首页 / 专利库 / 太阳能 / 太阳能电池 / 薄膜太阳能电池 / 一种柔性CdTe薄膜太阳能电池的制备方法

一种柔性CdTe薄膜太阳能电池的制备方法

阅读:261发布:2020-05-11

专利汇可以提供一种柔性CdTe薄膜太阳能电池的制备方法专利检索,专利查询,专利分析的服务。并且本 发明 公开一种柔性CdTe 薄膜 太阳能 电池 的制备方法,包括以下步骤:取柔性基底,采用离子束溅射工艺清洁柔性基底;在柔性基底上依次制备下阻隔层、微结构层、透明导电层、上阻隔层、 缓冲层 、吸收层、背 接触 层与保护层;下阻隔层为TiO2、ZnO、Al2O3、SnO或In2O3薄膜;微结构层为为单分散SiO2小球薄膜;透明导电层为BZO、AZO、GZO、IGZO或ITO薄膜;上阻隔层为TiO2、ZnO、Al2O3、SnO或In2O3薄膜;最终得到柔性CdTe薄膜 太阳能电池 ;本方法制备得到的 薄膜太阳能电池 能够提高对太阳能的吸收率,增强薄膜太阳能电池的整体性能。,下面是一种柔性CdTe薄膜太阳能电池的制备方法专利的具体信息内容。

1.一种柔性CdTe薄膜太阳能电池的制备方法,其特征在于,包括以下步骤:
S1、取柔性基底,采用离子束溅射工艺清洁柔性基底;
S2、采用磁控溅射工艺或化学法在柔性基底顶面沉积下阻隔层,下阻隔层为TiO2、ZnO、Al2O3、SnO或In2O3薄膜;
S3、采用化学法在下阻隔层顶面制备微结构层,微结构层为为单分散SiO2小球薄膜;
S4、采用磁控溅射工艺或化学法在微结构层上沉积透明导电层,透明导电层为BZO、AZO、GZO、IGZO或ITO薄膜;
S5、采用磁控溅射工艺或化学法在透明导电层顶面沉积上阻隔层,上阻隔层为TiO2、ZnO、Al2O3、SnO或In2O3薄膜;所述下阻隔层、微结构层、透明导电层与上阻隔层构成前电极
S6、采用磁控溅射工艺或化学法在上阻隔层顶面沉积缓冲层,缓冲层为CdS、ZnS或InS薄膜;
S7、采用磁控溅射工艺或化学法在缓冲层顶面沉积吸收层,吸收层为CdTe薄膜;
S8、采用磁控溅射工艺在吸收层顶面沉积背接触层,背接触层为Cu、Zn、Mo、Ti、Al、Ag或Au薄膜;
S9、采用磁控溅射工艺在背接触层顶面沉积保护层,保护层为Au、Zn、Pt、Zr或Ti薄膜;
得到柔性CdTe薄膜太阳能电池
2.根据权利要求1所述的一种柔性CdTe薄膜太阳能电池的制备方法,其特征在于,所述柔性基底采用聚合物基板或金属柔性基板。
3.根据权利要求1所述的一种柔性CdTe薄膜太阳能电池的制备方法,其特征在于,所述下阻隔层的厚度为20~80nm、微结构层的SiO2小球直径为100~500 nm、透明导电层的厚度为600~1000nm、上阻隔层的厚度为15~60 nm、缓冲层的厚度为40~120nm、吸收层的厚度为1500~2500nm、背接触层的厚度为5~30nm、保护层的厚度为10~40nm。
4.根据权利要求1所述的一种柔性CdTe薄膜太阳能电池的制备方法,其特征在于,步骤S2、S4、S5、S6所述化学法为旋涂法、溶胶凝胶法或提拉法。
5.根据权利要求1所述的一种柔性CdTe薄膜太阳能电池的制备方法,其特征在于,步骤S3所述化学法为旋涂法、垂直浸渍法、线棒法或提拉法。
6.根据权利要求1所述的一种柔性CdTe薄膜太阳能电池的制备方法,其特征在于,步骤S7所述化学法为蒸法或化学气相沉积法。

说明书全文

一种柔性CdTe薄膜太阳能电池的制备方法

技术领域

[0001] 本发明涉及薄膜太阳能电池技术领域,具体是一种柔性CdTe薄膜太阳能电池的制备方法。

背景技术

[0002] 目前,薄膜太阳能电池作为一种高效能源产品正迅速发展,由于其重量相对更轻、外表光滑且制造成本相对较低,已成为国际光伏市场发展的新热点、新趋势。
[0003] 现阶段,可以大规模产业化生产的薄膜太阳能电池主要有3种:基薄膜太阳能电池、铟镓硒(CIGS)薄膜太阳能电池和碲化镉(CdTe)薄膜太阳能电池。其中,碲化镉薄膜太阳能电池结构相对最简单,可以容易制备单相CdTe晶体薄膜且制备方法较多。薄膜太阳能电池多数为玻璃基底,柔性薄膜太阳能电池刚刚开始,由于其质量轻,可折叠,可弯曲,便于携带,有利于实现大规模生产,且显著的降低成本,可大量应用于便携式应急充电背包,光伏帐篷,光伏窗帘,光伏屋顶,太阳能汽车等具有广阔的应用空间,研发柔性薄膜太阳能电池有利于我国光伏产业的持续健康发展。
[0004] 但是,常规的碲化镉薄膜太阳能电池的吸收率不高,制约了薄膜太阳能电池的发展。

发明内容

[0005] 本发明的目的在于提供一种柔性CdTe薄膜太阳能电池的制备方法,该方法制备得到的薄膜太阳能电池能够提高对太阳能的吸收率,增强薄膜太阳能电池的整体性能。
[0006] 本发明解决其技术问题所采用的技术方案是:一种柔性CdTe薄膜太阳能电池的制备方法,包括以下步骤:
S1、取柔性基底,采用离子束溅射工艺清洁柔性基底;
S2、采用磁控溅射工艺或化学法在柔性基底顶面沉积下阻隔层,下阻隔层为TiO2、ZnO、Al2O3、SnO或In2O3薄膜;
S3、采用化学法在下阻隔层顶面制备微结构层,微结构层为为单分散SiO2小球薄膜;
S4、采用磁控溅射工艺或化学法在微结构层上沉积透明导电层,透明导电层为BZO、AZO、GZO、IGZO或ITO薄膜;
S5、采用磁控溅射工艺或化学法在透明导电层顶面沉积上阻隔层,上阻隔层为TiO2、ZnO、Al2O3、SnO或In2O3薄膜;所述下阻隔层、微结构层、透明导电层与上阻隔层构成前电极
S6、采用磁控溅射工艺或化学法在上阻隔层顶面沉积缓冲层,缓冲层为CdS、ZnS或InS薄膜;
S7、采用磁控溅射工艺或化学法在缓冲层顶面沉积吸收层,吸收层为CdTe薄膜;
S8、采用磁控溅射工艺在吸收层顶面沉积背接触层,背接触层为Cu、Zn、Mo、Ti、Al、Ag或Au薄膜;
S9、采用磁控溅射工艺在背接触层顶面沉积保护层,保护层为Au、Zn、Pt、Zr或Ti薄膜;
得到柔性CdTe薄膜太阳能电池。
[0007] 进一步的,所述柔性基底采用聚合物基板或金属柔性基板。
[0008] 进一步的,所述下阻隔层的厚度为20~80nm、微结构层的SiO2小球直径为100~500 nm、透明导电层的厚度为600~1000nm、上阻隔层的厚度为15~60 nm、缓冲层的厚度为
40~120nm、吸收层的厚度为1500~2500nm、背接触层的厚度为5~30nm、保护层的厚度为10~40nm。
[0009] 进一步的,步骤S2、S4、S5、S6所述化学法为旋涂法、溶胶凝胶法或提拉法。
[0010] 进一步的,步骤S3所述化学法为旋涂法、垂直浸渍法、线棒法或提拉法。
[0011] 进一步的,步骤S7所述化学法为蒸法或化学气相沉积法。
[0012] 本发明的有益效果是:一、采用聚合物基板或金属柔性基板作为柔性基底,质量轻、可折叠、可弯曲,便于携带,因此可以采用环绕式溅射沉积,有利于实现大规模生产,且显著的降低成本。
[0013] 二、前电极采用多层膜的复合结构,下阻隔层可以有效防止薄膜太阳能电池漏电,增加前电极的透过率,并且能够阻隔来自衬底的污染、避免影响透明导电层的透光率和导电性能。
[0014] 三、微结构层可以减少前电极的反射率,同时有利于透明导电层表面微结构的形成,进而有效增加前电极的透光率,增强太阳能电池吸收层对太阳光的吸收,提高光能利用率。
[0015] 四、透明导电层可采用不同的薄膜,可根据吸收层和缓冲层的材料来调整透明导电层的材料与制备方法,进而实现优良的光电性能及降低成本。
[0016] 五、透明导电层的凹凸绒面结构能够减少前电极的反射率,进而有效增加前电极的透光率,增强太阳能电池吸收层对太阳光的吸收,提高光能利用率。
[0017] 六、上阻隔层可以作为前电极与缓冲层的中间缓冲,减少前电极与缓冲层的界面态,增加前电极的透过率,有效防止吸收层中的元素向透明导电层扩散,并且能够阻隔来自衬底的污染、避免影响透明导电层的透光率和导电性能。
[0018] 七、缓冲层采用CdS、ZnS或InS薄膜,使晶格常数介于前电极和吸收层中间,减少前电极和吸收层的界面态。
[0019] 八、背接触层采用Cu、Zn、Mo、Ti、Al、Ag或Au薄膜,可与吸收层形成良好的欧姆接触并减少载流子界面复合。
[0020] 九、保护层采用Au、Zn、Pt、Zr或Ti薄膜,保护太阳能电池不被酸腐蚀降低光电转换效率或发生漏电,提高电池的耐候性及使用寿命。附图说明
[0021] 下面结合附图和实施例对本发明进一步说明:图1是本发明制备方法得到柔性CdTe薄膜太阳能电池的结构示意图;
图2是本发明前电极的表面形貌图。

具体实施方式

[0022] 实施例一如图1所示,本发明提供一种柔性CdTe薄膜太阳能电池的制备方法,包括以下步骤:
S1、取合金板作为柔性基底1,采用离子束溅射工艺清洁柔性基底1;使柔性基底1具有交联键,有利于薄膜附着在柔性基底上;
离子束溅射具体参数为:离子源功率为50W,O2流量为20sccm,溅射时间为2min;
S2、采用磁控溅射工艺在柔性基底1顶面沉积下阻隔层21,下阻隔层21为ZnO薄膜;
具体为:采用直流磁控溅射法,ZnO靶材,通入Ar气流量为20sccm,在柔性基底1上沉积ZnO薄膜,工作压强为0.5Pa,功率为80W,ZnO薄膜厚度为40nm;
S3、采用线棒法在下阻隔层21顶面制备微结构层22,微结构层为为单分散SiO2小球薄膜;SiO2小球粒径为100nm;
S4、采用磁控溅射工艺在微结构层22上沉积透明导电层23,透明导电层为GZO薄膜;
具体为:采用直流磁控溅射法,GZO(Ga2O3:ZnO=1.5%:98.5%)靶,通入Ar气流量为
30sccm,在微结构层22上沉积GZO薄膜,工作压强为0.4Pa,功率为200W,GZO薄膜厚度为
800nm;
S5、采用磁控溅射工艺在透明导电层23顶面沉积上阻隔层24,上阻隔层24为ZnO薄膜;
具体为:采用直流磁控溅射法,ZnO靶,通入Ar气流量为20sccm,在透明导电层23基础上沉积ZnO薄膜,工作压强为0.5Pa,功率为70W,ZnO薄膜厚度为25nm;
结合图2所示,所述下阻隔层21、微结构层22、透明导电层23与上阻隔层24构成前电极
2;
S6、采用磁控溅射工艺在上阻隔层24顶面沉积缓冲层3,缓冲层为ZnS薄膜;
具体为:采用射频磁控溅射法,ZnS靶,通入Ar气流量为20sccm,在上阻隔层24基础上沉积ZnS薄膜,工作压强为0.4Pa,功率为100W,ZnS薄膜厚度为40nm;
S7、采用磁控溅射工艺在缓冲层3顶面沉积吸收层4,吸收层4为CdTe薄膜;
具体为:采用直流磁控溅射法,CdTe靶,通入Ar气流量为20sccm,在缓冲层3基础上沉积CdTe薄膜,工作压强为0.4Pa,功率为150W,CdTe薄膜厚度为1800nm;
S8、采用磁控溅射工艺在吸收层4顶面沉积背接触层5,背接触层5为Cu薄膜;
具体为:采用射频磁控溅射法,Cu靶,通入Ar气流量为20sccm,在吸收层4基础上沉积Cu薄膜,工作压强为0.5Pa,功率为50W,Cu薄膜厚度为10nm;
S9、采用磁控溅射工艺在背接触层5顶面沉积保护层6,保护层6为Au薄膜;
具体为:采用射频磁控溅射法,Au靶,通入Ar气流量为20sccm,在背接触层5基础上沉积Au薄膜,工作压强为0.5Pa,功率为60W,Au薄膜厚度为20nm;
最终得到柔性CdTe薄膜太阳能电池。经检测及计算,最终获得的柔性CdTe薄膜太阳能电池的光电转换效率为10.2%。
[0023] 实施例二如图1所示,本发明提供一种柔性CdTe薄膜太阳能电池的制备方法,包括以下步骤:
S1、取不锈板作为柔性基底1,采用离子束溅射工艺清洁柔性基底1;使柔性基底1具有交联键,有利于薄膜附着在柔性基底上;
离子束溅射具体参数为:离子源功率为70W,O2流量为20sccm,溅射时间为5min;
S2、采用磁控溅射工艺在柔性基底1顶面沉积下阻隔层21,下阻隔层21为Al2O3薄膜;
具体为:采用直流磁控溅射法,Al2O3靶材,通入Ar气流量为20sccm,在柔性基底1上沉积Al2O3薄膜,工作压强为0.5Pa,功率为70W,Al2O3薄膜厚度为50nm;
S3、采用线棒刮涂法在下阻隔层21顶面制备微结构层22,微结构层为为单分散SiO2小球薄膜;SiO2小球粒径为300nm;
S4、采用磁控溅射工艺在微结构层22上沉积透明导电层23,透明导电层为AZO薄膜;
具体为:采用直流磁控溅射法,AZO(Al2O3:ZnO=1.5%:98.5%)靶,通入Ar气流量为
30sccm,在微结构层22上沉积AZO薄膜,工作压强为0.4Pa,功率为200W,AZO薄膜厚度为
900nm;
S5、采用磁控溅射工艺在透明导电层23顶面沉积上阻隔层24,上阻隔层24为ZnO薄膜;
具体为:采用直流磁控溅射法,ZnO靶,通入Ar气流量为20sccm,在透明导电层23基础上沉积ZnO薄膜,工作压强为0.5Pa,功率为70W,ZnO薄膜厚度为30nm;
结合图2所示,所述下阻隔层21、微结构层22、透明导电层23与上阻隔层24构成前电极
2;
S6、采用磁控溅射工艺在上阻隔层24顶面沉积缓冲层3,缓冲层为CdS薄膜;
具体为:采用射频磁控溅射法,CdS靶,通入Ar气流量为20sccm,在上阻隔层24基础上沉积CdS薄膜,工作压强为0.4Pa,功率为100W,CdS薄膜厚度为50nm;
S7、采用热蒸镀法在缓冲层3顶面沉积吸收层4,吸收层4为CdTe薄膜;
具体为:采用热蒸镀法,CdTe源,在缓冲层3基础上沉积CdTe薄膜,工作压强为0.4Pa,功率为80W,温度为450℃,CdTe薄膜厚度为2000nm;
S8、采用磁控溅射工艺在吸收层4顶面沉积背接触层5,背接触层5为Mo薄膜;
具体为:采用射频磁控溅射法,Mo靶,通入Ar气流量为20sccm,在吸收层4基础上沉积Mo薄膜,工作压强为0.5Pa,功率为40W,Mo薄膜厚度为20nm;
S9、采用磁控溅射工艺在背接触层5顶面沉积保护层6,保护层6为Pt薄膜;
具体为:采用射频磁控溅射法,Pt靶,通入Ar气流量为20sccm,在背接触层5基础上沉积Pt薄膜,工作压强为0.5Pa,功率为60W,Pt薄膜厚度为30nm;
最终得到柔性CdTe薄膜太阳能电池。经检测及计算,最终获得的柔性CdTe薄膜太阳能电池的光电转换效率为12.1%。
[0024] 实施例三如图1所示,本发明提供一种柔性CdTe薄膜太阳能电池的制备方法,包括以下步骤:
S1、取不锈钢板作为柔性基底1,采用离子束溅射工艺清洁柔性基底1;使柔性基底1具有交联键,有利于薄膜附着在柔性基底上;
离子束溅射具体参数为:离子源功率为70W,O2流量为20sccm,溅射时间为5min;
S2、采用磁控溅射工艺在柔性基底1顶面沉积下阻隔层21,下阻隔层21为TiO2薄膜;
具体为:采用直流磁控溅射法,TiO2靶材,通入Ar气流量为20sccm,在柔性基底1上沉积TiO2薄膜,工作压强为0.5Pa,功率为70W,TiO2薄膜厚度为50nm;
S3、采用线棒刮涂法在下阻隔层21顶面制备微结构层22,微结构层为为单分散SiO2小球薄膜;SiO2小球粒径为500nm;
S4、采用磁控溅射工艺在微结构层22上沉积透明导电层23,透明导电层为AZO薄膜;
具体为:采用直流磁控溅射法,AZO(Al2O3:ZnO=1.5%:98.5%)靶,通入Ar气流量为
30sccm,在微结构层22上沉积AZO薄膜,工作压强为0.35Pa,功率为200W,AZO薄膜厚度为
1000nm;
S5、采用磁控溅射工艺在透明导电层23顶面沉积上阻隔层24,上阻隔层24为ZnO薄膜;
具体为:采用直流磁控溅射法,ZnO靶,通入Ar气流量为20sccm,在透明导电层23基础上沉积ZnO薄膜,工作压强为0.5Pa,功率为70W,ZnO薄膜厚度为30nm;
结合图2所示,所述下阻隔层21、微结构层22、透明导电层23与上阻隔层24构成前电极
2;
S6、采用磁控溅射工艺在上阻隔层24顶面沉积缓冲层3,缓冲层为CdS薄膜;
具体为:采用射频磁控溅射法,CdS靶,通入Ar气流量为20sccm,在上阻隔层24基础上沉积CdS薄膜,工作压强为0.3Pa,功率为100W,CdS薄膜厚度为60nm;
S7、采用热蒸镀法在缓冲层3顶面沉积吸收层4,吸收层4为CdTe薄膜;
具体为:采用热蒸镀法,CdTe源,在缓冲层3基础上沉积CdTe薄膜,工作压强为0.4Pa,功率为80W,温度为550℃,CdTe薄膜厚度为2200nm;
S8、采用磁控溅射工艺在吸收层4顶面沉积背接触层5,背接触层5为Mo薄膜;
具体为:采用射频磁控溅射法,Mo靶,通入Ar气流量为20sccm,在吸收层4基础上沉积Mo薄膜,工作压强为0.5Pa,功率为40W,Mo薄膜厚度为30nm;
S9、采用磁控溅射工艺在背接触层5顶面沉积保护层6,保护层6为Pt薄膜;
具体为:采用射频磁控溅射法,Pt靶,通入Ar气流量为20sccm,在背接触层5基础上沉积Pt薄膜,工作压强为0.5Pa,功率为60W,Pt薄膜厚度为40nm;
最终得到柔性CdTe薄膜太阳能电池。经检测及计算,最终获得的柔性CdTe薄膜太阳能电池的光电转换效率为13.5%。
[0025] 以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制;任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同替换、等效变化及修饰,均仍属于本发明技术方案保护的范围内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈