硅氧烷含量,比不具有等TM离子体涂层的商业SiHy透镜( TruEye 、
AvairaTM)和 (具有等离子体氧化)和PremioTM(具有未知等离
子体处理)的那些低得多,甚至低于具有厚度为约25nm的等离子体沉积涂层的SiHy透镜(AquaTM和Air AquaTM)。该非常低的Si%值比得上对照试样来自Goodfellow
的聚乙烯(LDPE,d=0.015mm;LS356526SDS;ET31111512;3004622910)的硅原子百分数。那些结果表明本发明真空干燥SiHy接触透镜的XPS分析中非常低的值可能由于制备方法,包括真空干燥方法和XPS分析期间引入的污染物,类似于不含氟透镜中观察到的氟含量。在本发明SiHy接触透镜中硅氧烷成功地被屏蔽以防暴露。
[0300] 还进行本发明SiHy接触透镜(根据实施例20所述程序制备)、商业SiHy接触透镜(CLARITITM 1Day, TruEyeTM(narafilcon A和narafilcon B))、来自Goodfellow的聚乙烯片(LDPE,d=0.015mm;LS356526SDS;ET31111512;3004622910)、(聚乙烯醇水凝胶透镜,即非硅氧烷水凝胶透镜)、 Moist(聚甲
基丙烯酸羟基乙酯水凝胶透镜,即非硅氧烷水凝胶透镜)的XPS分析。将所有透镜真空干燥。
聚乙烯片、 和 Moist用作对照,因为它们不含硅氧烷。试样的表
面层中的硅原子组成如下:1.3±0.2(聚乙烯片);1.7±0.9 2.8±0.9(
Moist);3.7±1.2(根据实施例20所述程序制备的三种SiHy透镜);5.8±1.5
(CLARITITM 1Day);7.8±0.1( TruEyeTM(narafilcon A));和6.5±0.1(
TruEyeTM(narafilcon B))。关于本发明SiHy接触透镜的结果与接近硅氧烷
水凝胶相比更接近传统水凝胶的那些。
[0301] 实施例23
[0302] UV吸收两性支化共聚物的合成
[0303] 将1-L夹套反应器装配500-mL添加漏斗、顶入式搅拌器、具有氮气/真空入口转接器的回流冷凝器、温度计和取样适配器。将89.95g的实施例17A中制备的80%部分烯属官能化聚硅氧烷装入反应器中,然后在室温下在小于1毫巴的真空下除气约30分钟。将通过将1.03g HEMA、50.73gDMA、2.76g Norbloc甲基丙烯酸酯、52.07g TRIS和526.05g乙酸乙酯混合而制备的单体溶液装入500-mL添加漏斗中,其后在室温下在100毫巴的真空下除气10分钟,然后用氮气再填充。将单体溶液以相同条件除气另外两个循环。然后将单体溶液装入反应器中。将反应混合物随着适当的搅拌加热至67℃。当加热时,将由2.96g巯基乙醇(链转移剂,CTA)和0.72g二甲基2,2’-偶氮双(2-甲基丙酸酯)(V-601—引发剂)和76.90g乙酸乙酯组成的溶液装入添加漏斗中,其后是与单体溶液相同的除气方法。当反应器温度达到67℃时,还将引发剂/CTA溶液加入反应器中。反应在67℃下进行8小时。在共聚完成以后,反应器温度冷却至室温。
[0304] UV吸收两性支化预聚物的合成
[0305] 将以上制备的共聚物溶液通过在0.50g DBTDL的存在下加入8.44gIEM(或所需摩尔当量的甲基丙烯酸2-异氰酸根合乙酯)而烯属官能化以形成两性支化预聚物。将混合物在密封条件下在室温下搅拌24小时。然后将制备的预聚物用100ppm羟基四亚甲基胡椒基氧基稳定,然后将溶液浓缩至200g(~50%)并通过1μm孔径大小滤纸过滤。在通过重复的蒸发和稀释循环将反应溶剂换成1-丙醇以后,溶液即用于配制。固体含量借助在80℃下在真空烘箱中除去溶剂而测量。
[0306] 透镜配制剂的制备
[0307] 制备透镜配制剂以具有如下组成:71重量%以上制备的预聚物;4重量%DMA;1重量%TPO;1重量%DMPC;1重量%Brij 52(来自)和22重量%1-PrOH。
[0308] 透镜制备
[0309] 透镜通过在类似于美国专利Nos.7,384,590的图1-6和7,387,759(图1-6)所示模具的可重复使用模具中在UV辐射的空间限制下由以上制备的透镜配制剂铸造模塑而制造。模具包含由玻璃构成的阴半模和由石英构成的阳半模。UV辐射源为具有380nm截止滤光器、强度为约4.6mW/cm2的Hamamatsu灯。将模具中的透镜配制剂用UV辐射照射约30秒。
[0310] 将铸造模塑的透镜用甲乙酮(MEK)萃取,用水冲洗,通过将透镜浸入PAA的丙醇溶液(0.004重量%,用甲酸酸化至约pH2.0)中而用聚丙烯酸(PAA)涂覆,并在水中水合。
[0311] IPC盐水在约60℃下6小时的预反应条件下由含有约0.07%PAAm-PAA和足以提供约8.8毫摩尔当量/升的初始氮杂环丁烷 含量的PAE(~0.15%PAE)的组合物制备。然后将5ppm过氧化氢加入IPC盐水中以防止生物负荷增长并使用0.22μm聚醚砜[PES]膜滤器过滤IPC盐水。将透镜放入具有0.6mL IPC盐水(一半的盐水在插入透镜以前加入)的聚丙烯透镜包装壳中。然后将气泡用箔密封并在121℃下压热处理30分钟。
[0312] 透镜表征
[0313] 所得透镜具有如下性能:E’~0.82MPa;DKc~159.4(使用lotrafilcon B作为参比透镜,平均中心厚度为80μm且本征Dk为110);IP~2.3;水%~26.9;和UVA/UVB%T~4.6/0.1。当在暗场显微镜下观察时,在摩擦试验透镜以后没有见到裂纹线。透镜在手指摩擦试验中非常润滑且等于对照透镜。
[0314] 实施例24
[0315] 透镜配制剂的制备
[0316] 配制剂I通过将组分溶于1-丙醇中以具有以下组成而制备:33重量%的实施例2中制备的CE-PDMS大分子单体、17重量%的N-[三(三甲基甲硅烷氧基)-甲硅烷基丙基]丙烯酰胺(TRIS-Am)、24重量%的N,N-二甲基丙烯酰胺(DMA)、0.5重量%的N-(羰基-甲氧基聚乙二醇-2000)-1,2-二硬脂酰-sn-甘油-3-磷乙醇胺,钠盐)(L-PEG)、1.0重量%的Darocur 1173(DC1173)、0.1重量%visitint(在三(三甲基甲硅烷氧基)甲硅烷基丙基甲基丙烯酸酯,TRIS中的5%酞菁铜蓝颜料分散体)和24.5重量%1-丙醇。
[0317] 配制剂II通过将组分溶于1-丙醇中以具有以下组成而制备:约32重量%的实施例2中制备的CE-PDMS大分子单体、约21重量%的TRIS-Am、约23重量%的DMA、约0.6重量%的L-PEG、约1重量%的DC1173、约0.1重量%visitint(在TRIS中的5%酞菁铜蓝颜料分散体)、约0.8重量%的DMPC、约200ppm的H-tempo和约22重量%1-丙醇。
[0318] 透镜的制备
[0319] 透镜通过在类似于美国专利Nos.7,384,590的图1-6和7,387,759(图1-6)所示模具的可重复使用模具(石英阴半模和玻璃阳半模)中由以上制备的透镜配制剂铸造模塑而制备。UV辐射源为具有WG335+TM297截止滤光器、强度约4mW/cm2的Hamamatsu灯。将模具中的透镜配制剂用UV辐射照射约25秒。将铸造模塑的透镜用甲乙酮(MEK)(或丙醇或异丙醇)萃取。
[0320] PAA底涂层在SiHy接触透镜上的应用
[0321] 聚丙烯酸涂渍溶液(PAA-1)通过将一定量的PAA(M.W.:450kDa,来自Lubrizol)溶于给定体积的1-丙醇中以具有约0.39重量%的浓度而制备并将pH用甲酸调整至约2.0。
[0322] 另一PAA涂渍溶液(PAA-2)通过将一定量的PAA(M.W.:450kDa,来自Lubrizol)溶于给定体积的有机基溶剂(50/50的1-丙醇/H2O)中以具有约0.39重量%的浓度而制备并将pH用甲酸调整至约2.0。
[0323] 使以上所得SiHy接触透镜经受表9和10中所示一种浸渍方法。
[0324] 表9
[0325]
[0326] PrOH表示100%1-丙醇;PBS表示磷酸盐缓冲盐水;MEK表示甲乙酮;50/50表示50/50的1-PrOH/H2O的溶剂混合物。
[0327] 表10
[0328]
[0329] PrOH表示100%1-丙醇;PBS表示磷酸盐缓冲盐水;MEK表示甲乙酮;50/50表示50/50的1-PrOH/H2O的溶剂混合物。
[0330] 交联亲水涂层的应用
[0331] 聚(丙烯酰胺-co-丙烯酸)偏钠盐,聚(AAm-co-AA)(90/10)(~90%固体含量,聚(AAm-co-AA)90/10,Mw 200,000)购自Polysciences,Inc.并直接使用。PAE(Kymene,用NMR检验氮杂环丁烷 含量为0.46)作为水溶液购自Ashland并直接使用。包装内交联(IPC)盐水通过将约0.07%w/w聚(AAm-co-AA)(90/10)和约0.15%PAE(约8.8毫摩尔的初始氮杂环丁烷 毫摩尔当量)溶于磷酸盐缓冲盐水(PBS)(约0.044w/w%NaH2PO4·H2O、约0.388w/w/%Na2HPO4·2H2O、约0.79w/w%NaCl)中并将pH调整至7.2~7.4而制备。然后将IPC盐水在约70℃下热预处理约4小时(热预处理)。在该热预处理期间,聚(AAm-co-AA)和PAE彼此部分交联(即不消耗PAE的所有氮杂环丁烷 基团)以在IPC盐水中形成支化聚合物网络内含有氮杂环丁烷 基团的水溶性且可热交联亲水性聚合物材料。在热预处理以后,使用0.22μm聚醚砜[PES]膜滤器将IPC盐水过滤并冷却回室温。然后将10ppm过氧化氢加入最终IPC盐水中以防止生物负荷增长并使用0.22μm聚醚砜[PES]膜滤器将IPC盐水过滤。
[0332] 将以上制备的其上具有PAA底涂层的透镜放入具有0.6mL IPC盐水(一半的盐水在插入透镜以前加入)的聚丙烯透镜包装壳(一透镜每壳)中。然后将气泡用箔密封并在约121℃下压热处理约30分钟,形成其上具有交联亲水涂层的SiHy接触透镜。
[0333] SiHy透镜的表征
[0334] 所得其上具有交联亲水涂层和约0.95μm的中心厚度的SiHy接触透镜具有约142至约150barrer的透氧性(Dkc或估算的本征Dk)、约0.72至约0.79MPa的体积弹性模量、约30至约33重量%的水含量和约6的相对离子渗透性(相对于Alsacon透镜)和约34至约47度的接触角。
[0335] 接触透镜的纳米结构表面的表征
[0336] 透射微分干涉相衬方法.将接触透镜放在载玻片上并通过将透镜压在载玻片与玻璃盖片之间而变平。将接触透镜表面定位并通过使用具有透射微分干涉相衬风镜的Nikon ME600显微镜使用40倍物镜聚焦透镜而检查。然后评估所得TDIC图像以确定闪烁的表面图案(例如无规则和/或有序蠕虫状图案等)的存在。
[0337] 反射微分干涉相衬(RDIC)方法.将透镜放在载玻片上并通过每~90度做出4个径切面而变平。使用压缩空气从表面上吹掉过量盐水。然后使用具有反射微分干涉相衬风镜的Nikon Optiphot-2使用10倍、20倍和50倍物镜检查透镜表面以确定接触透镜表面上闪烁表面图案的存在。每一面的代表性图像使用50倍物镜获得。然后将接触透镜翻转,除去过量盐水并以相同方式检查接触透镜的另一面。然后评估所得RDIC图像以确定闪烁的表面图案(例如无规则和/或有序蠕虫状图案等)的存在。
[0338] 暗场光学显微镜(DFLM).DFLM通常基于暗场照明,其为增强观察试样的对比度的方法。该技术由观察者视场外部或被封的光源组成以便以相对于标准透射光的角照亮试样。由于来自光源的非扩散光没有被物镜聚集,它不是图像的一部分且图像的背景显现出为暗的。由于光源以一定角度照亮试样,试样图像中观察到的光是试样向观察者散射的,然后在来自试样的该散射光与图像的暗背景之间产生对比度。该对比机制使得暗照明尤其用于观察散射现象如朦胧。
[0339] DFLM用于如下评估接触透镜的混浊度。认为由于暗场设置涉及散射光,暗场数据可提供混浊度的最坏情况估计。在8-bit灰度等级数字图像中,各图像像素设计为0-255的灰度等级强度(GSI)值。0表示完全黑的像素,255表示完全白的像素。图像中捕获的散射光的提高可产生具有较高GSI值的像素。该GSI值然后可用作一种机制以量化暗场图像中观察到的散射光的量。混浊度通过将感兴趣区(AOI)(例如整个透镜或透镜的透镜状区或光学区)中所有像素的GSI值平均而表示。实验装置由显微镜或等价光学器件、所附数字照相机和与环光和可变强度光源一致的暗场组成。设置/排列光学器件使得待观察的接触透镜全部填充视场(通常~15mm×20mm视场)。照明设置为适于观察相关试样中的所需变化的水平。对各组试样使用如本领域技术人员已知的密度/光散射标准调整/标定光强度至相同水平。例如,标准由两个重叠的塑料盖片(相同和轻微或适当地除去光泽)组成。这种标准由具有三种不同的平均GSI的面积组成,其包括两个具有中间灰度级的面积和饱和白(边缘)。黑色面积表示空暗场。黑和饱和白面积可用于检验照相机的收益和偏移(对比度和亮度)设置。中间灰度级可提供三个点以检验照相机的线性响应。调整光强度使得空暗场的平均GSI达到0,且标准的数字图像中的指定AOI的在±5GSI单位内每次相同。在光强度标定以后,将接触透镜浸入石英培养皿或放在DFLM台上的具有类似透明度的皿中的0.2μm过滤磷酸盐缓冲盐水中。然后如使用标定的照明观察获得透镜的8-bit灰度等级数字图像,并测定含有透镜的一部分图像内指定AOI的平均GSI。这就接触透镜试样组而言重复。光强度标定经试验过程定期地重新评估以确保一致性。DFLM检查下的混浊度水平指DFLM混浊度
[0340] 测定其PAA底涂层根据浸渍方法20-0和80-0得到的SiHy接触透镜具有约73%的平均DFLM混浊度并显示出可通过根据如上所述RDIC或TDIC方法检查水合状态下的接触透镜而视觉观察到的闪烁表面图案(无规则蠕虫状图案)。但是,闪烁表面图案实际上对接触透镜的透光性不具有不利影响。
[0341] 测定其PAA底涂层根据浸渍方法20-1至20-4中任一种得到的SiHy接触透镜具有约26%的低平均DFLM混浊度(可能由于visitint颜料颗粒的存在)并在如上所述RDIC或TDIC下检查时没有显示出明显的闪烁表面图案(无规则蠕虫状图案)。
[0342] 测定其PAA底涂层根据浸渍方法20-5得到的高百分数SiHy接触透镜具有约45%的中等平均DFLM,并在如上所述RDIC或TDIC下检查时显示出轻微明显的闪烁表面图案。但是,闪烁表面图案实际上对接触透镜的透光性不具有不利影响。
[0343] 其PAA底涂层根据浸渍方法80-1、80-2、80-3、80-5和80-6中任一种得到的SiHy接触透镜在如上所述RDIC或TDIC下检查时没有显示出明显的闪烁表面图案。但是其PAA底涂层根据浸渍方法80-0和80-4得到的SiHy接触透镜在如上所述RDIC或TDIC下检查时显示出明显的闪烁表面图案。但是,闪烁表面图案实际上对接触透镜的透光性不具有不利影响。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈