首页 / 专利库 / 风能 / 风力发电场 / 风力发电机组 / 转子 / 高能加速器CT岩石力学试验系统

高能加速器CT岩石学试验系统

阅读:0发布:2020-12-08

专利汇可以提供高能加速器CT岩石学试验系统专利检索,专利查询,专利分析的服务。并且本 发明 属于 力 学试验设备技术领域,具体涉及一种高能 加速 器CT 岩石 力学试验系统。本发明的高能加速器CT岩石力学试验系统包括力学试验机、高能加速器CT射线源和探测器,力学试验机设置在高能加速器CT射线源与探测器之间,力学试验机包括固定构件、旋转装置和压力室,旋转装置设置在固定构件上,压力室与旋转装置连接,在进行试验时,压力室在旋转装置的带动下能够相对固定构件转动。通过在试验机上设置旋转装置,在进行试验时,通过旋转装置带动压力室转动,即能够在试验样品进行加载试验过程中对试验样品进行扫描,从而使CT成像能够完全反映出加载时试验样品的结构状态,更有利于科学研究。,下面是高能加速器CT岩石学试验系统专利的具体信息内容。

1.一种高能加速器CT岩石学试验系统,其特征在于,所述高能加速器CT岩石力学试验系统包括力学试验机、高能加速器CT射线源和探测器,所述力学试验机设置在所述高能加速器CT射线源与所述探测器之间,所述力学试验机包括固定构件、旋转装置和压力室,所述旋转装置设置在所述固定构件上,所述压力室与所述旋转装置连接,在进行试验时,所述压力室在所述旋转装置的带动下能够相对所述固定构件转动;
所述旋转装置包括承载旋转机构和加载旋转机构,所述承载旋转机构和所述加载旋转机构均设置在所述固定构件上,所述压力室连接在所述承载旋转机构与所述加载旋转机构之间,在进行试验时,所述承载旋转机构、所述压力室以及所述加载旋转机构能够同步转动;
所述固定构件包括底板、顶板以及设置在所述底板与所述顶板之间的多个立柱,所述承载旋转机构设置在所述底板上,所述加载旋转机构设置在所述顶板上;
所述承载旋转机构包括旋转平台、第一旋转油缸、推力调心滚子轴承、第一驱动构件和第一传动构件,所述旋转平台设置在所述第一旋转油缸的顶部,所述第一旋转油缸和所述第一驱动构件均设置在所述底板上,所述推力调心滚子轴承设置在所述第一旋转油缸的底部,所述第一驱动构件通过所述第一传动构件与所述旋转平台连接以驱动所述旋转平台转动,在进行试验时,所述旋转平台能够与所述压力室的底部连接并且所述压力室的顶部能够与所述加载旋转机构连接以带动所述压力室和所述加载旋转机构同步转动;
所述第一旋转油缸包括第一缸体以及设置在所述第一缸体内的第一活塞,所述第一缸体固定在所述底板上,所述第一活塞的顶部伸出所述第一缸体与所述旋转平台连接,所述第一活塞的底部伸出所述第一缸体与所述推力调心滚子轴承连接;
所述底板上还设置有运输车、导轨和固定架,所述固定架固定在所述底板上,所述导轨设置在所述固定架上,所述运输车能够在所述导轨上移动。
2.根据权利要求1所述的高能加速器CT岩石力学试验系统,其特征在于,所述第一驱动构件为伺服电机,所述第一传动构件包括减速器、小带轮、皮带、大带轮和大带轮底座,所述伺服电机输出轴通过所述减速器与所述小带轮连接,所述小带轮通过所述皮带与所述大带轮连接,所述大带轮底座固定在所述第一缸体的顶部,所述大带轮以转动地方式设置在所述大带轮底座上并与所述旋转平台连接。
3.根据权利要求2所述的高能加速器CT岩石力学试验系统,其特征在于,所述大带轮底座的上表面设置有圆光栅读头,所述大带轮的下表面设置有圆光栅尺,当所述大带轮转动时,所述圆光栅读头能够实时读取所述圆光栅尺上的刻度以检测所述大带轮的位移。
4.根据权利要求1至3中任一项所述的高能加速器CT岩石力学试验系统,其特征在于,所述加载旋转机构包括第二旋转油缸、旋转滑环和扭矩限制器,所述第二旋转油缸固定在所述顶板上,所述旋转滑环设置在所述第二旋转油缸的顶部,所述第二旋转油缸的底部通过所述扭矩限制器与所述压力室连接。
5.根据权利要求4所述的高能加速器CT岩石力学试验系统,其特征在于,所述第二旋转油缸包括第二缸体和设置在所述第二缸体内的第二活塞,所述旋转滑环包括相连的定子转子,所述第二缸体通过缸体连接件固定在所述顶板上,所述定子固定在所述第二缸体的顶部,所述第二活塞内部沿轴线设置有通孔,所述第二活塞的顶部伸出所述第二缸体并与所述转子连接,所述第二活塞的底部伸出所述第二缸体并通过所述扭矩限制器与所述压力室连接。

说明书全文

高能加速器CT岩石学试验系统

技术领域

[0001] 本发明属于力学试验设备技术领域,具体提供一种高能加速器CT岩石力学试验系统。

背景技术

[0002] 当今世界资源勘探开发已向地球第二深度空间(2000~10000米)挺进,这类资源的开发需采用超深直井以及平井,而且必须对储层进行地质体改造,实施岩石压裂增渗。这类资源的高效开发必须解决重大基础性科学问题“地质体在压力温度作用下的破裂形成演化、气液运移规律和物性变化特征”,这也是认知地质体状态和地质过程的前沿科学问题。
[0003] 传统岩石力学试验能够获取试样的宏观应力-应变曲线,得到岩石变形破坏的本构关系模型,进而用于指导工程设计。然而这些试验方法无法获知岩石内部的破裂演进过程和机制,无法获知物质运移和转化的动力过程。这样就不能揭示地质体宏观表象的内在本质动因,传统试验方法和手段的局限性,成为探索地质体在压力温度作用下的破裂形成演化、气液运移规律和物性变化特征的瓶颈
[0004] 打开岩石力学试验的黑箱,使岩石试样内部像玻璃一样透明可观测,是科学家孜孜以求的理想。计算机X射线断层扫描(CT)技术为实现这一理想提供了可能。现有技术中,大部分情况下的岩石样品CT扫描都是在岩石样品卸载后才进行,然而,卸载后会导致受损岩石样品发生一部分弹性恢复,进而导致CT图像不能完全反映加载时岩石样品的结构状态,影响科学研究。
[0005] 因此,本领域需要一种高能加速器CT岩石力学试验系统来解决上述问题。

发明内容

[0006] 为了解决现有技术中的上述问题,即为了解决现有的岩石力学试验系统在对岩石样品卸载后再进行CT扫描,从而导致CT成像不能完全反映加载时岩石样品的结构状态的问题,本发明提供了一种高能加速器CT岩石力学试验系统,所述高能加速器CT岩石力学试验系统包括力学试验机、高能加速器CT射线源和探测器,所述力学试验机设置在所述高能加速器CT射线源与所述探测器之间,所述力学试验机包括固定构件、旋转装置和压力室,所述旋转装置设置在所述固定构件上,所述压力室与所述旋转装置连接,在进行试验时,所述压力室在所述旋转装置的带动下能够相对所述固定构件转动。
[0007] 在上述高能加速器CT岩石力学试验系统的优选技术方案中,所述旋转装置包括承载旋转机构和加载旋转机构,所述承载旋转机构和所述加载旋转机构均设置在所述固定构件上,所述压力室连接在所述承载旋转机构与所述加载旋转机构之间,在进行试验时,所述承载旋转机构、所述压力室以及所述加载旋转机构能够同步转动。
[0008] 在上述高能加速器CT岩石力学试验系统的优选技术方案中,所述固定构件包括底板、顶板以及设置在所述底板与所述顶板之间的多个立柱,所述承载旋转机构设置在所述底板上,所述加载旋转机构设置在所述顶板上。
[0009] 在上述高能加速器CT岩石力学试验系统的优选技术方案中,所述承载旋转机构包括旋转平台、第一旋转油缸、推力调心滚子轴承、第一驱动构件和第一传动构件,所述旋转平台设置在所述第一旋转油缸的顶部,所述第一旋转油缸和所述第一驱动构件均设置在所述底板上,所述推力调心滚子轴承设置在所述第一旋转油缸的底部,所述第一驱动构件通过所述第一传动构件与所述旋转平台连接以驱动所述旋转平台转动,在进行试验时,所述旋转平台能够与所述压力室的底部连接并且所述压力室的顶部能够与所述加载旋转机构连接以带动所述压力室和所述加载旋转机构同步转动。
[0010] 在上述高能加速器CT岩石力学试验系统的优选技术方案中,所述第一旋转油缸包括第一缸体以及设置在所述第一缸体内的第一活塞,所述第一缸体固定在所述底板上,所述第一活塞的顶部伸出所述第一缸体与所述旋转平台连接,所述第一活塞的底部伸出所述第一缸体与所述推力调心滚子轴承连接。
[0011] 在上述高能加速器CT岩石力学试验系统的优选技术方案中,所述第一驱动构件为伺服电机,所述第一传动构件包括减速器、小带轮、皮带、大带轮和大带轮底座,所述伺服电机输出轴通过所述减速器与所述小带轮连接,所述小带轮通过所述皮带与所述大带轮连接,所述大带轮底座固定在所述第一缸体的顶部,所述大带轮以转动地方式设置在所述大带轮底座上并与所述旋转平台连接。
[0012] 在上述高能加速器CT岩石力学试验系统的优选技术方案中,所述大带轮底座的上表面设置有圆光栅读头,所述大带轮的下表面设置有圆光栅尺,当所述大带轮转动时,所述圆光栅读头能够实时读取所述圆光栅尺上的刻度以检测所述大带轮的位移。
[0013] 在上述高能加速器CT岩石力学试验系统的优选技术方案中,所述加载旋转机构包括第二旋转油缸、旋转滑环和扭矩限制器,所述第二旋转油缸固定在所述顶板上,所述旋转滑环设置在所述第二旋转油缸的顶部,所述第二旋转油缸的底部通过所述扭矩限制器与所述压力室连接。
[0014] 在上述高能加速器CT岩石力学试验系统的优选技术方案中,所述第二旋转油缸包括第二缸体和设置在所述第二缸体内的第二活塞,所述旋转滑环包括相连的定子转子,所述第二缸体通过缸体连接件固定在所述顶板上,所述定子固定在所述第二缸体的顶部,所述第二活塞内部沿轴线设置有通孔,所述第二活塞的顶部伸出所述第二缸体并与所述转子连接,所述第二活塞的底部伸出所述第二缸体并通过所述扭矩限制器与所述压力室连接。
[0015] 本领域技术人员能够理解的是,在本发明的优选技术方案中,通过在试验机上设置旋转装置,在进行试验时,通过旋转装置带动压力室转动,即能够在试验样品进行加载试验过程中对试验样品进行扫描,从而使CT成像能够完全反映出加载时试验样品的结构状态,更有利于科学研究。
[0016] 进一步地,通过将承载旋转机构和加载旋转机构均设置在固定构件上,通过固定构件作为支撑反力架,在进行试验时承受支撑反力,固定构件能够承受的支撑反力较大,使本发明的试验机能够进行较大荷载的加载试验,从而能够对大尺寸的试验样品进行加载试验,进而使CT扫描结果能够更好地反映现实地质体的非均质性和非连续性,更有利于科学研究。
[0017] 更进一步地,在第一旋转油缸的底部设置了推力调心滚子轴承,将第一活塞的底部与推力调心滚子轴承连接,在试验过程中,推力调心滚子轴承能够对第一活塞起到限位的作用,限制第一活塞与第一缸体的上端盖接触,从而保证第一活塞处于悬浮状态,而且,在推力调心滚子轴承的作用下第一活塞始终处于垂直状态,第一活塞的顶部与旋转平台连接,从而提高了旋转平台的转动平稳性。
[0018] 再进一步地,在大带轮底座的上表面处设置圆光栅读头,在大带轮的下表面处设置圆光栅尺,当大带轮转动时,圆光栅读头能够实时读取圆光栅尺上的刻度,通过检测的数据能够计算出大带轮的转角和转速,从而实现旋转平台的高精度控制。
[0019] 又进一步地,在第二旋转油缸的顶部设置了旋转滑环,旋转滑环包括相连的定子和转子,定子固定在第二缸体的顶部,在第二活塞的内部沿轴线设置有通孔,第二活塞的顶部伸出第二缸体并与转子连接,第二活塞的底部伸出第二缸体并通过扭矩限制器与压力室连接。在进行试验时,压力室内的传感器线路通过第二活塞内部的通孔连接到转子的接口上,并通过定子将传感器信号引出传输到地面的控制台上,由于定子固定在第二缸体上,在试验过程中固定不动,从而能够避免在试验过程中出现线路缠绕的问题,保证试验能够顺利进行。并且,压力室通过扭矩限制器与第二活塞连接,来进行扭矩传递,当扭矩过大时,扭矩限制器自动脱开,能够防止压力室因扭矩过大而发生损坏,从而提高了压力室的使用寿命。附图说明
[0020] 下面参照附图来描述本发明的优选实施方式,附图中:
[0021] 图1是本发明的高能加速器CT岩石力学试验系统的结构示意图;
[0022] 图2是本发明的力学试验的整体结构示意图;
[0023] 图3是本发明的承载旋转机构的结构示意图;
[0024] 图4是本发明的承载旋转机构的剖视图;
[0025] 图5是本发明加载旋转机构的结构示意图。

具体实施方式

[0026] 首先,本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,虽然附图中试验系统的各部件是按一定比例绘制的,但这种比例关系非一成不变,本领域技术人员可以根据需要对其进行调整,以便适应具体的应用场合。
[0027] 需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“顶”、“底”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
[0028] 此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
[0029] 基于背景技术中指出的现有的岩石力学试验系统在对岩石样品卸载后再进行CT扫描,从而导致CT成像不能完全反映加载时岩石样品的结构状态的问题。本发明提供了一种高能加速器CT岩石力学试验系统,旨在能够对试验样品进行加载试验时进行扫描,从而使CT成像能够完全反映出加载时试验样品的结构状态,更有利于科学研究。
[0030] 具体而言,如图1所示,高能加速器CT岩石力学试验系统包括力学试验机A、高能加速器CT射线源B和探测器C,力学试验机A设置在高能加速器CT射线源B与探测器C之间,力学试验机A包括固定构件1、旋转装置和压力室3,旋转装置设置在固定构件1上,在进行试验时,压力室3在旋转装置的带动下能够相对固定构件1转动。通过这样的设置,能够在试验样品进行加载试验过程中对试验样品进行扫描,从而使CT成像能够完全反映出加载时试验样品的结构状态,更有利于科学研究。其中,高能加速器CT射线源B包括射线源底座B1、射线源平台B2、射线源B3、射线源竖直导轨B4、射线源支架B5,射线源支架B5通过螺栓固定在射线源底座B1上,射线源B3安装在射线源平台B2上,射线源支架B5上安装有射线源竖直导轨B4,通过导轨滑连接射线源平台B2来实现射线源B3的上下移动;探测器C包括探测器底座C1、探测器水平导轨C2、面阵探测器C3、探测器平台C4、探测器支架C5、探测器竖直导轨C6和线阵探测器C7,探测器底座C1置于地面上且与射线源底座B1平行,探测器底座C1上安装有探测器水平导轨C2,探测器支架C5通过导轨滑块连接到探测器水平导轨C2上,能实现面阵探测器C3和线阵探测器C7水平方向的移动,调整扫描视野,探测器平台C4通过导轨滑块连接到探测器竖直导轨C6上,能实现面阵探测器C3和线阵探测器C7在高度方向的调整,面阵探测器C3和线阵探测器C7置于探测器平台C4上,两种探测器可针对不同需求进行切换,保证最佳扫描质量,线阵探测器C7具有更高的成像精度,用于对试验样品的某一区域进行快速精细扫描,获得裂纹等结构特征的尺寸信息,面阵探测器C3具有更大的视野,可以对试验样品进行大范围的成像,获得试验样品中裂纹在三维空间中的分布信息。
[0031] 优选地,如图2所示,旋转装置包括承载旋转机构2和加载旋转机构4,承载旋转机构2和加载旋转机构4均设置在固定构件1上,压力室3连接在承载旋转机构2与加载旋转机构4之间,在进行试验时,承载旋转机构2、压力室3和加载旋转机构4同步转动。通过这样的设置,即将承载旋转机构2和加载旋转机构4均设置在固定构件1上,通过固定构件1作为支撑反力架,在进行试验时承受支撑反力,固定构件1能够承受的支撑反力较大,使本发明的试验机能够进行较大荷载的加载试验,从而能够对大尺寸的试验样品进行加载试验,进而使CT扫描结果能够更好地反映现实地质体的非均质性和非连续性,更有利于科学研究。
[0032] 优选地,如图2所示,固定构件1包括底板11、顶板12以及设置在底板11与顶板12之间的多个立柱13,承载旋转机构2设置在底板11上,加载旋转机构4设置在顶板12上。其中,底板11和顶板12呈矩形设置,立柱13的数量为4个且分别设置在底板11和顶板12的4个角上,当然,也可以将底板11和顶板12设置成方形或圆形等形状,立柱13的数量也不仅限于4个,本领域技术人员可以在实际应用中灵活地设置底板11和顶板12的具体形状以及立柱13的具体数量,只要通过底板11、顶板12和立柱13组成的固定构件1能够承受试验过程中的支撑反力即可。而且,立柱13与底板11可以固定连接或者设置为一体,立柱13与顶板12可以固定连接或者设置为一体,或者,将底板11、立柱13和顶板12三者设置为一体,本领域技术人员可以在实际应用中灵活地设置立柱13与底板11和顶板12的具体连接形式,只要能够将立柱13固定在底板11与顶板12之间即可。
[0033] 优选地,如图2所示,由于试验样品尺寸大、重量重,在底板11上还设置了运输车51、导轨52和固定架53,固定架53固定在底板11上,导轨52设置在固定架53上,运输车51能够在导轨52上移动。在进行试验时,将压力室3放置在运输车51上,将试验样品安装在压力室3内,然后通过运输车51带动压力室3移动到试验位置。其中,在导轨52上设置有丝杠,通过运输电机驱动丝杠转动以带动运输车51直线移动。当然,也可以通过人工转动丝杠,或者,不设置丝杠,直接在运输车51上安装行走轮,使运输车51可以在轨道52上滚动,再或者,在运输车51上设置滑块,使运输车51可以在轨道52上滑动,等等,本领域技术人员可以在实际应用中灵活地设置运输车51的具体驱动方式及运动方式,只要能够使运输车51在轨道52上移动即可。此外,也可以不设置运输车51,直接通过人工或机械手等方式来移动压力室3,这种对压力室3具体移动方式的调整和改变并不偏离本发明的原理和范围,均应限定在本发明的保护范围之内。
[0034] 优选地,如图2所示,由于压力室3的尺寸也很大、重量很重,在顶板12位置还设置了提升油缸6,在进行试验前,将提升油缸6与压力室3连通,通过提升油缸6将压力室3打开,然后将试验样品安装在压力室3内,再通过提升油缸6将压力室3关闭,断开提升油缸6与压力室3的连接,通过运输车51将装有试验样品的压力室3移动到试验位置。同理,在试验完成后,通过运输车51将卸载完成的压力室3移动到取装试验样品位置,连通提升油缸6和压力室3,通过提升油缸6将压力室3打开,然后将试验样品从压力室3内取出,再通过提升油缸6将压力室3关闭。当然,也可以通过人工或设置机械爪等方式对压力室3进行开闭操作。
[0035] 优选地,如图3和图4所示,承载旋转机构2包括旋转平台21、第一旋转油缸22、推力调心滚子轴承23、第一驱动构件和第一传动构件,旋转平台21设置在第一旋转油缸22的顶部,第一旋转油缸22和第一驱动构件均设置在底板11上,推力调心滚子轴承23设置在第一旋转油缸22的底部,第一驱动构件通过第一传动构件与旋转平台21连接以驱动旋转平台21转动。第一旋转油缸22包括第一缸体221以及设置在第一缸体221内的第一活塞222,第一缸体221固定在底板11上,第一活塞222的顶部伸出第一缸体221与旋转平台21连接,第一活塞222的底部伸出第一缸体221与推力调心滚子轴承23连接,推力调心滚子轴承23的轴承本体
231通过轴承连接板232与第一缸体221的底部连接,轴承本体231的底部固定有轴承压板
233以对轴承本体231起到支撑的作用。在进行试验时,通过运输车51将装有试验样品的压力室3移动到旋转平台21的上方,启动第一旋转油缸22,使第一活塞222上升以将旋转平台
21顶起,使旋转平台21与压力室3的底部接触,将旋转平台21与压力室3的底座31固定连接,并且将压力室3的顶部与加载旋转机构4连接,在第一驱动构件的驱动下,使旋转平台21、压力室3和加载旋转机构4同步转动。
[0036] 此外,需要说明的是,启动第一旋转油缸22,使第一活塞222上升,在第一活塞222与第一缸体221上端盖接触前会被推力调心滚子轴承23限位,限制第一活塞222与第一缸体221的上端盖接触,从而保证第一活塞222处于悬浮状态,而且,在推力调心滚子轴承23的作用下第一活塞222始终处于垂直状态,第一活塞222的顶部与旋转平台21连接,从而提高了旋转平台21的转动平稳性。
[0037] 优选地,如图3和图4所示,第一驱动构件为伺服电机24,第一传动构件包括减速器(图中未示出)、小带轮25、皮带26、大带轮27和大带轮底座28,伺服电机24的输出轴通过减速器与小带轮25连接,小带轮25通过皮带26与大带轮27连接,大带轮底座28固定在第一缸体221的顶部,大带轮27以转动地方式设置在大带轮底座28上并与旋转平台21连接。其中,伺服电机24通过电机支座29固定在底板11上,在大带轮27与大带轮底座28的连接处设置有轴承20,优选圆锥滚子轴承。当然,第一驱动构件也可以设置为普通的驱动电机等类型,本领域技术人员可以在实际应用中灵活地设置第一驱动构件的具体类型,只要通过第一驱动构件能够进行驱动即可。此外,第一传动构件也可以设置为小齿轮与大齿轮直接啮合连接等结构形式,本领域技术人员可以在实际应用中灵活地设置第一传动构件的具体结构形式,只要通过第一传动构件能够将第一驱动构件与旋转平台21连接即可。
[0038] 优选地,如图4所示,大带轮27上设置有多个导向套271,旋转平台21的底部设置有多个导向杆211,将导向杆211插入导向套271内,大带轮27转动时能够带动旋转平台21一起转动,而且,当旋转平台21被顶起时,导向杆211能够在导向套271内向上移动,但始终有一部分插入在导向套271内。其中,导向杆211的数量为10个,均匀地设置在旋转平台21的底部,相应地,导向套271的数量也为10个,导向套271在大带轮27上的设置位置与导向杆211一一对应,当然,导向杆211和导向套271的数量均不仅限于10个,本领域技术人员可以在实际应用中灵活地设置导向杆211和导向套271的具体数量,只要通过导向杆211和导向套271相配合能够将旋转平台21和大带轮27连接即可。
[0039] 优选地,如图4所示,为了提高旋转平台21的控制精度,在大带轮底座28的上表面设置有圆光栅读头71,在大带轮27的下表面设置有圆光栅尺72,当大带轮27转动时,圆光栅读头71能够实时读取圆光栅尺72上的刻度,通过检测的数据能够计算出大带轮27的转角和转速,从而实现旋转平台21的高精度控制。
[0040] 优选地,如图2和图5所示,加载旋转机构4包括第二旋转油缸41、旋转滑环42和扭矩限制器43,第二旋转油缸41固定在顶板12上,旋转滑环42设置在第二旋转油缸41的顶部,第二旋转油缸41的底部通过扭矩限制器43与压力室3连接。第二旋转油缸41包括第二缸体411和设置在第二缸体411内的第二活塞412,旋转滑环42包括相连的定子421和转子422,在顶板12的中心部位设置有圆孔,缸体连接件44穿过圆孔并与顶板12固定连接,第二缸体411与缸体连接件44的顶部固定连接,定子421固定在第二缸体411的顶部,第二活塞412内部沿轴线设置有通孔,第二活塞412的顶部伸出第二缸体411并与转子422连接,第二活塞412的底部伸出第二缸体411并通过扭矩限制器43与压力室3连接。在进行试验时,压力室3内的传感器线路通过第二活塞412内部的通孔连接到转子422的接口上,并通过定子421将传感器信号引出传输到地面的控制台上,由于定子421固定在第二缸体411上,在试验过程中固定不动,从而解决了线路缠绕的问题。
[0041] 此外,需要说明的是,在进行试验过程中,通过第二旋转油缸41向压力室3加载轴向力,设置在压力室3内的压力传感器能够实时检测第二旋转油缸41的轴向压力F2,并将压力传感器信号传输给压力控制器,压力控制器根据检测的压力传感器信号,输出控制信号给电液比例,电液比例阀根据控制信号来控制第一旋转油缸22的压力F1,始终保证第一旋转油缸22的压力F1大于第二旋转油缸41的压力F2,这一部分力F3由推力调心滚子轴承23承受,并且第一旋转油缸22的压力F1与第二旋转油缸41的压力F2的压力差为定值,即推力调心滚子轴承23承受的力F3为定值,通过这样的设置,能够有效的控制推力调心滚子轴承23所带来的摩擦力,将推力调心滚子轴承23所带来的摩擦力控制在最小。承载旋转机构2的支撑过程采用了混合支撑,即油膜+轴承支撑,既发挥了推力调心滚子轴承23的定位与调心作用,又降低了试验机在重载条件下的旋转摩擦阻力,从而提高了旋转平台21的平稳性,有利于旋转平台21的高精度旋转控制。
[0042] 至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈