刻印的微码

阅读:208发布:2021-01-25

专利汇可以提供刻印的微码专利检索,专利查询,专利分析的服务。并且提供了包括立体编码微粒的微粒、对所述微粒成像的系统、及检测所述微粒的方法、及所述微粒在 生物 测定中的应用。,下面是刻印的微码专利的具体信息内容。

1.晶片,包括:
在所述晶片上形成的多个未释放的编码微粒,其中所述多个微粒包括至少20个不同的码,且每个码至少1百万个微粒。
2.晶片,包括:
在所述晶片上形成的多个未释放的编码微粒,其中所述多个微粒包括至少20个不同编码微粒子集,其中各子集包括至少1百万个微粒。
3.权利要求2的晶片,其中所述晶片基本上由组成。
4.权利要求2的晶片,其中所述晶片被再分为多个区域,各区域包括微粒子集。
5.权利要求2的微粒,其中所述微粒包括空间码。
6.权利要求5的微粒,其中至少一个微粒子集包括如下码,该码是包含至少1,000个可能的码的码域的成员。
7.权利要求5的微粒,其中所述晶片上的微粒的至少一个子集的空间码选自多于
10,000个可能的码。
8.权利要求5的微粒,其中所述空间码可利用光学放大进行读取。
9.权利要求5的微粒,其中所述空间码可用反射光检测。
10.权利要求5的微粒,其中所述空间码可用透射光检测。
11.权利要求5的微粒,其中所述空间码可用发射光检测。
12.权利要求5的微粒,其中所述空间码可用单图像采集事件检测。
13.权利要求2的微粒,其中所述微粒还包括基本上透明的外表面。
14.权利要求13的微粒,其中所述外表面由玻璃、硅石、化硅、石英、氮化硅或化硅组成。
15.权利要求2的微粒,其中所述微粒还包括小于50微米的最大尺寸。
16.权利要求2的微粒,其中所述微粒还包括小于20微米的最大尺寸。
17.权利要求2的微粒,其中所述微粒还包括小于5,000立方微米的体积。
18.权利要求2的微粒,其中所述微粒还包括小于500立方微米的体积。
19.权利要求2的微粒,其中所述微粒的长宽比是3∶1或更高。
20.权利要求2的微粒,其中所述微粒还包括纵轴,其中垂直于所述微粒的纵轴的横截面基本上是矩形。
21.权利要求2的微粒,其中所述微粒的横截面基本上是方形。
22.权利要求2的微粒,其中所述微粒还包括:
第一材料,其包括2个或更多个沿轴排列的分开的区段;和
第二材料,其围绕所述第一材料,从而使所述区段可通过所述第二材料被检测,其中所述可检测区段提供所述微粒码。
23.权利要求2的微粒,其中所述微粒还包括更透明材料和更不透明材料的多个可检测的交替部分,其中所述更不透明材料的部分邻接所述更透明材料的部分,且其中所述可检测的交替部分提供所述微粒码。
24.权利要求23的微粒,其中所述更不透明材料是不透明的。
25.权利要求24的微粒,其中所述更不透明材料基本上包括半导体或金属。
26.权利要求23的微粒,其中所述更透明材料完全包裹所述更不透明材料。
27.权利要求2的微粒,其中所述微粒包括2个或更多个沿轴排列的离散区段,其中可从垂直于所述轴的所有方向检测各微粒的码。
28.权利要求2的微粒,其中所述微粒包括平行于在其上形成所述微粒的晶片表面的长轴。
29.权利要求2的微粒,其中所述微粒包括磁性磁性、抗磁性顺磁性超顺磁性材料。
30.权利要求2的微粒,其中所述微粒包括小于1.5微米的码元。
31.权利要求2的微粒,其中所述微粒包括小于1.0微米的码元。
2
32.权利要求2的晶片,其中所述晶片以大于1000个微粒/mm 的密度包括微粒。
2
33.权利要求2的晶片,其中所述晶片以大于5000个微粒/mm 的密度包括微粒。
2 2
34.权利要求2的晶片,其中所述晶片包括12.5in-500in 的总表面积。
35.权利要求2的微粒,其中所述微粒在所述微粒的1个或多个的表面包括多个凹陷。
36.晶片,在其上包括多个未释放的编码微粒,其中所述晶片上的所述微粒的数量多于
2
1,000个微粒/mm。
37.权利要求36的晶片,其中所述晶片基本上由硅组成。
38.权利要求36的晶片,其中所述晶片被再分为多个区域,各区域包括微粒子集。
39.权利要求36的微粒,其中所述微粒包括空间码。
40.权利要求39的微粒,其中至少一个微粒子集包括如下码,该码是包含至少1,000个可能的码的码域的成员。
41.权利要求39的微粒,其中所述晶片上的微粒的至少一个子集的空间码选自多于
10,000个可能的码。
42.权利要求39的微粒,其中所述空间码可利用光学放大进行读取。
43.权利要求39的微粒,其中所述空间码可用反射光检测。
44.权利要求39的微粒,其中所述空间码可用透射光检测。
45.权利要求39的微粒,其中所述空间码可用发射光检测。
46.权利要求39的微粒,其中所述空间码可用单图像采集事件检测。
47.权利要求36的微粒,其中所述微粒还包括基本上透明的外表面。
48.权利要求47的微粒,其中所述外表面由玻璃、硅石、二氧化硅、石英、氮化硅或碳化硅组成。
49.权利要求36的微粒,其中所述微粒还包括小于50微米的最大尺寸。
50.权利要求36的微粒,其中所述微粒还包括小于20微米的最大尺寸。
51.权利要求36的微粒,其中所述微粒还包括小于5,000立方微米的体积。
52.权利要求36的微粒,其中所述微粒还包括小于500立方微米的体积。
53.权利要求36的微粒,其中所述微粒的长宽比为3∶1或更高。
54.权利要求36的微粒,其中所述微粒还包括纵轴,其中垂直于所述微粒的所述纵轴的横截面基本上是矩形。
55.权利要求36的微粒,其中所述微粒的横截面基本上是方形。
56.权利要求36的微粒,其中所述微粒还包括:
第一材料,其包括2个或更多个沿轴排列的分开的区段;和
第二材料,其围绕所述第一材料,从而使所述区段可通过所述第二材料被检测,其中所述可检测区段提供所述微粒码。
57.权利要求36的微粒,其中所述微粒还包括更透明材料和更不透明材料的多个可检测的交替部分,其中所述更不透明材料的部分邻接所述更透明材料的部分,且其中所述可检测的交替部分提供所述微粒码。
58.权利要求57的微粒,其中所述更不透明材料是不透明的。
59.权利要求58的微粒,其中所述更不透明材料基本上包括半导体或金属。
60.权利要求57的微粒,其中所述更透明材料完全包裹所述更不透明材料。
61.权利要求36的微粒,其中所述微粒包括2个或更多个沿轴排列的离散区段,其中可从垂直于所述轴的所有方向检测各微粒的码。
62.权利要求36的微粒,其中所述微粒包括平行于在其上形成所述微粒的晶片表面的长轴。
63.权利要求36的微粒,其中所述微粒包括磁性、铁磁性、抗磁性、顺磁性或超顺磁性材料。
64.权利要求36的微粒,其中所述微粒包括小于1.5微米的码元。
65.权利要求36的微粒,其中所述微粒包括小于1.0微米的码元。
2
66.权利要求36的晶片,其中所述晶片以大于5,000个微粒/mm 的密度包括微粒。
2 2
67.权利要求36的晶片,其中所述晶片包括12.5in-500in 的总表面积。
68.权利要求36的微粒,其中所述微粒在所述微粒的1个或多个的表面包括多个凹陷。
69.具有未释放的编码微粒的基质,在不存在居间牺牲层的情况下包括连接到所述基质的多个编码微粒,所述微粒包括基本透明的表面。
70.权利要求69的晶片,其中所述晶片基本上由硅组成。
71.权利要求69的晶片,其中所述晶片被再分为多个区域,各区域包括微粒子集。
72.权利要求69的微粒,其中所述微粒包括空间码。
73.权利要求72的微粒,其中至少一个微粒子集包括如下码,该码是包含至少1,000个可能的码的码域的成员。
74.权利要求72的微粒,其中所述晶片上的微粒的至少一个子集的空间码选自多于
10,000个可能的码。
75.权利要求72的微粒,其中所述空间码可利用光学放大进行读取。
76.权利要求72的微粒,其中所述空间码可用反射光检测。
77.权利要求72的微粒,其中所述空间码可用透射光检测。
78.权利要求72的微粒,其中所述空间码可用发射光检测。
79.权利要求72的微粒,其中所述空间码可用单图像采集事件检测。
80.权利要求69的微粒,其中所述表面由选自玻璃、硅石、二氧化硅、石英、氮化硅和碳化硅的材料组成。
81.权利要求80的微粒,其中所述表面由玻璃组成。
82.权利要求69的微粒,其中所述微粒还包括小于50微米的最大尺寸。
83.权利要求69的微粒,其中所述微粒还包括小于20微米的最大尺寸。
84.权利要求69的微粒,其中所述微粒还包括小于5,000立方微米的体积。
85.权利要求69的微粒,其中所述微粒还包括小于500立方微米的体积。
86.权利要求69的微粒,其中所述微粒的长宽比为3∶1或更高。
87.权利要求69的微粒,其中所述微粒还包括纵轴,其中垂直于所述微粒的所述纵轴的横截面基本上是矩形。
88.权利要求69的微粒,其中所述微粒的横截面基本上是方形。
89.权利要求69的微粒,其中所述微粒还包括:
第一材料,其包括2个或更多个沿轴排列的分开的区段;和
第二材料,其围绕所述第一材料,从而使所述区段可通过所述第二材料被检测,其中所述可检测区段提供所述微粒码。
90.权利要求69的微粒,其中所述微粒还包括更透明材料和更不透明材料的多个可检测的交替部分,其中所述更不透明材料的部分邻接所述更透明材料的部分,且其中所述可检测的交替部分提供所述微粒码。
91.权利要求90的微粒,其中所述更不透明材料是不透明的。
92.权利要求91的微粒,其中所述更不透明材料基本上包括半导体或金属。
93.权利要求90的微粒,其中所述更透明材料完全包裹所述更不透明材料。
94.权利要求69的微粒,其中所述微粒包括2个或更多个沿轴排列的离散区段,其中可从垂直于所述轴的所有方向检测各微粒码。
95.权利要求69的微粒,其中所述微粒包括平行于在其上形成所述微粒的晶片表面的长轴。
96.权利要求69的微粒,其中所述微粒包括磁性、铁磁性、抗磁性、顺磁性或超顺磁性材料。
97.权利要求69的微粒,其中所述微粒包括小于1.5微米的码元。
98.权利要求69的微粒,其中所述微粒包括小于1.0微米的码元。
2
99.权利要求69的晶片,其中所述晶片以大于1,000个微粒/mm 的密度包括微粒。
2
100.权利要求69的晶片,其中所述晶片以大于5,000个微粒/mm 的密度包括微粒。
2 2
101.权利要求69的晶片,其中所述晶片包括12.5in-500in 的总表面积。
102.权利要求69的微粒,其中所述微粒在所述微粒的1个或多个的表面包括多个凹陷。
103.多个微粒,包括:
排布于表面上的微粒层,其中所述微粒基本上被部署于单层中;
其中所述微粒包括空间码;
其中所述微粒还在其上包括生物化学探针;
其中所述单层中的微粒覆盖所述表面部分的面积的大于30%;且
其中所述被覆盖的表面部分包括大于1,000平方微米的面积。
104.权利要求103的微粒,其中所述微粒被部署于液体中。
105.权利要求103的微粒,其中以大于90%的鉴定准确性检测所述空间码。
106.权利要求103的微粒,其中所述生物.化学探针选自核酸、蛋白质、肽、多肽、多核苷酸、寡核苷酸、细胞、抗体、酶、药物、受体、配体、脂质、抗原、抗体、微生物、气体、化学剂和污染物。
107.权利要求103的微粒,其中所述微粒被配置为支持下列测定,所述测定选自基因表达、甲基化、SNP基因分型、比较基因组杂交、microRNA分析谱、微生物鉴定、免疫测定、抗体阵列、蛋白质分析谱、蛋白质-蛋白质相互作用、受体-配体测定、病毒鉴定、细菌鉴定和病原体鉴定。
108.权利要求103的微粒,其中所述微粒包括基于荧光的生物测定。
109.权利要求103的微粒,其中所述微粒被配置为进行实质上的布朗运动
110.权利要求109的微粒,其中所述微粒随机运动,其中所述微粒的二维扩散系数大-12 2
于1×10 cm/s。
111.权利要求109的微粒,其中检测到多于10%的微粒在1秒或更短的时间间隔内进行20nm或更多的侧向位移。
112.权利要求103的多个微粒,其中所述单层中的微粒覆盖所述表面第一区域的大于
50%。
113.权利要求103的多个微粒,其中所述单层中的微粒覆盖所述表面第一区域的大于
70%。
114.权利要求103的多个微粒,其中少于10%的微粒被部署于或延伸到单层外。
115.权利要求103的多个微粒,其中所述表面的部分中至少70%的微粒具有可检测的空间码。
116.权利要求103的多个微粒,其中所述表面的部分中至少90%的微粒具有可检测的空间码。
2
117.权利要求103的多个微粒,其中所述微粒以至少2,000个微粒/mm 的密度被部署于单层中。
2
118.权利要求103的多个微粒,其中所述微粒以至少5,000个微粒/mm 的密度被部署于单层中。
119.权利要求103的多个微粒,其中所述表面基本上是平的,无表面特征,以限制或固定所述微粒。
120.权利要求103的多个微粒,其中所述表面经化学修饰,以促进微粒单层的形成。
121.权利要求103的微粒,其中所述微粒的空间码选自多于1,000个可能的码。
122.权利要求103的微粒,其中所述微粒的空间码选自多于10,000个可能的码。
123.权利要求103的微粒,其中所述空间码可利用光学放大进行读取。
124.权利要求103的微粒,其中所述空间码可用反射光、透射光或发射光检测。
125.权利要求103的微粒,其中所述空间码可用单图像采集事件检测。
126.权利要求103的微粒,其中所述微粒还包括基本上透明的外表面。
127.权利要求126的微粒,其中所述外表面由选自玻璃、硅石、二氧化硅、石英、氮化硅和碳化硅的材料组成。
128.权利要求103的微粒,其中所述微粒还包括小于50微米的最大尺寸。
129.权利要求103的微粒,其中所述微粒还包括小于20微米的最大尺寸。
130.权利要求103的微粒,其中所述微粒还包括小于5,000立方微米的体积。
131.权利要求103的微粒,其中所述微粒还包括小于500立方微米的体积。
132.权利要求103的微粒,其中所述微粒的长宽比为3∶1或更高。
133.权利要求103的微粒,其中所述微粒的横截面基本上是矩形。
134.权利要求103的微粒,其中所述微粒的横截面基本上是方形。
135.权利要求103的微粒,其中所述微粒还包括:
第一材料,其包括2个或更多个沿所述微粒的轴排列的分开的区段;
第二材料,其围绕所述第一材料,从而使所述区段可通过所述第二材料被检测;且其中提供所述微粒的空间码。
136.权利要求103的微粒,其中所述微粒还包括更透明材料和更不透明材料的多个交替部分,其中所述更不透明材料的部分邻接所述更透明材料的部分,且其中所述更透明材料的部分和更不透明材料的部分表现空间码。
137.权利要求136的微粒,其中所述更不透明材料是不透明的。
138.权利要求137的微粒,其中所述更不透明材料基本上包括半导体或金属。
139.权利要求138的微粒,其中所述更透明材料完全包裹所述更不透明材料。
140.权利要求103的微粒,其中所述微粒还包括2个或更多个沿轴排列的离散区段,其中可从垂直于所述轴的所有方向检测各微粒的空间码。
141.权利要求103的微粒,其中所述微粒还包括选自磁性、铁磁性、抗磁性、顺磁性或超顺磁性材料的材料。
142.权利要求103的微粒,其中所述微粒还包括小于1.5微米的码元。
143.权利要求103的微粒,其中所述微粒还包括小于1.0微米的码元。
144.权利要求103的微粒,其中所述微粒还在所述微粒的1个或多个的表面包括多个凹陷。
145.多个微粒,包括:
排布于表面上的微粒层,其中所述微粒基本上被部署于单层中;
其中所述微粒包括空间码;
其中所述微粒还在其上包括生物化学探针;且
2
其中所述微粒被部署于所述表面的部分上,且以至少2,000个微粒/mm 的密度被部署于所述单层中。
146.权利要求145的微粒,其中所述生物化学探针选自核酸、蛋白质、肽、多肽、多核苷酸、寡核苷酸、细胞、抗体、酶、药物、受体、配体、脂质、抗原、抗体、微生物、气体、化学剂和污染物。
147.权利要求145的微粒,其中所述微粒被配置为支持下列测定,所述测定选自基因表达、甲基化、SNP基因分型、比较基因组杂交、microRNA分析谱、微生物鉴定、免疫测定、抗体阵列、蛋白质分析谱、蛋白质-蛋白质相互作用、受体-配体测定、病毒鉴定、细菌鉴定和病原体鉴定。
148.权利要求145的微粒,其中所述微粒进行实质上的布朗运动。
149.权利要求148的微粒,其中检测到多于10%的微粒在1秒或更短的时间间隔内进行20nm或更多的侧向位移。
150.权利要求145的多个微粒,其中所述单层中的微粒覆盖所述表面部分的面积的大于30%。
151.权利要求145的多个微粒,其中所述单层中的微粒覆盖所述表面部分面积的大于
50%。
152.权利要求145的多个微粒,其中所述表面的部分中至少70%的总微粒具有可检测的空间码。
153.权利要求145的多个微粒,其中所述微粒以至少5,000个微粒/mm2的密度被部署于单层中。
154.权利要求145的多个微粒,其中所述表面基本上是平的,无表面特征,以限制或固定所述微粒。
155.权利要求145的多个微粒,其中所述表面经化学修饰,以促进微粒单层的形成。
156.权利要求145的微粒,其中所述微粒的空间码选自多于1,000个可能的码。
157.权利要求145的微粒,其中所述空间码可利用光学放大进行读取。
158.权利要求145的微粒,其中所述空间码可用反射光、透射光或发射光检测。
159.权利要求145的微粒,其中所述空间码可用单图像采集事件检测。
160.权利要求145的微粒,其中所述微粒还包括基本上透明的外表面。
161.权利要求160的微粒,其中所述外表面由选自玻璃、硅石、二氧化硅、石英、氮化硅和碳化硅的材料组成。
162.权利要求145的微粒,其中所述微粒还包括小于50微米的最大尺寸。
163.权利要求145的微粒,其中所述微粒还包括小于20微米的最大尺寸。
164.权利要求145的微粒,其中所述微粒还包括小于5,000立方微米的体积。
165.权利要求145的微粒,其中所述微粒还包括小于500立方微米的体积。
166.权利要求145的微粒,其中所述微粒的长宽比为3∶1或更高。
167.权利要求145的微粒,其中所述微粒还包括:
第一材料,其包括2个或更多个沿所述微粒的轴排列的分开的区段;
第二材料,其围绕所述第一材料,从而使所述区段可通过所述第二材料被检测;且其中提供所述微粒的空间码。
168.权利要求145的微粒,其中所述微粒包括更透明材料和更不透明材料的多个交替部分,其中所述更不透明材料的部分邻接所述更透明材料的部分,且其中所述更透明材料的部分和更不透明材料的部分表现空间码。
169.权利要求168的微粒,其中所述更不透明材料是不透明的。
170.权利要求169的微粒,其中所述更不透明材料基本上包括半导体或金属。
171.权利要求170的微粒,其中所述更透明材料完全包裹所述更不透明材料。
172.权利要求145的微粒,其中所述微粒还包括2个或更多个沿轴排列的离散区段,其中可从垂直于所述轴的所有方向检测各微粒的空间码。
173.权利要求145的微粒,其中所述微粒还包括选自磁性、铁磁性、抗磁性、顺磁性或超顺磁性材料的材料。
174.权利要求145的微粒,其中所述微粒还包括小于1.5微米的码元。
175.权利要求145的微粒,其中所述微粒还在所述微粒的1个或多个的表面包括多个凹陷。
176.成像系统,包括:
储库,其中包括多个微粒和液体;
其中所述微粒包括空间码;
2
其中所述微粒以2,000个微粒/mm 的密度在二维层中延长及排布;
电磁辐射源;
检测器,其经部署以检测入射到所述微粒上的电磁辐射
177.权利要求176的微粒,其中所述储库是微量滴定板的部分。
178.权利要求176的微粒,其中所述微粒还包括选自核酸、蛋白质、肽、多肽、多核苷酸、寡核苷酸、细胞、抗体、酶、药物、受体、配体、脂质、抗原、抗体、微生物、气体、化学剂和污染物的生物化学探针。
179.权利要求176的微粒,其中所述微粒被配置为支持下列测定,所述测定选自基因表达、甲基化、SNP基因分型、比较基因组杂交、microRNA分析谱、微生物鉴定、免疫测定、抗体阵列、蛋白质分析谱、蛋白质-蛋白质相互作用、受体-配体测定、病毒鉴定、细菌鉴定和病原体鉴定。
180.权利要求176的微粒,其中所述微粒包括基于荧光的生物测定。
181.权利要求176的微粒,其中所述微粒被配置为进行实质上的布朗运动。
182.权利要求176的微粒,其中所述单层中的微粒覆盖所述表面部分的面积的大于
30%。
2
183.权利要求176的微粒,其中所述微粒以至少2,000个微粒/mm 的密度被部署于单层中。
184.权利要求176的微粒,其中所述储库还包括基本上是平的表面,无表面特征,以限制或固定所述微粒。
185.权利要求176的微粒,其中所述表面经化学修饰,以促进微粒单层的形成。
186.权利要求176的微粒,其中所述微粒的空间码选自多于1,000个可能的码。
187.权利要求176的微粒,其中所述空间码可利用光学放大进行读取。
188.权利要求176的微粒,其中所述空间码可用反射光、透射光或发射光检测。
189.权利要求176的微粒,其中所述空间码可用单图像采集事件检测。
190.权利要求176的微粒,其中所述微粒包括基本上透明的外表面。
191.权利要求190的微粒,其中所述外表面由选自玻璃、硅石、二氧化硅、石英、氮化硅和碳化硅的材料组成。
192.权利要求176的微粒,其中所述微粒还包括小于50微米的最大尺寸。
193.权利要求176的微粒,其中所述微粒还包括小于5,000立方微米的体积。
194.权利要求176的微粒,其中所述微粒的长宽比为3∶1或更高。
195.权利要求176的微粒,其中所述微粒的横截面基本上是矩形。
196.权利要求176的微粒,其中所述微粒的横截面基本上是方形。
197.权利要求176的微粒,其中所述微粒还包括:
第一材料,其包括2个或更多个沿所述微粒的轴排列的分开的区段;
第二材料,其围绕所述第一材料,从而使所述区段可通过所述第二材料被检测;且其中提供所述微粒的空间码。
198.权利要求176的微粒,其中所述微粒还包括更透明材料和更不透明材料的多个交替部分,其中所述更不透明材料的部分邻接所述更透明材料的部分,且其中所述更透明材料的部分和更不透明材料的部分表现空间码。
199.权利要求198的微粒,其中所述更不透明材料是不透明的。
200.权利要求199的微粒,其中所述更透明材料完全包裹所述更不透明材料。
201.权利要求176的微粒,其中所述微粒还包括2个或更多个沿轴排列的离散区段,其中可从垂直于所述轴的所有方向检测各微粒的空间码。
202.权利要求176的微粒,其中所述微粒还包括小于1.5微米的码元。
203.成像系统,包括:
储库,其中包括多个微粒和液体;
其中所述微粒包括空间码;
其中所述微粒基本上被部署于所述储库表面的部分上的单层中,其中所述单层中的微粒覆盖所述表面部分的面积的大于30%,且其中所述被覆盖的表面部分包括大于1,000平方微米的面积;
电磁辐射源;及
检测器,其经部署以检测入射到所述微粒上的电磁辐射。
204.权利要求203的方法,其中所述储库是微量滴定板的部分。
205.权利要求203的微粒,其中所述微粒还包括选自核酸、蛋白质、肽、多肽、多核苷酸、寡核苷酸、细胞、抗体、酶、药物、受体、配体、脂质、抗原、抗体、微生物、气体、化学剂和污染物的生物化学探针。
206.权利要求203的微粒,其中所述微粒被配置为支持下列测定,所述测定选自基因表达、甲基化、SNP基因分型、比较基因组杂交、microRNA分析谱、微生物鉴定、免疫测定、抗体阵列、蛋白质分析谱、蛋白质-蛋白质相互作用、受体-配体测定、病毒鉴定、细菌鉴定和病原体鉴定。
207.权利要求203的微粒,其中所述微粒被配置为进行实质上的布朗运动。
208.权利要求207的微粒,其中所述微粒随机运动,其中所述微粒的二维扩散系数大-12 2
于1×10 cm/s。
209.权利要求207的微粒,其中检测到多于10%的微粒在1秒或更短的时间间隔内进行20nm或更多的侧向位移。
210.权利要求203的多个微粒,其中所述单层中的微粒覆盖所述表面部分的面积的大于30%。
2
211.权利要求203的多个微粒,其中所述微粒还以至少5,000个微粒/mm 的密度被部署。
212.权利要求203的多个微粒,其中所述储库的表面基本上是平的,无表面特征,以限制或固定所述微粒。
213.权利要求203的多个微粒,其中所述储库的表面经化学修饰,以促进微粒单层的形成。
214.权利要求203的微粒,其中所述微粒的空间码选自多于1,000个可能的码。
215.权利要求203的微粒,其中所述空间码可利用光学放大进行读取。
216.权利要求203的微粒,其中所述空间码可用反射光、透射光或发射光检测。
217.权利要求203的微粒,其中所述空间码可用单图像采集事件检测。
218.权利要求203的微粒,其中所述微粒还包括基本上透明的外表面。
219.权利要求218的微粒,其中所述外表面由选自玻璃、硅石、二氧化硅、石英、氮化硅和碳化硅的材料组成。
220.权利要求203的微粒,其中所述微粒还包括小于50微米的最大尺寸
221.权利要求203的微粒,其中所述微粒还包括小于5,000立方微米的体积。
222.权利要求203的微粒,其中所述微粒的长宽比为3∶1或更高。
223.权利要求203的微粒,其中所述微粒还包括:
第一材料,其包括2个或更多个沿所述微粒的轴排列的分开的区段;
第二材料,其围绕所述第一材料,从而使所述区段可通过所述第二材料被检测;且其中提供所述微粒的空间码。
224.权利要求203的微粒,其中所述微粒包括更透明材料和更不透明材料的多个交替部分,其中所述更不透明材料的部分邻接所述更透明材料的部分,且其中所述更透明材料的部分和更不透明材料的部分表现空间码。
225.权利要求224的微粒,其中所述更不透明材料是不透明的。
226.权利要求225的微粒,其中所述更透明材料完全包裹所述更不透明材料。
227.权利要求203的微粒,其中所述微粒还包括2个或更多个沿轴排列的离散区段,其中可从垂直于所述轴的所有方向检测各微粒的空间码。
228.权利要求203的微粒,其中所述微粒还包括小于1.5微米的码元。
229.权利要求203的微粒,其中所述微粒还在所述微粒的1个或多个的表面包括多个凹陷。
230.检测微粒码的方法,包括:
提供微粒集,各微粒包括线性或平面延伸的空间码;
其中所述微粒层在分析过程中被排布于容器内表面上,其中所述微粒基本上被部署于所述内表面上的单层中;
将电磁辐射透射通过所述微粒或从所述微粒反射,并检测所述透射或反射的电磁辐射,以检测单个微粒的空间码;
其中所述微粒被部署于所述表面的部分上,且其中所述单层中的微粒覆盖所述表面部分的面积的大于30%。
231.权利要求230的方法,还包括:
将所述微粒集与第一测试液混合,导致所述微粒上的探针与相应的分析物结合;
用第二洗涤液洗涤所述微粒;及
加入第三分析液,在其中于检测期间部署所述微粒。
232.权利要求230的方法,其中所述表面的部分中至少90%的微粒被部署于单层中。
233.权利要求232的方法,其中所述表面的部分中至少95%的微粒被部署于单层中。
2
234.权利要求230的方法,其中所述微粒以至少2,000个微粒/mm 的密度被基本上部署于单层中。
235.权利要求230的方法,其中在分析所述容器中所述微粒的过程中,所述微粒进行布朗运动。
236.权利要求231的方法,其中所述第二和第三液相同。
237.权利要求231的方法,其中所述第一和第二液相同
238.权利要求231的方法,其中所述第一、第二和第三液相同
239.权利要求230的方法,其中所述容器是微量滴定板。
240.权利要求230的方法,其中所述微粒还包括选自核酸、蛋白质、肽、多肽、多核苷酸、寡核苷酸、细胞、抗体、酶、药物、受体、配体、脂质、抗原、抗体、微生物、气体、化学剂和污染物的生物化学探针。
241.权利要求230的方法,其中所述微粒被配置为支持下列测定,所述测定选自基因表达、甲基化、SNP基因分型、比较基因组杂交、microRNA分析谱、微生物鉴定、免疫测定、抗体阵列、蛋白质分析谱、蛋白质-蛋白质相互作用、受体-配体测定、病毒鉴定、细菌鉴定和病原体鉴定。
242.权利要求230的方法,其中所述微粒被配置为进行实质上的布朗运动。
243.权利要求242的微粒,其中检测到多于10%的微粒在1秒或更短的时间间隔内进行20nm或更多的侧向位移。
244.权利要求230的方法,其中所述单层中的微粒覆盖所述表面部分面积的大于
50%。
245.权利要求230的方法,其中所述单层中的微粒覆盖所述表面部分面积的大于
70%。
2
246.权利要求230的方法,其中所述微粒以至少2,000个微粒/mm 的密度被部署于单层中。
2
247.权利要求230的方法,其中所述微粒以至少5,000个微粒/mm 的密度被部署于单层中。
248.权利要求230的方法,其中所述内表面基本上是平的,无表面特征,以限制或固定所述微粒。
249.权利要求230的方法,其中所述表面经化学修饰,以促进微粒单层的形成。
250.权利要求230的方法,其中所述微粒的空间码选自多于1,000个可能的码。
251.权利要求230的方法,其中所述空间码利用光学放大进行读取。
252.权利要求230的方法,其中所述空间码用单图像采集事件检测。
253.权利要求230的方法,其中所述微粒包括基本上透明的外表面。
254.权利要求253的方法,其中所述外表面由选自玻璃、硅石、二氧化硅、石英、氮化硅和碳化硅的材料组成。
255.权利要求230的方法,其中所述微粒包括小于50微米的最大尺寸。
256.权利要求230的方法,其中所述微粒包括小于5,000立方微米的体积。
257.权利要求230的方法,其中所述微粒的长宽比为3∶1或更高。
258.权利要求230的方法,其中所述微粒还包括:
第一材料,其包括2个或更多个沿所述微粒的轴排列的分开的区段;
第二材料,其围绕所述第一材料,从而使所述区段可通过所述第二材料被检测;且其中提供所述微粒的空间码。
259.权利要求230的方法,其中所述微粒还包括更透明材料和更不透明材料的多个交替部分,其中所述更不透明材料的部分邻接所述更透明材料的部分,且其中所述更透明材料的部分和更不透明材料的部分表现空间码。
260.权利要求259的方法,其中所述更不透明材料是不透明的。
261.权利要求260的方法,其中所述更透明材料完全包裹所述更不透明材料。
262.权利要求230的方法,其中所述微粒还包括2个或更多个沿轴排列的离散区段,其中可从垂直于所述轴的所有方向检测各微粒的空间码。
263.权利要求230的方法,其中所述微粒还包括选自磁性、铁磁性、抗磁性、顺磁性或超顺磁性材料的材料。
264.权利要求230的方法,其中所述微粒还包括小于1.5微米的码元。
265.计算机可读介质,其上记录有包含像素的图像,所述图像具有多个包括空间码的生物化学活性微粒,其中所述图像在所述图像中包括50个微粒/一百万个像素。
266.权利要求265的介质,其中所述图像中至少90%微粒的码可被测定。
267.权利要求265的介质,其中所述微粒还包括选自核酸、蛋白质、肽、多肽、多核苷酸、寡核苷酸、细胞、抗体、酶、药物、受体、配体、脂质、抗原、抗体、微生物、气体、化学剂和污染物的生物化学探针。
268.权利要求265的介质,其中所述微粒被调整为支持下列测定,所述测定选自基因表达、甲基化、SNP基因分型、比较基因组杂交、microRNA分析谱、微生物鉴定、免疫测定、抗体阵列、蛋白质分析谱、蛋白质-蛋白质相互作用、受体-配体测定、病毒鉴定、细菌鉴定和病原体鉴定。
269.权利要求265的介质,其中所述微粒还包括基于荧光的生物测定。
270.权利要求265的介质,其中所述微粒的空间码选自多于1,000个可能的码。
271.权利要求265的介质,其中所述微粒的空间码选自多于10,000个可能的码。
272.权利要求265的介质,其中所述空间码利用光学放大进行读取。
273.权利要求265的介质,其中所述图像由反射光、透射光或发射光获取。
274.权利要求265的介质,其中所述图像用单图像采集事件获取。
275.权利要求265的介质,其中所述微粒还包括基本上透明的外表面。
276.权利要求275的介质,其中所述外表面由玻璃、硅石、二氧化硅、石英、氮化硅或碳化硅组成。
277.权利要求265的介质,其中所述微粒包括小于50微米的最大尺寸。
278.权利要求265的介质,其中所述微粒包括小于20微米的最大尺寸。
279.权利要求265的介质,其中所述微粒包括小于5,000立方微米的体积。
280.权利要求265的介质,其中所述微粒包括小于500立方微米的体积。
281.权利要求265的介质,其中所述微粒的长宽比为3∶1或更高。
282.权利要求265的介质,其中所述微粒的横截面基本上是矩形。
283.权利要求265的介质,其中所述微粒的横截面基本上是方形。
284.权利要求265的介质,其中所述微粒还包括:
第一材料,其包括2个或更多个沿所述微粒的轴排列的分开的区段;
第二材料,其围绕所述第一材料,从而使所述区段可通过所述第二材料被检测;且其中提供所述微粒的空间码。
285.权利要求265的介质,其中所述微粒包括更透明材料和更不透明材料的多个交替部分,其中所述更不透明材料的部分邻接所述更透明材料的部分,且其中所述更透明材料的部分和更不透明材料的部分表现空间码。
286.权利要求285的介质,其中所述更不透明材料是不透明的。
287.权利要求286的介质,其中所述更不透明材料基本上包括半导体或金属。
288.权利要求287的介质,其中所述更透明材料完全包裹所述更不透明材料。
289.权利要求265的介质,其中所述微粒包括2个或更多个沿轴排列的离散区段,其中可从垂直于所述轴的所有方向检测各微粒码。
290.权利要求265的介质,其中所述微粒包括选自磁性、铁磁性、抗磁性、顺磁性和超顺磁性材料的材料。
291.权利要求265的介质,其中所述微粒包括小于1.5微米的码元。
292.权利要求265的介质,其中所述微粒包括小于1.0微米的码元。
293.权利要求265的介质,其中所述微粒在所述微粒的1个或多个的表面包括多个凹陷。
294.计算机可读介质,其上记录有包含像素的图像,所述图像具有多个包括空间码的生物化学活性微粒,其中代表微粒的像素占像素总数30%或更多。
295.权利要求294的介质,其中所述图像中至少90%微粒的码可被测定。
296.权利要求294的介质,其中所述微粒还包括选自核酸、蛋白质、肽、多肽、多核苷酸、寡核苷酸、细胞、抗体、酶、药物、受体、配体、脂质、抗原、抗体、微生物、气体、化学剂和污染物的生物化学探针。
297.权利要求294的介质,其中所述微粒被配置为支持下列测定,所述测定选自基因表达、甲基化、SNP基因分型、比较基因组杂交、microRNA分析谱、微生物鉴定、免疫测定、抗体阵列、蛋白质分析谱、蛋白质-蛋白质相互作用、受体-配体测定、病毒鉴定、细菌鉴定和病原体鉴定。
298.权利要求294的介质,其中所述微粒还包括基于荧光的生物测定。
299.权利要求294的介质,其中所述微粒的空间码选自多于1,000个可能的码。
300.权利要求294的介质,其中所述微粒的空间码选自多于10,000个可能的码。
301.权利要求294的介质,其中所述空间码利用光学放大进行读取。
302.权利要求294的介质,其中所述图像由反射光、透射光或发射光获取。
303.权利要求294的介质,其中所述图像可用单图像采集事件获取。
304.权利要求294的介质,其中所述微粒还包括基本上透明的外表面。
305.权利要求304的介质,其中所述外表面由选自玻璃、硅石、二氧化硅、石英、氮化硅和碳化硅的材料组成。
306.权利要求294的介质,其中所述微粒包括小于50微米的最大尺寸。
307.权利要求294的介质,其中所述微粒包括小于5,000立方微米的体积。
308.权利要求294的介质,其中所述微粒的长宽比为3∶1或更高。
309.权利要求294的介质,其中所述微粒的横截面基本上是方形。
310.权利要求294的介质,其中所述微粒还包括:
第一材料,其包括2个或更多个沿所述微粒的轴排列的分开的区段;
第二材料,其围绕所述第一材料,从而使所述区段可通过所述第二材料被检测;且其中提供所述微粒的空间码。
311.权利要求294的介质,其中所述微粒包括更透明材料和更不透明材料的多个交替部分,其中所述更不透明材料的部分邻接所述更透明材料的部分,且其中所述更透明材料的部分和更不透明材料的部分表现空间码。
312.权利要求311的介质,其中所述更不透明材料是不透明的。
313.权利要求312的介质,其中所述更透明材料完全包裹所述更不透明材料。
314.权利要求294的介质,其中所述微粒包括2个或更多个沿轴排列的离散区段,其中可从垂直于所述轴的所有方向检测各微粒码。
315.权利要求294的介质,其中所述微粒包括选自磁性、铁磁性、抗磁性、顺磁性和超顺磁性材料的材料。
316.权利要求294的介质,其中所述微粒包括小于1.5微米的码元。
317.粒子集,所述集包括:
至少200个储库,各储库包括一组具有相同码,但具有与其他储库中粒子的码不同的码的粒子;
其中各储库包括至少100,000个粒子。
318.权利要求317的粒子集,其中提供了至少500个储库。
319.权利要求318的粒子集,其中各储库中提供了至少500,000个粒子。
320.权利要求318的粒子集,其中提供了至少1000个储库。
321.权利要求319的粒子集,其中各储库中提供了至少一百万个粒子。
322.权利要求317的粒子集,其中在多个96孔微量滴定板中提供了至少200个储库。
323.权利要求317的粒子集,其中所述粒子还在其上包括生物化学探针。
324.权利要求323的粒子集,其中所述生物化学探针选自核酸、蛋白质、肽、多肽、多核苷酸、寡核苷酸、细胞、抗体、酶、药物、受体、配体、脂质、抗原、抗体、微生物、气体、化学剂和污染物。
325.权利要求317的粒子集,其中所述粒子还包括:
第一材料,其包括2个或更多个沿所述粒子的轴排列的分开的区段;
第二材料,其围绕所述第一材料,从而使所述区段可通过所述第二材料被检测;且其中提供所述粒子的空间码。
326.权利要求317的粒子集,其中所述粒子包括2个或更多个沿所述粒子的轴排列的离散区段,其中可从垂直于所述轴的所有方向检测各微粒码。
327.权利要求317的粒子集,其中所述码包括尺寸小于1微米的码元。
328.权利要求317的粒子集,其中所述码用投影光刻法形成。
329.权利要求317的粒子集,其中所述码还包括空间码。
330.权利要求329的粒子集,其中所述空间码可用单图像采集事件检测。
331.权利要求317的粒子集,其中所述粒子还包括小于50微米的最大尺寸。
332.权利要求317的粒子集,其中所述微粒还包括小于5,000立方微米的体积。
333.权利要求317的粒子集,其中所述粒子的长宽比为2∶1或更高。
334.权利要求317的粒子集,其中所述粒子还包括大于1,000个码的码域。
335.权利要求317的粒子集,其中所述粒子还包括大于10,000个码的码域。
336.方法,包括:
提供权利要求317的微粒集;
将探针固定于微粒上,不同探针去向具有相同码的各组微粒;
将所述微粒混合在一起,以形成合并的微粒库;及
取所述库的等分试样,并将所述等分试样置于分开的容器中。
337.权利要求336的方法,还包括使用所述等分试样就特定部分的有无测试样品。
338.权利要求337的方法,其中检测样品包括以95%或更高的鉴定率鉴定所述微粒。
339.方法,包括:
提供权利要求323的晶片集;
将所述晶片单离为单个晶片区;
将各晶片区置于储库中;
在各储库中用蚀刻剂蚀刻微粒,以释放所述微粒。
340.权利要求339的方法,还包括将探针固定于微粒上,其中在具有给定码的每组微粒上使用不同探针。
341.权利要求339的方法,还包括:将释放的微粒混合在一起,以形成合并的微粒库,及取所述库的等分试样,并将所述等分试样置于分开的容器中。
342.用于检测生物学活性分析物的系统,包括:
多个排布于表面上的层中的微粒,其中所述微粒包括探针和空间码,所述微粒基本上被部署于单层中,且其中所述微粒被部署于所述表面的部分上,从而所述单层中的微粒覆盖所述表面部分的大于30%。
343.权利要求342的系统,其中所述生物学活性分析物选自核酸、蛋白质、抗原、抗体、微生物、气体、化学剂和污染物。
344.权利要求343的系统,其中所述生物学活性分析物是蛋白质。
345.权利要求343的系统,其中所述生物学活性分析物是核酸。
346.权利要求345的系统,其中在核酸中检测SNP。
347.权利要求345的系统,其中在检测所述核酸后测定基因表达。
348.权利要求342的系统,其中所述微粒被调整为支持下列测定,所述测定选自基因表达、甲基化、SNP基因分型、比较基因组杂交、microRNA分析谱、微生物鉴定、免疫测定、抗体阵列、蛋白质分析谱和蛋白质-蛋白质相互作用。
349.权利要求348的系统,其中所述微粒被配置为支持包括结合对测定在内的蛋白质-蛋白质相互作用测定。
350.权利要求349的系统,其中所述结合对测定包括受体-配体测定。
351.权利要求348的系统,其中所述微生物鉴定测定选自病毒鉴定、细菌鉴定和病原体鉴定。
352.权利要求348的系统,其中所述微粒被调整为支持免疫测定,且其中所述微粒与生物学活性分析物的相互作用包括免疫测定的结果。
353.权利要求352的系统,其中所支持的免疫测定是酶联免疫吸附测定(ELISA)。
354.权利要求352的系统,其中所支持的免疫测定是夹心免疫测定。
355.权利要求352的系统,其中所支持的免疫测定是荧光免疫测定。
356.权利要求342的系统,其中所述单层中的微粒覆盖所述表面部分的大于50%。
357.权利要求356的系统,其中所述单层中的微粒覆盖所述表面部分的大于70%。
358.权利要求342的系统,其中少于10%的所述微粒被部署或延伸于所述单层外。
359.权利要求342的系统,其中少于30%的所述微粒被部署或延伸于所述单层外。
360.权利要求358的系统,其中少于5%的所述微粒被部署或延伸于所述单层外。
361.权利要求360的系统,其中所述单层中的微粒可以以至少95%的鉴定率鉴定。
2
362.权利要求342的系统,其中所述微粒以至少2,000个微粒/mm 的密度被部署于单层中。
2
363.权利要求362的系统,其中所述微粒以至少5,000个微粒/mm 的密度被部署于单层中。
364.权利要求342的系统,其中各微粒具有50μm的最大尺寸。
365.权利要求342的系统,其中各微粒还包括被透明材料完全包裹的分开的区段。
366.权利要求342的系统,其中所述微粒被部署于液体中,且进行实质上的布朗运动。
367.权利要求366的系统,其中以在5秒钟的时间间隔内取得的2个或更多个的图像中的微粒位移可测量所述布朗运动。
368.权利要求342的系统,其中所述探针包括生物学活性部分,所述生物学活性部分选自核酸、蛋白质、抗原、抗体和化学剂。
369.权利要求342的系统,其中所述探针包括结合至所述微粒的DNA。
370.权利要求342的系统,其中所述探针包括结合至所述微粒的蛋白质。
371.检测生物学活性分析物的装置,包括:
多个排布于表面上的层中的微粒,其中所述微粒包括探针和空间码,所述微粒基本上
2
被部署于单层中,且其中所述微粒以至少2,000个微粒/mm 的密度被部署于表面部分上。
2
372.权利要求371的装置,其中所述微粒以至少5,000个微粒/mm 的密度被部署于单层中。
373.检测生物学活性分析物的方法,包括:
将待检测的、怀疑含有生物学活性分析物的样品递送至包括微粒单层的系统中,所述微粒被部署于所述表面的部分上,其中所述微粒包括探针和空间码,且被部署于表面部分上,从而所述单层中的微粒覆盖所述表面部分的大于30%;
将电磁辐射透射通过所述微粒或从所述微粒反射,并检测所述透射或反射的电磁辐射,以检测所述单个微粒的空间码;及
通过对来自所述微粒的信号定量来测定生物学活性分析物的有无。
374.权利要求373的方法,其中所述生物学活性分析物选自核酸、蛋白质、抗原、抗体、微生物、气体、化学剂和污染物。
375.权利要求374的方法,其中所述生物学活性分析物是蛋白质。
376.权利要求374的方法,其中所述生物学活性分析物是核酸。
377.权利要求376的方法,其中在核酸中检测SNP。
378.权利要求376的方法,其中在检测所述核酸后测定基因表达。
379.权利要求373的方法,其中所述微粒被调整为支持下列测定,所述测定选自基因表达、甲基化、SNP基因分型、比较基因组杂交、microRNA分析谱、微生物鉴定、免疫测定、受体-配体、抗体阵列、蛋白质分析谱和蛋白质-蛋白质相互作用。
380.权利要求379的方法,其中所述微粒被调整为支持包括结合对测定在内的蛋白质-蛋白质相互作用测定。
381.权利要求380的方法,其中所述结合对测定包括受体-配体测定。
382.权利要求379的方法,其中所述微生物鉴定测定选自病毒鉴定、细菌鉴定和病原体鉴定。
383.权利要求373的方法,其中所述微粒被调整为支持免疫测定,且其中所述微粒与生物学活性分析物的相互作用包括免疫测定的结果。
384.权利要求383的方法,其中所支持的免疫测定是酶联免疫吸附测定(ELISA)。
385.权利要求383的方法,其中所支持的免疫测定是夹心免疫测定。
386.权利要求383的方法,其中所支持的免疫测定是选自荧光免疫测定、发光免疫测定和化学发光免疫测定的免疫测定。
387.小体积检测多个生物学活性分析物的系统,包括:
多个立体编码微粒,其中所述多个微粒包括探针和多于200个空间码,且其中所述多于200个空间码可在小于50μl的样品体积中被光学检测。
388.权利要求387的系统,其中所述微粒排布于表面上的层中。
389.权利要求387的系统,其中所述空间码被同时检测。
390.检测汇合的受试者样品中的生物学活性分析物的方法,包括:
汇合多于50个怀疑含有生物学活性分析物的受试者样品;
将所述汇合的样品递送至包括多个微粒的系统,其中所述微粒包括探针和编码方案;
将电磁辐射透射通过所述微粒或从所述微粒反射,并检测所述透射或反射的电磁辐射,以检测所述单个微粒的空间码;及
通过对来自所述微粒的信号定量来测定生物学活性分析物的有无。
391.权利要求390的方法,其中所述编码方案包括空间码。
392.快速检测生物学活性分析物的方法:
将待检测的、怀疑含有生物学活性分析物的样品递送至包括多于100个不同编码微粒的系统,其中所述微粒包括探针和空间码;
将电磁辐射透射通过所述微粒或从所述微粒反射,并检测所述透射或反射的电磁辐射,以检测所述单个微粒的空间码,其中所述检测包括在不到5秒钟内检测多于100个不同编码微粒;及
通过对来自所述微粒的信号定量来测定生物学活性分析物的有无。
393.控制生物学活性分析物检测系统的性质的方法,包括:
提供编码微粒的主混合物,其中所述微粒包括探针和空间码;
将所述主混合物分为多个子混合物;
测试生物学活性分析物检测系统中的子混合物;
测定所述系统中的子混合物性质,其中测定所述性质包括所述微粒探针与对照样品的反应性进行定量,以产生定性结果;
记录所述定性结果;及
将所述定性结果与各子混合物相联系。
394.权利要求393的方法,其中1个或多个的子混合物用于诊断性测试生物学活性分析物的存在,并将相同或不同的所述子混合物用于临床试验。

说明书全文

刻印的微码

[0001] 交叉引用
[0002] 本申请要求2007年6月25日提交的名称为“EncodedMicroparticles”的美国临时申请号60/946,127的权益,其通过引用整体并入本文。

背景技术

[0003] 微粒或纳米粒常被称为特征尺寸为微米量级或更小的结构,例如体积为1mm3或更小的结构。由于源自其小特征尺寸的独特性质,微粒在实验室研究及许多工业领域中具有独特的应用。编码微粒拥有鉴定手段,且是微粒一般领域的重要亚类。因为编码粒子载有信息,且可在时空中物理跟踪,其大大延伸了非编码粒子的能。编码微粒的尤其重要的应用是多重生物测定,包括涉及DNA和蛋白质的生物测定。编码微粒的其他重要领域包括组合化学、加标签等。以下将讨论多种生物化学和非生物化学应用。
[0004] 对于许多应用而言,一种更期望的属性包括:大量可鉴定的码(即高码域)、编码粒子的精确和可信的鉴定、对于具体应用的材料兼容性、微粒的低成本制造(基于每批、每粒子和每码集)、及在监测系统中的灵活性。
[0005] 过去已开发了制造编码微粒的多种方法,例如区段化的彩色层压板、彩色聚苯乙烯珠、装载有量子点聚合物珠、稀土掺杂玻璃微条码、电的金属纳米棒、基于衍射光栅的纤维粒子、及图形棒和盘、以及其他类型的微粒。然而这些技术具有许多限制,例如码域不足、高成本、精确不够、应用中性能差、大规模制造中有问题的聚集无能、及复杂的预处理或测定过程。
[0006] 因此期望携带经编码的信息的编码微粒或编码微粒集、制造所述编码微粒或编码微粒集的方法、提供微粒的码的方法、制造所述微粒的方法、检测微粒的方法和系统、及使用所述微粒的方法和系统。
[0007] 参考文献
[0008] G.Steinberg,K.Stromsborg.,et al.Strategies for Covalent Attachment of DNA to Beads.Biopolymers.Vol.73,597-605,2004.
[0009] Maskos,U.,Southern E.M.. ″ Oligonucleotide hybridizations on glass supports:a novel linker foroligonucleotide synthesis and hybridization properties of oligonucleotides synthesized in situ″ NucleicAcids Research,Vol.20,No.7,pp.1679-1684,1992.
[0010] Zammatteo N.,Jeanmart L.,et al. ″ Comparison between Different Strategies of Covalent Attachment ofDNA to Glass Surfaces to Build DNA Microarrays″,Analytical Biochemistry,vol.280,pp.143-150,2000.
[0011] Nicewarner-Pena,S.R.,R.G.Freeman,B.D.Reiss,L.He,D.J.Pena,I.D.Walton,R.Cromer,C.D.Keating,and M.J.Natan,“Submicrometer Metallic Barcodes,”Science,294(5540),137-141(2001).Walton,I.D.,S.M.Norton,A.Balasingham,L.He,D.F.Oviso,D.Gupta,P.A.Raju,M.J.Natan,and R.G.Freeman,“Particles for multiplexed analysis in solution:detection and identification of striped metallicparticles using optical microscopy,”Anal.Chem.,vo1.74,pp.2240-2247,2002.
[0012] True,R.J.,M.K.Taylor,G.S.Chakarova,I.D.Walton,“Microfabricated templates for the electrodepositionof metallic barcodes for use in multiplexed bioassays,”IEEE-EMB Proceedings,26(IV),2619-2622(2004).
[0013] Xu,H.X.,M.Y.Sha,E.Y.Wong,J.Uphoff,Y.H.Xu,J.A.Treadway, A.Truong,E.O′Brien,S.Asquith,M.Stubbins,et.al.,“Multiplexed SNP genotyping using the Qbead(TM)system:a quantum dot-encodedmicrosphere-based assay,”Nucleic Acids Res.,31(8),E43(2003).
[0014] Han,M.,X.Gao,J.Z.Su,S.Nie,“Quantum-dot-tagged microbeads for multiplexed optical coding ofbiomolecules,”Nat.Biotechnol.,19(7),631-635(2001).
[0015] Haab,B.B.,M.J.Dunham,& P.O.Brown.2001.Protein microarrays for highly parallel detection andquantitation of specific proteins and antibodies in complex solutions.Genome Biology.2(2):0004.1-0004.13.
[0016] MacBeath,G.,& S.L.Schreiber.2000.Printing proteins as microarrays for high-throughput functiondetermination.Science.289,1760-1763.
[0017] Brown,P.O.,et al.2001.The Mguide.http://cmgm.stanford.edu/pbrown/mguide/.Accessed 8 February2002.
[0018] DeRisi,J.L.V.R.Iyer,& P.O.Brown 1997.Exploring the metabolic and genetic control of geneexpression on a genomic scale.Science.278:680-686.[0019] Fang Y,Frutos AG,Webb B,Hong Y,Ferrie A,Lai F,Lahiri J.Membrane biochips.Biotechniques.2002Dec;Suppl:62-5.PMID:12514931.
[0020] Fang Y,Frutos AG,Lahiri J.G-protein-coupled receptor microarrays.Chembiochem.2002 Oct4;3(10):987-91.
[0021] Fulwyler et al.,″Flow Microspheres Immunoassay for the Quantitative and Simultaneous Detection ofMultiple Soluble Analytes, ″ Methods in Cell Biology,33,613-629(1990).
[0022] Bayerl,T.M.& Bloom,M.Physical properties of single phospholipid bilayers adsorbed to micro glassbeads.Biophys.J.58,357-362(1990).
[0023] Buranda,T.et al.Biomimetic molecular assemblies on glass and mesoporous silica microbeads forbiotechnology.Langmuir 19,1654-1663(2003).
[0024] Chudin,E.et al.High-Throughput DNA Methylation Profiling Using Universal Bead Arrays,M.Bibikova,Z.Lin,L.Zhou,E.Genome Research,16(3),383-393,March 2006.
[0025] D.Bowtell and J.Sambrook.2003,DNA Microarrays,A Molecular Cloning Manual.Cold Spring HarborLaboratory Press(in particular,sections 1-4).[0026] G.T.Hermanson,Bioconjugate Techniques,1996,Academic Press(Parts 1,2 and 3).
[0027] Hacia J,Edgemon K,Sun B et al.“Two color hybridization analysis using high density oligonucleotidearrays and energy transfer dyes”Nucleic Acids Res,1998,26,4249.
[0028] Di Giusto,D,and King,GC.“Single base extension(SBE)with proofreading polymerases andphosphorothioate primers:improved fidelity in single-substrate assays”Nucleic Acids Res.,31(3):e7(2003).
[0029] Seo,TS,et al.“Four-color DNA sequencing by synthesis on a chip using photocleavable fluorescentnucleotides”PNAS,102:5926-5931(2005).
[0030] 发明概述
[0031] 提供了包括立体编码微粒的微粒、用于成像的系统和检测所述微粒的方法及在生物测定中所述微粒的用途。
[0032] 在本发明的一方面,晶片包括多个形成于所述晶片上的未释放的编码微粒,其中所述多个微粒包括至少20个不同的码,且每码至少1百万个微粒。
[0033] 在本发明的另一方面,晶片包括多个形成于所述晶片上的未释放的编码微粒,其中所述多个微粒包括至少20个不同编码微粒子集,其中每个子集包括至少1百万个微粒。在一个实施方式中,所述晶片基本由组成。在另一实施方式中,所述晶片被再分为多个区域,每个区域包括微粒子集。在再一实施方式中,所述微粒包括空间码。在又一实施方式中,至少一个微粒子集包括如下码,该码是包含至少1,000个可能的码的码域的成员。在又一实施方式中,所述晶片上的微粒的至少一个子集的空间码选自多于10,000个可能的码。在又一实施方式中,所述空间码可利用光学放大进行读取。在又一实施方式中,所述空间码可用反射光、透射光或发射光或单图像采集事件检测。在另一实施方式中,所述微粒还包括基本上透明的外表面。在一个实施方式中,所述外表面由玻璃、硅石、化硅、石英、氮化硅或化硅组成。在再一实施方式中,所述微粒还包括小于50微米或小于20微米的最大尺寸。在又一实施方式中,所述微粒还包括小于5,000立方微米或小于500立方微米的体积。
在一个实施方式中,所述微粒的长宽比是3∶1或更高。在另一实施方式中,所述微粒还包括纵轴,其中垂直于所述微粒纵轴的横截面基本上是矩形。在又一实施方式中,所述微粒的横截面基本上是方形。在另一实施方式中,所述微粒还包括:第一材料,其包括2个或更多个沿轴排列的分开的区段;第二材料,其围绕所述第一材料,从而使所述区段可通过所述第二材料被检测;其中所述可检测区段提供微粒码。在又一实施方式中,所述微粒还包括更透明材料和更不透明材料的多个可检测的交替部分,其中所述更不透明材料的部分邻接所述更透明材料的部分,且其中所述可检测的交替部分提供微粒码。在又一实施方式中,所述更不透明材料是不透明的。在又一实施方式中,所述更不透明材料基本上包括半导体或金属。
在又一实施方式中,所述更透明材料完全包裹所述更不透明材料。在又一实施方式中,所述微粒包括2个或更多个沿轴排列的离散区段,其中从垂直于所述轴的所有方向可检测每个微粒的码。在又一实施方式中,所述微粒包括平行于在其上形成所述微粒的晶片表面的长轴。在又一实施方式中,所述微粒包括磁性磁性、抗磁性顺磁性超顺磁性材料。在又一实施方式中,所述微粒包括小于1.5微米的码元。在又一实施方式中,所述微粒包括小于
2
1.0微米的码元。在又一实施方式中,所述晶片以大于1000微粒/mm 的密度包括微粒。在
2
又一实施方式中,所述晶片以大于5000微粒/mm 的密度包括微粒。在又一实施方式中,所述晶片包括12.5平方英寸-500平方英寸的总表面积。在又一实施方式中,所述微粒在所述微粒的1个或多个的表面包括多个凹陷。
[0034] 在本发明的又一方面,晶片在其上包括多个未释放的编码微粒,其中晶片上的微2
粒的数量多于1,000微粒/mm。在一个实施方式中,所述晶片基本上由硅组成。在另一实施方式中,所述晶片被再分为多个区域,每个区域包括微粒子集。在再一实施方式中,所述微粒包括空间码。在又一实施方式中,至少一个微粒子集包括如下码,该码是包含至少1,000个可能的码的码域的成员。在又一实施方式中,所述晶片上的微粒的至少一个子集的空间码选自多于10,000个可能的码。在又一实施方式中,所述空间码可利用光学放大进行读取。在又一实施方式中,所述空间码可用反射光检测。在又一实施方式中,所述空间码可用透射光检测。在又一实施方式中,所述空间码可用发射光检测。在又一实施方式中,所述空间码可用单图像采集事件检测。在又一实施方式中,所述微粒还包括基本上透明的外表面。
在又一实施方式中,所述外表面由玻璃、硅石、二氧化硅、石英、氮化硅或碳化硅组成。在又一实施方式中,所述微粒还包括小于50微米的最大尺寸。在又一实施方式中,所述微粒还包括小于20微米的最大尺寸。在又一实施方式中,所述微粒还包括小于5,000立方微米的体积。在又一实施方式中,所述微粒还包括小于500立方微米的体积。在又一实施方式中,所述微粒的长宽比为3∶1或更高。在又一实施方式中,所述微粒还包括纵轴,其中垂直于所述微粒纵轴的横截面基本上是矩形。在又一实施方式中,所述微粒的横截面基本上是方形。在又一实施方式中,所述微粒还包括:第一材料,其包括2个或更多个沿轴排列的分开的区段;第二材料,其围绕所述第一材料,从而使所述区段可通过所述第二材料被检测;其中所述可检测区段提供微粒码。在又一实施方式中,所述微粒还包括更透明材料和更不透明材料的多个可检测的交替部分,其中所述更不透明材料的部分邻接所述更透明材料的部分,且其中所述可检测的交替部分提供微粒码。在又一实施方式中,所述更不透明材料是不透明的。在又一实施方式中,所述更不透明材料基本上包括半导体或金属。在又一实施方式中,所述更透明材料完全包裹所述更不透明材料。在又一实施方式中,所述微粒包括2个或更多个沿轴排列的离散区段,其中可从垂直于所述轴的所有方向检测每个微粒的码。在又一实施方式中,所述微粒包括平行于在其上形成所述微粒的晶片表面的长轴。在又一实施方式中,所述微粒包括磁性、铁磁性、抗磁性、顺磁性或超顺磁性材料。在又一实施方式中,所述微粒包括小于1.5微米的码元。在又一实施方式中,所述微粒包括小于1.0微米的码
2
元。在又一实施方式中,所述晶片以大于5,000微粒/mm 的密度包括微粒。在又一实施方式中,所述晶片包括12.5平方英寸-500平方英寸的总表面积。在又一实施方式中,所述微粒在所述微粒的1个或多个的表面包括多个凹陷。
[0035] 在本发明的又一方面,具有未释放的编码微粒的基质在不存在居间牺牲层的情况下包括多个连接到所述基质的编码微粒,所述微粒包含基本透明的表面。在一个实施方式中,所述晶片基本上由硅组成。在另一实施方式中,所述晶片被再分为多个区域,每个区域包括微粒子集。在再一实施方式中,所述微粒包括空间码。在又一实施方式中,至少一个微粒子集包括如下码,该码是包含至少1,000个可能的码的码域的成员。在又一实施方式中,所述晶片上的微粒的至少一个子集的空间码选自多于10,000个可能的码。在又一实施方式中,所述空间码可利用光学放大进行读取。在又一实施方式中,所述空间码可用反射光、透射光或发射光或者单图像采集事件检测。在又一实施方式中,所述表面由选自玻璃、硅石、二氧化硅、石英、氮化硅和碳化硅的材料组成。在又一实施方式中,所述表面由玻璃组成。在又一实施方式中,所述微粒还包括小于50微米或小于20微米的最大尺寸。在又一实施方式中,所述微粒还包括小于5,000立方微米或小于500立方微米的体积。在又一实施方式中,所述微粒的长宽比为3∶1或更高。在又一实施方式中,所述微粒还包括纵轴,其中垂直于所述微粒纵轴的横截面基本上是矩形。在又一实施方式中,所述微粒的横截面基本上是方形。在又一实施方式中,所述微粒还包括:第一材料,其包括2个或更多个沿轴排列的分开的区段;第二材料,其围绕所述第一材料,从而使所述区段可通过所述第二材料被检测;其中提供所述微粒的空间码。其中所述可检测区段提供微粒码。在又一实施方式中,所述微粒还包括更透明材料和更不透明材料的多个可检测的交替部分,其中所述更不透明材料的部分邻接所述更透明材料的部分,且其中所述可检测的交替部分提供微粒码。在又一实施方式中,所述更不透明材料是不透明的。在又一实施方式中,所述更不透明材料基本上包括半导体或金属。在又一实施方式中,所述更透明材料完全包裹所述更不透明材料。在又一实施方式中,所述微粒包括2个或更多个沿轴排列的离散区段,其中可从垂直于所述轴的所有方向检测每个微粒的码。在又一实施方式中,所述微粒包括平行于在其上形成所述微粒的晶片表面的长轴。在又一实施方式中,所述微粒包括磁性、铁磁性、抗磁性、顺磁性或超顺磁性材料。在又一实施方式中,所述微粒包括小于1.5微米或小于1.0微米的码元。2 2
在又一实施方式中,所述晶片以大于1,000微粒/mm 或大于5,000微粒/mm 的密度包括微粒。在又一实施方式中,所述晶片包括12.5平方英寸-500平方英寸的总表面积。在又一实施方式中,所述微粒在所述微粒的1个或多个的表面包括多个凹陷。
[0036] 在本发明的又一方面,多个微粒包括被排布于表面上的微粒层,其中所述微粒基本上被部署于单层中;其中所述微粒包括空间码;其中所述微粒还在其上包括生物化学探针;其中所述单层中的微粒覆盖表面部分的面积的大于30%;且其中所述被覆盖的表面部分包括大于1,000平方微米的面积。在一个实施方式中,所述微粒被部署于液体中。在另一实施方式中,以大于90%的鉴定精确度检测所述空间码。在再一实施方式中,所述生物化学探针选自核酸、蛋白质、肽、多肽、多核苷酸、寡核苷酸、细胞、抗体、酶、药物、受体、配体、脂质、抗原、抗体、微生物、气体、化学试剂和污染物。在又一实施方式中,所述微粒被配置为支持下列测定,所述测定选自基因表达、甲基化、SNP基因分型、比较基因组杂交、microRNA分析谱、微生物鉴定、免疫测定、抗体阵列、蛋白质分析谱、蛋白质-蛋白质相互作用、受体-配体测定、病毒鉴定、细菌鉴定和病原体鉴定。在又一实施方式中,所述微粒包括基于荧光的生物测定。在又一实施方式中,所述微粒被配置为进行实质上的布朗运动。在又一实施方-12 2式中,所述微粒随机运动,其中所述微粒的二维扩散系数大于1×10 cm/s。在又一实施方式中,测量到多于10%的微粒在1秒或更短的时间间隔内进行20nm或更多的侧向位移。在又一实施方式中,所述单层中的微粒覆盖所述表面第一区域的大于50%。在又一实施方式中,所述单层中的微粒覆盖所述表面第一区域的大于70%。在又一实施方式中,少于10%的微粒被部署于或延伸到单层外。在又一实施方式中,所述表面的部分中至少70%的微粒具有可检测的空间码。在又一实施方式中,所述表面的部分中至少90%的微粒具有可检测
2
的空间码。在又一实施方式中,所述微粒以至少2,000微粒/mm 的密度被部署于单层中。
2
在又一实施方式中,所述微粒以至少5,000微粒/mm 的密度被部署于单层中。在又一实施方式中,所述表面基本上是平的,无表面特征,以限制或固定所述微粒。在又一实施方式中,所述表面经化学修饰,以促进微粒单层的形成。在又一实施方式中,所述微粒的空间码选自多于1,000个可能的码。在又一实施方式中,所述微粒的空间码选自多于10,000个可能的码。在又一实施方式中,所述空间码可利用光学放大进行读取。在又一实施方式中,所述空间码可用反射光、透射光或发射光检测。在又一实施方式中,所述空间码可用单图像采集事件检测。在又一实施方式中,所述微粒还包括基本上透明的外表面。在又一实施方式中,所述外表面由选自玻璃、硅石、二氧化硅、石英、氮化硅和碳化硅的材料组成。在又一实施方式中,所述微粒还包括小于50微米的最大尺寸。在又一实施方式中,所述微粒还包括小于20微米的最大尺寸。在又一实施方式中,所述微粒还包括小于5,000立方微米的体积。在又一实施方式中,所述微粒还包括小于500立方微米的体积。在又一实施方式中,所述微粒的长宽比为3∶1或更高。在又一实施方式中,所述微粒的横截面基本上是矩形。在又一实施方式中,所述微粒的横截面基本上是方形。在又一实施方式中,所述微粒还包括:第一材料,其包括2个或更多个沿所述微粒的轴排列的分开的区段;第二材料,其围绕所述第一材料,从而使所述区段可通过所述第二材料被检测;且其中提供所述微粒的空间码。在又一实施方式中,所述微粒还包括更透明材料和更不透明材料的多个交替部分,其中所述更不透明材料的部分邻接所述更透明材料的部分,且其中所述更透明材料的部分和更不透明材料的部分表现空间码。在又一实施方式中,所述更不透明材料是不透明的。在又一实施方式中,所述更不透明材料基本上包括半导体或金属。在又一实施方式中,所述更透明材料完全包裹所述更不透明材料。在又一实施方式中,所述微粒还包括2个或更多个沿轴排列的离散区段,其中可从垂直于所述轴的所有方向检测各微粒的空间码。在又一实施方式中,所述微粒还包括选自磁性、铁磁性、抗磁性、顺磁性或超顺磁性材料的材料。在又一实施方式中,所述微粒还包括小于1.5微米的码元。在又一实施方式中,所述微粒还包括小于1.0微米的码元。在又一实施方式中,所述微粒还在所述微粒的1个或多个的表面包括多个凹陷。
[0037] 在本发明的又一方面,多个微粒包括:排布于表面上的微粒层,其中所述微粒基本上被部署于单层中;其中所述微粒包括空间码;其中所述微粒还在其上包括生物化学探2
针;且其中所述微粒被部署于所述表面的部分上,且以至少2,000个微粒/mm 的密度被部署于所述单层中。在又一实施方式中,所述生物化学探针选自核酸、蛋白质、肽、多肽、多核苷酸、寡核苷酸、细胞、抗体、酶、药物、受体、配体、脂质、抗原、抗体、微生物、气体、化学剂和污染物。在又一实施方式中,所述微粒被配置为支持下列测定,所述测定选自基因表达、甲基化、SNP基因分型、比较基因组杂交、microRNA分析谱、微生物鉴定、免疫测定、抗体阵列、蛋白质分析谱、蛋白质-蛋白质相互作用、受体-配体测定、病毒鉴定、细菌鉴定和病原体鉴定。在再一实施方式中,所述微粒进行实质上的布朗运动。在又一实施方式中,检测到多于
10%的微粒在1秒或更短的时间间隔内进行20nm或更多的侧向位移。在又一实施方式中,所述单层中的微粒覆盖所述表面部分的面积的大于30%。在又一实施方式中,所述单层中的微粒覆盖所述表面部分的大于50%的面积。在又一实施方式中,所述表面部分中的总微粒的至少70%具有可检测的空间码。在又一实施方式中,所述微粒以至少5,000个微粒/
2
mm 的密度被部署于单层中。在又一实施方式中,所述表面基本上是平的,无表面特征,以限制或固定所述微粒。在又一实施方式中,所述表面经化学修饰,以促进微粒单层的形成。
在又一实施方式中,所述微粒的空间码选自多于1,000个可能的码。在又一实施方式中,所述空间码可利用光学放大进行读取。在又一实施方式中,所述空间码可用反射光、透射光或发射光检测。在又一实施方式中,所述空间码可用单图像采集事件检测。在又一实施方式中,所述微粒还包括基本上透明的外表面。在又一实施方式中,所述外表面由选自玻璃、硅石、二氧化硅、石英、氮化硅和碳化硅的材料组成。在又一实施方式中,所述微粒还包括小于
50微米的最大尺寸。在又一实施方式中,所述微粒还包括小于20微米的最大尺寸。在又一实施方式中,所述微粒还包括小于5,000立方微米的体积。在又一实施方式中,所述微粒还包括小于500立方微米的体积。在又一实施方式中,所述微粒的长宽比为3∶1或更高。
在又一实施方式中,所述微粒还包括:第一材料,其包括2个或更多个沿所述微粒的轴排列的分开的区段;第二材料,其围绕所述第一材料,从而使所述区段可通过所述第二材料被检测;且其中提供所述微粒的空间码。在又一实施方式中,所述微粒包括更透明材料和更不透明材料的多个交替部分,其中所述更不透明材料的部分邻接所述更透明材料的部分,且其中所述更透明材料的部分和更不透明材料的部分表现空间码。在又一实施方式中,所述更不透明材料是不透明的。在又一实施方式中,所述更不透明材料基本上包括半导体或金属。
在又一实施方式中,所述更透明材料完全包裹所述更不透明材料。在又一实施方式中,所述微粒还包括2个或更多个沿轴排列的离散区段,其中可从垂直于所述轴的所有方向检测各微粒的空间码。在又一实施方式中,所述微粒还包括选自磁性、铁磁性、抗磁性、顺磁性或超顺磁性材料的材料。在又一实施方式中,所述微粒还包括小于1.5微米的码元。在又一实施方式中,所述微粒还在所述微粒的1个或多个的表面包括多个凹陷。
[0038] 在本发明的又一方面,成像系统包括:储库(reservoir),其中包括多个微粒和液2
体;其中所述微粒包括空间码;且其中所述微粒以2,000个微粒/mm 的密度在二维层中延长及排布。所述成像系统还包括:电磁辐射源;及检测器,其经部署以检测入射到所述微粒上的电磁辐射。在一个实施方式中,所述储库是微量滴定板的部分。在另一实施方式中,所述微粒还包括选自核酸、蛋白质、肽、多肽、多核苷酸、寡核苷酸、细胞、抗体、酶、药物、受体、配体、脂质、抗原、抗体、微生物、气体、化学剂和污染物的生物化学探针。在再一实施方式中,所述微粒被配置为支持下列测定,所述测定选自基因表达、甲基化、SNP基因分型、比较基因组杂交、microRNA分析谱、微生物鉴定、免疫测定、抗体阵列、蛋白质分析谱、蛋白质-蛋白质相互作用、受体-配体测定、病毒鉴定、细菌鉴定和病原体鉴定。在又一实施方式中,所述微粒包括基于荧光的生物测定。在又一实施方式中,所述微粒被配置为进行实质上的布朗运动。在又一实施方式中,所述单层中的微粒覆盖所述表面部分的面积的大于30%。
2
在又一实施方式中,所述微粒以至少2,000个微粒/mm 的密度被部署于单层中。在又一实施方式中,所述储库还包括基本上是平的表面,无表面特征,以限制或固定所述微粒。在又一实施方式中,所述表面经化学修饰,以促进微粒单层的形成。在又一实施方式中,所述微粒的空间码选自多于1,000个可能的码。在又一实施方式中,所述空间码可利用光学放大进行读取。在又一实施方式中,所述空间码可用反射光、透射光或发射光检测。在又一实施方式中,所述空间码可用单图像采集事件检测。在又一实施方式中,所述微粒包括基本上透明的外表面。在又一实施方式中,所述外表面由选自玻璃、硅石、二氧化硅、石英、氮化硅和碳化硅的材料组成。在又一实施方式中,所述微粒还包括小于50微米的最大尺寸。在又一实施方式中,所述微粒还包括小于5,000立方微米的体积。在又一实施方式中,所述微粒的长宽比为3∶1或更高。在又一实施方式中,所述微粒的横截面基本上是矩形。在又一实施方式中,所述微粒的横截面基本上是方形。在又一实施方式中,所述微粒还包括:第一材料,其包括2个或更多个沿所述微粒的轴排列的分开的区段;第二材料,其围绕所述第一材料,从而使所述区段可通过所述第二材料被检测;且其中提供所述微粒的空间码。在又一实施方式中,所述微粒还包括更透明材料和更不透明材料的多个交替部分,其中所述更不透明材料的部分邻接所述更透明材料的部分,且其中所述更透明材料的部分和更不透明材料的部分表现空间码。在又一实施方式中,所述更不透明材料是不透明的。在又一实施方式中,所述更透明材料完全包裹所述更不透明材料。在又一实施方式中,所述微粒还包括2个或更多个沿轴排列的离散区段,其中可从垂直于所述轴的所有方向检测各微粒的空间码。在又一实施方式中,所述微粒还包括小于1.5微米的码元。
[0039] 在本发明的一个方面,提供成像系统,其包括:储库,其中包括多个微粒和液体;其中所述微粒包括空间码;其中所述微粒基本上被部署于所述储库表面的部分上的单层中,其中所述单层中的微粒覆盖所述表面部分的面积的大于30%,且其中所述被覆盖的表面部分包括大于1,000平方微米的面积;电磁辐射源;及检测器,其经部署以检测入射到所述微粒上的电磁辐射。在一些实施方式中,所述储库是微量滴定板的部分。
[0040] 在一些实施方式中,所述微粒还包括选自核酸、蛋白质、肽、多肽、多核苷酸、寡核苷酸、细胞、抗体、酶、药物、受体、配体、脂质、抗原、抗体、微生物、气体、化学剂和污染物的生物化学探针。
[0041] 在一些实施方式中,所述微粒被配置为支持下列测定,所述测定选自基因表达、甲基化、SNP基因分型、比较基因组杂交、microRNA分析谱、微生物鉴定、免疫测定、抗体阵列、蛋白质分析谱、蛋白质-蛋白质相互作用、受体-配体测定、病毒鉴定、细菌鉴定和病原体鉴定。
[0042] 在一些实施方式中,所述微粒被配置为进行实质上的布朗运动。在一些实施方式-12 2中,所述微粒随机运动,其中所述微粒的二维扩散系数大于1×10 cm/s。在一些实施方式中,检测到多于10%的微粒在1秒或更短的时间间隔内进行20nm或更多的侧向位移。在一些实施方式中,所述单层中的微粒覆盖所述表面部分的面积的大于30%。在一些实施方式
2
中,所述微粒还以至少5,000个微粒/mm 的密度被部署。在一些实施方式中,所述储库表面基本上是平的,无表面特征,以限制或固定所述微粒。在一些实施方式中,所述储库表面经化学修饰,以促进微粒单层的形成。
[0043] 在一些实施方式中,所述微粒的空间码选自多于1,000个可能的码。在一些实施方式中,所述空间码可利用光学放大进行读取。在又一实施方式中,所述空间码可用反射光、透射光或发射光检测。在又一实施方式中,所述空间码可用单图像采集事件检测。
[0044] 在一些实施方式中,所述微粒还包括基本上透明的外表面。在一些实施方式中,所述外表面由选自玻璃、硅石、二氧化硅、石英、氮化硅和碳化硅的材料组成。
[0045] 在一些实施方式中,所述微粒还包括小于50微米的最大尺寸,和/或小于5,000立方微米的体积。在一些实施方式中,所述微粒的长宽比为3∶1或更高。
[0046] 在一些实施方式中,所述微粒还包括:第一材料,其包括2个或更多个沿所述微粒的轴排列的分开的区段;第二材料,其围绕所述第一材料,从而使所述区段可通过所述第二材料被检测;且其中提供所述微粒的空间码。
[0047] 在一些实施方式中,所述微粒包括更透明材料和更不透明材料的多个交替部分,其中所述更不透明材料的部分邻接所述更透明材料的部分,且其中所述更透明材料的部分和更不透明材料的部分表现空间码。在一些实施方式中,所述更不透明材料是不透明的。在一些实施方式中,所述更透明材料完全包裹所述更不透明材料。
[0048] 在一些实施方式中,所述微粒还包括2个或更多个沿轴排列的离散区段,其中可从垂直于所述轴的所有方向检测各微粒的空间码。在一些实施方式中,所述微粒还包括小于1.5微米的码元。在一些实施方式中,所述微粒还在所述微粒的1个或多个的表面包括多个凹陷。
[0049] 本发明一些方面提供了检测微粒的码的方法,包括:提供微粒集,各微粒包括线性或平面延伸的空间码;其中,所述微粒层在分析过程中被排布于容器内表面上,其中所述微粒基本上被部署于所述内表面上的单层中;将电磁辐射透射通过所述微粒或从所述微粒反射,并检测所述透射或反射的电磁辐射,以检测单个微粒的空间码;其中所述微粒被部署于所述表面的部分上,且其中所述单层中的微粒覆盖所述表面部分的面积的大于30%。
[0050] 在一些实施方式中,所述方法还包括:将所述微粒集与第一测试液混合,导致所述微粒上的探针与分析物结合;用第二洗涤液洗涤所述微粒;及加入第三分析液,在其中于检测期间部署所述微粒。
[0051] 在一些实施方式中,所述表面部分中的至少90%或至少95%的微粒被部署于单层中。
[0052] 在一些实施方式中,所述微粒以至少2,000个微粒/mm2的密度被基本上部署于单层中。在一些实施方式中,在分析所述容器中所述微粒的过程中,所述微粒进行布朗运动。
[0053] 在一些实施方式中,所述第二和第三液、所述第一和第二液、或所述第一、第二和第三液相同。
[0054] 在一些实施方式中,所述容器是微量滴定板。在一些实施方式中,所述微粒还包括选自核酸、蛋白质、肽、多肽、多核苷酸、寡核苷酸、细胞、抗体、酶、药物、受体、配体、脂质、抗原、抗体、微生物、气体、化学剂和污染物的生物化学探针。
[0055] 在一些实施方式中,所述微粒被配置为支持下列测定,所述测定选自基因表达、甲基化、SNP基因分型、比较基因组杂交、microRNA分析谱、微生物鉴定、免疫测定、抗体阵列、蛋白质分析谱、蛋白质-蛋白质相互作用、受体-配体测定、病毒鉴定、细菌鉴定和病原体鉴定。
[0056] 在一些实施方式中,所述微粒被配置为进行实质上的布朗运动。在一些实施方式中,检测到多于10%的微粒在1秒或更短的时间间隔内进行20nm或更多的侧向位移。在一些实施方式中,所述单层中的微粒覆盖所述表面部分的面积的大于50%或70%。
[0057] 在一些实施方式中,所述微粒以至少2,000或5,000个微粒/mm2的密度被部署于单层中。在一些实施方式中,所述内表面基本上是平的,无表面特征,以限制或固定所述微粒。在一些实施方式中,所述表面经化学修饰,以促进微粒单层的形成。
[0058] 在一些实施方式中,所述微粒的空间码选自多于1,000个可能的码。在一些实施方式中,所述空间码可利用光学放大进行读取。在一些实施方式中,所述空间码可用单图像采集事件检测。
[0059] 在一些实施方式中,所述微粒包括基本上透明的外表面。在一些实施方式中,所述外表面由选自玻璃、硅石、二氧化硅、石英、氮化硅和碳化硅的材料组成。
[0060] 在一些实施方式中,所述微粒包括小于50微米的最大尺寸。在一些实施方式中,所述微粒包括小于5,000立方微米的体积。在一些实施方式中,所述微粒的长宽比为3∶1或更高。
[0061] 在一些实施方式中,所述微粒还包括:第一材料,其包括2个或更多个沿所述微粒的轴排列的分开的区段;第二材料,其围绕所述第一材料,从而使所述区段可通过所述第二材料被检测;且其中提供所述微粒的空间码。
[0062] 在一些实施方式中,所述微粒还包括更透明材料和更不透明材料的多个交替部分,其中所述更不透明材料的部分邻接所述更透明材料的部分;且其中所述更透明材料的部分和更不透明材料的部分表现空间码。在一些实施方式中,所述更不透明材料是不透明的。在一些实施方式中,所述更透明材料完全包裹所述更不透明材料。
[0063] 在一些实施方式中,所述微粒还包括2个或更多个沿轴排列的离散区段,其中可从垂直于所述轴的所有方向检测各微粒的码。在一些实施方式中,所述微粒还包括选自磁性、铁磁性、抗磁性、顺磁性或超顺磁性材料的材料。在一些实施方式中,所述微粒还包括小于1.5微米的码元。
[0064] 本发明的一些方面提供了计算机可读介质,其上记录有包含像素的图像,所述图像具有多个包括空间码的生物化学活性微粒,其中所述图像在所述图像中包括50个微粒/一百万个像素。在一些实施方式中,所述图像中至少90%的微粒的码可被测定。
[0065] 在一些实施方式中,所述微粒还包括选自核酸、蛋白质、肽、多肽、多核苷酸、寡核苷酸、细胞、抗体、酶、药物、受体、配体、脂质、抗原、抗体、微生物、气体、化学剂和污染物的生物化学探针。
[0066] 在一些实施方式中,所述微粒被调整为支持下列测定,所述测定选自基因表达、甲基化、SNP基因分型、比较基因组杂交、microRNA分析谱、微生物鉴定、免疫测定、抗体阵列、蛋白质分析谱、蛋白质-蛋白质相互作用、受体-配体测定、病毒鉴定、细菌鉴定和病原体鉴定。
[0067] 在一些实施方式中,所述微粒还包括基于荧光的生物测定。在一些实施方式中,所述微粒的空间码选自多于1,000或多于10,000个可能的码。在一些实施方式中,所述空间码可利用光学放大进行读取。在一些实施方式中,所述图像可用反射光、透射光或发射光获取。在一些实施方式中,所述图像可用单图像采集事件获取。
[0068] 在一些实施方式中,所述微粒还包括基本上透明的外表面。在一些实施方式中,所述外表面由玻璃、硅石、二氧化硅、石英、氮化硅或碳化硅组成。
[0069] 在一些实施方式中,所述微粒包括小于20微米或50微米的最大尺寸。在一些实施方式中,所述微粒包括小于500立方微米或5,000立方微米的体积。在一些实施方式中,所述微粒的长宽比为3∶1或更高。在一些实施方式中,所述微粒的横截面基本上是矩形或基本上是方形。
[0070] 在一些实施方式中,所述微粒还包括:第一材料,其包括2个或更多个沿所述微粒的轴排列的分开的区段;第二材料,其围绕所述第一材料,从而使所述区段可通过所述第二材料被检测;且其中提供所述微粒的空间码。
[0071] 在一些实施方式中,所述微粒包括更透明材料和更不透明材料的多个交替部分,其中所述更不透明材料的部分邻接所述更透明材料的部分,且其中所述更透明材料的部分和更不透明材料的部分表现空间码。在一些实施方式中,所述更不透明材料是不透明的。在一些实施方式中,所述更不透明材料基本上包括半导体或金属。在一些实施方式中,所述更透明材料完全包裹所述更不透明材料。
[0072] 在一些实施方式中,所述微粒包括2个或更多个沿轴排列的离散区段,其中可从垂直于所述轴的所有方向检测各微粒的码。在一些实施方式中,所述微粒包括选自磁性、铁磁性、抗磁性、顺磁性和超顺磁性材料的材料。
[0073] 在一些实施方式中,所述微粒包括小于1.0微米或小于1.5微米的码元。在一些实施方式中,所述微粒在所述微粒的1个或多个的表面包括多个凹陷。
[0074] 本发明一些方面提供了计算机可读介质,其上记录有包含像素的图像,所述图像具有多个包括空间码的生物化学活性微粒,其中代表微粒的像素占所述像素总数30%或更多。在一些实施方式中,所述图像中至少90%的微粒的码可被测定。
[0075] 在一些实施方式中,所述微粒还包括选自核酸、蛋白质、肽、多肽、多核苷酸、寡核苷酸、细胞、抗体、酶、药物、受体、配体、脂质、抗原、抗体、微生物、气体、化学剂和污染物的生物化学探针。
[0076] 在一些实施方式中,所述微粒被配置为支持下列测定,所述测定选自基因表达、甲基化、SNP基因分型、比较基因组杂交、microRNA分析谱、微生物鉴定、免疫测定、抗体阵列、蛋白质分析谱、蛋白质-蛋白质相互作用、受体-配体测定、病毒鉴定、细菌鉴定和病原体鉴定。在又一实施方式中,所述微粒包括基于荧光的生物测定。在一些实施方式中,所述微粒还包括基于荧光的生物测定。
[0077] 在一些实施方式中,所述微粒的空间码选自多于1,000或多于10,000个可能的码。在一些实施方式中,所述空间码可利用光学放大进行读取。在一些实施方式中,所述图像可由反射光、透射光或发射光获取。在一些实施方式中,所述图像可用单图像采集事件获取。在一些实施方式中,所述微粒还包括基本上透明的外表面。在一些实施方式中,所述外表面由选自玻璃、硅石、二氧化硅、石英、氮化硅和碳化硅的材料组成。
[0078] 在一些实施方式中,所述微粒包括小于50微米的最大尺寸。在一些实施方式中,所述微粒包括小于5,000立方微米的体积。在一些实施方式中,所述微粒的长宽比为3∶1或更高。在一些实施方式中,所述微粒的横截面基本上是方形。
[0079] 在一些实施方式中,所述微粒还包括:第一材料,其包括2个或更多个沿所述微粒的轴排列的分开的区段;第二材料,其围绕所述第一材料,从而使所述区段可通过所述第二材料被检测;且其中提供所述微粒的空间码。
[0080] 在一些实施方式中,所述微粒包括更透明材料和更不透明材料的多个交替部分,其中所述更不透明材料的部分邻接所述更透明材料的部分,且其中所述更透明材料的部分和更不透明材料的部分表现空间码。在一些实施方式中,所述更不透明材料是不透明的。在一些实施方式中,所述更透明材料完全包裹所述更不透明材料。
[0081] 在一些实施方式中,所述微粒包括2个或更多个沿轴排列的离散区段,其中可从垂直于所述轴的所有方向检测各微粒的码。在一些实施方式中,所述微粒包括选自磁性、铁磁性、抗磁性、顺磁性和超顺磁性材料的材料。在一些实施方式中,所述微粒包括小于1.5微米的码元。
[0082] 本发明一些方面提微粒集,所述集包括至少200个储库,各储库包括一组具有相同码,但具有与其他储库中粒子的码不同的码的粒子;其中各储库包括至少100,000个粒子。在一些实施方式中,提供了至少500或1000个储库。在一些实施方式中,各储库中提供了至少500,000个粒子或至少一百万个粒子。在一些实施方式中,在多个96孔微量滴定板中提供了至少200个储库。
[0083] 在一些实施方式中,所述微粒还在其上包括生物化学探针。在一些实施方式中,所述生物化学探针选自核酸、蛋白质、肽、多肽、多核苷酸、寡核苷酸、细胞、抗体、酶、药物、受体、配体、脂质、抗原、抗体、微生物、气体、化学剂和污染物。
[0084] 在一些实施方式中,所述微粒还包括:第一材料,其包括2个或更多个沿所述离子的轴排列的分开的区段;第二材料,其围绕所述第一材料,从而使所述区段可通过所述第二材料被检测;且其中提供所述微粒的空间码。
[0085] 在一些实施方式中,所述离子还包括2个或更多个沿轴排列的离散区段,其中可从垂直于所述轴的所有方向检测各微粒的码。在一些实施方式中,所述码包括尺寸小于1微米的码元。在一些实施方式中,所述码用投影光刻法形成。
[0086] 在一些实施方式中,所述码还包括空间码。在一些实施方式中,所述空间码可用单图像采集事件检测。在一些实施方式中,所述粒子还包括小于50微米的最大尺寸。在一些实施方式中,所述粒子还包括小于5,000立方微米的体积。在一些实施方式中,所述粒子的长宽比为2∶1或更高。在一些实施方式中,所述粒子还包括大于1,000个码或大于10,000个码的码域。
[0087] 本发明一些方面提供了方法,包括:提供微粒集;将探针固定于微粒上,不同探针去向具有相同码的各组微粒;将所述微粒混合在一起,以形成合并的微粒库;及取所述库的等分试样,并将所述等分试样置于分开的容器中。在一些实施方式中,所述方法还包括使用所述等分试样就特定部分的有无测试样品。在一些实施方式中,所述方法包括以95%或更高的鉴定率鉴定所述微粒。
[0088] 本发明一些方面提供了方法,包括:提供晶片集;将所述晶片单离(singulating)为单个晶片区;将各晶片区置于储库中;在各储库中用蚀刻剂蚀刻微粒,以释放所述微粒。在一些实施方式中,所述方法还包括将探针固定于微粒上,其中在具有给定码的每组微粒上使用不同探针。在一些实施方式中,所述方法还包括:将释放的微粒混合在一起,以形成合并的微粒库,及取所述库的等分试样,并将所述等分试样置于分开的容器中。
[0089] 本发明的一些方面提供了用于检测生物学活性分析物的系统,包括:多个排布于表面上的层中的微粒,其中所述微粒包括探针和空间码,所述微粒基本上被部署于单层中,且其中所述微粒被部署于所述表面的部分上,从而所述单层中的微粒覆盖大于30%所述表面的部分。
[0090] 在一些实施方式中,所述生物学活性分析物选自核酸、蛋白质、抗原、抗体、微生物、气体、化学剂和污染物。在一些实施方式中,所述生物学活性分析物是蛋白质或核酸。在一些实施方式中,在核酸中检测SNP。在一些实施方式中,在检测所述核酸后测定基因表达。
[0091] 在一些实施方式中,所述微粒被调整为支持下列测定,所述测定选自基因表达、甲基化、SNP基因分型、比较基因组杂交、microRNA分析谱、微生物鉴定、免疫测定、抗体阵列、蛋白质分析谱和蛋白质-蛋白质相互作用。在一些实施方式中,所述微粒被调整为支持包括结合对测定在内的蛋白质-蛋白质相互作用测定。在一些实施方式中,所述结合对测定包括受体-配体测定。
[0092] 在一些实施方式中,所述微生物鉴定测定选自病毒鉴定、细菌鉴定和病原体鉴定。
[0093] 在一些实施方式中,所述微粒被调整为支持免疫测定,且其中所述微粒与生物学活性分析物的相互作用包括免疫测定的结果。在一些实施方式中,所支持的免疫测定是酶联免疫吸附测定(ELISA)、夹心免疫测定或荧光免疫测定。
[0094] 在一些实施方式中,所述单层中的微粒覆盖所述表面部分的大于50%或大于70%。在一些实施方式中,少于5%、10%或30%的微粒被部署或延伸于所述单层外。
[0095] 在一些实施方式中,所述单层中的粒子可以以至少95%的鉴定率鉴定。在一些实2 2
施方式中,所述微粒以至少2,000/mm 或至少5,000个微粒/mm 的密度被部署于单层中。
在一些实施方式中,各微粒具有50μm的最大尺寸。
[0096] 在一些实施方式中,各微粒还包括被透明材料完全包裹的分开的区段。
[0097] 在一些实施方式中,所述微粒被部署于液体中,且进行实质上的布朗运动。在一些实施方式中,可以以在5秒钟的时间间隔内取得的2个或更多个的图像中的微粒位置的移动来测量布朗运动。
[0098] 在一些实施方式中,所述探针包括生物学活性部分,所述生物学活性部分选自核酸、蛋白质、抗原、抗体和化学剂。在一些实施方式中,所述探针包括结合至所述微粒的DNA或蛋白质。
[0099] 在本发明的一些方面提供了检测生物学活性分析物的装置,包括:多个排布于表面上的层中的微粒,其中所述微粒包括探针和空间码,基本上被部署于单层中,且其中所述2
微粒以至少2,000个微粒/mm 的密度被部署于表面的部分上。在一些实施方式中,所述微
2
粒以至少5,000个微粒/mm 的密度被部署于单层中。
[0100] 本发明一些方面提供检测生物学活性分析物的方法,包括:将待检测的、怀疑含有生物学活性分析物的样品递送至包括微粒单层的系统,所述微粒被部署于所述表面的部分上,其中所述微粒包括探针和空间码,且被部署于表面的部分上,从而所述单层中的微粒覆盖所述表面的部分的大于30%;将电磁辐射透射通过所述微粒或从所述微粒反射,并检测所述透射或反射的电磁辐射,以检测所述单个微粒的空间码;及通过对来自所述微粒的信号定量来测定生物学活性分析物的有无。
[0101] 在一些实施方式中,所述生物学活性分析物选自核酸、蛋白质、抗原、抗体、微生物、气体、化学剂和污染物。
[0102] 在一些实施方式中,所述生物学活性分析物是蛋白质或核酸。在一些实施方式中,在核酸中检测SNP。在一些实施方式中,在检测所述核酸后检测基因。
[0103] 在一些实施方式中,所述微粒被调整为支持下列测定,所述测定选自基因表达、甲基化、SNP基因分型、比较基因组杂交、microRNA分析谱、微生物鉴定、免疫测定、受体-配体、抗体阵列、蛋白质分析谱和蛋白质-蛋白质相互作用。在一些实施方式中,所述微粒被调整为支持包括结合对测定在内的蛋白质-蛋白质相互作用测定。在一些实施方式中,所述结合对测定包括受体-配体测定。
[0104] 在一些实施方式中,所述微生物鉴定测定选自病毒鉴定、细菌鉴定和病原体鉴定。
[0105] 在一些实施方式中,所述微粒被调整为支持免疫测定,且其中所述微粒与生物学活性分析物的相互作用包括免疫测定的结果。在一些实施方式中,所支持的免疫测定是酶联免疫吸附测定(ELISA)、或夹心免疫测定。在一些实施方式中,所支持的免疫测定是选自荧光免疫测定、发光免疫测定和化学发光免疫测定的免疫测定。
[0106] 本发明一些方面提供了小体积检测多个生物学活性分析物的系统,包括:多个立体编码微粒,其中所述多个微粒包括探针和多于200个空间码,且其中所述多于200个空间码可以在小于50μl的样品体积中被光学检测。在一些实施方式中,所述微粒排布于表面上的层中。在一些实施方式中,所述空间码被同时检测。
[0107] 本发明一些方面提供了检测汇合的受试者样品中的生物学活性分析物的方法,包括:汇合多于50个怀疑含有生物学活性分析物的受试者样品;将所述汇合的样品递送至包括多个微粒的系统,其中所述微粒包括探针和编码方案;将电磁辐射透射通过所述微粒或从所述微粒反射,并检测所述透射或反射的电磁辐射,以检测所述单个微粒的空间码;及通过对来自所述微粒的信号定量来测定生物学活性分析物的有无。在一些实施方式中,所述编码方案包括空间码。
[0108] 本发明一些方面提供了快速检测生物学活性分析物的方法:将待检测的、怀疑含有生物学活性分析物的样品递送至包括多于100个不同编码微粒的系统,其中所述微粒包括探针和空间码;将电磁辐射透射通过所述微粒或从所述微粒反射,并检测所述透射或反射的电磁辐射,以检测所述单个微粒的空间码,其中所述检测包括在不到5秒钟内检测多于100个不同编码微粒;及通过对来自所述微粒的信号定量来测定生物学活性分析物的有无。
[0109] 本发明一些方面提供了控制生物学活性分析物检测系统的性质(quality)的方法,包括:提供编码微粒的主混合物,其中所述微粒包括探针和空间码;将所述主混合物分为多个子混合物;测试生物学活性分析物检测系统中的子混合物;测定所述系统中的子混合物性质,其中测定所述性质包括用对照样品对所述微粒探针的反应性定量,以产生定性结果;记录所述定性结果;及将所述定性结果与各子混合物联系起来。
[0110] 在一些实施方式中,将1个或多个的子混合物用于就生物学活性分析物的存在的诊断性测试中,并将相同或不同的所述子混合物用于临床试验。
[0111] 本发明的所述目的在随附的独立权利要求的特征中实现。优选实施方式以从属权利要求表征。
[0112] 通过引用并入
[0113] 将本说明书中提及的全部文献和专利申请通过引用并入本文,正如将各文献或专利申请特定并单独通过引用并入本文。
[0114] 附图简述
[0115] 在随附的权利要求书中详细提供了本发明的新特征。将通过参考下列说明性实施方式提供的详细说明书获得对解本发明的特征和优点的更好理解,其中利用了本发明的原理及附图:
[0116] 图1a示意本发明的编码微粒;
[0117] 图1b是图1a中的微粒横截面的侧视图;
[0118] 图2示意本发明的编码微粒的另一实施例
[0119] 图3a示意本发明的编码微粒的另一实施例;
[0120] 图3b示意本发明的编码微粒的另一实施例;
[0121] 图4a和图4b示意其编码结构源自单一材料的例示微粒;
[0122] 图4c示意本发明的编码微粒的另一实施例;
[0123] 图4d是本发明的例示制造过程中另1个实例示微粒的截面图;
[0124] 图5是显示在本发明的例示制造方法中执行的步骤的流程图
[0125] 图6a-图6m是本发明的例示制造方法中的微粒的横截面图和俯视图;
[0126] 图7是制造过程中基质上的微粒阵列的透视图;
[0127] 图8a-图9是本发明的例示制造方法的制造过程中多个微粒的SEM图像;
[0128] 图10a和图10b显示可用于本发明的制造方法的例示蚀刻方法;
[0129] 图11a和图11b是本发明的多个微粒的图像;
[0130] 图12a-图12c示意根据本发明的例示制造方法的例示晶片平制造方法;
[0131] 图13显示8个本发明的编码微粒的反射模式倒置显微图像;
[0132] 图14显示用于对本发明的编码微粒成像的光学系统的示意图;
[0133] 图15显示以同图13相同放大倍数取得的全景、单图像;
[0134] 图16显示编码微粒的高倍放大图;
[0135] 图17a显示16个编码微粒的密集反射图像(dense reflectanceimage)的剪辑;
[0136] 图17b显示本发明的例示微粒的透射荧光显微图像;
[0137] 图18a显示全景反射图像;
[0138] 图18b显示在经图像处理,以将离散区段与全微粒相联系后的图18a的相同图像选择;
[0139] 图19a显示反射图像的筛选;
[0140] 图19b显示在经图像处理,以将离散区段与全微粒后相联系的图19a的相同图像筛选;
[0141] 图20在右侧显示了经处理的图像,在左侧显示了4个例示微粒的像素强度曲线;
[0142] 图21显示特定制造的表面的示意图,其具有设计为固定和分开编码微粒用于成像的特征;
[0143] 图22和图23显示可以提供使微粒在液体中流动的流动池用于通过连续成像的检测;
[0144] 图24示意本发明的另一备选微粒;
[0145] 图25显示具有荧光外层的经立体光学编码微粒的示意图;
[0146] 图26a-图26c显示带有形成空间码的表面凹陷的本发明的编码微粒的示意图;
[0147] 图26d显示包含凹陷的编码微粒的实施例;
[0148] 图27a-图27c显示所测与图26a-图26c中对应粒子的粒子表面正交的非均匀空中密度(non-uniform aerial density);
[0149] 图28a-图29c是根据本发明的另1个实例示制造过程中,本发明的另一实施例的微粒的俯视图;
[0150] 图30a-图30c显示微粒结构的优选实施方式的3种掩模域(maskfield)的图,且图30d显示掩模版(reticle palte)的图;
[0151] 图31显示使用多印制步骤制造码的一般方法的备选的实例利用冲压
[0152] 图32a-图32m显示图1a中的例示编码微粒的制造方法步骤;
[0153] 图33a-图33m显示图32a-图32m中的微粒的相应横截面图;
[0154] 图34a-图34c显示可用本发明的方法制造的例示微粒;
[0155] 图35显示从裸片(die)释放前实际编码微粒的4个显微图像;
[0156] 图36显示被输入stepper软件以在晶片上的各裸片上产生不同码的例示数据表格;
[0157] 图37显示制造增多数量的码/裸片的例示方案图;
[0158] 图38a显示根据本发明的非二进制编码方案形成的编码微粒的图形表示;
[0159] 图38b和图38c显示带有不同数量的间隔(gap)和可变位置间隔的随机码;
[0160] 图39显示各种形式的大原型微粒集的4个照片的剪辑照片;
[0161] 图40是例示生物测定方法的流程图;
[0162] 图41显示方法的例示实施例的示意图,通过所述方法,整个晶片成为待与样品反应以进行生物测定的粒子-探针缀合物的混合物;
[0163] 图42显示用于对编码微粒成像的光学系统的示意图,所述系统利用两个同时获取反射和荧光图像的CCD照相机
[0164] 图43和44显示多个编码微粒的密集荧光显微图像;
[0165] 图45a和45b显示本发明的同一微粒集的反射和透射图像对;图45c显示图45a和图45b覆盖的图像对;
[0166] 图46a-图46f以时序显示编码微粒密集荧光显微图像;
[0167] 图47显示来自2-丛DNA杂交测定的实际测定数据;
[0168] 图48a显示可使用本发明的微粒的例示测定;
[0169] 图48b显示可使用本发明的微粒的另1个例示测定;
[0170] 图49显示可使用本发明的微粒的另1个例示测定;
[0171] 图50是包括粒子图像的示意图,但不是本发明的实际实验结果;
[0172] 图51a-图51c显示码元刻印(patterning)和蚀刻步骤的实例的流程图;
[0173] 图52是显示试剂盒的代表性实例的框图;及
[0174] 图53是显示与使用本发明的编码微粒的设备连接的逻辑装置的代表性实例的框图。
[0175] 发明详述
[0176] 提供了带有码的编码微粒,提供了带有可区分的码的编码微粒集,其中所述码符合预定的编码方案。
[0177] 本文及随附的权利要求中使用的单数形式“一”、“一个”和“某个”包括复数,除非语境另有明确指示。
[0178] 除非另有限定,本文使用的所有技术和科学术语具有本发明所属领域普通技术人员通常理解的含义。以下将描述本文所述发明的优选方法、装置和材料,但可在实施或测试本文所述的发明中使用相似或相当于本文所述的任何方法、装置和材料。
[0179] 定义
[0180] 本文所述“生物学活性分析物”指可影响生物体的任何物理或生物化学性质的任何物质,包括但不限于:病毒、细菌、真菌植物、动物和人。特别如本文所使用的,本发明的生物学活性分析物包括但不限于:药物、药物前体、药剂(如药学活性化合物)、药物代谢物、生物标记物(例如表达的蛋白质和细胞的标记物)、抗体、血清蛋白质、胆固醇、多糖、核酸、生物分析物、基因、蛋白质、或激素、或它们的任意组合。生物学活性分析物还可包括天然或人造的物质,包括但不限于气体、化学剂或污染物、或它们的任意组合(如来自环境的来源)。在分子水平,所述生物学活性分析物可为多肽糖蛋白、多糖、脂质、核酸和它们的组合。生物学活性分析物还包括生物分子的各种磷酸化和糖基化状态。
[0181] 尤其关注与特定疾病或特定疾病阶段相关的生物学标记物。这样的生物学活性分析物包括但不限于与自身免疫疾病、肥胖症高血压、糖尿病、神经和/或肌肉变性疾病、心脏病、内分泌紊乱、或它们的任意组合相联系的那些。
[0182] 还关注以各种丰度存在于1种或多种的身体组织中的生物学标记物,所述身体组织包括心脏、肝脏、前列腺、、肾、骨髓、血、皮肤、膀胱、脑、肌肉、神经,和被各种疾病影响的所选组织,所述各种疾病如不同类型的癌(恶性的或非转移性的)、自身免疫疾病、炎性或变性疾病。
[0183] 还关注是微生物指示物的生物学活性分析物。例示微生物包括但不限于:细菌、病毒、真菌和原生动物。可用主题方法检测的生物学活性分析物还包括血源性病原体,所述血源性病原体非局限性选自表皮葡萄球菌(Staphylococcus epidermidis)、大肠杆菌(Escherichiacoli)、耐甲氧西林金黄色葡萄球菌(methicillin-resistant Staphylococcusaureus,MSRA)、金黄色葡萄球菌(Staphylococcus aureus)、人葡萄球菌(Staphylococcus hominis)、粪肠球菌(Enterococcus faecalis)、绿假单胞菌(Pseudomonas aeruginosa)、头葡萄球菌(Staphylococcuscapitis)、沃氏葡萄球菌(Staphylococcus warneri)、肺炎克雷伯菌(Klebsiella pneumoniae)、流感嗜血杆菌(Haemophilus Influnzae)、模拟葡萄球菌(Staphylococcus simulans)、肺炎链球菌(Streptococcuspneumoniae)和白色念珠菌(Candida albicans)。
[0184] 可用主题装置和方法检测的生物学活性分析物还包括各种性传播疾病,所述性传播疾病选自淋病(奈瑟淋球菌(Neisseria gorrhoeae))、梅毒(梅毒螺旋体(Treponena pallidum))、沙眼(沙眼衣原体(Chlamydia tracomitis))、非淋球菌性尿道炎(解脲支原体(Ureaplasma urealyticum))、酵母感染(白色念珠菌(Candidaalbicans))、软下疳(杜克雷嗜血杆菌(Haemophilus ducreyi))、滴虫病(阴道毛滴虫(Trichomonas vaginalis))、生殖器疱疹(I型和II型HSV)、HIV I、HIV II和甲型肝炎、乙型肝炎、丙型肝炎、庚型肝炎、及TTV导致的杆菌。
[0185] 可用主题设备或方法检测的其他生物学活性分析物包括各种呼吸道病原体,所述呼吸道病原体包括但不限于:铜绿假单胞菌、耐甲氧西林金黄色葡萄球菌(MSRA)、肺炎克雷伯菌、流感嗜血杆菌、金黄色葡萄球菌、嗜麦芽窄食单胞菌(Stenotrophomonas maltophilia)、副流 感 嗜血 杆 菌(Haemophilis parainfluenzae)、大 肠杆 菌、粪肠球菌、粘质沙雷氏菌(Serratia marcescens)、副溶血嗜血杆菌(Haemophilisparahaemolyticus)、阴沟肠球菌(Enterococcuscloacae)、白色念珠菌、卡他莫拉菌(Moraxiella catarrhalis)、肺炎链球菌(Streptococcus pneumoniae)、弗氏 柠檬酸杆菌(Citrobacterfreundii)、屎肠球菌(Enterococcus faecium)、产酸克雷伯菌(Klebsiellaoxytoca)、荧光假单胞菌(Pseudomonas fluorsecens)、脑膜炎奈瑟菌(Neisseria meningitidis)、化脓链球菌(Streptococcus pyogenes)、卡氏肺囊虫(Pneumocystis carinii)、肺炎克雷伯菌(Klebsiellapneumoniae)、嗜肺军团菌(Legionella pneumophila)、肺炎支原体(Mycoplasma pneumoniae)和结核分枝杆菌(Mycobacteriumtuberculosis)。
[0186] 以下列出本发明的其他例示标记物:茶、CRP、CKMB、PSA、肌红蛋白、CA125、孕、TxB2、6-酮-PGF-1-α、和茶碱、雌二醇、促黄体激素、高敏CRP、甘油三酯、类胰蛋白酶、低密度脂蛋白胆固醇、高密度脂蛋白胆固醇、胆固醇、IGFR。
[0187] 例示肝标记物包括但不限于:LDH、(LD5)、(ALT)、精酸酶1(肝型)、α-胎蛋白(AFP)、碱性磷酸酶、丙氨酸氨基转移酶、乳糖脱氢酶和胆红素。
[0188] 例示肾标记物包括但不限于:TNFα受体、半胱氨酸蛋白酶抑制剂C、脂质转运蛋白型尿前列腺素D合成酶(LPGDS)、肝细胞生长因子受体、多囊蛋白2、多囊蛋白1、纤维囊蛋白(Fibrocystin)、尿调制蛋白、丙氨酸、氨肽酶、N-乙酰-B-D-氨基葡萄糖苷酶、白蛋白和视黄醇结合蛋白(RBP)。
[0189] 例示心脏标记物包括但不限于:肌蛋白I(TnI)、肌钙蛋白T(TnT)、CK、CKMB、肌红蛋白、脂肪酸结合蛋白(FABP)、CRP、D-二聚体、S-100蛋白、BNP、NT-proBNP、PAPP-A、髓过氧化物酶(MPO)、糖原磷酸化酶同工酶BB(GPBB)、凝血酶激活的纤维蛋白溶解抑制剂(TAFI)、纤维蛋白原、缺血修饰白蛋白(IMA)、心肌营养素-1和MLC-I(肌球蛋白轻链-I)。
[0190] 例示胰腺标记物包括但不限于:淀粉酶、胰腺炎相关蛋白(PAP-1)和再生蛋白(REG)。
[0191] 例示肌肉组织标记物包括但不限于:肌肉生长抑制素(Myostatin)。
[0192] 例示血标记物包括但不限于:红细胞生成素(EPO)。
[0193] 例示骨标记物包括但不限于:骨I型胶原的交联N-端肽(NTx)、骨胶原的羧基端交联端肽、赖氨酰-吡啶啉(脱氧吡啶啉)、吡啶啉、抗酒石酸酸性磷酸酶、I型原胶原C多肽、I型原胶原N多肽、骨钙素(骨钙蛋白)、碱性磷酸酶、组织蛋白酶K、COMP(软骨寡聚基质蛋白)、护骨素(Osteocrin)、骨保护素(Osteoprotegerin,OPG)、RANKL、sRANK、TRAP5(TRACP5)、成骨细胞特异性因子1(OSF-1,Pleiotrophin)、可溶性细胞粘附分子、sTfR、sCD4、sCD8、sCD44和成骨细胞特异性因子2(OSF-2,Periostin)。
[0194] 在一些实施方式中,本发明的标记物是疾病特异性的。例示癌标记物包括但不限于:PSA(总前列腺特异性抗原)、肌酸酐、前列腺酸性磷酸酶、PSA复合物、前列腺特异性基因-1、CA 12-5、癌胚抗原(CEA)、甲胎蛋白(AFP)、hCG(人绒毛膜促性腺激素)、抑制素、CAA卵巢C1824、CA 27.29、CA 15-3、CAA胸C1924、Her-2、胰腺、CA 19-9、癌胚抗原、CAA胰腺、神经元特异性烯醇化酶、血管生长抑制素、DcR3(可溶性诱饵受体3)、内生长抑制素、Ep-CAM(MK-1)、游离的免疫球蛋白轻链κ、游离的免疫球蛋白轻链λ、赫斯达汀(Herstatin)、嗜铬粒蛋白A、肾上腺髓质素、整合素、表皮生长因子受体、表皮生长因子受体-酪氨酸激酶、肾上腺髓质素原N端20肽、血管内皮生长因子、血管内皮生长因子受体、干细胞因子受体、c-kit/KDR、KDR和中期因子。
[0195] 例示感染性疾病标记物包括但不限于:病毒血症、菌血症、脓毒症、PMN弹性蛋白酶、PMN弹性蛋白酶/α1-PI复合物、表面活性剂蛋白D(SP-D)、HBVc抗原、HBVs抗原、抗HBVc、抗HIV、T-抑制细胞抗原、T细胞抗原比、T辅助细胞抗原、抗HCV、热源、p24抗原、胞壁酰二肽。
[0196] 例示糖尿病标记物包括但不限于:C-肽、血红蛋白Alc、糖基化白蛋白、晚期糖基化终产物(AGE)、1,5-脱水葡萄糖醇、胃抑制多肽、葡萄糖、血红蛋白、ANGPTL3和4。
[0197] 例示炎症标记物包括但不限于:类湿因子(RF)、抗核抗体(ANA)、C-反应蛋白(CRP)、克拉拉细胞蛋白(子宫珠蛋白)。
[0198] 例示过敏标记物包括但不限于:总IgE和特异性IgE。
[0199] 例示孤 独症标 记物包括 但不限 于:血浆铜蓝 蛋白、金 属硫蛋 白(metalothioneine)、锌、铜、B6、B12、谷胱甘肽、碱性磷酸酶、和apo-碱性磷酸酶的活化。
[0200] 例示凝血障碍标记物包括但不限于:局限性b-血小板球蛋白、血小板因子4、Von Willebrand因子。
[0201] 在一些实施方式中,标记物可为治疗特异性的。COX抑制剂包括但不限于:TxB2(Cox-1)、6-酮-PGF-1-α(Cox 2)、11-脱氢-TxB-1a(Cox-1)。
[0202] 本发明的其他标记物包括但不限于:瘦素、瘦素受体、和降钙素原、脑S100蛋白、P物质、8-异-PGF-2a。
[0203] 例示老年标记物包括但不限于:神经特异性烯醇化酶、GFAP、和S100B。
[0204] 例示营养状态标记物包括但不限于:前白蛋白、白蛋白、视黄醇结合蛋白(RBP)、转铁蛋白、促酰化蛋白(ASP)、脂连蛋白、豚鼠相关蛋白(AgRP)、血管生成素样蛋白4(ANGPTL4,FIAF)、C-肽、AFABP(脂肪细胞脂肪酸结合蛋白,FABP4)、促酰化蛋白(ASP)、EFABP(表皮脂肪酸结合蛋白,FABP5)、肠高血糖素、胰高血糖素、胰高血糖素样肽-1、胰高血糖素样肽-2、脑肠肽(Ghrelin)、胰岛素、瘦素、瘦素受体、PYY、RELM、抵抗素、和sTfR(可溶性转铁蛋白受体)。
[0205] 例示脂代谢标记物包括但不限于:载脂蛋白(多种)、Apo-A1、Apo-B、Apo-C-CII、Apo-D、Apo-E。
[0206] 例示凝血状态标记物包括但不限于:因子I:纤维蛋白原、因子II:凝血酶原、因子III:组织因子、因子IV:钙、因子V:前加速素(Proaccelerin)、因子VI、因子VII:前转变素、因子VIII:抗溶血因子、因子IX:Christmas因子、因子X:Stuart-Prower因子、因子XI:血浆凝血激酶前质、因子XII:哈格曼因子、因子XIII:纤维蛋白稳定因子、前激肽释放酶、高分子量激肽原、蛋白C、蛋白S、D-二聚体、组织纤溶酶原激活剂、纤溶酶原、a2-抗纤溶酶、纤溶酶原激活剂抑制剂1(PAI1)。
[0207] 例示单克隆抗体标记物包括用于EGFR、ErbB2和IGF1R的标记物。
[0208] 例示蛋白激酶标记物包括本领域熟知的酪氨酸特异性激酶和丝氨酸/苏氨酸特异性激酶。
[0209] 例示酪氨酸激酶抑制剂标记物包括但不限于:Ab1、Kit、PDGFR、Src、ErbB2、ErbB4、EGFR、EphB、VEGFR1-4、PDGFRb、FLt3、FGFR、PKC、Met、Tie2、RAF和TrkA。
[0210] 例示丝氨酸/苏氨酸激酶抑制剂标记物包括但不限于:AKT、Aurora A/B/B、CDK、CDK(pan)、CDK1-2、VEGFR2、PDGFRb、CDK4/6、MEK1-2、mTOR和PKC-β。
[0211] GPCR靶标记物包括但不限于:组胺受体、5-羟色胺受体、血管紧张素受体、肾上腺受体、毒蕈碱型乙酰胆碱受体、GnRH受体、多巴胺受体、前列腺素受体、和ADP受体。
[0212] 为本发明的目的,“治疗剂”旨在包括具有治疗用途和/或潜力的任何物质。所述物质包括但不限于:生物学或化学化合物,例如简单或复合的有机或无机分子、肽、蛋白质(例如抗体)或多核苷酸(例如反义)。可合成大量化合物,例如聚合物,例如多肽和多核苷酸,和基于各种核心结构的合成有机化合物,并且这些也包含于术语“治疗剂”内。另外,各种天然来源可提供用于筛选的化合物,例如植物或动物提取物等。需知,尽管并非一直清楚地说明,但所述试剂可单独使用,或与具有相同或不同生物活性的其他试剂组合使用作为通过本发明的筛选鉴定的试剂。所述试剂和方法还旨在与其他治疗组合。
[0213] 本发明的药效学(PD)参数包括但不限于:物理学参数,例如温度、心率/脉搏、血压、和呼吸速率;和生物标记物,例如蛋白质、细胞、和细胞标记物。生物标记物可指示疾病,或是药物作用结果。本发明的药代动力学(PK)参数包括但不限于:药物和药物代谢物浓度。为了药物的适当安全性和效力,亟待从样品量中快速鉴定和定量PK参数。如果药物和代谢物的浓度在期望范围之外和/或与药物的意想不到的反应导致产生意想不到的代谢物,就需要及时的措施以保障患者的安全。类似地,如果任意PD参数在治疗期间落在期望范围之外,也必需及时采取措施。
[0214] 在优选实施方式中,将物理参数存储于生物信息系统的物理参数数据的存储特征谱中,或与生物信息系统的物理参数数据的存储特征谱比较,所述生物信息系统可在将药物基因组学和药代动力学数据整合入其模型中的外部装置上用于测定毒性和剂量。其不仅早于当前方法数年产生用于临床试验的数据,还通过实时持续监控消除了表观效力与实际药物毒性之间的当前差距。在临床研究的继续/停止(go/nogo)决定过程中,可用存储于数据库中的数据进行大尺度比较群研究。数据编辑和实时监控使更多患者以早于当前允许的安全方式进入临床试验。在另一实施方式中,可用微粒系统靶定在人组织研究中发现的生物标记物,用于提高测定药物途径中的精确度和癌症研究中的功效。
[0215] 术语“结合对”包括任何类别的免疫型结合对,例如抗原/抗体、抗原/抗体片段、或半抗原/抗半抗原系统;及任何类别的非免疫型结合对,例如生物素/抗生物素蛋白、生物素/抗生蛋白链菌素、叶酸/叶酸结合蛋白、激素/激素受体、凝集素/特定碳水化合物、酶/酶、酶/底物、酶/抑制剂、或维生素B12/内因子。它们还包括互补的核酸片段(包括DNA序列、RNA序列、和肽核酸序列)、以及蛋白A/抗体或蛋白G/抗体、和多核苷酸/多核苷酸结合蛋白。结合对还可包括形成共价键的成员,例如巯基反应基团(包括来酰亚胺和卤乙酰衍生物)和胺反应基团(例如异硫氰酸酯、琥珀酰亚胺酯、碳二亚胺、和磺酰卤)。
[0216] 本文所述术语“核酸”指脱氧核糖核苷酸、脱氧核糖核苷、核糖核苷或核糖核苷酸,及它们的单链或双链形式的聚合物。除非具体限定,该术语包括含有已知天然核苷酸类似物的核酸,其与参照核酸具有相似的结合性质,且以类似于天然核苷酸的方式代谢。除非另有具体限定,该术语还指寡核苷酸类似物,包括PNA(肽核酸)、用于反义技术的DNA类似物(硫代磷酸酯、氨基磷酸酯等)。除非另有指明,特定核酸序列还隐含包括其保守修饰的变体(包括但不限于简并密码子置换)和互补序列,及明确指明的序列。具体而言,可通过产生1个或多个的所选(或全部)密码子的第三位被混合碱基和/或脱氧肌苷残基置换的序列来实现简并密码子置换(Batzer et al.,Nucleic AcidRes.19:5081(1991);Ohtsuka et al.,J.Biol.Chem.260:2605-2608(1985);和Rossolini et al.,Mol.Cell.Probes 8:91-98(1994))。
[0217] 本文所述术语“微生物”指细菌、放线菌、蓝细菌(单细胞藻类)、真菌、原生动物、动物细胞或植物细胞或病毒。微生物的例子包括但不限于病原体。
[0218] 本文所述术语“多肽”、“肽”和“蛋白质”可互换使用,指氨基酸残基的聚合物。即,对多肽的描述等同应用于肽的描述和蛋白质的描述,反之亦然。该术语应用于天然氨基酸聚合物及1个或多个的氨基酸残基为非天然氨基酸的氨基酸聚合物。如本文所用的,该术语包括任何长度的氨基酸链,包括全长蛋白质(即抗原),其中所述氨基酸残基通过共价键连接。另外,含有多个通过共价和/或非共价相互作用结合的多肽链的蛋白质也包括在本文所述“蛋白质”之内。
[0219] 本文所述术语“多态性”指群体中2个或更多个遗传决定的替代序列或等位基因的出现。多态性标记物或位点是出现趋异的座位。优选的标记物具有至少两个等位基因,各以所选群的大于1%、更优选大于10%或20%的频率出现。多态性可包括1个或多个的碱基改变、插入、重复或缺失。多态性座位可小至一个碱基对。多态性标记物包括限制性片段长度多态性、数量可变串联重复(VNTR’s)、高可变区、小卫星、二核苷酸重复、三核苷酸重复、四核苷酸重复、简单序列重复、和插入元件(如Alu)。第一个鉴定的等位基因形式被任意地标记为参照形式,其他等位基因形式被标记为替代或变体等位基因。所选群中最常出现的等位基因形式有时被称为野生型。二倍体生物对于等位基因形式可为纯合或杂合。二等位基因多态性具有两种形式。三等位基因多态性具有三种形式。
[0220] 单核苷酸多态性(SNP)出现在由单个核苷酸占据的多态性位点,其是等位基因序列之间的变化位点。该位点通常在所述等位基因的高度保守序列(例如在少于所述群1/100或1/1000的成员中变化的序列)之前或之后。
[0221] 单核苷酸多态性常由于多态性位点处的一个核苷酸被另一个置换而发生。转换是一个嘌呤被另一个嘌呤替换,或一个嘧啶被另一个嘧啶替换。颠换(transversion)是嘌呤被嘧啶替换,或反之。单核苷酸多态性还可由于相对参照等位基因的核苷酸缺失或核苷酸插入而发生。
[0222] 本文所述术语“个体”不限于人、还可包括其他生物,包括但不限于:哺乳动物、植物、细菌或源自任意这些的细胞。
[0223] 本发明的诸方面可包括1个或多个的有益特征。下列实施例中的微粒优选具有3
1mm 以下的体积。本发明的微粒使得能够快速、精确和较不复杂地检测码。还公开了提供微粒上的码的方法,制造所述微粒的方法,检测所述微粒的方法和系统,和使用所述微粒的方法和系统。
[0224] 以下将参考特定实施例讨论本发明。本领域技术人员会知道以下讨论仅旨在展示的目的,不能将其理解为限制。相反,也可应用不脱离本发明的精神的其他变化形式。
[0225] 微粒的一般结构
[0226] 作为实例,图1a示意本发明的编码微粒。如图所示,微粒100是沿笛卡儿坐标的Y轴方向延长的长方体结构。垂直于微粒长度方向的横截面具有基本相同的拓扑形状,所述拓扑形状在本实例中为方形。
[0227] 在此具体实例中的微粒具有一组区段(例如区段102)和插入所述区段的间隔(例如间隔104)。具体而言,具有不同长度(沿所述微粒长度的尺寸,例如沿Y方向)的区段代表不同的编码元;然而间隔优选具有相同长度,用于在检测所述微粒的过程中区分所述区段。本实例中的微粒的区段被完全包裹于所述微粒内(例如体106内)。作为替代特征,可将区段排布为所述区段的几何中心与延长的微粒几何中心轴对齐。区段与间隔的特定序列代表码。所述码源自预定的编码方案。
[0228] 所述微粒的区段可为任何合适的形式。在本发明的一个实施例中,所述微粒的各区段具有垂直于所述微粒长度(例如图1所示笛卡儿坐标中沿Y方向)的基本上方形的横截面(例如图1所示笛卡儿坐标中X-Z平面中的横截面)。可将,或可不将所述区段制造为具有基本上方形的横截面。也可应用其他形状,例如矩形、圆形、及椭圆形、锯齿形、弧形或其他形状。具体而言,所述码元(即区段和间隔)也可取其他合适的所希望形状。例如,所述各区段(和/或间隔)具有矩形的横截面(例如,所述矩形的纵横比是2∶1或更高,例如4∶1或更高,10∶1或更高、20∶1或更高、或甚至100∶1或更高,但优选小于500∶1)。
[0229] 图1a中的微粒实施例具有6个主要表面,称为表面(X=±x0,Y,Z)、表面(X,Y,Z=±z0)、表面(X,Y=±y0,Z)、其中x0、y0和z0分别是所述微粒的宽、高、长。本发明中,上述6个表面X=±x0(或表面Z=±z0)中的至少2个,更优选上述表面X=±x0、表面Z=±z0中的至少4个表面基本上是连续的,无论各表面有无凹陷。以此构造,所述微粒表现出基本相同的几何外观,及对检测器(例如光学成像仪器)的特定性质。实际上,所述主要表面可以制得基本上是平的。例如,即便在制造过程中可造成粗糙或变化的轮廓,仍可使用标准表面加工技术(例如过淀积和内蚀刻或化学机械抛光(CMP)技术)得到基本平的主要表面,及恰当控制刻印工序而产生平滑的垂直侧壁轮廓。
[0230] 码元(例如区段和间隔)可取任何所希望的尺寸。作为本发明的一个实施例,各编码结构具有5μm(微米)或更少,例如3微米或更少,及更优选1微米或更少(例如0.8或0.5微米或更少)的特征尺寸。具体而言,当间隔保持基本相同的尺寸而区段尺寸变化时,各间隔优选具有1.5微米或更少、例如0.8或0.5微米或更少的特征尺寸。
[0231] 作为一个实施例,如果将所述微粒形成于具有0.13线宽的12英寸硅晶片上,所述间隔面积可制成具有0.13μm的最小宽度,具有宽度为0.13μm-大的多(取决于粒子的期望长度,期望的编码方案和码域)的更不透明区段。根据所使用晶片制造,0.13-1.85μm(例如0.25-0.85μm)的最小间隔宽度及最小区段宽度是可能的。更大最小间隔和区段长度(例如1.85-5.0μm,或更大)当然也是可能的。当然也可使用其他尺寸的晶片(4英寸、6英寸、8英寸等),及非硅(例如玻璃)晶片、及其他非硅基质(例如更大的玻璃板)。
[0232] 尽管微粒可在X、Y和/或Z方向具有相同长度,编码微粒优选具有2∶1-50∶1(例如4∶1-20∶1)的长宽比。在本发明的一个实施例中,所述微粒具有70微米或更小、50微米或更小、30微米或更小,例如20微米或更小、16微米或更小、或甚至10微米或更小的长度(例如,沿Y方向的尺寸)。所述微粒的宽度(例如,沿X方向的尺寸)及高度(沿Z方向的尺寸)可为15微米或更小、10微米或更小、8微米或更小、4微米或更小、或甚至1微米或更小,例如0.13微米。宽度短至0.5-2微米也可能。除图1a中所示和以上讨论的形状外,所述微粒还可取棒状、条状、盘状或任何其他期望形状。
[0233] 微粒的编码结构和间隔可取任何合适的形式,只要所述编码结构和间隔一起代表可检测码。本文所述术语“可检测码”指未遮掩、不模糊或不是以其他方式不可读取(光学或其他方式)的给定微结构的码。如上所述,微粒的与所述粒子长度垂直的横截面可为方形、矩形、圆形、椭圆形或任何其他期望形状,例如锯齿形或弧形或其他轮廓。当所述横截面是矩形时,所述矩形优选具有2∶1或更高,例如4∶1或更高、10∶1或更高、20∶1或更高、或甚至100∶1或更高,但优选小于500∶1的纵横比(长宽比或长高比)。所述长宽高比可优选约1∶1(正方形横截面),或具有1∶4-1∶1的比,优选使粒子位于定义所述粒子宽或高的各侧面的比,从而使无论所述粒子位于哪个延长侧面,微粒的码可检测。
[0234] 为有助于快速、有成本效益、可靠及容易的检测由编码结构和间隔表示的码,各编码结构优选对检测手段尽可能是全方位的。即,当从垂直于所述微粒长度的至少两个方向,更优选至少四个(或如果横截面非四边形,则全部)方向观察时,各编码结构表现出基本上相同的几何外观或可检测特征。因此,所述编码结构优选具有沿所述微粒长度的旋转对称,例如2倍或4倍旋转对称。
[0235] 本发明的微粒可根据所述粒子形状或长度,及所希望的码域而具有任何合适数量的编码结构,微粒的编码结构总数优选为1-20个,或更一般为3-15个,及更一般为3-8个。
[0236] 所期望的码可以多种方式整合入微粒,及由所述微粒表示。作为一个实施例,预定编码方案的编码元可由一个或多个区段表示,例如不同长度的区段表示所述编码方案的不同编码元。不同(或相同)长度并插入间隔区段的不同空间排布表示不同的码。在此码整合方法中,插入间隔优选具有基本上相同的尺寸,特别是以所述区段排列方向上的长度。作为另一实施例,所述码通过排布长度变化的间隔整合入所述微粒;而所述区段具有基本上相同的尺寸,且位于相邻间隔之间。在另一实施例中,区段和间隔两者均有尺寸变化以表示码。实际上,码也可以以其他使用区段、间隔或其组合的许多替代方式来表示。
[0237] 为表示源自预定编码方案的码,将区段和间隔沿延长的微粒长度(Y方向)排布(但也可能2D、或甚至3D排布)。具体而言,所述区段和间隔沿长度交替排列,各区段被相邻间隔分开(可能完全分开和分离);且各间隔被相邻区段分开(可能完全分开和分离),其更清晰显示于图1b的横截面图中,以下将就其进行讨论。
[0238] 在本发明的一个实施例中,可使用任意合适数量的区段,例如在所编码的微粒内提供2-20个,更一般为3-15个区段(更一般为3-8个区段)的更不透明材料(相比于所述区段间的插入间隔)。为形成码,更不透明材料的区段可能长度有变化。备选地,更不透明材料的区段各自可具有基本相同的长度,而更透明材料的中间区段可具有变化的长度。当然,更透明材料的区段和更不透明材料的中间区段可均有变化的长度,以表示所述码。
[0239] 根据图1b,所述横截面取自图1a中粒子的Y-Z平面(或相当地X-Y平面)。区段(例如区段102)和间隔(例如间隔104)沿所述微粒长度而变化。
[0240] 为使能够检测整合入微粒的码,各微粒中的区段和间隔可由与期望检测方法匹配的不同光学、电学、磁学、流体动力学或其他期望特性的材料组成。在一个实施例中,所述区段和间隔在可见光谱中的透射和/或反射光下直接在空间上可区分。例如,当码检测依赖于光学成像,所述可区分特性(区段对比间隔)可为对用于成像的特定光(可为任意期望的电磁辐射-例如可见光和近可见光、IR和紫外光)的透射率差异。所述区段可被制成比插入间隔材料更吸光(或反光),或反之。当码检测依赖于电特性测量时,所述特性可为电阻性或导电性。当码检测涉及磁学方法时,所述特性可为感应和电感(electro-inductance)。当码检测涉及流体动力学方法时,所述特性可为对用于码检测的特定流体的粘度。无论依赖于何种特定特性,所述区段和间隔优选表现出所述特定特性的充分差异,从而可使用相应码检测方法检测所述差异。具体而言,当可通过光学成像手段检测所述码,所述区段和间隔由对用于微粒成像的特定光表现出不同透射率(在光学透射图形中)或反射率(在光学反射图形中)的材料组成。例如,更不透明材料微粒的区段可阻断和/或反射30%或更多,优选50%或更多,或例如80%或更多其上的可见光或近可见光。
[0241] 假设通过对象的电磁辐射的透射率随所述对象厚度而变化,所述区段优选能够阻断/或反射30%或更多,优选50%或更多,或例如80%或更多(或甚至90%或更多)的检测光;而所述编码结构之间的间隔的组成材料和尺寸使其能够透射50%或更多、70%或更多、80%或更多、或甚至90%或更多的检测光。备选地,所述区段和间隔由不同材料组成,从而透射率差异比足以检测码γ,例如是5%或更多、10%或更多、20%或更多、50%或更多、和70%或更多。透射率被定义为透过光与入射光的光强比。
[0242] 所述微结构可由有机和/或无机材料或者有机和无机材料的混合物制成。具体而言,间隔(优选其更透射可见光或近可见光)和区段(优选其与所述区段相比更不透射可见光或近可见光)均可由有机或无机材料,或者有机-无机材料混合物组成。所述区段可由金属(例如)、前过渡金属(例如钨、铬、、钽或钼)、或非金属(例如硅或锗),或其组合(或氮化物、氧化物和/或碳化物)组成。具体而言,所述区段可由陶瓷化合物组成,例如所述陶瓷化合物是包含非金属或前过渡金属的氧化物、非金属或前过渡金属的氮化物、或非金属或前过渡金属的碳化物的化合物。前过渡金属是周期表中的3b族(Sc、Y、Lu、Lr)、4b族(Ti、Zr、Hf、Rf)、5b族(V、Nb、Ta、Db)、6b族(Cr、Mo、W、Sg)和7b族(Mn、Tc、Re、Bh)金属。但优选4b-6b族前过渡金属,尤其是钨、钛、锆、铪、铌、钽、和铬。
[0243] 间隔(其在此实施例中更透明)可包含比区段更透明的任何合适材料。如果选择混合材料,所述间隔材料(spacing material)可为硅氧烷、硅氧烯或倍半硅氧烷(silsesquioxane)材料等。所述间隔材料如果是无机材料,可为玻璃材料。薄膜淀积的二氧化硅是合适材料,含或不含或磷的掺杂剂/合金剂。其他无机玻璃材料也合适,例如氮化硅、氮氧化硅、氧化锗、氮氧化锗、氮氧化锗硅、或例如各种过渡金属氧化物。也可使用旋涂式玻璃(Spin on Glass,SOG)。如果将有机材料用作所述间隔材料,可使用塑料(例如聚苯乙烯或例如胶乳)。
[0244] 区段和间隔均可用任意合适方法淀积,所述方法例如CVD(化学气相淀积)、PVD(物理气相淀积)、旋转涂布(spin-on)、溶胶凝胶等。如果使用CVD淀积方法,所述CVD可为LPCVD(低压化学气相淀积)、PECVD(等离子体增强型化学气相淀积)、APCVD(大气压化学气相淀积)、SACVD(亚大气压化学气相淀积)等。如果使用PVD方法,根据期望的最终材料,可为溅射或反应溅射。旋转涂布材料(SOG或有机-无机硅氧烷材料混合物。
[0245] 作为更具体的实施例,所述区段可由任何合适硅材料组成,所述硅材料例如CVD(化学气相淀积)淀积的非晶硅。聚硅或单晶硅如广泛的其他上述材料也合适。选择用于区段的材料优选,但非必需具有高度淀积厚度控制、低表面粗糙、控制蚀刻(刻印和释放(例如使用刻印用等离子体干法蚀刻和释放用化学湿法或干法蚀刻))和CMOS过程匹配。间隔材料可为CVD淀积的二氧化硅。所述二氧化硅可包括掺杂/合金材料,例如磷或硼。选择用于区段和间隔的更透明材料和更不透明材料的组合时可考虑温度因素。
[0246] 图2示意本发明的编码微粒的另一实施例。粒子20具有矩形横截面,且基本上平的形状。例如,所述微粒的高宽比可为任意期望比例,例如可从1∶1.2至1∶4或更多等。
[0247] 图3a示意本发明的编码微粒的另一实施例。根据图3a,微粒116由第一材料118和第二材料120组成。所述两个材料可为化学上不同,或具有相同的化学组成,但其他方面不同,例如颗粒结构或厚度。所述两个材料可用期望的检测方案区分。在此实施例中,各材料优选完全横贯所述粒子的横截面。用于产生此结构的实施例方法涉及如上所述的制造方法,包括来自IC/MEMS(整合回路/微电子机械系统)领域的方法,包括本文以下公开的刻印和蚀刻方法的变化形式,和/或带有高能离子注入
[0248] 图3b示意本发明的编码微粒的另一实施例。根据图3b,所述微粒由被第三材料44围绕的两个不同材料40和42的交替区段组成,由此交替区段的图形形成可检测码。其他例示微粒可在所述粒子内包含多于两种的不同材料。所述粒子可具有任意合适横截面形状,并如实施例所示,是延长的。
[0249] 在如上讨论的实施例中,所述微粒由具有所选可区分特性的材料组成,所述可区分特性例如可区分光学特性。在上述实施例中,一种材料比其他材料具有更大的透明性或光学透射率,所述差异在放大的情况下可检测。上述特定实施例是当一种材料是吸光材料时,另一种材料是具有可见光谱(或使用不同检测系统另一种光谱,例如UV、IR等)中更大透光率的半透明或透明材料。在另一实施例中,一种材料是反光材料,而另一种材料是吸光材料或透光材料。一种材料更不透明,且另一种材料更透明,或一种材料更反射,且另一种材料更不反射的可检测差异在本实施例的范围内。如上所述,不透明和透明材料的交替部分可由硅和玻璃等材料制成。假设几乎所有材料的透射率(和反射率)表现出依赖于所述材料的厚度,可形成所述微粒使得所述编码结构(即表示码的编码元的结构)源自单一材料。图4a和图4b示意其编码结构源自单一材料(例如硅)的例示微粒。
[0250] 根据图4a,其中图示了例示微粒的横截面图。微粒206包含一组编码结构(例如210、212、208和214),其组合表示源自编码方案的码。为并入所述码,所述编码结构具有不同轮廓,例如宽度,而具有不同宽度的不同结构位于特定位置。为定义编码结构及随后的码检测,厚度小于透射率阈值厚度(小于所述阈值,则材料在特定光(例如可见光或近可见光)下可见)的间隔集(例如间隔212和214)。不同于图1a所示的实施例,所述编码结构不完全分开或分离。并入微粒的码可基于编码结构(例如210和208)的不同透射率读取,所述编码结构例如比所述编码结构之间的相邻间隔(例如212和214)更不透射。
[0251] 为促进所述微粒的应用,尤其是生物学/生物化学/生物医学/生物技术应用,其中所述样品生物分子待与所述微粒的表面结合,期望将固定层包被在所述微结构的表面上。由此可提供经官能化的表面。所述官能化的表面的例子包括但不限于:用羧基、氨基、羟基、巯基、环氧基、酯、烯、炔烃、烷基、芳香基、、酮、硫酸、酰胺、尿烷基团、或它们的衍生物衍生的表面。
[0252] 图4b示意图4a中微粒的透射图形图像。根据图4b,暗区210、208分别对应于图4a中的编码结构210和208。白区212和214分别对应于图4a中的编码结构212和214。
尽管用于更透射光和更不透射光区的材料相同,透射率谱仍允许可检测码。图4a中的该微粒可用另一材料(例如二氧化硅)的底层形成,且可根据需要用另一材料(例如二氧化硅)的第二层包被。这种微粒也可被完全包围在材料(例如二氧化硅)中,使得其具有如图1a中的结构基本上相同的矩形平行管状形状。图4c示意本发明的编码微粒的另一实施例。根据图4c,所述微粒包含通过较窄区域连接的较大区域。所述微粒被材料包围,使得码可检测。
[0253] 图4a和图4c的微粒可以多种方式制造,其中一种图示于图4d的例示制造过程中的微粒截面图。根据图4d,提供了由透射特定光(例如可见光或近可见光)的材料(例如,玻璃、石英或其他合适材料)组成的基质216。隔离层(detaching layer)217淀积于基质216上。提供隔离层,以隔离微粒与玻璃基质然后蚀刻或进行其他合适方法。所述蚀刻可为湿法蚀刻、干法蚀刻、或等离子体蚀刻;且因此所述隔离层期望由可用以上讨论的所选蚀刻方法蚀刻的材料组成。如之前的粒子结构实施方式所讨论,所述隔离层可省去,使得所述粒子直接形成于基质上,并随后通过基质的体蚀刻(bulk etch)释放。
[0254] 淀积和刻印编码结构层,以形成编码结构,例如结构218、222、220、224。在形成编码结构后,将围绕(surrounding layer)层224淀积在形成的编码结构上。因为所述围绕层会在测定中暴露于靶样品,因此期望层224由耐受测定溶液中的化学成分的材料组成,其中所述微粒待扩散于所述测定溶液中。而且,为把持探针分子,例如核酸(例如DNA或RNA)、蛋白质、抗体、酶、药物、受体或配体、在所述层的表面上的分子,期望层224能够固定探针分子。
[0255] 制造方法
[0256] 将参考具有区段和间隔的微粒讨论下列例示制造方法,但需注意,下列方法可应用于许多其他码元类型。
[0257] 本发明的微结构可用落入广泛微加工领域的方法制造,例如MEMS制造方法。MEMS利用半导体工业技术形成用于广泛多种应用的微米级结构。MEMS技术一般(但并非所有情况下)包括薄膜的淀积、使用干法和/或湿法的蚀刻、及用于图形形成的光刻。由于MEMS是半导体工业的分支,大量全世界的制造业基础设施用于成本效益、大批量、精确制造。一般而言,完全的MEMS方法与已有的集成电路方法越接近(例如CMOS兼容),该基础设施越易得到。
[0258] 本发明的微结构可以多种方式制造,例如用于集成电路(例如互联线)或MEMS的制造方法。以下参照图5和图6a-图6m讨论与MEMS制造匹配的用于制造微粒的例示制造方法,其中所述微粒包含由非晶硅组成的不透明区段和由二氧化硅组成的可见光透射的间隔。本领域技术人员将理解,以下制造讨论仅旨在说明,不能理解为对本发明的范围的限制。实际上,在不脱离本发明的精神的情况下可使用许多制造方法。
[0259] 根据图5,在步骤122提供硅基质。也可使用其他基质,例如玻璃晶片或玻璃板(如将在下文讨论)。如果是硅基质,则在步骤124在所述基质上淀积二氧化硅。可用如上所述的许多合适的薄膜淀积技术,例如CVD、PVD、旋转涂布等。然后在步骤126在SiO2层上淀积非晶硅层,随后在步骤128淀积硬掩模氧化物层。尽管不是必须的,使用硬掩模减少由于拓扑学的光刻胶(photoresist)包被问题,尤其是当非晶硅层相对厚时(例如厚度1μm或更多)。然后在步骤130刻印所述硬掩模氧化物层。对于刻印的硬掩模层,在步骤132中用等离子体蚀刻法蚀刻所述非晶硅层,以形成期望图形。然后在步骤134中将顶部SiO2层淀积于刻印的硅层上,随后在步骤136刻印二氧化硅层,以形成分开的(但仍未释放)微粒。然后在步骤140中通过蚀刻法将所述微粒从硅基质释放,所述非定向硅蚀刻法蚀刻入硅基质中,且导致所述微粒分离为单个粒子。如上讨论的图5中的流程图可在处于不同步骤的微粒截面图和俯视图中更清晰展示。图6a-图6m图示了横截面图和俯视图。
[0260] 根据图6a,将SiO2层146、硅层148、和硬掩模层150依次淀积于硅基质142上。然后刻印硬掩模层150,以形成图6b所示的区段条(例如152和156)和间隔条(例如154和158)。由刻印硬掩模层形成的区段和间隔对应于靶微粒区段和间隔。区段和间隔条更好地显示于图6c中微粒的俯视图中。根据图6c,用从顶部可见的层148形成区段条(例如152和156)和间隔条(例如154和158)。
[0261] 可用多种方法刻印所述层,其中一种是广泛用于半导体集成电路和MEMS装置的标准制造中的光刻。用于MEMS工业的最常见的光刻形式是接触式光刻。掩模版(reticle)(又称掩模)一般由玻璃板上的二进制铬图形组成。将所述掩模版放在甚近于包被光刻胶的晶片(或其他基质)或与包被光刻胶的晶片(或其他基质)接触。UV光照射透过所述掩模,曝光光刻胶。然后发展所述晶片,去除曝光区域的光刻胶(正型光刻胶)。由此,掩模版上的图形转移到充当随后蚀刻步骤的掩模的光刻胶。
[0262] 投影光刻是独占用于现代集成电路制造的另一种类型的光刻法。不是将掩模物理接触,投影光刻使用透镜系统将掩模图形聚焦于晶片上。本系统的主要优点是通过投影光学而微缩掩模图形的能力。典型系统具有五倍的缩小系数。一般而言,与接触光刻相比,使用投影可印制小得多的特征尺寸。投影光刻系统也称为分步重复系统(或简称为stepper)。掩模上的最大图形或区域尺寸显著小于晶片直径。所述掩模图形重复曝光(步进)于形成“裸片”阵列的晶片上。步进距离是晶片台在曝光之间行进于X和Y的距离,通常与裸片尺寸相等。此典型方案产生相同裸片的非重叠阵列,允许随后平行加工晶片上的裸片。
[0263] 进一步刻印硬掩模层(150),以形成图6d和图6e所示的离散区域。如图6d所示,在X和Y方向刻印硬掩模层150,以形成离散的硬掩模区域(例如图6e中的区域160、162、164和166)。这些离散的硬掩模区域可被用于在其下层上形成离散的硅区域。
[0264] 在上述实施例中,在两个分开的光刻步骤中进行硬掩模层的刻印。在备选的实施例中,所述掩模版可包含图形,从而可在单光刻步骤中完成硬掩模的刻印。再一个备选的实施例中,可省略所述硬掩模,并使用两步或单步光刻方法。
[0265] 在刻印顶部硬掩模层后,蚀刻硅层148,以在基质上形成相应的离散硅区域,例如硅区段168和172,具有其间的更透明材料的区域(例如图6f中所示间隔区域170和172)。如图6f所示微粒的俯视图示于图6g中。如图6g所示,当俯视时,曝光透射层146,区段
160、162、164和166形成于透射层146上。在制造过程中的此刻,所述结构的SEM图像示于图8a和图8b中。所述结构具有非常高的精度,例如垂直侧壁和尖。当然,更圆形结构也在这些方法的范围内。
[0266] 在刻印硅层148后,如图6h所示淀积透射层168。更透光层168可由/可不由与更透光层146相同的材料组成。图6h中的微粒的俯视图示于图6i中。基质上粒子的透视图示于图7中。
[0267] 然后将微粒彼此分开,但仍与下面的基质结合,如图6j所示。图6k图示图6i中微粒的俯视图,其中将各微粒与相邻微粒分开,但被透光层(即图6h中的层168)围绕。最后,如图6l中的横截面图所示,将分开的微粒从硅基质142上脱离。从硅基质脱离的微粒的俯视图示于图6m中。可用任何合适蚀刻剂从下面的基质脱离(“释放”步骤)所述微粒,所述蚀刻剂优选为匹配于全方位蚀刻和倒凹(undercut)微粒的气体或液体。还可在基质上的蚀刻基质本身的位置提供牺牲层(sacrificial layer)。所述蚀刻可为湿法蚀刻、干法蚀刻或等离子体蚀刻;且因此,期望所述隔离层(detaching layer)由可用所选蚀刻方法蚀刻的材料组成。尤其是,所述蚀刻剂可为自发的气相化学蚀刻剂,例如卤间化合物(例如BrF3或BrCl3)、新型气体卤化物(例如XeF2)、或酸汽例如HF。液体还可用于释放所述微粒,例如TMAH、KOH(或其他氢氧化物,例如NaOH、CeOH、RbOH、NH4OH等)、EDP(乙二胺儿茶酚)、没食子酸胺、-HF蚀刻玻璃从而不会对HNA(氢氟酸+硝酸+醋酸)起作用、或任何其他合适硅蚀刻剂(当在释放中待去除的基质或层是硅(非晶硅或多聚硅或单晶硅-或钨、氮化钨、钼、钛或其他可在硅蚀刻剂中去除的材料,例如XeF2))。如果待去除的材料不是硅,则所述蚀刻剂自然匹配于牺牲材料(例如用于光刻胶或聚酰亚胺牺牲层等的下游氧等离子体)。
[0268] 凹陷是特定制造方法的结果;且可留于终产物中,或可通过例如平坦化(例如化学-机械抛光(CMP)技术)去除。实际上,凹陷在某些情况下可有益于码检测和/或使用荧光方法的荧光定量,因为凹陷区域(每微条码单位长度)中荧光标记的材料与微条码表面的结合更强,所谓的凹陷信号增强,凹陷区域中的荧光更强且可用于测定所述码(有或无下文讨论的其它透射或反射技术)。相同的凹陷信号增强可应用于非荧光的报告系统,例如放射性报告等。
[0269] 尽管在上述实施例中将硅晶片作为基质,可使用玻璃基质,例如玻璃晶片或更大的玻璃片或玻璃板(如在平板展示工业中使用的那些)。玻璃(或硅)晶片可为任何合适尺寸,例如4英寸、6英寸、8英寸或12英寸。当使用玻璃晶片时,一般会首先淀积另外的牺牲层(用于在释放步骤过程中的后期去除)。所述牺牲层可为半导体材料,例如硅、前过渡金属,例如钛、铬、钨、钼等,或聚合物,例如上述光刻胶。
[0270] SEM
[0271] 图1a中区段(例如区段102)的扫描电子显微镜(SEM)图像显示于图8c中。如图所示,所述区段的横截面基本上是正方形。区段顶部宽1.0微米;所述区段的底部宽1.2微米。所述区段高约1微米。当然,可为更大或更小尺寸。
[0272] 上述用例示制造方法制造的微粒的多样性SEM图像示于图9中。SEM图像清晰显示了被微粒的透射材料围绕的不透明区段172。前述凹陷也清晰可见。考虑透射材料可为围绕包埋于其内的不透明区段的玻璃。在一个实施方式中,围绕所述区段的玻璃厚0.01-2微米。在特定实施方式中,所述玻璃具有0.1微米的最小厚度。在另一实施方式中,所述玻璃具有0.3微米的最小厚度。制备图9的SEM图像中的样品,特征在于通过切割(cleave)垂直于所述粒子长轴的芯片,随后定时蚀刻,以提供内硅和外二氧化硅之间更高的对比度,纯粹为成像目的。
[0273] 释放
[0274] 本发明的微粒可在晶片水平制造,并在晶片水平或裸片水平释放。具体而言,各包含一组微粒的多个裸片可在晶片上形成。各裸片上的微粒可相同或不同,即各裸片上的微粒可具有或不具有相同的码。在形成微粒后,可将所述裸片从晶片上分离;然后可去除在单离裸片上的晶片。例示晶片水平制造方法示于图12a-图12c中。
[0275] 根据图12a,在晶片236上形成多个裸片。在本特定实施例中,在各裸片上形成多个微粒。各裸片上的数字3,221或967表示并入裸片中微粒的码。所述微粒可参考图6a-图6m用如上所述的方法形成。在微粒形成后,但释放前,可部分切割所述晶片至深度优选为约晶片厚度的一半。然后清洁晶片,例如用溶剂和/或强酸(硫酸、过氧化氢组合)。清洁是重要步骤,因其制备了清洁的玻璃表面用于后期官能化及附着生物分子。所述清洁也可在将晶片分离为个裸片后进行,或在粒子释放时在粒子上进行。
[0276] 在微粒形成后,如图12b所示,将所述晶片断裂为裸片,其中各裸片优选但非必需含有单个码。然后如图12c所示,将所述裸片置于分开的管(例如试管)或多孔板的孔中用于释放。所述多孔板可为典型的96孔板(或24孔板、384孔板等),或任何其他合适的保持区域集或容器集。例如,将含以数字表示的码的裸片:3,221和967置于不同试管中用于释放。通过释放,将所述微粒从晶片上脱离;且当使用湿法蚀刻时,所述粒子可落入释放液中的溶液中。所述微粒由于重力,随时间沉淀于管或孔的底部(或可对所述管进行离心)。在一些应用中,需要将多个含1种或多种码的裸片释放入单个容器中。
[0277] 图11a显示释放前的粒子,且图11b显示释放后的相同粒子(即来自相同裸片的粒子)。两个图像均是用非倒置检测显微镜上的100×空气物镜取得的光学显微图像。图11b中将粒子干燥于硅芯片上。
[0278] 释放步骤可以多种方式进行,例如干法蚀刻、湿法蚀刻和下游等离子体蚀刻(downstream plasma etch)。在图10a所示的例示体湿法蚀刻中,将四甲基氢氧化铵(TMAH)用作蚀刻剂。可将TMAH加热至约70-80℃的温度。也可使用其他化学蚀刻剂,并可同样有效,例如卤间化合物(例如BrF3和ClF3)和新型气体卤化物(例如XeF2)、自发的气相蚀刻中的HF、气相蚀刻中的氢氧化、KOH、及其他合适蚀刻剂。可将具有小于最小微粒尺寸的特征孔径的筛(或带孔滤膜)置于各孔或容器顶部,无论使用液体或气体释放,以保持各容器内码安全,并防止微粒向相邻孔污染。在蚀刻(尤其是气相蚀刻或干法蚀刻)过程中,可在各管上贴滤网(或为贴在管、孔或容器一端的滤网)或为盖住管、孔或容器多于一个侧面的多个滤网,由此,玻璃蚀刻剂和蚀刻产品可自由流动通过滤网,而微粒被滤网阻止。滤网及其他滤器还可有助于在不释放微粒的情况下排尽液体释放蚀刻剂。释放蚀刻方法的另一实施例示于图10b中,且涉及如上所述的牺牲层的淀积或形成。
[0279] 在通过离心或随时间沉淀所述粒子后,去除液体(所谓的上清),并在水或溶剂中洗涤粒子多次。“洗涤”指连续用涉及下一步化学处理步骤的新液体替换上清。在从基质(或晶片)脱离微粒后,从蚀刻剂中去除基质-将微粒留在管中。然后可将释放的微粒转移到待用容器中。
[0280] 如图12a-图12c所示,可在晶片水平制造微粒。根据图12a,晶片236是上述(请参考图2的步骤122)基质,其包括多个裸片,例如裸片1和3。在本发明的一个实施例中,所述晶片具有10个或更多个、24个或更多个、30个或更多个、或50个或更多个裸片。各裸片包括大量本发明的微粒,其中所述量可为10000或更多、20000或更多、或50000或更多。在同一裸片中的微粒优选相同(但非必需);且在不同裸片中的微粒优选不同(也非必需),以表示不同码。在不同裸片包括不同码的微粒的实施例中,优选如图所示以特定识别号标记所述裸片,以区分裸片和裸片中的码。
[0281] 检测
[0282] 图13显示本发明的8个编码微粒的反射模式倒置显微图像。用倒置落射荧光显微镜取得多孔板孔中释放的粒子的全部黑色背景的黑白显微图像。将粒子分配到液体中的孔中,且由于重力沉到底部,从所述底部的下方对所述粒子成像。图13中的各粒子具有不同的码。更不透明材料的区段(例如可见光谱中的不透明材料)(在本情况下是非晶硅)反射光,且在此图像中为更亮的区域。围绕的透明材料(在本情况下是二氧化硅)在反射模式图像中不可见。所述粒子16μm长,2μm宽,且其横截面约为方形。所述图像是从8个图像中选择的组合,每一个码一个图像。照明光是436nm,且所用物镜是60×放大的油浸镜头。
[0283] 图15显示许多不同码的混合的全景、单图像。所有粒子形成高密度单层,即无粒子聚集或结块。单层形成特性是本发明的微粒的关键优点之一。当微粒重叠、聚集、或结块时,就不能适当地鉴定所述微粒。结果,不易形成如本文所述的单层的微粒将被迫以相对低密度(成像表面上的总微粒数/单位面积)使用。低密度成像被转译为相应的低通量,对于所测粒子数/单位时间。此低通量可为许多应用中的限制。
[0284] 微粒形成单层的倾向并非微不足道。单层形成涉及许多因素,例如微粒的表面带点状态(或0电势)、特定溶液中微粒的密度、含微粒的流、及淀积微粒的表面。因此,本发明的微粒由材料组成,且构建为有助于维持足以基本上克服粘滞力的带电状态的形式;从而微粒能够进行促进形成合理密度的微粒单层的布朗运动。
[0285] 生物学应用中,微粒常用于携带生物化学探针分子。为固定所述探针分子,所述微粒优选包含表面层,例如二氧化硅层,其可被化学修饰以结合探针分子。在本发明的一个实施例中,构建微粒使得微粒能够(例如在含液体的孔的底部)形成单层;且所述单层每平方毫米包括500个或更多个微粒,更优选每平方毫米包括1,000个或更多个、2,000个或更多个或3,000个或更多个微粒。在备选的实施例中,微粒可形成单层,使得可检测粒子占总图像面积(即图像视场)的30%或更多、50%或更多、70%或更多。说到自组装单层形成的例-12 2示机制,本发明的微粒2D扩散系数优选大于1×10 cm/s。为复合微粒单层,用于在检测中容纳微粒的容器优选具有基本上平的底部部分。
[0286] 在一个实施方式中,多个微粒被排布于单层中表面的部分上。可认为单层中的微粒覆盖表面的部分的面积的30%或更多、50%或更多、或70%或更多。在特定实施方式中,2
被覆盖的表面的部分大于1000μm 的面积。在另一实施方式中,被覆盖的表面的部分包括
2 2
大于1mm 的面积。在又一实施方式中,被覆盖的表面的部分包括大于10mm 的面积。在特定实施方式中,被覆盖的表面的部分是填充液体的微量滴定板孔(又名储库)底部部分[0287] 图14显示用于成像本发明的编码微粒的光学系统的示意图。光学系统254可用于读取微粒码,包括用于生物测定应用。所述系统是倒置落射荧光显微镜构造。用于检测本发明的微粒的其他例示光学显微镜系统包括但不限于:共聚焦显微镜系统,全内反射荧光(TIRF)等。多孔板257含多个孔,对其中的单孔256成像。所述多孔板位于显微镜台258上。在液体中分配到孔256中的微粒由重力沉到底面。来自光源268的光穿过选择照明光波长的激发滤光器266。照明光在分束器262上反射,并入射穿过物镜260。一般而言,仅对孔256底面的部分成像。成像区被称为“场”或“场区”。反射光或发射光(被合称为集合光(collection light))由目镜返回,并穿过分束器262。发射滤光器270选择集合波长。最后用检测器272(例如CCD照相机)记录集合光。不得将此简化版光学系统理解为完整系统。实践中,实际显微镜可具有更多特征,优选包括用于高通量成像的自动化镜台和自动聚焦系统。激发滤光器和发射滤光器可安装在计算机控制的滤光器轮上,并自动切换反射和荧光图像。计算机控制的光栅控制曝光时间。
[0288] 图42显示利用两个CCD照相机同时获取反射图像和荧光图像的用于成像编码微粒的光学系统的示意图。所述光学系统用于生物测定中的检测。所述系统是倒置落射荧光显微镜构造。在优选实施方式中,多孔板201含多个孔,对其中的单孔203成像。多孔板201位于显微镜台209上。在流体中分配到孔203中的粒子由重力沉到底面。来自光源215的光穿过选择照明光波长的激发滤光器219。照明光在分束器213上反射,并入射穿过物镜211。一般而言,仅对孔203底面的部分成像。成像区被称为“场”或“场区”。反射光或发射光(被合称为集合光)由目镜返回,并穿过分束器213。然后所述集合光穿过将其分为反射光路和荧光光路的第二分束器217。发射滤光器221位于荧光光路,并选择合适荧光发射波长。用荧光CCD照相机223记录荧光光路中的光。用反射CCD照相机225记录反射光路中的光。不得将此简化版光学系统理解为完整系统。实践中,实际显微镜可具有更多特征,优选包括用于高通量成像的自动化镜台和自动聚焦系统。激发滤光器219和发射滤光器221可安装在计算机控制的滤光器轮上,以在多荧光团实验中自动切换。可使用计算机控制的光栅控制曝光时间。
[0289] 图42所示的系统较利用滤光器轮(或滤光器立方体轮)连续获得反射和荧光图像的标准单照相机系统有改善。通过将出射光束光路用分束器分为两种成分来完成本发明。一种成分是反射光路,其用一个CCD照相机捕获。另一成分是荧光光路,对其滤光为合适的波长,并用第二匹配CCD照相机捕获。可将分束器设计为将更多光导入荧光光路,从而使在两个照相机上的曝光时间大约相等。本发明的二照相机系统提供了通量提高的优点。另外,本发明提供消除可存在于单照相机系统中的反射和荧光图像对之间的位置变换的优点。这简化基于计算机软件的图像对处理,因为所述粒子在图像对的两个图像中的相同物理位置。再一实施方式中,所述光学系统用于生物测定中的检测。
[0290] 图17显示编码微粒的放大图像。成像的粒子由变化尺寸的离散区段组成。最小尺寸区段20是0.6μm。端区段22形成单个粒子的端。本发明的例示实施例由具有尺寸小于1.5μm的立体编码特征的编码微粒组成。
[0291] 图17a显示编码微粒的16个密集反射图像的剪辑。图像中约有6,000个粒子。所述粒子为384孔板的孔中共约200,000个粒子中的一小部分。总粒子为含1035个码的集(批)的约10%。通过组合各1035个批中的约2,000个粒子来形成所述集,其中每批含单个码的约2百万粒子。这些图像更大图像集的子集,由所述更大图像集表示如下有关鉴定精确性的数据。
[0292] 图17b显示本发明的例示微粒的透射荧光显微图像。图中还显示具有全玻璃外表面的小的、延长的编码微粒。图中显示了多个具有硅石(例如玻璃或二氧化硅)外表面,且长度小于70μm(例如小于50μm)的非球体编码粒子。在此特定实施例中例示粒子长度为15μm。
[0293] 此图像中,所述粒子在含悬浮的荧光分子的溶液中。所述荧光分子在经显微镜光源激发时,提供从粒子上方(即在光收集元件后,见图14的基本光学系统示意图)的照明。所述图像与在透射模式成像构造中提供的图像相似,且不同于图15-图17a的清晰显示所述粒子外玻璃表面的反射模式图像。
[0294] 为连续鉴定微粒,例如读取整合入其中的码,可处理微粒的图像。所述图像处理可在软件程序辅助下进行。在软件程序和算法的例示实施例中,图18a和图18b和图19a和19b显示了原始图像和经处理图像对。
[0295] 图18a显示全景反射图像;且图18b显示在经图像处理,以将离散区段结合入全微粒后的图18a的相同图像选择。图像中所示粒子是单个码。本发明的编码微粒图像由在反射图像中显白色的离散区段组成。介于单个微粒的区段之间的间隔由透明且由此在反射图像中显黑色的玻璃组成。图像背景也为黑色。所述区段通过算法一起结合到粒子中。所述算法查找长区段的长轴,且沿所述区段的轴搜索。基于预定参数接受或丢弃区段。图18b中的黑线对应于区段已结合在一起的粒子。在上述算法的例示实施例中,计算机程序产品通过将图像中的离散区段结合入单个粒子,鉴定编码粒子的码。
[0296] 图19a显示反射图像的筛选;且图19b显示在经图像处理,以将离散区段结合入全微粒后的图19a的相同图像选择。图中所示粒子是多个码。对粒子区段编号。图19b中的黑线表示已通过图像处理软件一起归类入粒子的区段。
[0297] 根据图20,经处理的图像显示于右侧,4个例示微粒的像素强度曲线图显示于左侧。通过计算机软件程序进一步处理像素强度曲线图,以测定微粒的码。可通过鉴定如左下的像素强度曲线中圆圈部分所示的间隔的中心位置来鉴定微粒的码。如上所述,中心间隔位置对粒子制造过程或图像处理二者的变化(即构成图1a例示实施例结构的实际区段和间隔的尺寸变化)不敏感。此特征极有利,因其提供了编码微粒的稳健且精确的码鉴定[0298] 表1表示包括图17a所示的那些图像的图像集的鉴定数据。
[0299] 表1
[0300]图像 全ID% 有限
30,069个码 ID%1,035个码
40×物镜 99.5% 99.98%
~500个粒子/图像
检测到9866个粒子
60×物镜 99.85% 99.995%
~250个粒子/图像
检测到2733个粒子
[0301] 包括于表1中的微粒具有30,069个码域,其中所述码域被定义为具有特定粒子设计(即具有所选编码方案和编码方案参数)的可能码的总数。预定鉴定方法基于对粒子区段信息的分析来分配30,069个可能码之一。随机选择1035个码,制造,并混合形成集合。当分析对所述集合的鉴定时,如果软件分配的码是1035之一,就认为是正确的。将被“正确”鉴定的粒子的数除以总数称为“ID%”。该假设通过随机误差落入1035个目前码的概率,或1035除以30,069=约3%来低估误差率(1-ID%)。因此,假设忽略此3%的偏差,并提供近似于真实鉴定的精确性。
[0302] 图21示意特定制造的表面,其具有经设计以固定和分开编码微粒用于成像的特征。所述表面包括特征,例如捕集粒子的凹槽和/或凹陷。所述表面可用于粒子由于包被到表面上的分子的性质或成像介质的性质而经历聚集增加的应用。图21显示所述基质320的实施例,其具有经设计以捕获粒子的凹槽322。所述基质320优选为玻璃,但也可为其他材料,例如其他透明材料。图21中所示的凹槽322为V字形,但也可取任何形状,例如完成捕获粒子的任务的方形或U形底。当把粒子置于表面上时,粒子324落入所述凹槽中,并被固定。在例示实施例中,本发明的编码微粒具有延长的且基本上正方形的横截面,可被固定于具有平底的凹槽中。
[0303] 在备选的实施例中,如图22和图23所示,可提供使微粒在流体中流动的流动池,用于通过连续成像的检测。根据图22,用图6所示的光学系统(但用流动池320替换其中的多孔板)获取了反射和荧光图像对。编码微粒322在载体流体中流动。流动可由压力(水力)或电力(电泳电渗)手段驱动。另外,微粒可用电场磁场排列。如箭头所示,流动由左至右。上图图22显示给定时间的流动池,下图图23显示在随后时间的同一流动池,由此,所述粒子移动了等于约视场长度的距离。图中显示光学系统物镜330置于流动池下方,但也可置于流动池上方。此外,可将流动池置于其他构造中,例如流动取垂直方向。物镜330对捕获场区328成像。第一场区324和第二场区326显示为阴影区域。在上图中第一场区324与捕获场区328重叠,因此对第一场区324成像。下图中,第二场区326与捕获场区328重叠,从而对第二场区326成像。为合适地匹配流动速度、流动池尺寸和光学系统,对所有穿过流动池的粒子成像,从而提供高通量检测用系统。另一基于高通量流动检测本发明的编码微粒的例示系统是流式细胞仪,其是本领域熟知其方法及应用。
[0304] 其他结构
[0305] 图24示意本发明的另一替代微粒。根据图24,微粒274包括不透明区段(例如276)和可透射可见光或近可见光的间隔(例如278)。不透明材料可完全或部分由基本上磁性的材料(例如但不限于:镍、钴或铁)组成。基本上磁性的材料可包含选自磁性、铁磁性、抗磁性、顺磁性及超顺磁性材料的材料。基本上磁性的材料可整合为夹于形成不透明材料主体的另一材料之间的薄层280。基本上磁性的材料赋予粒子磁性特征,使得它们可通过磁场进行操作。这可有助于粒子操作或辅助分开生物分子。
[0306] 图25显示具有荧光外层406的空间光学编码微粒的示意图。本发明可用于材料品标记,其中所述荧光层提高易于在各种背景中寻找和鉴定粒子的能力。在例示实施例中,用改进版 方法[VanBlaadern,A.;Vrij,A.;Langmuir.1992.Vol.8,No.12,2921]培养荧光外层406。荧光外层406使整个粒子发荧光,并辅助在检测过程中寻找所述粒子。可通过以反射或荧光模式成像来完成粒子码的读取。根据应用、所应用粒子的介质或粒子所应用于的表面,一种较其他优选。可使用单个码的粒子,或可使用不同码的粒子的混合物。可将粒子应用于介质,例如漆、清漆或墨水中。可将所述粒子用于标记纸或纤维。所述粒子可用于标记由金属、木材、塑料、玻璃或任意其他材料制成的对象。
[0307] 在另一实施方式中,荧光层可由荧光团、或其他发光材料组成。所述荧光层可与测定中的分子物类(例如通过荧光共振能量转移方法荧光标记的核酸或蛋白样品)相互作用。在另一实施例中,所述微粒可具有非荧光层,其中整合到层中或层上的是分子,例如与发光发射分子相互作用的猝灭剂。
[0308] 图26a-图26c显示具有形成空间码的表面凹陷的本发明的编码微粒的示意图。可通过多种方法制造微粒,其中包括上述实施例。图26a仅在结构的表面具有表面凹陷(又称窝(divot))(例如凹槽)。图26b在两面具有divot。在其他实施例中,divot及其他期望表面特征可位于微粒结构的1个或多个表面上,以提供空间码。图26c显示所述结构的另一实施例,其中微粒的整体形状基本上是圆柱形。在一个制造图26c的微粒的例示方法中,可将直径小于1mm的光纤经激光或尖端印制(scribe),以形成凹陷。图26a-26c的结构的组成可选自广泛种材料,在优选实施例中是玻璃。
[0309] 包括凹陷的编码微粒的例示实施例中,粒子表面具有如图26d所示的发荧光(或以别的方式发射光)的、结合到或结合入表面的分子。所述发射光的分子可共价结合到表面,吸附到表面,或以别的方式结合到表面。在一个例示实施例中,将所述发射光的分子整合入淀积在微粒上的层中。发射光的分子的均匀表面覆盖(例如恒定数量荧光团/单位面积)导致非均匀空中密度(aerial density)。空中密度被定义为通过光学图像平面中的景深集成的强度/单位长度或强度/单位面积。在本实施例中,将空中密度通过检测器(例如CCD照相机或光电倍增管)测量为信号强度曲线。图27a-27c显示所测与图26a-图26c中对应粒子的粒子表面正交(即垂直)的非均匀空中密度。信号强度曲线具有对应于微粒表面凹陷位置处的峰值,其由此提供可检测和可用码。图26a-26c的编码微粒的表面特征可通过非使用发射光的分子的方法检测,包括但不限于:光散射测量,例如暗场光学显微镜等。
[0310] 制造码的方法
[0311] 本发明的制造微粒上的码的一般方法由单个码元/粒子区域的多个平版印制步骤组成。多印制步骤产生多码元/粒子区域。码元一起形成微粒的码。在优选实施例中,印制步骤在许多粒子中与使用主图形(master pattern)平行进行。主图形包括单个码元阵列/粒子区域。码元可表示多于一种物理特征,例如孔、条或间隔。将主图形印制多次,从而形成具有完整码的多个微粒,其中多个微粒包括相同粒子(例如所有粒子具有相同的码)。考虑了本方案的变化,例如其中多个微粒不相同,并于下文描述。多印制步骤之间,总印制系统的组件变化以转译粒子区域内的码元。在优选实施例中,此变化是形成粒子处的基质移动。在另一优选实施例中,此变化是主图形的移动。又在其他实施例中,此变化是光学元件(例如镜)的移动。
[0312] 使用多印制步骤制造码制造码的一般方法的例示实施例涉及光刻作为印制机制,例如接触光刻和投影光刻。投影光刻的例示实施例利用分步重复系统(又称为stepper)。掩模版包括具有单个码元/粒子的码图形。通过此码图形在不同侧向偏移(lateral offset)处的多次曝光而产生了多个码元(每粒子)。组合的这些码形成完整的码。侧向偏移定义码,并被编程入stepper软件。所述偏移及因此的码可在每裸片或每晶片基础上变化。因此,印制于晶片的不同裸片和/或许多晶片中不同晶片上的码通过软件控制,且可任意改变。这使得制造码的大集中可以有强大的弹性。单个掩模集具有1-数个掩模,可用
5
于产生任意数量的码,编号到10 程度及以上。
[0313] 图28a-图28c显示制造微粒的码的本发明方法的例示实施例。微粒区域290是完成制造过程后会成为离散粒子的区域。图28a显示在印制各微粒区域290中的第一码元292后的状态,在此例示实施例中,所述码元是垂直条。图28b显示在印制各微粒区域290中的连续码元294后的状态。图28c显示印制各微粒区域290中的3个以上码元296的状态。由此,多印制步骤提供微粒上的码。
[0314] 图29a-图29c显示制造微粒的码的本发明方法的另1个实例示实施例。所述微粒区域300是完成制造过程后会成为离散粒子的区域。图29a显示在印制各微粒区域300中的第一码元302后的状态,在此例示实施例中,所述码元为圆形。图29b显示在印制各微粒区域中的连续码元304后的状态。图29c显示印制各微粒区域300中的3个以上码元306的状态。由此,多印制步骤提供微粒上的码。
[0315] 图30a-图30c显示微粒结构的优选实施方式的3种掩模域(maskfield)的图,且图30d显示掩模版的图。图30a-30c是大的多的全景中小的代表性区域(显示了约2百万个粒子中的仅46个)。在这些图中,灰色区域在实际掩模版上有铬(在掩模版技术中的所谓“暗”),及白色区域无铬(所谓“亮”)。物理上,所述掩模版是通常测量5”-6.25”方形及约.09”厚的玻璃板。它们用铬薄层(数百nm)包被。用光刻胶通过连续光刻处理(通常使用激光或电子光束系统)刻印所述铬。然后湿法蚀刻所述掩模版,所述湿法蚀刻选择性去除所述铬。则最终掩模版由期望图形一侧具有铬的玻璃板组成。
[0316] 图30a所示码图形具有亮的垂直条110。每一个粒子具有一个掩模版条。图30b显示条图形,其由暗的水平条112组成(也相当于由亮的宽水平条组成)。图30c所示的轮廓线图形由暗的矩形114组成。亮的条路(street)116在水平和垂直方向延伸,分隔矩形114。矩形116形成粒子的外边缘。水平条112定义不透明材料的内区段宽度。垂直条110形成区段内的间隔。所述间隔既形成粒子中的码,又分开两个相邻粒子。图30d显示完整的掩模版。掩模版区118是掩模版的中心区,其含有待曝光的图形。也考虑了所述图形的备选实施例,包括将码和条图形组合为可根据所述多印制方法使用的单个图形。
[0317] 产生码的本发明方法的例示实施例使用光刻法和正型光刻胶。正型(positive-tone)指对暴露于光的区域显影。负型光刻胶的曝光区域在显影后保留。光固化环氧(photocurable epoxy)SU-8是负型光刻胶的一个实施例。在使用负型光刻胶(例如SU-8)的备选实施例中,待成为区段的区域暴露于光,而非待成为间隔的区域。
[0318] 图51a-图51c显示码元刻印和蚀刻步骤的实施例的流程图。图51a显示未使用硬掩模的情况。此方法简单,但由于光刻胶曝光的邻近效应,可产生具有圆角的区段。在区段的角处,光刻胶得到一些来自码图形的垂直条和条图形的水平条的残余曝光。不太期望得到圆角(尽管也在本发明的范围内),因为其产生侧面与顶面和底面对比看起来不同的终粒子。圆角出现的程度取决于光刻方法的种类,包括掩模版上的图形、光源的波长和光刻胶。图51b显示基于多印制方法的刻印方法的例示实施例,且其详细描述于如下图32a-32m及图33a-33m。图51c显示粒子制造方法的另一实施例,其中不是将条图形转换为硬掩模,而将条图形光刻胶用作与硬掩模氧化物缀合的掩模。此实施例方法减除了一些步骤,但由于多蚀刻化学的特殊性而不适合。
[0319] 使用多印制步骤制造码的一般方法的备选实施例利用冲压(stamping)(又称压印光刻(imprint lithography))作为印制机制,且其示意于图31中。图31示意显示了用于根据本发明的“多印制步骤构建码法(multiprint-step-to-build-the code-up method)”冲压印制的实施例主图形的小区域,例如:(1)冲压或处理冲压设备至含粒子的基质,随后(2)移动冲压设备或基质,及(3)在临近位置冲压至少一次以上,由此在微粒上形成完整码。可使用压印光刻法形成微粒的基质可为晶片(例如100mm、150mm、200mm或300mm硅晶片)或盘(例如5”或更大的玻璃或石英盘)或轧薄板(rolled sheet)(包括但不限于多聚板)。
[0320] 图32a-32m和33a-33m显示图1a的例示编码微粒的微制造方法步骤。这些步骤定义内部不透明区段(其含有码)。所述步骤比图6a-图6m所示步骤更详细,且包括光刻曝光和显影。图32a-图32m显示俯视图,而图33a-图33m显示相应的横截面图。横截面线50示于图32a-图32m中。在图32a中,顶面是硬掩模氧化物58。在图33a中,堆积在初始基质52上的膜由底部氧化物54、聚合物56和硬掩模氧化物58组成。在图32b中,晶片用未曝光的光刻胶120包被。未曝光的光刻胶120在图33b中显示为顶层。图32c和33c中,未曝光光刻胶120已被暴露于码图形单一一次而形成曝光的光刻胶122区域。在图32d和33d中,所述码图形已用曝光之间应用的侧向偏移(lateral offset)曝光多次。在优选实施方式中,将所述码图形曝光于直接相邻区域两次,以形成双宽条124。单宽条126是形成码的“间隔”。双宽条124位于粒子之间,并分隔所述粒子。为使清晰,通过移动其上放置晶片的镜台实现侧向偏移。将侧向偏移编程入stepper软件。侧向偏移定义为在该裸片上微粒的码。晶片的各裸片的侧向偏移(及因此的码)可不同。许多晶片中的各晶片可具有码的不同集。如此,可实现可实现非常大的码集。
[0321] 图32e和33e显示光刻胶显影后的晶片。去除图32d和33d中曝光的光刻胶122而暴露位于其下的硬掩模氧化物58。图32f和33f显示氧化物蚀刻后的晶片。所述氧化物蚀刻去除曝光区域内的硬掩模氧化物58,从而暴露位于其下的聚合物56。图32g和33g显示去除图32f和33f中的未曝光光刻胶120后的晶片。硬掩模氧化物58存在于会成为区段的区域中。将聚合物56曝光于会成为不透明材料中的间隔的区域中。图32h和33h显示再次被未曝光光刻胶120包被的晶片。
[0322] 图32i和33i显示条图形曝光后的晶片。其仅是单次曝光,且在所有裸片上相同。该曝光优选与已在晶片上的图形对准。曝光后,未曝光光刻胶120图形由定义区段宽度的水平条组成。曝光的光刻胶122图形由定义区段间水平分隔的水平条组成。图32j和33j显示光刻胶显影后的晶片。去除图32i和33i中的曝光的光刻胶122而暴露位于其下的硬掩模氧化物58和聚合物56。图32k和33k显示硬掩模氧化物的氧化物蚀刻后的晶片。只有聚合物56存在于图32i的曝光的光刻胶区域中。图32l和33l显示去除未曝光光刻胶
120后的晶片。在处理的该点,晶片的顶面是会成为不透明材料的区段的区域内的聚合物
56被硬掩模氧化物58覆盖的聚合物56。最后,图32m和33m显示聚合物蚀刻后的晶片。聚合物蚀刻去除图32l和33l的聚合物56,从而暴露位于其下的底部氧化物54。硬掩模氧化物58仍存在于区段图形内聚合物56的顶面上。
[0323] 除图1a所示微粒外,上述方法还可用于制造其他编码微粒设计的码,包括目前已知的粒子设计,及其他替代设计。上述方法可用于制造例如图35A-35C中的编码微粒的码。
[0324] 根据图34a,具有码元的条形微粒由被框架材料182围绕的孔(例如孔178和180)组成。孔的数量和排布形成源自预定编码方案的码。
[0325] 图34b显示具有包括刻痕(notch)(例如刻痕196)的码元的另一条形粒子。相邻刻痕定义一组具有不同宽度的凸结构。宽度不同的凸结构总数和凸结构排布表示源自编码方案的码。图34c显示具有码元的方形板形粒子,所述码元由例如被间隔202分隔的孔(例如孔200和202)组成。所述板粒子还在一角包括缺口(indentation)198,以打破粒子对称性,从而允许更多的码。还可通过上述制造码的方法制造其他形状和码元结构。
[0326] 图35显示从裸片释放前,实际编码微粒的4个显微图像。根据用多印制步骤制造码的本发明技术,及根据上述设计制造这些粒子。
[0327] 图36显示输入到stepper软件,以在晶片的各裸片上产生不同码的实施例数据的表格。所述表格显示在9个不同流程(pass)中,用何种偏移印制了何种裸片。图36中显示的数据是用于使用stepper组织多印制方法的一种系统的实施例,所述方法提供在晶片上的多个裸片上的多个码。在本实施例中,各裸片在单个流程期间至多曝光一次。本实施例中stepper曝光流程期间裸片接受曝光的晶片图显示于左栏。“1”代表曝光。“0”代表不曝光。中栏显示曝光偏移的晶片快照图(shot map),用偏移字母“A”、“B”、“C”和“D”表示。右栏显示下列各项的查询表格:(1)相对粒子端的曝光位置,(2)偏移字母,及(3)相对stepper参照点编程的曝光位置。行对应于不同流程,本实施例中是9。
[0328] 用于组织使用stepper的多印制方法的系统的另一实施例是在移动到下一个裸片前,曝光单一裸片内的全部码元。当然,可使用非4的偏移数。尽管使用投影光刻和stepper说明了制造微粒上的码的一般方法的本实施例及其他实施例,也可使用接触光刻及其他刻印方法。
[0329] 图37显示产生增多数量的码/裸片的例示方案的图。在本方案中,裸片内有固定码元和可变码元的位置。裸片被分为子区域,各子区域具有固定码元的不同图形。对于各裸片,对可变码元的不同图形曝光。固定码元和可变码元一起构成整个码。由此,单个晶片含有等于裸片/晶片和子区域/裸片的数量的产品的码总数。含有不同码的子区域的单个裸片可被物理分离为更小的子裸片,且不同码释放到不同管中。备选地方式是保持裸片完整,并将整个裸片释放到单个管中。这会产生来自不同子区域的码的混合物。此方法可在组合的合成应用中尤其有用。
[0330] 制造码的本发明方法(例如使用光刻分步重复系统,通过单掩模版场的多曝光步骤,形成完整码)可用于将特定码应用于多种组分,例如MEMS和IC装置。
[0331] 编码方案
[0332] 上述微粒在其内整合有源自任意期望的编码方案(例如二进制或非二进制编码方案)的码。
[0333] 作为实施例,图38a显示根据本发明的非二进制编码方案形成的编码微粒的图形表示。根据图38a,编码方案参数是L(粒子长度)、w(区段间的间隔宽度)和d(间隔的间隔中心位置中的δ)。图38a显示具有不同码的4个粒子,只有间隔之一有位置变化。间隔的变化量等于d,显示“相邻”码(例如相似的,且从而更有可能被误鉴定为另一个的码)。图38b和38c显示具有不同数量间隔和位置变化的间隔的随机码。表2显示各种不同参数组合的码总数(码域)。通过执行本发明的非二进制编码方案的计算机软件程序计算码总数。算法中考虑到码的简并性(例如一对码,即当一个反转时,码等同,且两个码被认为是一个码)。表2和表3中的参数指定为100nm单位。给出30,069的参数组合L=152、w=8、d=4示于图38a-38c中。表3显示可通过不同L表示的码总数。在例示实施例中,离散化距离w等于或小于特征区段尺寸。如表3所示,可得到非常大的码域,且尤其可用上述方法实现。参数组合L=152、w=5、d=4具有约2百万的码域.
[0334] 表2
[0335]L w d 码数(码域)
152 8 8 2134
152 8 7 3281
152 8 6 5846
152 8 5 11439
152 8 4 30069
152 8 3 105154
100 5 5 3,049
110 5 5 8,904
120 5 5 23,296
130 5 5 62,376
140 5 5 170,083
[0336]
[0337] 表3
[0338]L w d 码数(码域)
80 5 4 928
90 5 4 2,683
100 5 4 7,753
110 5 4 22,409
120 5 4 64,777
130 5 4 187,247
140 5 4 541,252
150 5 4 1,564,516
152 5 4 1,934,524
160 5 4 4,522,305
[0339] 在例示实施例中,编码方案利用位于在以小于码元尺寸本身间隔长度跨越的位置放置的码元。其衍生自标准二进制编码,其中所述码由离散的均匀间隔位置处特征的缺失或存在组成。在本编码方案的优选实施方式中,其天然可应用于使用多印制技术制造的上述结构,所述码元是区段化的内不透明材料中的间隔。间隔尺寸选择为由stepper和光刻法可靠定义,且还可用显微镜分辨(在期望的放大倍数下工作)的尺寸。间隔尺寸、间距长度和粒子长度决定码域(可能的码的数量)。码域的测定涉及晶片上的粒子密度、鉴定精确性、光学检测系统复杂度和粒子数/显微图像之间的权衡。使用特定的参数组合,可制造出超过百万的码域并对其准确地鉴定。
[0340] 在标准二进制编码方案的实施例中,可将粒子分为等长的单元。各单元可为黑或白,0或1。因为粒子是对称的,当一个反转时有两个相同码(所谓的“简并”码)。当对码N计数时,优选丢弃各简并码对之一。没有简并性时,会有2 可能的码,其中N是比特(单位)的数量。有简并性时,会有该数的约一半。确切而言,具有标准二进制格式的可能码的N 层[(N+1)/2]
数量是[2+2 ]/2。如之前图13、图16等所示,本发明的高对比度编码微粒结构的
实施例中,在码的整个集内,可有具有长距离黑或白区域的单个码。粒子的黑色可与背景黑色区分,赋予粒子极高的对比度。但不太期望具有长距离黑色的码(尽管也在本发明的范围内),因为更难将白色区域结合到分开的粒子中。例如,更难的码会是1000...0001(在两端的单个白色比特)。需注意,尤其对于本文前述结构和制造方法而言,可使用任何合适的编码方案,正如除上述实施例讨论的方案之外的许多其他编码方案也可能。
[0341] 上述非二进制编码方案在制造和检测微粒方面具有许多优点,包括提供高码域和稳健的码鉴定。在编码方案的实施例中,通过使对单尺寸特征(例如具有单个宽度的区段中的间隔)的刻印和蚀刻的最优化来提高微粒制造方法的可靠性。
[0342] 在如图20所示的编码微粒和测定其中的码的方法的例示实施例中,通过间隔的中心位置而非区段长度测定所述码。因此,如果尺寸变化(由于制造中的变化或成像条件中的变化或所使用图像处理算法的变化),间隔中心位置不变化,从而使得码ID稳健。本方案运用这一事实,即在光学成像系统中,可将特征位置(在本情况下是间隔)置于远小于其特征的最小分辨尺寸的分辨率。例如,如果间隔宽度可为1.5μm或更小,且位于小于1.0μm的距离,更优选小于0.5μm的距离。
[0343] 一般期望高码域。在基因组学领域,具有数万空间码尤其重要,因为其使复杂生物的全基因组(人基因组)能够置于单个粒子集上。表2的上部分显示改变δ参数d对码域的影响。缩小d产生更多的码,但对光学系统的要求提高。需要分辨更小的d表示一般会使用更昂贵的物镜。实践中,根据光学系统的分辨率(表现为用CCD照相机捕获的数字图像的像素大小)设置间隔间距距离的下限。使用60×物镜和6.2mm 1024×1024CCD芯片时,d=0.4μm的间距距离等于约4个像素。如果间距距离减小至0.3μm(3个像素),则有105,154个码。可将码域扩展至更长粒子长度L和/或更小间隔宽度w的数百万。
[0344] 表2的下部分显示在固定w和d的情况下改变粒子长度的影响。长度L与裸片上的粒子密度(粒子数/单位面积)成反比。所述长度还影响图像中的粒子数,及通量(检测的粒子/秒)。在码域、密度、鉴定和通量之间存在权衡。最优化编码方案参数会确定用于特定应用的所选编码方案。
[0345] 大粒子集
[0346] 图39显示微粒的各种形式大原型集的4个照片的剪辑照片。所述集含有超过1000个码和各码的约2百万个粒子。左上角的照片显示制造过程中的40个晶片。各晶片具有32个裸片,各裸片含单个码的约2百万个粒子。进一步的实施例中,晶片上的裸片可含更多的粒子/晶片,例如5百万或更多。晶片(或其他基质,例如玻璃盘)也可含100个或更多个裸片,或者备选的200个或更多个,或1000个或更多个裸片。全部晶片可具有编码微粒的100个或更多个码,或者备选的200个或更多个,或1000个或更多个码,或5,000个或更多个码。在编码微粒的大集的例示实施例中,基本上所有用于制造大集(例如,从裸片释放的微粒)的裸片含不同的码。在另一实施例中,晶片或基质上的所有裸片可具有相同的码。
可选择裸片尺寸,以最优化粒子数/码和大集的大集中码数之间的平衡。可在软件中改变(例如通过利用制造码的本发明方法)粒子数/裸片和裸片/晶片,且根据不同应用(无需固定模具(例如大和昂贵的光掩模集)的高资本成本)最优化为每制造批或每产品。
[0347] 在图39的右上角照片中,晶片制造已完成,且粒子从硅基质释放到试管中。试管显示于照片中的各容纳64个试管的诸容器内。左下角照片显示含来自大集的粒子的1035个试管中的每一个的一小部分(约数千个粒子)的单个试管。右下角的图像是单个试管样品的显微图像。此图像显示混合在一起的1035个码的成员。
[0348] 测定
[0349] 本发明的编码微粒、系统和方法在生物学、化学、和医学及安全和涉及对货币、身份证和护照、商业产品等的标记的商业领域具有广泛应用。在一个实施例中,所述微粒可用于分子检测,例如分析DNA、RNA和蛋白质。在其他实施例中,如本领域已知的进行组合化学或药物筛选测定。
[0350] 根据图40中的流程图,微粒含于分开的管(或多孔板的孔)中。在步骤410中,各管含大量(例如百万或更多个)单个码的微粒。在步骤412中,生物分子(例如DNA或RNA)被固定在粒子的表面上,且被称为“探针”。各种探针被固定在不同的码上,生成查询表用于将来的参考。各探针物类还具有两者间特异性结合(即,结合对)的“靶”的1种或多种相应的物类。术语探针/靶常参考DNA和RNA互补物来使用,但在此情况下指所有生物分4 2
子,包括抗体。固定在单粒子上的多种探针一般具有10/μm 或更高数量级的密度。如本文其他在用术语,单数形式使用的“探针(a probe)”常指多个探针分子;且“码(a code)”常指多个特定码粒子。
[0351] 编码微粒与生物分子的配对通过步骤414生成“汇合的探针集”。汇合的探针集是编码微粒的混合物,其中各码具有结合到粒子表面的特定探针。随后,汇合的探针集可用于测定存在于靶混合物中的单个靶的量。靶混合物被称为样品,且一般源自生物标本。然后在步骤416中一般用荧光团标记样品。当样品与汇合的探针集混合时,探针和靶在溶液中彼此寻找并结合在一起。如果用核酸,此反应(步骤418)被称为杂交,且非常具有选择性。反应后,在步骤420对粒子成像以读取码并对荧光定量。根据码探针查询表,现可在步骤422中检测混合样品中的不同靶物类的量,并作为所测测定结果。
[0352] 与微粒反应的样品可为纯化的生物提取物或非纯化的样品,包括但不限于:全血、血清、细胞裂解物、拭子或组织提取物。可通过培养、克隆、解剖或微解剖产生与微粒反应的样品。细胞可作为利用本发明的上述微粒或其他微粒的生物测定中的样品或探针。
[0353] 图43和图44显示多个编码微粒的密集荧光显微图像。图像中所示的微粒具有结合到其表面的寡探针分子,并已与预标记的荧光寡靶杂交,其中,所述靶的碱基对序列与所述探针序列互补。
[0354] 图41显示方法的例示实施例的示意图,通过所述方法,整个晶片成为待与样品反应以进行生物测定的粒子-探针缀合物的混合物(所谓的“待杂交的码阵列(Hybridization-Ready CodeArrays)”)。在完成晶片制造步骤后,所述晶片具有许多裸片,各裸片含单个码的许多粒子。如上所述,可使用备选方案,其中裸片以相同码制造,或裸片被再分并且含有多个码。晶片被切成(通常通过晶片锯(wafer saw))分开的裸片,然后将各裸片置于多孔板的分开的孔中。备选地,可用试管替代孔。例如使用从裸片表面去除裸片的化学蚀刻剂(例如TMAH)进行释放步骤。从孔中去除裸片,留下游离粒子。释放后,进行生物分子探针的缀合,产生含单种类型的粒子探针缀合物(具有单码的粒子和在表面上具有单分子物类的那些粒子)的各孔。缀合后,将全部粒子混合在一起形成“汇合的主混合物”。将所述汇合的主混合物分为等分试样,从而有了来自全部粒子-探针缀合物类的充分代表。然后这些等分试样待与样品反应以进行生物测定。
[0355] 注意到如上所述,可在单个生物测定中鉴定多种不同样品。在检测前和杂交后,可将微粒放入多孔板的孔或其他检测用容器中。在一个检测实施例中,微粒由重力沉到多孔板底面。可对孔中的微粒进行离心、超声处理或者其他物理或化学处理(多洗涤步骤等),以辅助制备检测用粒子。在另一实施例中,可将微粒放在载玻片或其他特定制备的检测用基质上。在又一实施例中,粒子在检测过程中存在于流中,或存在于悬浮溶液中。
[0356] 术语“缀合”指使基本上各微粒具有结合到其表面的1个或多个的探针分子的方法。本领域熟知缀合方法,例如BioconjugateTechniques,First Edition,Greg T.Hermanson,Academic Press,1996:Part I(Review of the major chemical groups that can be used inmodification or cross-linking reactions),Part II(A detailed overviewof the major modification and conjugation chemicals in common usetoday),and Part III(Discussion on how to prepare unique conjugatesand labeled molecules for use in applications)。 可容易从科学服务商(Pierce Biotechnology,Inc.或Sigma-Aldrich,Co)得到缀合探针分子用试剂。
[0357] 结合到粒子表面的分子探针一般具有已知特征和性质。例如,分子探针可源自生物标本或样品,并可用于大群体的筛选(包括但不限于:基因测序),一般地将所述群体的一个成员的衍生物应用到单个码,一般是单个码的多个粒子。微粒优选具有基本上结合相同探针分子的相同的码;而具有不同的码的微粒同样具有不同的探针分子。
[0358] 使用编码微粒的溶液阵列作为平台(而非平板微阵列)的复合测定的最强大特征之一是可通过简单加入新粒子来向测定中加入功能性的机动性。对于标准微阵列,一旦印制或合成了阵列,所述阵列一般不能变化。如果研究者要改变阵列上的基因用探针或添加新基因用探针,一般要制造整个新阵列。而用粒子的汇合的探针集,可容易将新探针和粒子缀合物(简称为探针)添加的已有的汇合的探针集中。实践中,所述新探针可为用于已代表的基因的不同探针、用于基因可变剪接变体的探针、或用于基因的瓦片探针(tiling probe)。
[0359] 图45a和45b显示本发明微粒的相同集的反射和荧光图像对。图像时以约1秒钟间隔连续拍摄。在图45a中,用蓝光照明拍摄和采集反射图像(激发滤光器=436/10nm、发射滤光器=457/50,即重叠滤光器)。将此图像用于测定各粒子的码。在图45b中,用滤光照明拍摄和红光采集荧光图像(激发滤光器=555/28nm、发射滤光器=617/73,即Cy3用滤光器)。在图45c中,在单个图像中图45a和45b的图像对在顶部彼此覆盖。
[0360] 图46a-图46f以时序显示编码微粒的密集荧光显微图像。处理图像,用于边缘检测。图像以约1秒钟间隔获取,且是时序框。组成图像的单个粒子由于分子碰撞(又称为布朗运动),以在框之间运动可测的量。这种布朗运动促进粒子装配为密集2维单层。图中所示的粒子是生物化学活性编码微粒的实施例。粒子具有结合到表面,且与互补寡核苷酸靶杂交(即在溶液中反应)的寡核苷酸探针。
[0361] 公开的编码微粒可用于相关发明,所述发明由用于在多样化背景上鉴定条形码微粒的紧凑型显微镜和成像技术的组成。编码微粒的标准鉴定一般在受控制的实验室环境中进行,例如在非常平的玻璃表面(例如载玻片或玻璃底多孔板)上对微粒成像。在标准情况下,粒子(如果恰切淀积)一般位于单聚焦平面上,从而可精确鉴定视场中的全部粒子。编码粒子的重要用途是作为材料对象用的标签,且在这样的应用中,粒子一般不再平玻璃上成像。粒子可放在载体介质上,所述载体介质例如溶剂、漆、或墨水,并被应用于广泛多样的对象上。尤其感兴趣的对象包括纸、织物、和金属、塑料或陶瓷表面。在所述对象和表面中或上分布的粒子一般不位于单聚焦平面中。而且,许多粒子不单独在延其整个长度的聚焦中。由此,有对编码微粒结构、成像系统和图像处理算法的需求,以鉴定多样的非理想背景上的编码微粒。
[0362] 说到这些需求,本发明的一方面一般包括:(1)就在多样背景上的提高鉴定来最优化微粒结构,(2)用于对多样背景上的编码微粒成像的基于显微镜的成像系统,(3)用于处理不位于单聚焦平面中的粒子的复杂度的图像处理算法。将描述应用#2和3的成像技术。
[0363] 编码微粒结构的实施方式可为包括被另一一般为透明的材料围绕的不透明离散区段的高对比度粒子。不透明区域线性淀积以形成码。高对比度来自不透明区域(又称区段)和介于那些区段之间的间隔之间的反射信号的差异。当以反射模式成像时,如一般为非透明背景表面的情况,区段相对背景是亮白的。粒子的外表面可制成发荧光,这是通过结合荧光分子或通过将荧光团内掺入外表面中(相似方法可用于发光材料或其他光发射材料)。在该情况中,所述码在图像中显示为位于切口处的一系列亮线。如果粒子结构具有表面拓扑学(即凹陷),则亮线会呈现加强(更亮)。无表面拓扑学的粒子仍显示亮线,且因此显示所述码,因为在所有方向发生荧光发射,且该来自淀积于区段后的荧光团的发射(与光路/入射照明方向有关)被所述区段阻断。在区段之间的间隔中,由于不被区段阻断,所述发射到达光收集元件。
[0364] 紧凑型、便携式的低廉的基于显微镜的成像系统包括光源、CCD照相机、分束器、物镜和淀积于表面内或表面上的粒子。CCD照相机用于通过计算机的数字图像获取。显微镜成像系统被配置为其可捕获处于不同焦平面上的一系列图像。图像系列的实例是处于约100nm-500nm变化的焦平面的10个或更多个图像的集合。获取一系列图像的一个目的是允许z高度(及相当的焦平面)中的变化。可用多种方式改变系统的焦点,包括但不限于:移动包装中的物镜,改变光学元件(例如电声元件)以改变焦平面,相对于显微镜移动放有标本(含粒子表面)的镜台。这些及其他本领域已知的显微镜机构的组合可用于提供分析用图像。
[0365] 图像分析软件处理系列中的图像。例如,系列中的图像可经历算法处理,以鉴定粒子及测定码。在反射模式图像中,粒子的标号是质心沿直线排列的离散区段。首先对各图像阈值化,以从背景中区分出区段。然后使阈值化的对象经区域过滤器(area filter),以从其他对象区中分出区段。此外,此滤光器还任选包括周长标准(perimetercriteria)。一旦找到区段,即可确定其质心,然后比较相邻区段的质心以确定它们是否沿直线落入经验确定的公差范围。这确定了所述区段是否属于相同粒子。因为一般全部粒子都具有固定的长度,可以高可信度确定构成完整粒子的区段。在第一步,单个图像可具有多个所应用阈值,可将寻找粒子的算法应用于各阈值处理的“子图像”。以此方式,可克服背景强度变化,并完成粒子的精确鉴定。首先以相似方式使用阈值化处理进行荧光图像的处理,随后是图形识别步骤以鉴定粒子的信号。荧光图像包括具有在测定码的位置平分长度的亮条的粒子的亮轮廓线。利用在不同焦平面拍摄的图像系列,连同以多个水平阈值化所述系列的各个单独图像,结合编码微粒的高制造精度,提供于用于鉴定多样化背景上的粒子及其码的完整系统。可将基于显微镜的图像系统配置为在不同x和y位置拍摄许多图像,即扫描大于图像视场的区域,从而获取更多信息。
[0366] 使用编码微粒的本发明的另一相关方面是并行微流体微条码读取器(parallel microfluidic microbarcode reader)。此方面包括基于微流体流动的装置,以读取编码微粒的码及相关信号(例如生物测定中的荧光)。所述装置具有许多流道,以能够同时测量许多粒子,从而达到非常高通量的分析。更大的入口通道分成许多更小的流道,其每个都具有询问点(interrogation point)。流道宽度可为2-20微米。在一个实施方式中,各询问点包括光源和检测器。另外,可对全部流道使用全局校准的光源。光源和检测器可根据待利用何种检测模式(例如反射、透射或荧光)而配置在流道的对侧或同侧。在另一实施方式中,将光源和检测器集成到微流体装置中。换言之,将光源和检测器放到“芯片上”,从而提供紧凑的、便携式的装置。在又一实施方式中,提供包括许多光源和检测器的组件,且将带通道的微流体装置与所述组件匹配。本实施方式具有允许微流体船(microfluidic ship)为一次性的优点,所述微流体船与粒子以及潜在的生物样品直接接触。每一个询问点可包括另外的元件,例如,聚焦光源的微透镜,其也可全面应用于所有流道,或单独应用于个别流道。检测器的实例是光电二极管。光源的实例是光发射二极管、半导体激光器和灯(例如弧光灯或卤素灯)。
[0367] 使用微粒的生物测定方法
[0368] 可将本发明的微粒用作生物化学(或化学)分析系统的主要分析成员,所述分析系统包括但不限于:基于溶液的阵列、生物芯片、DNA微阵列、蛋白质微阵列、芯片实验室(lab-on-a-chip)系统、侧向流装置(免疫层析试纸条)、和体外诊断试纸条。应用包括但不限于:gDNA和蛋白质测序、基因表达分析谱、基因分型(包括SNP基因分型)、多态性分析、比较基因组杂交(CGH)、microRNA分析谱、染色质免疫沉淀(CHiP)、甲基化检测、及发现疾病机制、研究基因功能、研究生物通路、及各种其他生物化学、生物分子、生物医学和医药相关应用,例如探究和分析蛋白质、肽、多肽,以及相关生物化学应用,和医疗状况的诊断和监控。测定结构可包括本领域熟知的那些,包括但不限于:直接DNA杂交、DNA-RNA或RNA-RNA杂交、酶测定例如聚合酶延伸、连接,。所述微粒还可用于微流体或芯片实验室系统,或者任何基于流的系统,包括但不限于:其中集成了样品制备、生物化学反应和生物分析的那些系统。
[0369] 例如,当可使用基于存在荧光的光学成像方法时,可应用使用荧光标签。当将微粒用于曝光或显影相关照相胶片时,可使用放射性标签。备选地,当检测涉及对酶标签的产物检测时,可使用酶标签,所述酶标签在样品分子与微粒上的探针分子结合或反应时释放。也可应用如Schena等人,“Quantitative monitoring of gene expressionpatterns with a complementary DNA microarray”,Science,1995,270-467中说到的其他加标签方法,所述文献的主题通过引用整体并入本文。
[0370] 无标记的样品也可与微粒反应。例如,可将分子信标探针应用于微粒。分子信标探针一般含发卡结构,所述发卡结构在结合少标记的(或在某些实例中,经标记的)样品分子后解折叠,从而产生指示结合事件的信号。可将这样的分子信标探针及其他探针用于涉及FRET(荧光共振能量转移)的测定,其中,例如将荧光团或猝灭剂位于微粒对表面之上或之中。
[0371] 图47显示两重(2-plex)DNA杂交测定的实际测定数据。在此实验中,2个不同的寡探针(具有下方显示的两个不同序列)结合到不同粒子批次(具有不同码)的表面。探针结合后,将粒子混合在一起,并将混合物的等分试样放入多孔板的孔中。将由具有与探针序列互补的序列及荧光团标记的寡聚物组成的靶加入两个孔中,并与粒子-探针缀合物的混合物反应。将靶1(与探针1互补)加入第一孔,将靶2(与探针2互补)加入第二孔。对两孔的粒子成像,并将其结果示于图47中。在第一孔(具有靶1)中,相应码的粒子显示出相对高的荧光信号,第二孔反之。
[0372] 为促进大量样品分子的快速、可靠和有效的生物测定,微粒优选能够基本上将其本身排布于表面上的单层中,所述表面例如含微粒的孔的底面。所述微粒优选能够在其中进行光学检测的特定液体中进行布朗运动。考虑到在其中杂交和检测微粒的特定液体,微-12 2粒的2D扩散系数优选等于或大于1×10 cm/s,且/或测量到10%或更多(例如15%或更多或甚至20%或更多,及50%或更多)的微粒在1秒或更短,或优选3秒或更短,或5秒或更短的时间间隔内进行20nm或更多,例如30nm以上或甚至50nm或更多的侧向位移。
[0373] 可检测微粒(指可通过期望的检测手段例如使用可见光的光学成像准确检测的微粒)能够占30%或更多、40%或更多、及一般50%或更多的表面区域(微粒在其上集合在一起),例如含微粒的容器的底面的部分。定义部署了全部微粒的至少90%(一般至少2
95%,或更一般为至少99%,且常为100%)的区域,可见所述微粒具有1000粒子/mm 或更
2 2 2
多,例如1500粒子/mm 或更多、2000粒子/mm 或更多、及一般3000粒子/mm 或更多(例
2
如5000粒子/mm 或更多)的密度。上述区域内的检测率(定义为接受检测的微粒集合的检测到的微粒(具有检测到的空间码的微粒)总数与微粒集合总数的比率)优选为80%或更多,一般为90%或更多,或更一般为99%或更多。
[0374] 本发明的另一优选实施例是含生物化学活性编码微粒的试剂盒,其在试剂盒内含200个或更多、更优选500个或更多、1000个或更多、或甚至10,000个或更多不同的码(由本发明而成为可能的大码域,甚至更多数量的码)。由于方便的液体吹打的统计学样品需要及试剂盒内特定码的期望丰度,一般在试剂盒内提供相同码的多于10个粒子(相同码的
20个或更多,或甚至30个或更多的微粒),如在一些实施例应用中,丰度提高总体测定表现以上。术语“生物化学活性编码微粒”指在表面上具有生物学或化学部分,从而可用于测定的微粒;术语“部分”指分子物类;包括但不限于:核酸、合成的核酸、寡核苷酸、单链核酸、双链核酸、蛋白质、多肽、抗体、抗原、酶、受体、配体和药物分子、细胞、和复杂的生物衍生样品。
[0375] 所述试剂盒可任选含下列中的1种或多种:1种或多种可掺入生物学部分中的标记;1种或多种可含或可不含阵列的基质,等。
[0376] 可通过包装(housing)保持试剂盒的组分。还可随所述包装提供使用所述试剂盒实施所述方法的操作说明,且可将所述操作说明以任何固定介质提供。操作说明可位于包装内或包装外,且可打印在使操作说明易读的、形成包装的任何表面的内面或外面。试剂盒可以是用于检测1种或多种不同靶生物分子或其相关的生物分子的多重形式。
[0377] 如本文所述及图52所示,在某些实施方式中,试剂盒903可包括包装各种成分的容器或包装(housing)902。如图52所示及本文所述,在一个实施方式中,提供了包括试剂905(包括但不限于生物化学活性编码微粒)和任选的基质900的试剂盒903。如图52所示及本文所述,试剂盒903可任选包括操作说明901。考虑了试剂盒903的其他实施方式,其中所述组分包括本文所述的各种另外特征。
[0378] 可将通用适配器方案(universal adapter scheme)用于提供一组与探针上提供的序列互补的非相互作用合成序列。可使用普通探针和等位基因特异性报告子或者等位基因特异性探针和普通报告子进行基因分型。可使用本发明的粒子进行扩增测定(例如涉及PCR、式探针或分子反转探针(Molecular Inversion Probes)的那些)。这些测定中的两个的实例示于图48a和48b。
[0379] 在特定实施方式中,“标签”序列与特定表面结合。将“抗标签”序列和探针特异性序列组合为与样品反应的单个序列。所述标签和抗标签序列完美(或基本上)互补。在与样品反应后,探针+抗标签/样品分子复合物进一步与覆盖标签的粒子反应。标签序列和抗标签序列特异性杂交,从而可在粒子上读取所述测定。在此特定实施方式中,信息流走向是:样品序列>探针序列>抗标签序列>标签序列>粒子码。
[0380] 在本发明的备选的实施例中,可预合成存在于粒子表面上的生物分子,并随后将其结合到粒子表面。备选地,生物分子可在粒子上原位合成。
[0381] 还可应用基于蛋白质的测定。这些包括但不限于:夹心免疫法(见例如图49的左上图)、抗体-蛋白质结合测定(见例如,图49的右上图)、受体-配体结合测定(见例如,图49的右下图)、或蛋白质-蛋白质相互作用测定(见例如,图49的右下图)。可将本发明的编码微粒集用于基于溶液的测定,以研究如图49的右下图所示的蛋白质-蛋白质相互作用。在一个实施方式中,提供各与本发明的不同编码粒子结合的第一蛋白质和第二蛋白质。可通过两种粒子近似性的检测验证蛋白质间相互作用的检测(例如,在洗涤步骤后,去除非相互作用的粒子)。因此考虑,可在第一和第二蛋白质之间相互作用后形成两种不同编码粒子的二聚体。在一些实施方式中,可检测多于两种蛋白质的相互作用(未显示)。例如,当3种或更多种蛋白质可相互作用而形成目的复合物时,考虑2种或更多种蛋白质可与本发明的粒子(不同编码粒子、相似编码粒子或根据需要是其组合)结合。在一些实施方式中,3钟或更多种蛋白质与不同(或相同,或者根据需要是不同和相同的组合)编码粒子结合用于蛋白质-蛋白质相互作用的检测。
[0382] 使用本发明的粒子,可分析N2(即N×N)蛋白质-蛋白质相互作用。考虑可在存在和/或缺失某种药物或其他化合物的情况下检测蛋白质-蛋白质相互作用。有利地,可使用本文所述本发明的多孔形式和粒子筛选多种化合物或药物。
[0383] 可将单种类型的蛋白质应用于单个码的微粒。在混合粒子-蛋白质缀合物及在特定生物化学环境中反应后,通过在检测过程中相邻粒子的存在来测定彼此相互作用和结合的蛋白质。本发明的微粒结构的方形横截面通过提供在平的矩形表面形状中接触面积的增加来对现有技术的改进。球形或圆柱形的现有技术粒子将接触面积分别限制为单点或线。本发明不限于蛋白质:用此测定结构,可使用任何相互作用分子。而且,可将本发明的全方位编码微粒用于与任何其他编码粒子(包括但不限于:荧光团、量子点、胶乳或玻璃珠、胶体金属粒子、光谱学上有活性的粒子、SERS粒子或半导体纳米棒)的缀合。
[0384] 可将编码微粒用于与分子的2D平面阵列缀合。通过粒子与斑点的结合来确定粒子表面上或包括在2D平面阵列上的斑点中的分子间相互作用。粒子存在于预定斑点位置,优选在洗涤步骤后,指示粒子上的分子与2D平面阵列上的分子间的相互结合作用。可通过鉴定(1)粒子码、和(2)斑点位置来确定此测定结果。这显示于图50中。图50是包括粒子的图像的示意图,但不是实际实验结果(即指用于说明本发明)。本发明中,本发明的微粒的方形横截面提供增加的结合接触面积,且是优于现有技术的重要改进。
[0385] 本发明的微粒可有其他应用。例如,可通过将蛋白质检测分子(例如,与特定蛋白质分子接触后变色、发荧光或造成电子信号的染料、配体)放在微粒上来进行生物测定分析(即评估生物样品中的蛋白质和/或基因表达水平)。在另一实施例中,通过将(细胞)受体、核酸/探针、寡核苷酸、粘附分子、信使RNA(特异于在给定疾病状态下“开启”的基因)、cDNA(互补于由各“开启”的基因编码的mRNA)、寡糖及其他相关碳水化合物分子、或细胞(指示哪个细胞通路“开启”,等)放在微粒上,可将所述微粒用于筛选对抗疾病(即治疗靶)的蛋白质或其他化学化合物;如通过与预先放置/附着有特定(靶分子)的微阵列上特定斑点(位置)的粘附或杂交的(样品中的相关成分)指示。事实上,可将本发明的微粒应用于许多其他生物化学或生物分子领域,例如随附于本文附录中所示的那些,将各所述主题通过引用并入本文。
[0386] 为实践本发明的方法,任选利用许多分子生物学中的常规技术。这些技术是熟知的,且例如在Ausubel et al.(Eds.)Current Protocolsin Molecular Biology,Volumes I,II,and III,(1997),Ausubel et al.(Eds.),Short Protocols in Molecular Biology:A Compendium ofMethods from Current Protocols in Molecular Biology,5th Ed.,JohnWiley & Sons,Inc.(2002),Sambrook et al.,Molecular Cloning:ALaboratory Manual,3rd Ed.,Cold Spring Harbor Laboratory Press(2000),及Innis et al.(Eds.)PCR Protocols:A Guide to Methods andApplications,Elsevier Science & Technology Books(1990)中说明,将所有这些通过引用并入本文。
[0387] 适用于本文所述系统和方法中的样品制剂可包括检测和分析生物和/或环境样品的任何数量的熟知方法。在生物样品的情况下,所述样品可为例如经操作、经处理、或经提取至目的靶纯度的任何期望水平的。
[0388] 所述样品可为怀疑含有生物学活性分析物的体液。通常使用的体液包括但不限于:血液、血清、血浆、唾液、痰、尿、胃和消化液、眼泪、粪便、精液、和羊水脑脊液、淋巴液和阴道液。另外,可检测疾病相关液体,例如腹膜腹水、心包积液、胰周积液、胸膜周积液及其他器官来源的积液、移植物和脓肿相关液体、源自肿瘤组织的组织间液、及肿瘤和器官来源的抽吸液。可漂洗器官或组织表面,如器官管(例如乳管),分析产生的漂洗液。可机械匀浆,或者用酶或其他化学剂裂解手术和穿刺样品(包括单针穿刺样品),并分析产生的溶液。
[0389] 期望本文所述系统可用于筛选多种多样的样品。在研究物是活生物的情况下,样品可如上所述源自体液。得到样品的方法包括但不限于颊擦拭(cheek swabbing)、鼻擦拭(nose swabbing)、直肠擦拭(rectal swabbing)、皮脂提取或用于得到生物或化学物质的其他收集策略。胎儿基因测试,除基因分析通过羊膜腔穿刺术取出的样品外,还可采集绒毛膜绒毛。通过体外受精产生的发育中的胚胎可具有一个或两个取出用于取样的卵裂球。
[0390] 当测试物是非活体或环境体时,样品可源自固相、液相或气相中的任何物质。样品可收集并放在感应基质上,或感应基质可直接暴露于待研究样品源(例如储水池、游离气体),并与之相互作用。
[0391] 在一些实施方式中,体液可直接用于检测其中具有本发明的主题微粒的1种或多种的生物学活性分析物,而不进一步处理。例子包括尿用体外诊断测试条。但如果需要,可在用本发明的主题微粒进行分析前预处理所述体液。预处理的选择取决于所用体液的类型和/或研究中的生物学活性分析物的性质。例如,当生物学活性分析物以低水平存在于体液样品中时,可通过任何常规手段浓缩所述样品,以富集所述生物学活性分析物。浓缩生物学活性分析物的方法包括但不限于:干燥、蒸发、离心、沉降、沉淀及扩增。当生物学活性分析物是核酸时,可根据Sambrook等人(“Molecular Cloning:A LaboratoryManual”)所述的方法用各种裂解酶或化学溶液,或使用核酸结合树脂根据制造商提供的所述说明书提取所述核酸。当生物学活性分析物是存在于细胞上或细胞内的分子时,可使用裂解剂进行提取,所述裂解剂包括但不限于变性去污剂(例如SDS)或非变性去污剂(例如thesit(2-dodecoxyethanol)、sodium deoxylate、 X-100和 20)。
[0392] 在一些实施方式中,预处理可包括稀释和/或混合样品,及过滤样品,以例如从血液样品中去除红细胞。在其他一些实施方式中,预处理可包括透析以去除污染物,替换缓冲液,或浓缩样品。
[0393] 可使用所述微粒检测的靶包括但不限于生物学活性分析物,包括核酸、蛋白质、抗原、免疫原、抗体、抗体片段、适体、噬菌体展示、微生物、气体、化学剂和污染物。其他可检测靶包括生物素、抗生物素蛋白和抗生蛋白链菌素。
[0394] 在一个实施方式中,所述靶是核酸(是DNA,例如cDNA)。在相关实施方式中,所述DNA靶通过扩增反应(例如聚合酶链式反应(PCR))产生。在本发明的另一实施方式中,检测的生物学活性分析物是表示用于被研究生物的疾病或特定状况的已知生物标记物的蛋白质。在另一实施方式中,几种不同的生物学活性分析物可为以生物标记物提供的蛋白质,其中生物学标记物的相对浓度是被研究生物的疾病或其他状况的指标。再一实施方式中,所述靶为是作为病原体的微生物。在另一实施方式中,所述靶是化学剂,例如毒性化学剂。
[0395] 当所述靶是核酸时,其可为单链、双链、或更高级数,且可为线性或环状。例示单链靶核酸包括mRNA、rRNA、tRNA、hnRNA、ssRNA或ssDNA病毒基因组,尽管这些核酸可含有链内互补序列和显著的二级结构。例示双链靶核酸包括基因组DNA,线粒体DNA、叶绿体DNA、dsRNA或dsDNA病毒基因组、质粒、噬菌体和类病毒。所述靶核酸可合成制备,或可从生物源中纯化。可纯化所述靶核酸,以去除或减少样品的1种或多种不期望成分,或浓缩所述靶核酸。相反,当所述靶核酸对于特定测定来说太浓缩时,可稀释所述靶核酸。
[0396] 收集样品及任选提取核酸后,可对包含靶核酸的样品的核酸部分进行1个或多个的制备反应。这些制备反应可包括体外转录(IVT)、标记、片段化、扩增及其他反应。可首先用反转录酶和引物处理mRNA,以在检测和/或扩增前产生cDNA;这可在体外用纯化的mRNA进行,或原位(例如在固定在载玻片上的细胞内或组织中)进行。核酸扩增增加目的序列(例如靶核酸)的拷贝数。可适用各种各样的扩增方法,包括聚合酶链式反应方法(PCR)、连接酶链式反应(LCR)、自主序列复制(self sustained sequence replication、3SR)、基于核酸序列的扩增(NASBA)、Qβ复制酶的使用、反转录、切口平移等。
[0397] 当靶核酸是单链核酸时,首次扩增循环形成与所述靶核酸互补的引物延伸产物。如果靶核酸是单链RNA,将具有反转录酶活性的聚合酶用于首次扩增,以将RNA反转录为DNA,可再进行扩增循环以拷贝引物延伸产物。当然,必需将PCR用引物设计为与其相应模板中的区域杂交,这会产生可扩增区段;由此,各引物必需杂交,从而其3’核苷酸与其相应模板链中的位于从用于在PCR中复制所述互补模板链的引物的3’核苷酸的3’的核苷酸配对。
[0398] 可通过使1条或更多靶核酸链与引物及具有合适延伸引物且拷贝靶核酸以产生全长互补核酸或其较小部分的活性的聚合酶接触来扩增靶核酸。可使用任何具有能拷贝靶核酸的聚合酶活性的酶,包括DNA聚合酶、RNA聚合酶、反转录酶、具有1种或多种类型的聚合酶活性的酶,且所述酶可耐热或热稳定。可使用酶混合物。例示酶包括:DNA聚合酶(例如DNA聚合酶I(“Pol I”)、Pol I的Klenow片段、T4、T7、 T7、2.0版T7、Tub、Tag、Tth、Pfx、Pfu、Tsp、Tfl、Tli和火球菌属(Pyrococcus
sp)GB D DNA聚合酶)、RNA聚合酶(例如大肠杆菌(E.coli)、SP6、T3和T7RNA聚合酶)和反转录酶(例如AMV、M MuLV、MMLV、RNAse H’MMLV( )、
II、 HIV1和RAV2反转录酶)。所有这些酶均可商购获得。例示具有多
特异性的聚合酶包括RAV2和Tli(外切)聚合酶。例示热稳定聚合酶包括:Tub、Taq、Tth、Pfx、Pfu、Tsp、Tfl、Tli和火球菌属(Pyrococcus sp)GB D DNA聚合酶。
[0399] 选择合适的反应条件,以使靶核酸扩增,所述条件包括:pH、缓冲液、离子强度、1种或多种盐的存在及浓度、反应试剂和辅因子(例如核苷酸和镁和/或其他金属离子(例如锰))的存在及浓度、任选的辅溶剂、温度、包括聚合酶链式反应的扩增方案用热循环特性,且部分取决于所用聚合酶及样品的性质。辅溶剂包括甲酰胺(一般约2-10%)、甘油(一般约5-10%)和DMSO(一般约0.9%-10%)。可在扩增方案中使用技术以最小化扩增过程中假阳性或所产生人造物的产生。这些包括“降落”PCR、热启动技术、巢式PCR的使用、或设计PCR引物从而其在引物-二聚体形成时形成茎-环结构而不被扩增。可使用加速PCR的技术,例如离心PCR,其使样品中形成更大的对流,且包括快速加热和冷却样品的红外线加热步骤。可进行1次或更多的扩增循环。一种引物过量可用于在PCR过程中产生过量的一种引物延伸产物;过量产生的引物延伸产物优选为待检测的扩增产物。可使用多种不同引物以扩增样品中的不同靶核酸或特定靶核酸的不同区域。
[0400] 可对扩增的靶核酸进行扩增后处理。例如,在一些情况下,期望将在杂交前将靶核酸进行片段化,以提供更易于受影响的区段。可用产生具有用于所进行测定中的长度的片段的任何方法进行核酸的片段化;本领域已知合适的物理、化学和酶学方法。
[0401] 可在使核酸与光学敏感位点结合的条件下进行扩增反应,以在至少部分扩增循环过程中与扩增产物杂交。当如此进行测定时,可通过监控扩增过程中的光发射来进行该杂交事件的实时检测。
[0402] 实时PCR产物分析(及相关的实时反转录PCR)提供用于广泛领域的实时PCR监控的熟知技术,可使其适用于本文所述方法(见Laurendeau et al(1999)″TaqMan PCR-based gene dosage assay forpredictive testing in individuals from a cancer family with INK4 locushaploinsufficiency ″ Clin Chem 45(7)982-6,Bieche et al.(1999)″Quantitation of MYC gene expression in sporadic breast tumors witha real-time reverse transcription-PCR assay″Cancer Res 59(12)2759-65;和Kreuzer et al(1999) ″ LightCycler technology for thequantitation of bcr/abl fusion transcripts″Cancer Res 59(13)3171-4,将它们全部通过引用并入本文)。此外,可将线性后指数PCR(Linear-After-The Exponential(LATE)-PCR)适用于本文所述方法。
[0403] 免疫测定是可使用本发明的微粒进行的另一形式的分析。合适免疫测定系统包括但不限于竞争性和非竞争性测定系统。所述测定系统一般使用如下技术,例如western印记、放射性免疫测定、EIA(酶免疫测定)、ELISA(酶联免疫吸附测定)、“夹心”免疫测定、免疫沉淀测定、沉淀素反应、凝胶扩散沉淀素反应、免疫扩散测定、凝集测定、互补-固定测定、免疫放射性测定、荧光免疫测定、蛋白A免疫测定和细胞免疫染色(固定或自然)测定(仅少例)。所述测定是常规测定,且为本领域已知(见例如上述Ausubel等人的文章)。特别有用于本文所述微粒系统的免疫测定技术包括但不限于ELISA、“夹心”免疫测定和荧光免疫测定。以下简述了例示免疫测定(但不为限制本发明)。
[0404] ELISA一般涉及制备抗原、用抗原包被基质(例如编码微粒)、将与可检测化合物(例如酶底物(例如辣根过氧化物酶或碱性磷酸酶))缀合的目的抗体添加到基质上并温育一段时间,及检测抗原的存在。在ELISA中,目的抗体不一定非要与可检测化合物缀合;另外,还可将与可检测化合物缀合的第二抗体(其识别目的抗体)加入到所述基质上。此外,可通过用抗体包被基质来代替用抗原包被基质。在此情况下,可在加入目的抗体后,将与可检测化合物缀合的第二抗体加入到包被的基质上。本领域技术人员熟悉可调整参数以增加检测到的信号,以及其他本领域已知的ELISA的变化形式。
[0405] 在一个例示免疫测定中,样品含有待测定的未知量的生物学活性分析物,其可为例如蛋白质。所述分析物也可为抗原。样品可刺(spike)上已知或固定量的经标记的分析物。然后将被刺的样品与结合所述分析物的抗体温育,从而使样品中的分析物和加入样品中的经标记的分析物竞争与可利用抗体结合位点的结合。更多或更少经标记的分析物能够结合抗体结合位点,取决于样品中存在的未标记分析物的相对浓度。因此,当测量与抗体结合的经标记的分析物的量,其与样品中未经标记的分析物的量成反比。然后可基于所测量的经标记的分析物量,使用本领域的标准技术计算原样品中分析物的量。
[0406] 在一个例示竞争性免疫测定中,可将结合生物学活性分析物的抗体与配体偶联或缀合,其中所述配体与加入到在测试样品中的其他抗体结合。所述配体的一个例子包括荧光素。可将其他抗体结合固体支持物(例如编码微粒)。其他抗体结合至与如下抗体偶联的配体,所述抗体再与分析物或备选地与经标记的分析物结合,形成允许分离和测量由与经标记的分析物偶联的标记产生的信号的大复合物。
[0407] 在另一类型的例示竞争性免疫测定中,可将待测量的生物学活性分析物结合到固体支持物(例如编码微粒)上,并与结合分析物的抗体和含待测量分析物的样品温育。抗体以相对比例与结合固体支持物的分析物或样品中的分析物结合,所述比例取决于样品中分析物的浓度。然后,将与结合至固体支持物的分析物结合的抗体与偶联标记的另一抗体(例如抗小鼠IgG)结合。然后检测由标记产生的信号的量,以测量与结合至固体支持物的分析物结合的抗体量。所测值与样品中存在的分析物的量成反比。所述测定可使用本发明的编码微粒。
[0408] 在另一类型的例示竞争性免疫测定中,可将待测量的生物学活性分析物结合到固体支持物(例如编码微粒)上,并与结合分析物的抗体和含待检测分析物的样品温育。抗体以相对比例与结合固体支持物的分析物或样品中的分析物结合,所述比例取决于样品中分析物的浓度。然后,将与结合至固体支持物的分析物结合的抗体与偶联标记的另一抗体(例如抗小鼠IgG)结合。然后检测由标记产生的信号的量,以测量与结合至固体支持物的分析物结合的抗体量。所测值与样品中存在的分析物的量成反比。所述测定可使用本发明的编码微粒。
[0409] 在例示测定方案中,通过将反应分为2个或更多个亚反应来进行编码微粒生物测定。用放于液体中的缀合的编码微粒混合物(简称为缀合物)开始测定。各缀合物类型包含码和相应的分析物特异性探针。使缀合物混合物与第一反应剂(例如与复杂样品)进行第一反应。在第一反应中,所述缀合物和将要随后检测的第一反应剂之间发生相互作用。在第一反应后,将液体总体积分为2个或更多个的亚反应。在一个实施例中,用标准的移液操作完成所述分液,使所得亚反应包含存在的全部缀合物类型(例如全部码)。体积可选为相等的,从而其中各亚反应含来自第一反应的大约相等级分的缀合物,在泊松统计(Poisson statistics)控制的期望随机波动范围内。体积可选为不等,以解决单个亚反应中的差异。可利用多于100个码,并分到2个或更多个亚反应中。可利用多于400个码,并分到3个或更多个反应中。可将具有最长尺寸小于50微米的空间码的编码粒子用于2个或更多个亚反应中。还可将具有玻璃外表面和平坦侧面的粒子用于2个或更多个亚反应中。
[0410] 可分为亚反应的、在液体阵列中包含编码微粒(简称为粒子)的例示生物测定是夹心免疫测定。在夹心免疫测定中,将捕获剂结合到粒子上。捕获剂的例子包括但不限于抗体、抗体片段和适体。含不同码(各具有相应的捕获剂)的粒子混合物包含液体阵列。提供一些无捕获剂的码作为对照。使粒子混合物与含分析物混合物的样品反应,所述样品可为例如血浆或血清样品。粒子上的捕获剂结合其相应的分析物,从而使所述分析物成为被捕获的分析物。理想情况下,各捕获剂仅结合其相应的分析物,而不与其他分析物以可检测程度结合。实践中,捕获剂与非相应分析物的分析物之间有某种程度的交叉结合。在与样品反应后,将未结合的分析物洗掉。
[0411] 夹心免疫测定的下一步骤包括提供检测剂。例示检测剂包括但不限于经标记的抗体。所述检测剂与被捕获的分析物以结合(理想为以一对一特异性结合)。另外,实践中还可存在交叉反应的问题。这一阶段的交叉反应是在检测剂与其他非相应分析物之间。
[0412] 本发明提供待分成亚反应的原反应,其可包含选择用于最小化生物测定的交叉反应的检测剂的不同亚组。如果已知某些检测剂与相应分析物(即靶分析物)之外的其他分析物结合,分离那些所谓的交叉反应检测剂,并将其放在来自直接靶向其他分析物的检测剂的不同亚反应中。例如,让A1、A2、A3、......An代表不同分析物,且D1、D2、D3、......Dn代表相应的检测剂(即检测剂D1靶向分析物A1)。如果发现Di与Aj具有交叉反应,就可将Di和Dj放入分开的亚反应中。然后用含Dj的亚反应检测分析物Aj上的信号
[0413] 本领域可用多种多样的标记物,其可用于进行主题测定。在一些实施方式中,可通过光谱学、光化学、生物化学、免疫化学或化学手段检测标记。例如,可用的核酸标记包括荧光染料、酶、生物素、地高辛(dioxigenin)、或半抗原和蛋白质,其可用从抗血清或单克隆抗体得到。已知适于标记生物成分的多种多样的标记,且它们在科学和专利文献中被广泛报道,且可普遍应用于本发明中用于标记生物成分。合适标记包括酶、底物、辅因子、抑制剂、荧光部分、化学发光部分或生物发光标记物。标记剂任选包括例如单克隆抗体、多克隆抗体、蛋白质或其他聚合物(例如亲和基质、碳水化合物或脂质)。通过本文所述的任何方法(例如通过检测光波导中的光学信号)进行测定。可检测部分可为具有可检测物理或化学性质的任何物质。所述可检测标记已在凝胶电泳、柱层析、固体基质、光谱技术等领域得到较好开发,且可用于这些方法的标记一般也可应用于本发明。优选的标记包括产生光学信号的标记。因此,标记包括但不限于任何可通过光谱学、光化学、生物化学、免疫化学、电学、光学、热学或化学手段检测的组合物。
[0414] 在一些实施方式中,将所述标记通过本领域熟知的方法直接或间接偶联于待检测的分子(例如产物、底物或酶)上。如上所述,使用多种多样的标记,标记的选择取决于所需灵敏度、化合物缀合的容易度、稳定性要求、可用的仪器及处理规定。常通过间接手段附着非放射性标记物。通常将配体分子共价结合至聚合物。然后配体与本来就可检测或共价结合到信号系统上的抗-配体分子(例如可检测的酶、荧光化合物或化学发光化合物)结合。可使用大量配体和抗-配体。当配体具有天然的抗-配体(例如,生物素、甲状腺素和可的松)时,其可用于与经标记的抗-配体缀合。备选地,可将任何半抗原性或抗原性化合物与抗体组合使用。
[0415] 在一些实施方式中,所述标记还可通过例如与酶或荧光团缀合来直接缀合至产生信号的化合物。作为标记的目的酶将主要是水解酶,尤其是磷酸酶、酯酶和糖苷酶,或氧化还原酶,尤其是过氧化物酶。荧光化合物包括荧光素及其衍生物、罗丹明及其衍生物、丹酰和伞形酮。化学发光化合物包括萤光素和2,3-二羟基酞嗪二酮(dihydrophthalazinedione),例如鲁米诺。
[0416] 本领域技术人员熟知检测标记的方法。因此,例如,当标记是荧光标记时,可通过用合适波长的光激发荧光染料,并通过例如荧光显微镜检测所产生的荧光来检测所述标记。类似地,可通过提供合适酶底物,并检测所产生的反应产物(例如能够产生可检测光学信号的反应产物)来检测酶标记。
[0417] 在一些实施方式中,可通过发光源提供可检测信号。术语“发光”通常指物质因为非由其升温的任何原因的光发射。当原子或分子从“激发态”移动到低能量状态(常称为基态)时,其一般发射电磁能量(例如光),此过程常称为“放射性衰变”。激发的原因有多种。如果激发原是光子,发光过程被称为“光致发光”。如果激发原是电子,发光过程被称为“电致发光”。更具体而言,由直接注射和去除电子形成电子穴对,及随后重组电子穴对以发射光子导致电致发光。由化学反应导致的发光常称为“化学发光”。由活生物产生的发光常称为“生物发光”。如果光致发光是自旋容许跃迁(spin allowed transition)(例如单-单态跃迁(single-singlet transition)、三-三重态跃迁(triplet-triplet transition))的结果,光致发光过程常称为“荧光”。由于短寿命的激发态(其可通过所述自旋允许跃迁迅速衰减),导致在去除激发原后荧光发射一般不持续。如果光致发光是自旋禁戒跃迁(例如三重-单态跃迁(triplet-singlet transition))的结果,光致发光过程常称为“磷光”。
由于长寿命的激发态(其仅可通过所述自旋禁戒跃迁衰减),导致在去除激发原后磷光发射持续。“发光标记”可具有上述任一性质。
[0418] 合适化学发光源包括为由化学反应电子激发,且可发射充当可检测信号或将能量给荧光接收器的光的化合物。发现多种数量家族的化合物在多种条件下提供化学发光。一个化合物家族是2,3-二羟基-1,4-酞嗪二酮(2,3-dihydro-1,4-phthalazinedione)。常用的化合物是鲁米诺,其为5-氨基化合物。其他家族成员包括5-氨基-6,7,8-三甲氧基-和二甲基氨基[ca]苯并类似物。这些化合物可用碱性过氧化氢或次氯酸钙和碱制得发光。另一化合物家族是2,4,5-三苯基咪唑,其母产物的通用名为洛粉碱。化学发光剂类似物包括对-二甲基氨基和-甲氧基取代基。还可用草酸(常为草酰活性酯(例如p-硝基苯))和过氧化物(例如过氧化氢)在碱性条件下得到化学发光。其他可用的化学发光化合物还包括-N-烷基吖啶酯和二惡二酮(dioxetane)。另外,可将萤光素与萤光素酶或光泽精(lucigenin)缀合使用以提供生物发光。
[0419] 包含脂质的测定是可使用本发明的微粒进行的另一类型的生物化学分析。如文献(Buranda,T et al.″Biomimetic Molecular Assemblieson Glass and Mesoporous Silica Microbeads for Biotechnology″Langmuir 2003,19,1654-1663)所述,微粒可易于用脂质层(即为脂质双层)包被。所述脂质层可保持蛋白质,例如生物测定用膜受体。本发明的一个实施方式包括使用具有立体编码微粒的脂质层,以实现多重生物测定,包括包埋或结合的生物分子的筛选及小分子、药物化合物和/或随即从脂质层释放的生物分子(这种分子可包含于脂和粒子表面之间的组织间空间)的筛选,用于与细胞或其他生物分子在小型化的反应容器(其为微制造的,且含有皮克体积)中相互作用。
[0420] 本发明的微粒技术在脂质应用方面提供相比平面方法(例如Hong,et al ″ G-Protein-Coupled Receptor Microarrays for MultiplexedCompound Screening″Journal of Biomolecular Screening 11(4),2006)和之前所使用微粒的实质性优点。这些优点包括高码容量(多于100个码)的编码方案/结构。其他优点包括粒子的材料表面特性,即玻璃(SiO2)表面是容易修饰和官能化的,并且是稳定及非反应性的。
粒子(例如具有方形和矩形横截面的粒子)的结构呈现平的表面用于最佳成像和定量,以及用于结合其他表面。
[0421] 在独立的实施方式中,本发明提供监控1种或多种的药理学参数的方法,所述药理学参数例如药效学(PD)和/或药代动力学(PK)参数,可用于估计治疗剂的效力和/或毒性。所述方法包括将来自施用治疗剂的受试者的体液样品置于本发明的微粒,以监控1种或多种药理学参数,本发明的编码微粒可如本文所述用于产生指示样品的多于一种药理学参数值的可检测信号;及检测由所述体液样品产生的可检测信号。
[0422] 在一个实施方式中,所测试样品可包括大量的各种小分子(例如筛选文库),其在研究新药时是感兴趣的。因此,本文所述的微粒系统用于筛选小分子文库,以研究其与可揭示潜在新药的某些生物学活性分析物的相互作用的能力。一些或全部小分子候选物的进一步筛选揭示了不利的药效和毒性。在一个实施方式中,样品可包括毒性检测用分子。本发明的另一方面提供用于多种生物学活性分析物的低体积检测系统。所述系统可包括多个立体编码微粒,其中所述多个微粒包括探针和多于1,000个空间码。考虑在一些实施方式中可提供多于10,000个空间码。所述系统可提供小于50μl的体积中的空间码的光学检测。在一个实施方式中,所述空间码在小于10μl中进行光学测定。在另一实施方式中,所述空间码在小于5μl中进行光学检测。
[0423] 本发明的另一方面,在小于50μl的反应体积内发生高多重反应。在一个实施方式中,反应体积小于10μl,而在又一实施方式中,所述反应体积小于5μl。在一个实施方式中,所述反应体积含于储库中,所述储库如试管或微多孔板的孔。在另一实施方式中,所述反应体积形成于微通道的交叉处。所述交叉处是可寻址的(addressable),并向多重化中添加其他尺寸。在另一实施方式中,所述反应体积在小滴中形成。所述小滴可由通过小孔的注射产生,例如微流体系统,或通过乳化。
[0424] 本发明的粒子的高多重水平和小尺寸提供进一步具有创造性的组合。在一个实施方式中,在小于等于50μl的反应体积中提供用于检测多于200个不同靶的多于200个不同的码。在另一实施方式中,在小于50μl的反应体积中提供多于500个不同的码。在另一实施方式中,在小于10μl的反应体积中提供多于200个不同的码。在另一实施方式中,在小于5μl的反应体积中提供多于200个不同的码。在另一实施方式中,在小于10μl的反应体积中提供多于500个不同的码。在另一实施方式中,在小于5μl的反应体积中提供多于500个不同的码。在另一实施方式中,在小于50μl的反应体积中提供多于1,000个不同的码。在另一实施方式中,在小于50μl的反应体积中提供多于10,000个不同的码。在另一实施方式中,在小于10μl的反应体积中提供多于1,000个不同的码。在另一实施方式中,在小于5μl的反应体积中提供多于1,000个不同的码。在另一实施方式中,在小于10μl的反应体积中提供多于10,000个不同的码。在另一实施方式中,在小于5μl的反应体积中提供多于10,000个不同的码。
[0425] 一般用于生物测定(包括使用编码粒子的多重测定)的微粒,其整个粒子表面经衍生(又称官能化)用于附着生物分子探针。这导致探针包被整个粒子表面。在一些测定中,具有减小的探针区域(即可用于靶结合的区域)以增加测定的敏感度是有优点的。减小的区域增加敏感度(或降低检测限),因为一般经荧光标记的靶被浓缩于较小区域,导致可用例如CCD照相机在每单位区域测量到更高的信号。
[0426] 在本发明的特定实施方式中,提供具有减小的结合用表面区域的编码微粒。提供具有结合减少的多个实施方式作为结构和方法。产生具有减少的结合区域的粒子的一种方式是保护最终具有附着其上的探针的区域(所谓的“结合片区(binding patch)”),封闭其余表面,去除保护,然后进行选择性官能化结合片区的处理。产生具有减少的结合区域的另一方法是使粒子围绕有外层和内层。外层不经所选处理进行衍生,而内层经所选处理进行衍生。这两层可为两种不同材料,例如外层是氮化硅,内层是二氧化硅,或在其中一层中经修饰的一些材料。去除结合片区处的外层,露出了可用于随后衍生化的内层。
[0427] 结合片区可为粒子表面的小部分或大部分。结合片区优选小于总粒子面积的2 2
50%,甚至更优选小于10%。所述结合片区优选小于50μm,更优选小于10μm,且甚至更
2
优选小于2μm。所述片区可在粒子一面上,或延伸到多面上。所述结合片区可在一端,或在中心。
[0428] 本发明的粒子的一个实施方式在1个或多个面上具有凹陷(又称窝(divit))。凹陷提供具有增加的荧光团空中密度的区域,从而在荧光图像中显得比围绕区域亮。在包含减少的结合区域的优选实施方式中,所述片区位于凹陷区内。在替代实施方式中,其位于没有凹陷的区域(即平区(flat region))。再一实施方式中,结合片区内的粒子表面经进一步处理,以提供增加信号用非平面拓扑学,例如通过使表面粗糙。
[0429] 产生具有结合片区(基于平面加工,即MEMS加工)的粒子如下:(1)在晶片表面制造粒子,(2)在在粒子制造过程中,在最顶层应用另外的保护层,(3)刻印保护层,使其仅留存于结合片区中,(4)从基质释放粒子,(5)在粒子上进行封闭处理,(6)从片区去除保护层,(7)进行选择性官能化片区的官能化处理。
[0430] 本发明的微粒的另一实施方式是具有多个先进特征的改进结构,以改进结合测定中的性能。第一先进特征是穿孔结合区。选择性地官能化穿孔区以充当用于分子结合的减小的区域。减小的区域指并非粒子的整个外表面用于生物分子探针的应用,而是仅利用了小区域,所述小区域是整个粒子表面的子集。
[0431] 在优选实施方式中,穿孔区由二氧化硅(玻璃)组成,且为待通过化学处理工序(用于附着探针化分子)官能化的粒子表面上的唯一区域。完成选择性官能化的优选方法是使留存表面(非为穿孔的侧壁)为不通过官能化步骤经历相同的表面化学修饰的不同材料。例如,所述侧壁可为二氧化硅,而粒子表面的其余部分可为氮化硅(或硅)。产生粒子结构,以使仅透孔侧壁是二氧化硅的方法是通过硅蚀刻穿孔,然后氧化所述表面,在侧壁上形成二氧化硅层。
[0432] 本发明的微粒的第二个先进特征是有形状的边缘,以辅助粒子表面以优选构造自我定向。微粒形状优选平的,从而所述粒子以特定方向位于表面上。在优选实施方式中,所述微粒具有码,且特定方向是所述码可被读取的方向。在优选实施方式中,所述粒子具有基本上6个侧面的形状,且所述特定方向是具有与其上放置有粒子的表面接触的两个最大表面的两个方向。说到另一种方式,所述粒子具有从其读取所述码的两个最大平面,且期望所有粒子位于所述表面中,从而这两个面(一个或另一个)平于其上放置粒子的表面。如果粒子放置在边缘(定义为沿粒子长度方向的四个面中的两个较小面积的面)上,对所述边缘的塑形会导致粒子趋于落在并位于两个大平面之一上。边缘塑形的一个实施例是产生刀口形状。
[0433] 本发明的另一实施方式包括通过改变特定数量的特定缀合物类型来控制溶液阵列的敏感度。因为探针分子中覆盖的总表面区域可在确定测定的敏感度方面发挥主要作用,可通过改变在汇合的探针集中使用的特定类型的粒子的数量而在基于粒子的溶液阵列中容易地控制的此表面区域。通过此方法,可通过使用相比其他基因平均更多的粒子将例如高度表达的基因带到线性区域内,并且对于低表达的基因使用更少的粒子。
[0434] 本发明的粒子的小尺寸、材料性质及低体积检测能力提供待在基于粒子的悬浮阵2
列中用小探针表面区域进行的测定反应。在一个实施方式中,将小于100,000μm 的探针
2
表面区域/靶物类输入悬浮阵列反应中。在另一实施方式中,将小于10,000μm 的探针表面区域/靶物类输入悬浮阵列反应中。
[0435] 在本发明的实施方式中,减少的结合区(即所述片区)可为粒子一面中的凹区(recessed region),或其可为穿孔。可通过多种不同技术实现所述片区与粒子表面余下部分之间的生物化学或化学部分的差异结合。所述技术的1个实例是片区的保护(例如通过光刻胶),随后封闭其余表面区以防止化学附着,然后去除保护层(或官能团),随后再仅选择性官能化所述片区(或探针化学部分的直接附着)。在另一实施例中,通过使用不同材料实现差异附着,例如在所述片区和其余区域使用二氧化硅和氮化硅。所述微粒优选具有可用于鉴定混合物中的单个粒子的化学或结构码。所述码可为例如立体变化的光学码。
[0436] 考虑将各种涉及生物或环境样品的制备、操作和分析的仪器与本文所述装置和方法联系上。该仪器的例子包括但不限于:细胞分选仪、DNA扩增热循环仪或层析机(例如GC或HPLC)。本领域技术人员熟知这些仪器。考虑将机器人界面用于本发明的编码微粒和各种涉及生物或环境样品的制备、操作和分析的仪器之间。
[0437] 另一相关发明是包含编码微粒的测试条装置。在优选实施方式中,将编码微粒用于捕获抗原-受体复合物。编码微粒提供方便、低成本及高性能方式,以实现定量的高多重测试条(又称侧向流条,且与免疫层析装置相关)。在替代实施方式中,编码微粒可用作报告子本身,其被捕获在常规捕获剂(如抗体)的测试条线上,还包括微球体捕获剂(即“流中漂石(boulders-in-the-stream)”方法)。许多各具有不同捕获剂的粒子的不同码的混合物位于多个检测线上。从微粒上的码推定捕获剂(即有码与捕获剂物类之间的一对一对应,表示为于当捕获剂与微粒缀合时制造的查询表)。这具有比用多检测线可实现的高得多的多重水平的优点。而且,制造这些基于高多重编码微粒的测试条的制造过程更简单,仅涉及将单反应试剂(编码微粒混合物)部署于测试条上。编码微粒测试条的读取装置是显微镜,从而可实现低成本便携式读取器。所述读取器的1个实例是基于CCD的显微镜系统,其可连接到膝上型计算机上。编码微粒测试条的报告子方案选自本领域已知及目前常规使用的测试条,例如染色的微球、荧光团或胶体金纳米粒子。在一个实施方式中,构建编码微粒测试条,从而样品流入含编码微粒混合物的区域。此区域一般包括对粒子随机分布,但也可将其构建成以有序的方式提供,例如通过利用小枝(grove)将粒子沿轴对齐。
[0438] 本文所述装置的方法可用于广泛的应用领域,包括生物医学和遗传研究,及临床诊断。可就与靶(例如互补核苷酸)的特异性结合筛选聚合物(例如核酸)阵列,例如在测定结合亲和性的筛选研究中和诊断测定中。在一些实施方式中,可进行多核苷酸测序,如美国专利号5,547,839所公开。核酸阵列可用于许多其他应用中,包括遗传疾病(例如囊性纤维化)检测或HIV诊断,如美国专利No.6,027,880和美国专利号5,861,242所公开。可通过测序或杂交来检测基因突变。在一个实施方式中,可对基因标记物进行测序,并如美国专利号5,710,000所公开使用II型限制性内切酶对其作图。
[0439] 在本方明的实施方式中,在编码微粒上进行了高通量测序。例如将基因组DNA片段化并在编码微粒集上扩增(或富集)。用单个微粒的码进行通过合成的循环测序(SBS),所述个微粒的码提供将各循环(及各循环的基本信息)连接到序列读取的机制,即通过粒子的码追踪各个粒子上的片段。SBS的各循环产生单个粒子的码及相应基本信息(测序信息)的表。单次运行中可使用超过百万的粒子,以产生数10MB的序列数据。可使用更长的读取和更多粒子(超过千万、超过一亿、或超过十亿个粒子)非常有效地和成本效益地产生数GB的序列数据。编码微粒的使用允许高多重测序方法,并提供了稳健且方便的反应追踪。用于本发明的特定方法和方案的例子如下所列并在Shendure,J.et al″Accurate Multiplex Polony Sequencing of anEvolved Bacterial Genome″Science vol.309.pp.1728-1732.Sept.9,2005中。
[0440] 可使用乳液PCR进行基因组DNA(gDNA)片段扩增,其中在小滴中制备单个粒子,所述将小滴制为含确定的PCR扩增子的数百万拷贝。将扩增子捕获在粒子上,从而理想情况下各粒子具有单种(序列)扩增子。实践中,一些粒子制成无扩增子(待测序的DNA),而一些粒子具有多于一种扩增子。乳液PCR后,可从其他粒子中选出(即富集)所谓“克隆”粒子。在编码粒子集上制备待测序的片段后,进行测序本身。相比使用非编码粒子、空白粒子(又称珠),使用编码粒子非常有效,因其允许测序反应在标准管或多孔板中以非常小的体积进行。用空白珠的常规方法利用复杂的流动细胞和/或珠固定。本发明的主要优点之一是检测用仪器和反应仪器的复杂度减少(且由此减少了时间和成本)。用于测序反应的小反应体积减小昂贵的酶的开销,并由于溶液相中粒子的快速的3维反应动力学而加速循环时间。循环时间是当前技术的主要限制。
[0441] 例示测序系统包括:(1)通过乳液PCR制备片段,(2)SBS反应,例如使用4-色方案,其中荧光团报告子的颜色指示碱基(其可比1碱基/循环大),(3)检测,例如在可利用照明用激光和信号定量用光电倍增管的流式细胞仪或类似系统中。在多个循环中重复步骤2和3,以建立完整的序列。在编码粒子集上进行片段制备步骤,例如乳液PCR。所述集一般由许多(百万或更多)均具有独一码的粒子组成,从而各扩增子具有与码的一对一对应。
[0442] 检测系统的优选例是流式细胞仪,其可提供测序反应的非常快速读取。此设备已可广泛应用。在流式细胞仪中,可用穿过由照明的询问点的检测器读取粒子的码,即改良的前向散射检测器。上述本发明的编码粒子具有许多优点。可在透射、反射或荧光模式下读取所述粒子的码。在流式细胞仪中,可用前向散射通道读取码,但也可用侧向散射、荧光通道(光电倍增管)之一或其变化形式读取。在另一实施方式中,可如Margulies,M.等人所述进行多核苷酸的大规模并行测序,其中单个粒子取代所述所公开的在阵列上包含的皮升反应器。另一实施方式如Giusto,D和King,GC所述使用单碱基延伸反应。再一实施方式中,可如Seo,TS等人所述进行通过合成的DNA测序。
[0443] 其他应用包括如美国专利号6,228,575所述的基于芯片的基因分型,种鉴定及表型表征。其他应用还包括诊断癌症状况或诊断病毒、细菌及其他病原性或非病原性感染,如美国专利号5,800,992所述。进一步的应用包括基于芯片的单核苷酸多态性(SNP)检测,如美国专利号6,361,947所述。其他应用包括基于溶液的用颜色-编码的珠的SNP检测,如Fujimura et al,Journal of Bioscience andBioengineering,94368-370(2002)所述。
[0444] 可如Lockhart et al,Nature Biotechnology,141675-1680(1996)所述使用细胞中(例如微生物(酵母)中)核酸的高密度阵列通过大量mRNA的平行杂交监控基因表达。可如Saizieu et al,NatureBiotechnology,1645-48(1998)所述通过总RNA与核酸阵列的杂交来进行细菌转录本成像。使用高密度DNA阵列的遗传信息获取还描述于Chee,Science
274610-614(1996)。
[0445] 适用本文所述的编码微粒及有关其用途的方法的潜在应用的非限制性列表包括:病原体检测和分类、化学/生物战剂实时检测、化学浓度控制、危险物质(例如气体、液体)检测和报警、糖尿病患者的糖和胰岛素水平检测、怀孕测试、病毒和细菌感染性疾病(例如AIDS、禽流感、SARS、西尼罗河病毒)检测、环境污染物监控(例如水、空气)、和食品加工质量控制。
[0446] 本发明的编码微粒的另一应用是微孔中的大规模并行筛选。该筛选可涉及小分子药物或其他治疗性化合物。大规模并行筛选系统的例子包括:(1)分散编码微粒,从而基本上每微孔中仅一个粒子,(2)数千-数百万或更多微孔在单个基质(例如经蚀刻的载玻片、纤维束、或微制造的装置)上,且可含有微升-皮升的体积,(3)每孔中的粒子在可存在化合物或生物化学部分(各孔中相同或不同)的孔的溶液中,或在孔的内表面上,或在存在于孔中(在溶液中或在内表面上)的细胞上追踪在微孔中发生的单个反应,所述反应发生在可存在预包被的生物化学分子的粒子的表面上,(4)分子还可从粒子表面释放而起反应,可直接切割该释放的分子,或该分子可存在于1个或多个附着到粒子上的子容器中,分子随后从子容器中释放,所述子容器可为囊泡,(5)待释放的分子可起初保持在围绕粒子的脂质双层或其他类型的包衣中。
[0447] 在又一应用中,将编码微粒用在可操作的小泡或小滴中。将包含码的微粒并入可经操作的小滴中以进行生物化学反应,且例如提供生物测定结果。可并入单个(每小滴一个粒子)或多个(即每小滴多于一个粒子)微粒。每小滴可存在跨0、1、或更多个粒子。微粒可包含参与反应的表面结合分子,例如作为在溶液中靶向分子的捕获探针。可在起初将微粒导入小滴中后(或小滴通过微装置或微流体操作的作用而形成),无生物分子结合到其表面,且可通过操作1个或多个小滴,用反应表面基团使其官能化,且还可使生物分子附着到所述微粒表面。可对包含微粒、缓冲液和反应剂(以任意组合)的小滴进行操作以导致小滴分裂、多个小滴融合为单个小滴、加热或冷却小滴、基于小滴的性质(例如尺寸或带电性)分选小滴或本领域已知的其他操作。可通过根据所测定的码进行的光学手段和操作读取包含于小滴中的具有码的微粒。此外,可通过荧光、化学发光、放射性读取读取小滴中的反应或测定的结果。
[0448] 本文所述的基于编码微粒的测定系统还可大得多的生物分析系统中的子系统。所述生物分析系统可包括在例如光学检测之前的样品制备的全部方面,光学检测阶段中采集的数据的后处理,及基于这些结果的最终决策。样品制备可包括如下步骤例如:从被检测受试者(人、动物、植物环境等)中提取样品;分离样品的不同部分,以达到研究中分子的更高浓度和纯度;样品扩增(例如通过PCR);将荧光标签或标记物附着到样品不同部分;及将样品点到反应容器中或基质上的位点中。采集数据的后处理包括:标准化、降低背景和噪音,及统计学分析(例如重复测试的平均或不同测试间的相关分析)。决策包括:对预定规则集的测试,及与存储于外部数据库的信息的比较。
[0449] 本文所述的编码微粒的应用和用途可产生1种或多种用于诊断个体(例如患者)疾病状态的结果。在一个实施方式中,诊断疾病的方法包括检阅和分析涉及样品中的靶的存在和/或浓度水平的数据。可将基于数据检阅或分析的结论提供于患者、医疗服务提供者或医疗服务管理者。在一个实施方式中,所述结论基于针对疾病诊断的数据检阅或分析。给患者、医疗服务提供者或医疗服务管理者提供结论的另一实施方式包括通过网络传输数据。
[0450] 因此,本文提供了涉及如本文描述的编码微粒及有关其用途的方法的商业方法。本发明一方面是如下商业方法,包括:就生物学活性分析物的有无筛选患者测试样品,以产生有关该分析物的数据,采集所述分析物数据,将分析数据提供给患者、医疗服务提供者或医疗服务管理者,用于基于针对疾病诊断的数据的阅或分析做出结论。在一个实施方式中,将结论提供给患者、医疗服务提供者或医疗服务管理者,包括通过网络传输数据。
[0451] 图53是显示可实现检阅或分析涉及本发明的数据的代表性实例逻辑装置的框图。该数据可与受试者的疾病、病症或状态有关。图53显示与编码微粒824一起使用以例如产生结果的设备820连接的计算机系统(或数字装置)800。可将计算机系统800理解为可读取来自介质811和/或网络端口805的指令的逻辑设备,可将其任选连接到具有固定介质812的服务器809上。示于图53的系统包括CPU801、存储盘驱动器803、任选的输入设备(例如键盘815和/或鼠标816)和任选的监视器807。可通过指定的通信介质连接到本地或远程地址的服务器809来实现数据通信。通信介质可包括数据传输/接收的任何手段。例如,通信介质可为网络连接、无线连接或互联网连接。有关本发明的数据可通过这样的网络或连接传输。
[0452] 在一个实施方式中,计算机可读介质包括适于传输生物样品分析结果的介质。所述介质可包括有关受试者疾病状况或状态的结果,其中所述结果源于使用本文所述的方法。
[0453] 本发明另一方面是如下商业方法,包括:就生物学活性分析物的有无筛选患者测试品,以产生有关所述分析物的数据,采集所述分析物数据至数据库,使用1种或多种的算法(例如生物信息学算法)以处理采集的分析物数据,以鉴定1种或多种的诊断性产品、治疗性产品或标记物产品,及合作或独立地销售或营销产品。
[0454] 本领域技术人员会理解本文所述的新且有用的微粒及其制造方法。通过本发明制造的大的编码微粒集可为具有深远应用的基础技术,尤其在生物技术及更具体为基因组学领域。其具有显著降低高多重生物测定的成本的潜力。而且,使研究者容易地设计定制内容物的溶液阵列。研究者还可容易地将新粒子类型添加到所述汇合的集(例如包括新发现的目的基因及本发明的微粒)中。
[0455] 纵观了可应用本发明的粒子的许多可能的实施方式,但要知道本文所述实施方式及相应附图仅旨在说明,不为限制本发明的范围。本领域技术人员会可认识到可在排布和细节上对所说明的实施方式进行改良,而不脱离本发明的精神。
[0456] 例如,微粒可具有六面的形状,其中四个面在延长侧,两个面在端侧。编码微粒可构造为无论部署有条码的4个延长侧的任何一个,均可检测编码微粒的码。所述微粒可具有2∶1-50∶1、4∶1-20∶1的长宽比。微粒长度优选从5-100μm及更优选小于50μm。微粒宽度可为0.5-10μm。在其他实施例中,微粒长度可为小于10μm,小于25μm,小于
25μm;小于5μm,小于27μm;且微粒宽度可为小于3μm。微粒宽高比可为0.5-2.0。微粒长宽比可为2∶1-50∶1。沿微粒长度取的横截面基本上是长度至少两倍于宽度的矩形。
[0457] 微粒可具有其中包埋有区段的玻璃体。玻璃体与区段的透射率差可为10%或更3
多。玻璃体可具有小于50μm的长度和小于10μm的宽度,所述玻璃体具有5-500μm 的体积。编码微粒可在编码微粒内具有2-15、3-10、或4-8个更不透明材料的部分。整合到微粒上的码可为二进制或非二进制或其他期望的码。微粒可有生物化学分子(例如DNA和RNA
2 6 2
探针)以10-10 个/μm 的密度附着到所述微粒的1个或多个的表面上。当在晶片水平
2 2 2
上制造时,所述晶片可具有12.5in-120in 的表面积,且其中每in 晶片有至少3百万个微粒。所述晶片可具有至少1百万个码,且形成在基质上,或至少两百个不同码存在于一百万个码中,或至少3000个不同码存在于一百万个码中。当微粒被置于液体缓冲液(例如生物测定)中时,所述微粒可形成单层,其中所述微粒进行实质上的布朗运动。布朗运动可具有-12 2 -11 2
大于1×10 cm/s、且更优选大于1×10 cm/s的微粒二维扩散系数。布朗运动可包括测量到多于10%的微粒在1秒或更短的时间间隔内进行20nm或更多的侧向位移。
[0458] 尽管本文已经描述了本发明的优选实施方式,本领域技术人员清楚提供所述实施方式仅旨在例示。本领域技术人员在不脱离本发明的情况下进行数种变形、改变和替换。应理解,在实施发明中可应用本文所述的本发明的实施方式的各种替代形式。下列权利要求书将定义本发明的范围,且覆盖这些权利要求范围内的方法和结构及其相当的方法及结构。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈