首页 / 专利库 / 专利权 / 第I章 / 国际申请 / 请求书 / 保护类型 / 专利 / 产生二元半导体材料磊晶层的方法

产生二元半导体材料磊晶层的方法

阅读:5发布:2020-10-26

专利汇可以提供产生二元半导体材料磊晶层的方法专利检索,专利查询,专利分析的服务。并且本 发明 有关 微 电子 学 领域,可通过金属‑有机化合物及氢化物之 化学气相沉积 产生III‑V化合物 半导体 材料及II‑VI化合物半导体材料的磊晶结构。 申请 专利 范围是有关一种通过金属‑ 有机化学 气相沉积法(MOCVD)于单晶基材上产生二元半导体材料的磊晶层之方法。此技术使异质磊晶结构之 质量 得到改善。,下面是产生二元半导体材料磊晶层的方法专利的具体信息内容。

1.一种经由金属-有机化学气相沉积法(MOCVD)于单晶基材上产生二元半导体材料的磊晶层之方法,其使用以下装置措施:
(A)反应器,其具有相对于垂直中心轴为圆形的反应室;
(B)基材支架平配置于所述反应室中且配接成绕着所述垂直中心轴回转;
(C)圆形筛网,配置于所述反应室中所述基材支架上方距离15mm及40mm之间之处,所述筛网的直径大于所述基材支架的直径;
其中
(a)保持该基材支架于一预定温度
(b)使所述基材支架绕着所述垂直中心轴均匀地回转;
(c)将至少两种反应气体分别供应至所述反应室的不同径向区段内;其中所述反应气体中之至少一者含有可分解以形成第III族或第II族元素的原子层的金属-有机化合物MOC,且该气体中之至少另一者相应地含有第V族或第VI族元素的氢化物,所述氢化物可相应地与所述层中的第III族或第II族元素之原子反应;
(d)所述反应气体供应的顺序为所述含有第III族或第II族元素之MOC的反应气体产生之层暴露于相应的所述含有该第V族或第VI族元素之氢化物的反应气体的作用之下;
(e)为避免所述反应气体彼此混合,在位于所述反应气体流之间的区段内供应载体气体;
(f)在所述层生长的整段期间,连续不断地将所述反应气体及所述载体气体供应至所述反应室内;
(g)所述反应气体及所述载体气体以所述反应室内每一区段相对于相同直径的径向移动速度皆一致的方式进行供应;
(h)所述基材支架回转的圆周速度、所述反应气体中MOC的浓度、及所述反应气体消耗速率的供应方式为使得所述基材支架完整回转一圈所沉积的层厚度为单原子层厚度的0.6至1.0;
(i)所述反应气体及所述载体气体是经由直径小于1mm且表面密度为5至20个开口/平方厘米的开口群组以基本水平的方式供应,使得所述基材支架上方的径向气体以层流的位移方式流动,且生长中的所述层的厚度d等于k×a×n,其中
k为正实数,其为在所述基材支架完整回转一圈所沉积的所述单原子层厚度的部份;
a为正实数,其为所述生长中的材料的基质参数;
n为正整数,其为所述基材支架完整回转之圈数。
2.如权利要求第1项之方法,其中所述筛网的温度相对于所述基材支架之温度的比例保持在0.6至0.9范围内,从而避免在所述反应室中形成重复循环。
3.如权利要求第1项之方法,其中所述筛网为在所述垂直中心轴与所述筛网表面之间呈具有一定度的圆椎形,所述角度范围是90°至60°。
4.如权利要求第1项之方法,其中所述反应气体及所述载体气体是经由所述反应器的外围部位供应至所述反应室内,且经由所述反应器的中心部位移除。
5.如权利要求第1项之方法,其中所述反应气体及所述载体气体是经由所述反应器的中心部位供应至所述反应室内,且经所述反应器的外围部位移除。
6.如权利要求第1项之方法,其中放置于所述基材支架上的所述基材在所述基材支架绕着所述垂直中心轴回转时与其同时进行回转。
7.如权利要求第1项之方法,其中将所述含有至少两种属于元素周期表第III族或第II族之元素的化合物之反应气体供应至其中一个反应器区段内,且所述含有至少一种属于元素周期表第V族或第VI族之元素的氢化物之反应气体供应至所述反应器之另一区段内。

说明书全文

产生二元半导体材料磊晶层的方法

技术领域

[0001] 本发明有关电子学领域,可通过金属-有机化合物及氢化物之化学气相沉积产生III-V化合物半导体材料及II-VI化合物半导体材料的磊晶结构。

背景技术

[0002] 产生III-V磊晶结构的方法(以下称为MOCVD)为Manasevit所提出(参见Manasevit H.M. Single-Crystal Gallium Arsenide on Insulating Substrates Appl. Phys. Lett.12, 156 (1968))。该方法在于第III族元素之金属-有机化合物(MOC),即三甲基镓,与第V族元素之氢化物(胂)通过氢流传送至装有热表面的反应器内,所述热表面上布置有单晶基材,而砷化镓磊晶层是生长于所述热表面上。
[0003] 稍后,MOC与氢化物之间的反应被发现不仅发生于热表面上,亦发生于气相(均相反应)。为了抑制该等反应,MOC及氢化物是分别被供应至生长区的装置应运而生(参见例如美国专利申请案第2009/0229754号,其中使用具有"莲蓬头喷淋器"型之反应气体导入系统的装置)。然而,此等组份于生长区中混合,结果将无法完全避免所述组份于气相上的反应。沉积于生长表面的均相反应的产物会损害磊晶层的质量。就发展具有量子维度阱洞之异质磊晶结构(HES)之技术的观点而言,此项问题变得特别重要(尤其是用于LED之以GaAlN为主之HES)。
[0004] 有一些已知解决方法(参见例如美国专利申请案第2010/0263588号),其中MOC与氢化物交替供应至反应器内,以避免均相反应。例如,通过提供气体-蒸气混合物(GVM)之移动使得先供应第III族组份,随后吹离反应器,接着供应第V族组份,而之后再次吹离反应器,依此往复,直至具有所需厚度的层形成。然而,在此情况下,制程持续时间因为依序将组份供应至反应器内而增加,且伴随有不稳定的GVM流出现,即气相中发生暂态过程,所述暂态过程随GVM流变化,转而造成HES质量损失。此等方法通常用于在实验室(研究)施行制造。
[0005] 在反应器中使用具有回转基材支架的分隔壁,以将反应器分成多个区段,而后将反应组份分别供应进入所述区段内(参见例如美国专利8043432)。此类方法会在该等区段上引起不期望的反应产物沉积,并且造成所述产物在其长晶期间破碎并落在磊晶层上的险。
[0006] 据此,目前尚无任何可消去均相反应且保证HES大规模生产(例如一次多于40片基材)的解决方案。

发明内容

[0007] 本文中所使用对语辞、陈述及缩写具有以下意义。
[0008] MOCVD(金属有机化学气相沉积)意指自含有金属-有机化合物之蒸气的气相化学沉积的方法。
[0009] HES意指异质磊晶结构。
[0010] MOC意指金属-有机化合物。
[0011] GVM意指气体-蒸气混合物,其系反应气体,尤其是指金属-有机化合物之蒸气于载体气体中之混合物与/或元素周期表第V族元素之氢化物与载体气体之混合物。
[0012] 分隔区段意指反应室之想象部分(区),其中载体气体流沿所述反应室径向移动,与所述反应室相邻区段中之反应气体流相分离,尤其是MOC区段及氢化物区段。
[0013] TMA意指三甲基
[0014] TMG意指三甲基镓。
[0015] TMI意指三甲基铟。
[0016] 载体气体意指用作载体之气体,其不含任何可能沉积于该基材上的化合物。通常使用氢、氮或其混合物作为载体气体。
[0017] 其他语词及陈述是使用熟习此技术者已知的一般意义。
[0018] 本发明旨在提供一种MOCVD方法,其使半导体材料磊晶层既可以以一般方式长晶,亦可经由原子层沉积之方式在连续反应气体流(使得该方法的产能较之使用间断供应反应气体的方法增高)下长晶。
[0019] 在所述通过金属-有机化学气相沉积法(MOCVD)于单晶基材上产生二元半导体材料的磊晶层之方法中,前述问题之解决方案是使用以下装置措施:
[0020] (A)反应器,其具有相对于垂直中心轴为圆形的反应室;
[0021] (B)基材支架,平布置于反应室中且配接成绕着该垂直中心轴回转;
[0022] (C)圆形筛网,布置于反应室中该基材支架上方距离大约15 mm及40 mm之间之处,所述筛网的直径大于所述基材支架的直径;
[0023] 其中
[0024] (a)保持所述基材支架于一个预定温度
[0025] (b)所述基材支架绕着所述垂直中心均匀地的回转;
[0026] (c)将至少两种反应气体分别供应至所述反应室的不同径向区段内;其中所述气体中之至少一者含有可分解以形成第III族或第II族元素的原子层的金属-有机化合物(MOC),且所述气体中之至少另一者相应的含有第V族或第VI族元素的氢化物,所述氢化物可相应的与所述层中的第III族或第II族元素之原子反应;
[0027] (d)所述反应气体供应的顺序为所述含有第III族或第II族元素的MOC的反应气体产生之层暴露于相应的所述含有第V族或第VI族元素之氢化物的反应气体的作用之下;
[0028] (e)为避免所述反应气体彼此混合,在位于所述反应气体流之间的区段内供应载体气体;
[0029] (f)在该层生长的整段期间,连续不停的将反应气体及载体气体供应至所述反应室内;
[0030] (g)所述反应气体及载体气体以所述反应室内每一区段相对于相同直径的径向移动速度皆一致的方式进行供应;
[0031] (h)所述基材支架回转的圆周速度、所述反应气体中MOC的浓度、及所述反应气体消耗速率的供应方式为使得该基材支架完整回转一圈所沉积的层的厚度约为单原子层厚度的0.6至1.0;
[0032] (i)所述反应气体及所述载体气体是经由直径小于1 mm且表面密度为5至20个开口/平方厘米的开口群组以基本水平的方式供应,使得所述基材支架上方的径向气流以层流的位移方式流动,且生长中的所述层的厚度d实质上等于k×a×n,其中
[0033] k为正实数,为在所述基材支架完整回转一圈所沉积的所述单原子层厚度的部份;
[0034] a为正实数,为所述生长中的材料的晶格参数;
[0035] n为正整数,为该基材支架完整回转之圈数。
[0036] 前述方法可改善HES的质量。
[0037] 该改良是通过以下装置措施达成:
[0038] (A)排除所述含有第III族(或第II族)元素之MOC的反应气体渗入所述含有第V族(或第VI族)元素之化合物的反应气体的区段,反之亦然;
[0039] (B)提供所述反应气体与所述载体气体之混合物的层流;
[0040] (C)排除气流旋涡,以避免所述气流捕集颗粒并将它们重新散落于HES生长区内;
[0041] (D)消除可能出现再循环晶胞的条件;
[0042] (E)使得所述GVM组份浓度在整个HES生长区的稳定且单调地变化;
[0043] (F)使用载体气体作为分离流而非介于区段间之分隔壁,以避免所沉积之反应产物自所述分隔壁进入所述长晶中的磊晶层的风险,同时避免所述气流在该壁附近的减速及扰流。
[0044] 熟习此技术者了解要长成具有所需组份的层需要确认布置在所述反应器中所述回转基材支架上的所述基材对所述垂直中心轴成对称,所述基材被加热,连续地供应所述含有第III族(或第II族)元素之MOC的反应气体,连续地供应所述含有第V族(或第VI族)化合物的气流,连续地供应所述载体气体,所述层得到生长,以及所述气体反应产物被移除,其中所述所有气体,尤其是所述含有第III族(或第II族)元素之MOC的反应气体与所述含有第V族(或第VI族)化合物的反应气体,是以空间上分离且交错的方式执行,所述载体气体流分离所述含有第III族(或第II族)元素之化合物的气流与所述含有第V族(或第VI族)元素之化合物的气流,该层沉积是以循环方式执行,同时具有单原子或近单原子厚度的层的部分在每一次的循环中都得以生长。
[0045] 用于生长所述层的所述反应器对称于所述垂直中心轴且包含至少两个区段,所述反应气体在生长磊晶层的整段时间内连续不断地被供应进入其中,所述生长层之形成是经由借着具有所述载体气流的所述分离区,使安置在所述回转基材支架上的所述基材在所述含有第III族(或第II族)元素MOC之反应气流区与所述含有第V族(或第VI族)元素化合物之反应气流区之间交替地移动以依序地形成一第III族(或第II族)元素之原子层,且随之形成一第V族(或第VI族)元素之原子层而达成。
[0046] 于该方法的具体实施例中,将含有至少两种属于元素周期表第III族(或第II族)之元素的化合物之反应气体供应至其中一个反应器区段内,而含有至少一种属于元素周期表第V族(或第VI族)之元素的氢化物之反应气体对应地供应至该反应器之另一区段内。
[0047] 在最佳实施例之一中,,为了降低所述筛网表面沉积物的量且避免造成形成扰流的情况,所述筛网的温度将被保持在相对于所述基材支架之温度的比例在0.6至0.9范围内,从而避免在所述反应室中形成再循环。
[0048] 在该方法的另一较佳具体实施例中,所使用之筛网为在所述垂直中心轴与所述筛网表面之间具有一个具有一定度的圆椎形,该角度介于90°至60°范围中(参见图1,位置11)。
[0049] 所述反应气体及所述载体气体可经由所述反应器外围部位供应至所述反应室内,并经由其中心部位移除,或所述反应气体及所述载体气体可经由所述反应器中心部位供应至反应室内且经由其外围部位移除。
[0050] 该方法之再另一较佳具体实施例中,布置于所述基材支架上的所述基材在所述基材支架绕着所述垂直中心轴回转时与其同时进行回转。此法使得组份浓度的脱除沿着所述反应室径向有效地降低。
[0051] 所申请之方法可用以制造III-V化合物及II-VI化合物的磊晶结构。附图说明
[0052] 图1为用以执行本发明方法的反应器的具体实施例之一的侧视剖面图。
[0053] 图2为图1所述反应器之部分俯视图。
[0054] 图3为所述反应器之示意俯视图,便利地出示用以供应含有第III族及第V族元素之化合物的反应气体之区段。
[0055] 图4为在图1至图3所示反应器中使用前文所述方法制得的一般磊晶结构的示意剖面图。

具体实施方式

[0056] 如前文所述,所申请之方法是在一反应器中执行,所述反应器包含相对垂直中心轴成对称的反应室,在所述反应室中,GVM自中心向着圆周移动(或相反),其中回转基材支架、用以供应及移除气体的装置、及位于所述基材支架上方并与其共轴的筛网均是布置于所述反应室内。为改善所制得的结构之质量,气体供应分成至少两个主要进料口及两个附加(分离)进料口用以提供GVM移动跨越对应之区段。所述含第III族元素之化合物的GVM(即TMG、TMA等)通过一个主要区段移动,所述含有第V族元素化合物的GVM(即,、胂等)通过另一个主要区段移动,且所述载体气体经由分离区段移动。
[0057] 前文所述方法的执行通过图1及图2所示反应器的操作实施例进一步说明。
[0058] 反应器(1)构成一个相对垂直中心轴(2)成对称的圆筒形框架。圆筒之比例,尤其是其直径,是根据基材尺寸及其他因子定义。待加工之基材的尺寸可介于40 mm及200 mm之间。
[0059] 反应器(1)包含基座(3)、顶盖(4)、附接于顶盖(4)且相对垂直中心轴(2)成对称的筛网(11)、配置于凸缘(6)上之石英罩(5)、及基材支架(19)。基座(3)、顶盖(4)及凸缘(12)通过供应至腔穴(10)内之水来冷却。反应器装置于重板(36)上以防止震动。反应器藉垫片(7)及(8)密封。
[0060] 顶盖(4)装配用于升降的装置,以在每一次磊晶结构长晶制程后装载及卸除基材。夹钳(9)及垫片(8)提供顶盖(4)之密封。
[0061] 反应器(1)包含区(13),所述区(13)内供入含GVM之试剂,且区(14)、(15)、(16)在此对应地经由进料口(38)、(39)、(37)以氮、氢或其混合物将试剂吹离。在基材支架(19)形成的表面与筛网(11)表面之间的距离为15至40 mm(一般为22 mm)。所有气体及气相中的反应产物之移除都是经由中心部位(17)执行,且进一步经装置(18)输出。
[0062] 反应器是设计成在区(13)内有10-3托至600托(1大气压)之压
[0063] 布置于所述反应室内的基材支架(19)装配有碟形部件(20),基材(21)安装于所述蝶形部件上(参见图2)。碟形部件是配置成相对于其垂直轴回转。将基材支架(19)定位于圆筒(22)上,而圆筒(22)因内部磁(23)和外部磁铁(24)之间的磁耦合而绕着垂直中心轴(2)回转。主动小齿轮(25)固定于罩(5)上,并且每一碟形部件(20)各具有位于其底侧的从动小齿轮,在基材支架(19)回转时绕着主动小齿轮(25)回旋,因而提供碟形部件绕其自身之轴的额外回转。
[0064] 所述基材的加热是通过加热装置(26)执行,提供加热且将基材温度保持在400℃至1300℃范围内。所述加热装置包含三个相对于垂直中心轴(2)成对称分布的加热场,因此可于该等碟形部件上形成均匀之温度场。
[0065] 将GVM输入所述反应器之长晶区(区(13))是通过以下方式执行:顶盖(4)包含两个用以供应所述GVM的腔穴(27、29),及两个使用载体气体以吹离的腔穴(28)。所述含有第III族组份之GVM是经由进料口(30)供应至腔穴(27、29)内,所述含有第V族组份之GVM是经由进料口(31)供应,而所述吹离气体是经由两进料口(32)供应。
[0066] 顶盖(4)之内表面(33)包含直径0.6 mm的开口(34),均匀分布在整个表面(33)上,密度约为10个开口/平方厘米,因而联同轴环(35)且由于区(13)之形式,一起提供GVM层流。
[0067] 分开供应GVM至长晶区内归功于反应器的对称设计,其中所述GVM自所述反应器的外围部位层流至所述反应器的中心,因此形成含第III族组份的GVM区段及其对应的含第V族组份的GVM区段(参见图3),而均匀回转之基材支架(19)依序且均匀将基材(21)自一区段移至另一区段。为了更有效地分离第V族组份与第III族组份,在主要进料口之间布置有额外进料口,载体气体(H2、N2或其混合物)经由所述额外进料口进行供应。基材支架回转速度及MOC于GVM中之含量由其在通经第III族区段期间,基材上沉积具有接近单原子的厚度之层(一般为10 rpm)决定。所述层的生长速度可通过改变基材支架回转速度于6 rpm至15 rpm而调整。掺杂组份视所需之生长层的导电类型而对应地供应至腔穴(27、29)的第III族区段或第VI族区段。于所述反应器生长所述层的制程是连续的,且所有气流在长晶期间皆稳定。
[0068] 为了防止所述GVM在区(13)中出现非层流,筛网(11)的温度对碟形部件(20)之温度的比例为0.6至0.9,此是通过氮-氢混合物之组成、其用于吹离区(14)的体积以及顶盖(4)之顶表面与筛网(11)表面之间的距离来确保。
[0069] 氮-氢混合物一般会在总共30公升/分钟之速率下供应至腔穴(27、28、29)(顶盖(4)之内径,由表面(33)所界定,为360 mm)。
[0070] 供应至腔穴(27、28、29)中任一者之氮-氢混合物的消耗速率与III、V、S区段中任一者中确定为GVM流的表面(33)部分之面积成比例(参见图3)。所考虑之反应器中,此等面积的比例为30/58/(6×2)。因此,不同区之GVM流如下:腔穴(27)为9.0公升/分钟,腔穴(29)为17.4公升/分钟,而腔穴(28)为3.6公升/分钟。
[0071] 图4显示使用前述反应器制造之一般磊晶结构的示意剖面图。所述磊晶结构用于制造具有绿光发射的LED。
[0072] 下列者已用为所述制程的起始组份:
[0073] (A)第III族之试剂(三甲基镓(TMG),三甲基铟(TMI),三甲基铝(TMA));
[0074] (B)第V族之试剂(氨(NH3));
[0075] (C)掺杂组份(单烷(SiH4),在容器中之体积浓度10-3%,及镁金属-有机组成物(双(环戊二烯基)镁))。
[0076] 模板,即蓝宝石基材,带有一层约4000 nm厚度掺杂有3.0×1018 cm-3浓度之硅的GaN,将其置入所述反应器。之后执行必要的吹离。之后,将基材加热至400℃,且以0.35摩尔/分钟速率将NН3供应至所述反应器的所述区段V,并保持加热至达1050℃之温度。
[0077] 一旦达到1050℃之温度,则将氨供应速率增至0.53摩尔/分钟,将TMG以3.0×10-4摩尔/分钟的速率及单硅烷且以1.0×10-7摩尔/分钟的速率供应至所述反应器区段III。GaN层在3分钟52秒期间长成,之后,TMG及单硅烷的供应停止,温度降低至730℃。
[0078] 进一步的,在所述反应器的所述区段V中借着将氨供应速率增至0.63摩尔/分钟而生长供量子阱(QW)系统所用的InGaN层,在1分钟期间将速率0.375×10-4摩尔/分钟的TMG及速率2.0×10-6摩尔/分钟的TMI供应至所述反应器的所述区段III中。之后,TMG及TMI至所述-6反应器中的供应停止,温度升至950℃。在此温度下,通过将速率2.0×10 摩尔/分钟之TMG供应至所述反应器的所述区段III内,且将速率0.58摩尔/分钟之氨供应至所述反应器的所述区段V内,于1分钟30秒内长成障壁GaN层。一旦所述障壁层成长完成,停止供应TMG至所述反应器内,且温度再次降至730℃。
[0079] 进一步的,供QW系统所用的第二InGaN层及GaN的第二障壁层如同前文所述般的生长。从而,针对QW系统生长出各5层的InGaN及GaN。
[0080] 一旦所述最后的GaN障壁层生长完成,即终止TMG供应,温度增至1050℃。此外,长成20-周期超晶格(SL),其中SL是由交互的GaN及AlGaN层组成。为达该目的,掺杂组份(双(环戊二烯基)镁)于速率3.2×10-7摩尔/分钟下添加至所述区段V内,氨之速率保持于0.58摩尔/分钟,同时将速率为1.2×10-4摩尔/分钟的TMG及速率为1.0×10-5摩尔/分钟的TMA供应至所述区段III内,在48秒后停止TMA至所述区段III的供应,在又36秒后以上述特定速率重新开始。将供应TMA48秒及停止TMA供应36秒的之周期重复20次,从而长出p-型Al0.20Ga0.80N/GaN的20-周期SL。
[0081] 在第20周期TMA至所述反应器的供应终止后,以3.2×10-7摩尔/分钟的速率将掺杂组份(双(环戊二烯基)镁)供应至所述区段III内,于8分钟期间生长出GaN层(因此得到210 nm厚的带有浓度为1.0×1018 cm-3的p型载流子的GaN层)。之后,在将送入所述区段V内之氨的供应速率减至0.36摩尔/分钟的同时,停止TMG及所述掺杂组份至所述反应器的供应,关闭加热。一旦达到温度400℃,即停止NН3的供应。随后冷却所述反应器,以氮吹离,并自所述反应器卸除所制得的结构。
[0082] 所申请之方法允许在负载6至60个基材的情况下在工业反应器中生长HES,并提供高质量之HES层。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈