首页 / 专利库 / 饮料和饮料加工 / 金属离子 / 一种阴离子掺杂的K2NiF4型混合导体透氧膜材料及其制备方法与应用

一种阴离子掺杂的K2NiF4型混合导体透膜材料及其制备方法与应用

阅读:1045发布:2020-06-13

专利汇可以提供一种阴离子掺杂的K2NiF4型混合导体透膜材料及其制备方法与应用专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种阴离子掺杂的K2NiF4型混合导体透 氧 膜材料及其制备方法与应用。该材料的化学通式为:AaNi1‑bBbO4+δ‑c/2Xc,其中,A为La、Pr、Nd、Sm、Gd、Er中的一种或两种;B为Fe、Co、Cu、Zn、Al、Ga中的一种或两种;X为F、Cl、Br、I中的一种;δ为非化学计量比,1.8≤a≤2,0≤b≤0.3,0≤c≤0.5。本发明的材料采用EDTA‑ 柠檬酸 混合络合法制备。本发明材料中阴离子的掺杂降低了O的价 电子 密度 ,大幅度地增加了膜材料的氧气渗透量,并且在含二氧化 碳 等酸性气氛下具有很高的操作 稳定性 ,可用于从空气中选择性分离氧气,也可以与涉氧反应耦合构筑膜反应器。,下面是一种阴离子掺杂的K2NiF4型混合导体透膜材料及其制备方法与应用专利的具体信息内容。

1.一种阴离子掺杂的K2NiF4型混合导体透膜材料,其特征在于,该材料的化学通式为:AaNi1-bBbO4+δ-c/2Xc,其中,A为镧系元素La、Pr、Nd、Sm、Gd和Er中的一种或两种;B为元素Fe、Co、Cu、Zn、Al和Ga中的一种或两种;X为卤族元素F、Cl、Br和I中的一种;δ为非化学计量比,0≤δ≤1,1.8≤a≤2,0≤b≤0.3,02.制备权利要求1所述的一种阴离子掺杂的K2NiF4型混合导体透氧膜材料的方法,其特征在于,该方法为乙二胺四乙酸-柠檬酸混合络合法,具体包括以下步骤:
(1)量取A3+、Ni2+、Bn+、X-的盐溶液,混合均匀,得金属盐混合溶液;所述Bn+为B2+和B3+中的一种或两种;
(2)向金属盐混合溶液中按EDTA:柠檬酸:金属盐混合溶液中的总金属离子=(1 2):(1~ ~
3):(1 2)的摩尔比例加入EDTA和柠檬酸作为混合络合剂,不断搅拌,同时加入性非金属~
化合物,调节混合液pH值为6 8;
~
(3)将步骤(2)所得混合液在90 150℃加热下搅拌蒸发,得凝胶;
~
(4)将步骤(3)所得凝胶在300 600℃下焙烧得到前躯体粉体;
~
(5)将步骤(4)所得前躯体粉体放入高温弗炉中800 1200℃烧结,得到成相粉体;
~
(6)将步骤(5)所得的成相粉体放入不锈模具中,施加5 30MPa压压制成型,得到膜~
片生胚;
(7)将膜片生坯放入高温马弗炉中1300~1500℃烧结,即可得到阴离子掺杂的K2NiF4型混合导体透氧膜材料。
3.根据权利要求2所述的方法,其特征在于,步骤(2)所述碱性非金属化合物为
4.根据权利要求2所述的方法,其特征在于,步骤(3)所述搅拌蒸发的时间为30 40h。
~
5.根据权利要求2所述的方法,其特征在于,步骤(5)所述烧结的时间为5 10h。
~
6.根据权利要求2所述的方法,其特征在于,步骤(5)所述烧结时升降温速率为1 5℃/~
min。
7.根据权利要求2所述的方法,其特征在于,步骤(6)所述成相粉体的用量为1 2g。
~
8.根据权利要求2所述的方法,其特征在于,步骤(7)所述烧结的时间为10 20h。
~
9.根据权利要求2所述的方法,其特征在于,步骤(7)所述烧结时升降温速率为1 2℃/~
min。
10.权利要求1所述的一种阴离子掺杂的K2NiF4型混合导体透氧膜材料的应用,其特征在于,将膜材料用于从含氧混合气中选择分离氧气、或制作中低温固体氧化物燃料电池电极、或制作固体电化学传感器的电极、或与涉氧反应耦合构筑膜反应器。

说明书全文

一种阴离子掺杂的K2NiF4型混合导体透膜材料及其制备方

法与应用

技术领域

背景技术

[0002] 氧离子-电子混合导体是一类同时具有氧离子导电和电子导电性能的新型陶瓷膜材料,此类材料不仅具有催化活性,还可以在中高温下选择性透氧,在透氧过程中氧气以离子氧的形式通过氧空穴来传导,理论上对氧的扩散选择性为100%,采用混合导体透氧膜的高温分离装置可实现空气的直接分离,获得纯度极高的氧气,这种高温纯氧分离装置结构简单,相比于传统的空分技术,装置投资可节省50%以上,操作成本也降低,因而在纯氧制备、轻转化制合成气燃料电池以及化学反应器等方面展现出十分诱人的应用前景。与天然气转化密切相关的是,将混合导体透氧膜应用于膜反应器中,可以用空气为甲烷部分氧化提供反应所需要的氧,降低技术经济成本,并且透氧膜将反应物和氧分开,能够有效的防止反应引起的飞温失控。
[0003] 由于混合导体透氧膜诸多的优点和诱人的应用前景,混合导体透氧膜正逐步受到世界各国的高度重视。20世纪90年代,美国、日本、荷兰、英国、中国等国家先后都在矿型透氧膜领域开展了相关研究工作。
[0004] 自Teraoka教授团队开发了钙钛矿型La(A)Co(B)O3-δ系列材料并将其首次用于透氧过程以来,接下来的二十多年间,许多学者对这种具有钙钛矿型结构的混合导体透氧膜材料进行了深入的研究。然而至今为止,没有一种钙钛矿型透氧膜材料得到工业应用,主要是因为大多数材料的透氧量不能长期稳定保持,特别是当膜的一侧氧气分压很低时,膜材料往往表现出不稳定性。很多情况下,膜材料的透氧量与稳定性存在此消彼长的关系,在目前大多数材料中,一些具有较高的透氧量,但稳定性却不理想,例如:La1-x(Ba, Sr, Ca)xCo1-yFeyO3-δ和Ba(Sr)Co1-xFexO3-δ;另一些材料具有非常优越的稳定性,但是透氧量却不尽人意,如:Sr(Ba)Ti(Zr)1-x-yCoyFexO3-δ。
[0005] K2NiF4型结构可以看作由钙钛矿型结构层(ABO3)和岩盐层(AO)交替堆叠形成,具有这种结构的材料非化学计量氧可正可负,结构中通常含有高浓度的间隙氧,在这种材料的透氧过程中,间隙氧是其主要的载流子。另外,具有K2NiF4型结构的混合导体材料具有较低的热膨胀性和较高的稳定性。Kharton和Vashook所报道的La2NiO4+δ是具有K2NiF4型结构最常见的一种材料。另外还有学者报道在不同A位离子的Ln2NiO4+δ(Ln=La, Pr, Nd)系列材料中,Pr2NiO4+δ的氧扩散系数最高。但这种材料的氧离子电导率较低,无法得到较高的透氧通量。为改善其透氧量,研究人员通常在其A或B位掺杂其他金属阳离子来提高材料的氧传导性能。但氧离子掺杂的材料透氧性能仍不能满足实际应用的需要。

发明内容

[0006] 为了解决现有技术的缺点与不足之处,本发明的首要目的在于制备出一种对CO2稳定的、具有较高透氧量的混合导体材料,具体的,本发明提供了一种阴离子掺杂的K2NiF4型混合导体透氧膜材料及其制备方法与应用。
[0007] 本发明的目的通过以下技术方案实现。
[0008] 一种阴离子掺杂的K2NiF4型混合导体透氧膜材料,该材料的化学通式为:AaNi1-bBbO4+δ-c/2Xc,其中,A为镧系元素La、Pr、Nd、Sm、Gd和Er中的一种或两种;B为元素Fe、Co、Cu、Zn、Al和Ga中的一种或两种;X为卤族元素F、Cl、Br和I中的一种;δ代表氧原子得失的数目,为非化学计量比,0≤δ≤1,1.8≤a≤2,0≤b≤0.3,0≤c≤0.5。
[0009] 以上所述的一种阴离子掺杂的K2NiF4型混合导体透氧膜材料的制备方法,该方法为乙二胺四乙酸(EDTA)-柠檬酸混合络合法,具体包括以下步骤:
[0010] (1)量取A3+、Ni2+、Bn+、X-的盐溶液,混合均匀,得金属盐混合溶液;所述Bn+为B2+和B3+中的一种或两种;
[0011] (2)向金属盐混合溶液中按EDTA:柠檬酸:金属盐混合溶液中的总金属离子=(1~2):(1 3):(1 2)的摩尔比例加入EDTA和柠檬酸作为混合络合剂,不断搅拌,同时加入性~ ~
金属化合物,调节混合液pH值为6 8;
~
[0012] (3)将步骤(2)所得混合液在90 150℃加热下搅拌蒸发,得凝胶;~
[0013] (4)将步骤(3)所得凝胶在300 600℃下焙烧得到前躯体粉体;~
[0014] (5)将步骤(4)所得前躯体粉体放入高温弗炉中800 1200℃烧结,得到成相粉~体;
[0015] (6)将步骤(5)所得的成相粉体放入不锈模具中,施加5 30MPa压压制成型,得~到膜片生胚;
[0016] (7)将膜片生坯放入高温马弗炉中1300~1500℃烧结,即可得到离子掺杂的K2NiF4型混合导体透氧膜材料。
[0017] 优选的,步骤(2)所述碱性非金属化合物为
[0018] 优选的,步骤(3)所述搅拌蒸发的时间为30 40h。~
[0019] 优选的,步骤(5)所述烧结的时间为5 10h。~
[0020] 优选的,步骤(5)所述烧结时升降温速率为1 5℃/min。~
[0021] 优选的,步骤(6)所述成相粉体的用量为1 2g。~
[0022] 优选的,步骤(7)所述烧结的时间为10 20h。~
[0023] 优选的,步骤(7)所述烧结时升降温速率为1 2℃/min。~
[0024] 以上所述的一种阴离子掺杂的K2NiF4型混合导体透氧膜材料应用于从含氧混合气(空气)中选择性分离氧气、制作中低温固体氧化物燃料电池和固体电化学传感器电极或与各类涉氧反应耦合构筑膜反应器。
[0025] 与现有技术相比,本发明具有如下优点:
[0026] (1)本发明的阴离子掺杂的K2NiF4型混合导体透氧膜材料不含碱金属及碱土金属,在含二氧化等酸性气氛下具有很高的操作稳定性。
[0027] (2)本发明材料中阴离子的掺杂降低了O的价电子密度,弱化了金属-O键,从而有助于快速氧离子传输通道的形成,提高了膜材料的氧离子移动性,大幅度地增加了膜材料的氧气渗透量。附图说明
[0028] 图1为本发明实施例1~3制得的K2NiF4型混合导体透氧膜材料Pr2Ni0.7Cu0.3O3.875+δCl0.25(PNCCl0.25)、Nd1.9NiO4+δCl0.5(NNCl0.5)与La1.8Ni0.85Cu0.15O4+δ(LNC)膜片的X射线衍射谱图;
[0029] 图2为本发明实施例1制得的K2NiF4型混合导体透氧膜材料PNCCl0.25与PNC的透氧温度曲线图;
[0030] 图3为本发明实施例2制得的K2NiF4型混合导体透氧膜材料 NNCl0.5膜片横截面的扫描电子显微镜图。
[0031] 图4为本发明实施例2制得的K2NiF4型混合导体透氧膜材料NNCl0.5膜片在950℃下50%CO2氛围下的长期透氧量。

具体实施方式

[0032] 下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
[0033] 实施例1
[0034] 本实施例的一种氯离子掺杂的K2NiF4型混合导体透氧膜材料Pr2Ni0.7Cu0.3O3.875+δCl0.25(PNCCl0.25)与未掺杂氯离子的混合导体透氧膜材料Pr2Ni0.7Cu0.3O4+δ(PNC)的制备方法,其中δ=0 1,具体包括以下步骤:~
[0035] (1)配制PNCCl0.25的金属盐溶液:先将32.98g Pr2O3溶于30ml质量分数浓度为65%的硝酸中,再将得到的溶液与125ml 0.1mol/L NiCl2水溶液,115ml 0.5mol/L Ni(CH3COO)2水溶液, 100ml 0.3mol/L Cu(NO3)2水溶液进行混合,得到混合金属盐溶液。
[0036] (2)配制PNC的金属盐溶液:先将32.98g Pr2O3溶于30ml质量分数浓度为65%的硝酸中,再将得到的溶液与140ml 0.5mol/L Ni(CH3COO)2水溶液, 100ml 0.3mol/L Cu(NO3)2水溶液进行混合,得到混合金属盐溶液。
[0037] (3)制备凝胶:分别向混合金属盐溶液中按照乙二胺四乙酸(EDTA):柠檬酸:混合金属盐溶液中总金属离子=1:1.5:1的摩尔比例加入EDTA和柠檬酸,然后不断搅拌,滴入质量分数浓度为20%的氨水,直至浑浊液体变澄清的暗绿色溶胶。将制得的溶胶置于电磁搅拌器中进行加热搅拌,温度为120℃,保持恒温35h,生成墨绿色凝胶。
[0038] (3)生成PNCCl0.2与PNC粉体:将所得到的凝胶倒入坩埚中,置于电阻丝炉上加热至300℃,凝胶自燃烧后生成蓬松的前驱体粉末,将所得前驱体粉末稍加研磨后再转移至高温马弗炉中,以1℃/min的速率升温至1000℃,并保温持续煅烧10 h,最后降温至室温,即得到PNCCl0.25与PNC成相粉体。将得到的粉体进行物相分析,PNCCl0.25的X射线衍射结果如图1所示,表明掺杂3.57%Cl元素之后材料可保持原有的层状钙钛矿结构,且并未生成其他杂相。
[0039] (4)分别将PNCCl0.25与PNC成相粉体置于研钵中研磨均匀,然后称取1.5g粉体,置于内径16mm的不锈钢磨具中,在20Mpa 压力作用下保持5 min,即得到PNCCl0.25与PNC的膜片生坯。将压好的膜片生坯置于马弗炉中烧结,烧结程序为:先由室温以1.5℃/min升温至1400℃,保温15h,然后以1.5℃/min降温至400℃,最后自然降温至室温。将烧结好的膜片先用80目的SiC砂纸进行粗磨,打磨至一定厚度后,依次用240目、500目、800目和 1500 目的砂纸进行抛光。在粗磨和抛光的过程中用游标卡尺检测膜片厚度,以保证膜片厚度与预期厚度一致。最后,将抛光后的膜片用乙醇为介质进行超声清洗,即可得到本发明的一种氯离子掺杂的K2NiF4型混合导体透氧膜材料PNCCl0.25与未掺杂氯离子的混合导体透氧膜材料PNC。
[0040] (5)分别将清洗后的氯离子掺杂的K2NiF4型混合导体透氧膜材料PNCCl0.25与未掺杂氯离子的混合导体透氧膜材料PNC用陶瓷密封胶密封在Φ16刚玉管一端,再在刚玉管外面套以一根Φ25石英玻璃管用于进料。等待24h陶瓷密封胶完全干燥后,将装置固定于管式高温炉中;检验装置气密性,装置不发生漏气可进行升温,升温程序均设定为:先由室温以1.5℃/min的速率升温至所需测试温度,保温进行测试,测试所用气体的流速用质量流量控制器精确控制,进料侧通入干燥空气,其流速为150ml/min,以60ml/min氦气为吹扫气。吹扫尾气导入Agilent 7890A 色谱仪中进行氧含量分析,尾气的流速用皂泡流量计进行测定。
PNCCl0.25(c=0.25)与PNC(c=0)的的透氧温度曲线如图2所示,由图可知,与未掺杂阴离子的膜片相比,相同测试条件下,PNCCl0.25的透量提高了近两倍。
[0041] 实施例2
[0042] 本实施例的一种阴离子掺杂的K2NiF4型混合导体透氧膜材料Nd1.9NiO3.75+δCl0.5 (NNCl0.5)的制备方法,其中δ=0 1,具体包括以下步骤:~
[0043] (1)量取57ml 5mol/L Nd(NO3)3水溶液与22.5ml 5mol/L Ni(CH3COO)2水溶液,25ml 1.5mol/L NiCl2水溶液混合,得到混合金属盐溶液。
[0044] (2)向混合金属盐溶液中按照总金属离子:EDTA:柠檬酸= 2:1.5:2的摩尔比例加入EDTA和柠檬酸,然后不断搅拌,滴入质量分数浓度为20%的氨水,调节混合液PH值为7,得到澄清溶液;继续在90℃温度下加热搅拌,保持恒温40h,生成凝胶。
[0045] (3)将所得到的凝胶转移至蒸发皿中,置于电阻丝炉上加热至600℃,凝胶自燃烧后生成蓬松的前驱体粉末;将所得前驱体粉末稍加研磨后再转移至高温马弗炉中,以5℃/min的速率升温至800℃,并保温持续煅烧5h,最后降温至室温,即得到 NNCl0.5成相粉体。将得到的粉体进行物相分析,X射线衍射结果如图1所示,掺杂Cl元素之后材料保持了原有的层状钙钛矿结构,且并未生成其他杂相。
[0046] (4)将 NNCl0.5成相粉体置于研钵中研磨均匀,然后称取2g粉体,置于内径16mm的不锈钢磨具中,在5Mpa 压力作用下保持5 min,即得到NNCl0.5膜片生坯。将压好的膜片生坯置于马弗炉中烧结,烧结程序为:先由室温1℃/min升温至1300℃,保温10 h,然后以1℃/min降温至室温。将烧结好的膜片先后用80目、240目、500目、800目和 1500 目的SiC砂纸进行打磨、抛光至0.5mm的厚度。最后将抛光后的膜片用乙醇为介质进行超声清洗,即可得到本发明的一种氯离子掺杂的K2NiF4型混合导体透氧膜材料,膜片横截面的扫描电子显微镜图如图3所示,由图可知,膜片体相内部不存在气泡或通孔,晶粒相连紧密,气体无法直接透过膜内晶格,表明1300℃下烧结得到的膜片已经致密。
[0047] (5)将清洗后的氯离子掺杂的K2NiF4型混合导体透氧膜材料用陶瓷密封胶密封在Φ16刚玉管一端,再在刚玉管外面套以一根Φ25石英玻璃管用于进料。等待24h陶瓷密封胶完全干燥后,将装置固定于管式高温炉中;检验装置气密性,装置不发生漏气可进行升温,升温程序均设定为:先由室温以1.5℃ /min的速率升温至所需测试温度,保温进行测试,测试所用气体的流速用质量流量控制器精确控制,进料侧通入干燥空气,其流速为150ml/min,以50% He-50% CO2为吹扫气。吹扫尾气导入Agilent 7890A 色谱仪中进行含量分析,尾气的流速用皂泡流量计进行测定。对膜片在950℃下50 vol %CO2氛围下透氧量的长期稳定性进行了测试,结果(如图4所示)表明膜片具有良好的抗CO2性能。
[0048] 实施例3
[0049] 本实施例的K2NiF4型混合导体透氧膜材料La1.8Ni0.85Cu0.15O4+δ(LNC)的制备方法,其中δ=0 1,具体包括以下步骤:~
[0050] (1)分别量取36ml 5mol/L La (NO3)3水溶液、42.5ml 2mol/L Ni(CH3COO)2水溶液与50ml 0.3mol/L Cu(NO3)2水溶液混合,得到混合金属盐溶液。
[0051] (2)向混合金属盐溶液中按照总金属离子:EDTA:柠檬酸=2:3:1的摩尔比例加入EDTA和柠檬酸,然后不断搅拌,滴入质量分数浓度为20%的氨水,调节混合液PH值为8,得到澄清溶液;继续在150℃温度下加热搅拌,保持恒温30h,生成凝胶。
[0052] (3)将所得到的凝胶转移至蒸发皿中,置于电阻丝炉上加热至450℃,凝胶自燃烧后生成蓬松的前驱体粉末;将所得前驱体粉末稍加研磨后再转移至高温马弗炉中,以2.5℃/min的速率升温至1200℃,并保温持续煅烧7.5h,最后降温至室温,即得到 LNC成相粉体。将得到的粉体进行物相分析,X射线衍射结果如图1所示,掺杂Cl元素之后材料保持了原有的层状钙钛矿结构,且并未生成其他杂相。
[0053] (4)将LNC成相粉体置于研钵中研磨均匀,然后称取1g粉体,置于内径16mm的不锈钢磨具中,在30Mpa 压力作用下保持5 min,即得到LNC膜片生坯。将压好的膜片生坯置于马弗炉中烧结,烧结程序为:先由室温2℃/min升温至1500℃,保温20 h,然后以2℃/min降温至室温,即可得到烧结致密的K2NiF4型混合导体透氧膜材料。
[0054] 上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈