首页 / 专利库 / 换热器 / 热交换器 / 通过低温分离空气产生压缩氮和液氮的方法和设备

通过低温分离空气产生压缩氮和液氮的方法和设备

阅读:520发布:2023-12-17

专利汇可以提供通过低温分离空气产生压缩氮和液氮的方法和设备专利检索,专利查询,专利分析的服务。并且所述方法和设备用于通过在蒸馏塔系统中低温分离空气产生压缩氮和液氮,该系统具有高压塔(9)和低压塔(10)及主 冷凝器 (11)和低压塔-塔顶冷凝器(12),两者被构造成冷凝 蒸发 器 。将空气(AIR)加热,纯化(6),冷却并导入(8)高压塔(9)中。将低压塔(10)的气态塔顶氮的第一部分(44)排出。使低压塔(10)的气态塔顶氮的第二部分(45)至少部分地 液化 。将在低压塔-塔顶冷凝器(12)的蒸发空间中产生的 蒸汽 排出并在第一膨胀机(28)中做功减压。使来自高压塔(9)的塔顶的第二压缩氮流(17)在第二膨胀机(41)中做功减压随后排出。将在低压塔-塔顶冷凝器(12)中液化的氮(46)的一部分(47)排出。,下面是通过低温分离空气产生压缩氮和液氮的方法和设备专利的具体信息内容。

1.通过在蒸馏塔系统中低温分离空气产生压缩氮和液氮的方法,所述蒸馏塔系统具有高压塔(9)和低压塔(10)以及主冷凝器(11)和低压塔-塔顶冷凝器(12),这两者被构造成冷凝蒸发器,其中
-将进料空气流(AIR)在主空气压缩机(2)中压缩,纯化(6),在主热交换器(8)中冷却,并导入(8)高压塔(9)中,
-将低压塔(10)的气态塔顶氮的第一部分(44)作为第一压缩氮流排出,在主热交换器(8)中加热,并作为第一压缩氮产品(18,19,PGAN)排出,
-使低压塔(10)的气态塔顶氮的第二部分(45)在低压塔-塔顶冷凝器(12)的液化空间中至少部分地液化,
-使液态制冷剂流(25)在低压塔-塔顶冷凝器(12)的蒸发空间中至少部分地蒸发,-将在低压塔-塔顶冷凝器(12)的蒸发空间中产生的蒸汽作为残余气流(26)排出,并在主热交换器(8)中加热至第一中间温度
-将残余气流(27)在第一中间温度下导入第一膨胀机(28)中,并在此做功减压,及-将做功减压的残余气流(29)在主热交换器(8)中完全加热,
其特征在于,
-由高压塔(9)的塔顶排出第二压缩氮流(17),并在主热交换器(8)中加热至第二中间温度,
-将第二压缩氮流(40)在第二中间温度下导入第二膨胀机(41)中,并在此做功减压,-将做功减压的第二压缩氮流(42)在主热交换器(8)中完全加热,并作为第二压缩氮产品(43,19,PGAN)排出,及
-将在低压塔-塔顶冷凝器(12)中液化的氮(46)的一部分(47)作为液氮产品(PLIN)排出。
2.根据权利要求1的方法,其特征在于,由低压塔(10)的塔顶在8.0至9.0巴,尤其是8.4至9.0巴的压下排出第一压缩氮流(44)。
3.根据权利要求1或2的方法,其特征在于,将做功减压的第二压缩氮流(42,43)与第一压缩氮流(44,18)合并,并将第一压缩氮产品和第二压缩氮产品作为共同的压缩氮产品流(19,PGAN)排出。
4.根据权利要求1至3之一的方法,其特征在于,第二中间温度比第一中间温度高出至少10K。
5.根据权利要求1至4之一的方法,其特征在于,第一和第二膨胀机(28,41)与发电机或耗能制动器相连接。
6.根据权利要求1至4之一的方法,其特征在于,所述两个膨胀机(28,41)各自驱动一个压缩级(70,72),其中工艺流(7A,19A)依次先后在这两个压缩级中进行压缩。
7.根据权利要求6的方法,其特征在于,所述工艺流由纯化的进料空气(7A)的至少一部分形成,在这两个压缩级(70,72)的下游导入主热交换器(8)中。
8.根据权利要求6的方法,其特征在于,所述工艺流由第一和/或第二压缩氮产品流(19A)的至少一部分形成,在这两个压缩级的下游作为压缩氮产品(19B,PGAN)排出。
9.根据权利要求1至8之一的方法,其特征在于,所述低压塔-塔顶冷凝器(12)在其蒸发侧被构造成强制流蒸发器
10.根据权利要求1至9之一的方法,其特征在于,所述主冷凝器(11)在其蒸发侧被构造成强制流蒸发器。
11.根据权利要求1至10之一的方法,其特征在于,由低压塔(10)排出馏份(552)并导入纯氧塔(550),其中由纯氧塔(550)的塔底排出高纯液氧产品,所述纯氧塔尤其是具有塔底蒸发器,所述塔底蒸发器利用氧馏份(552)的至少一部分和/或利用来自高压塔(9)的塔顶的气态氮(556)进行加热。
12.根据权利要求1至11之一的方法,其特征在于,由高压塔排出高压塔冲洗液体(661)并导入附加塔(660)中,所述附加塔具有塔底蒸发器(664),所述塔底蒸发器尤其是利用空气支流(665)进行加热,其中由附加塔(664)的塔底提取出冲洗流并丢弃,或者送去获得氙。
13.根据权利要求1至12之一的方法,其特征在于,
在第一运行模式中,将液化的氮(47)的至少一部分(871)
-以液态施加(872)至升高的压力,
-在利用外部热量运行的蒸发装置(873)中蒸发,及
-随后作为压缩氮产品(874,819)获得,
及在第二运行模式中,没有使液化的氮(47)或者使小于第一运行模式的量在所述利用外部热量运行的蒸发装置(873)中蒸发,其中所述利用外部热量运行的蒸发装置(873)尤其是具有
-空气加热的蒸发器,
-浴式蒸发器,和/或
-固体冷量存储器
14.通过低温分离空气产生压缩氮和液氮的设备,其具有
-蒸馏塔系统,其具有高压塔(9)和低压塔(10)以及主冷凝器(11)和低压塔-塔顶冷凝器(12),这两者被构造成冷凝蒸发器,
-用于压缩进料空气流(AIR)的主空气压缩机(2),
-用于对压缩的进料空气(5)进行纯化的纯化装置(6),
-用于对纯化的进料空气(7)进行冷却的主热交换器(8),
-用于将冷却的进料空气导入(8)高压塔(9)中的装置,
-用于将低压塔(10)的气态塔顶氮的第一部分(44)作为第一压缩氮流排出的装置,-用于在主热交换器(8)中加热第一压缩氮流的装置,
-用于将加热的第一压缩氮流作为第一压缩氮产品(18,19,PGAN)排出的装置,-用于将低压塔(10)的气态塔顶氮的第二部分(45)导入低压塔-塔顶冷凝器(12)的液化空间中的装置,
-用于将液态制冷剂流(25)导入低压塔-塔顶冷凝器(12)的蒸发空间中的装置,-用于将在低压塔-塔顶冷凝器(12)的蒸发空间中产生的蒸汽作为残余气流(26)排出的装置,
-用于将残余气流(26)导入主热交换器中的装置,
-用于由主热交换器(8)于第一中间温度排出残余气流(27)的装置,
-用于使加热至第一中间温度的残余气流(27)做功减压的第一膨胀机(28),并且具有-用于将做功减压的残余气流(29)在主热交换器(8)中完全加热的装置,
其特征在于,
-用于由高压塔(9)的塔顶排出第二压缩氮流(17)的装置,
-用于将第二压缩氮流(17)在主热交换器(8)中加热至第二中间温度的装置,-用于将做功减压的第二压缩氮流(42)在主热交换器(8)中完全加热的装置,-用于将加热的第二压缩氮流作为第二压缩氮产品(43,19,PGAN)排出的装置,及-用于将在低压塔-塔顶冷凝器(12)中液化的氮(46)的一部分(47)作为液氮产品(PLIN)排出的装置。

说明书全文

通过低温分离空气产生压缩氮和液氮的方法和设备

技术领域

[0001] 本发明涉及通过低温分离空气产生压缩氮和液氮的方法。

背景技术

[0002] 通过在空气分离设备中低温分离空气生产液态或气态的空气产品是已知的。此类空气分离设备具有蒸馏塔系统,其例如可以构造成双塔系统,尤其是传统的Linde双塔系统,但也可以构造成三塔系统或多塔系统。此外,可以设置用于获得其他空气组分尤其是稀有气体氪、氙和/或氩的装置(例如参见F.G.Kerry,Industrial Gas Handbook:Gas Separation and Purification,Boca Raton:CRC Press,2006;第3章:Air Separation Technology)。该发明的蒸馏塔系统可以构造成传统双塔系统,但也可以构造成三塔系统或多塔系统。除了用于氮分离的塔以外还可以具有其他用于获得其他空气组分的装置,例如用于获得不纯的、纯的或高纯的氧或稀有气体。
[0003] “主热交换器”用于在与来自蒸馏塔系统的回流的间接热交换中冷却进料空气。其可以由单个或多个并联和/或串联且功能上连接的热交换器区段形成,例如由一个或多个板式热交换器区形成。
[0004] 热交换器称作“冷凝蒸发器”,其中冷凝的第一流体流与蒸发的第二流体流进行间接热交换。每个冷凝蒸发器均具有液化空间和蒸发空间,分别由液化通道和蒸发通道构成。第一流体流在液化空间中进行冷凝(液化),第二流体流在蒸发空间中进行蒸发。蒸发空间和液化空间由彼此处于热交换关系的通道的组形成。冷凝蒸发器的蒸发空间可以构造成浴式蒸发器、降膜蒸发器或强制流蒸发器。
[0005] “膨胀机”可以具有任意的构造。在此优选使用涡轮机(涡轮膨胀机)。
[0006] 常用的双塔法仅具有一个单独的冷凝蒸发器、主冷凝器,并在比较低的压下运行,即在低压塔的塔顶处稍稍超过大气压。在应当获得大量的压缩氮时,则使用在较高压力下运行的改变的双塔法。由此可以使用低压塔-塔顶冷凝器,并利用来自蒸馏塔系统的富含氧的残余馏份进行冷却。US 4,453,957公开了此类方法。
[0007] 目前尚没有人考虑到将此类方法用于大于5摩尔%的氮产品量的值得一提的液体生产。

发明内容

[0008] 本发明的目的在于提供前述类型的方法及相应的设备,其适合于6至10摩尔%的氮产品量或更多的比较高的液体生产,其中在该方法中实现约60%的比较高的氮产品产率,此外可以有效地运行。(氮产率取决于其他参数,例如产品纯度。)
[0009] 该目的通过根据本发明的方法实现。
[0010] 在此,由高压塔的塔顶排出第二压缩氮流,在第二膨胀机中减压至仍允许该流作为压缩产品排出的压力,优选至约为来自低压塔的塔顶的第一压缩氮流的压力。此外将在低压塔-塔顶冷凝器中液化的氮的一部分作为液氮产品排出。
[0011] 以此方式能够以最小的额外成本有效地产生更高液体生产所需的冷量。此外,具有不同于第一涡轮机的入口温度的第二涡轮机改善了主热交换器中的温度分布(由于温度差更小,所以热力学损失更小)。
[0012] 根据本发明,在该压力即低压塔的压力下获得优选大于90摩尔%的气态氮产品。
[0013] 在已知的应用中,除了大量的在约8巴下的压缩氮以外还需要比较多的液态产品(LIN)。这些应用例如包括石化企业(Petrochemie-Komplexe)或气站(Gas-Standorte),其配备有半导体工业领域的客户的现场气体供应。在此,液态产品用于覆盖峰值需求量(特别是在石油化学设备的情况下其很大可能停止运行)和/或用于服务外部液体市场。(上述压力值,如以下所有的,除非另有说明,均理解为绝对压力。)
[0014] 直到目前,这些目的例如是通过采用“Spectra”法(例如参见US4,966,002或US 5,582,034)连同外部和间歇运行的液化器实现的。替代性地,仅使用Spectra设备,其中以大幅减少的气体供应为代价暂时地实现液体生产。在第一情况下,实际上需要两个设备,这导致特别高的投资成本。在第二情况下,虽然仅使用一个设备,但是其具有非常受限的液体生产能力;特别是在8巴的实施方案中,液体生产不仅是受限的,而且由于涡轮机处的压降比较小所以效率低;通常不能覆盖所期望的对于液体的需求。此外,与在本发明中所采用的双塔法相比,Spectra法的效率比较低。
[0015] 在由低压塔的塔顶在8.0至9.0巴尤其是8.4至9.0巴的压力下排出第一压缩氮流时,根据本发明的方法可以特别有利地运行。
[0016] 优选将第二压缩氮流在膨胀机中减压至约为第一压缩氮流的压力;随后将这两股压缩氮流合并,并作为共同的压缩氮产品流排出。最简单地在主热交换器内进行合并;但原则上也可以热的状态即在主热交换器的下游进行合并。
[0017] 膨胀机的这两个入口温度优选是不同的,尤其是第二中间温度比第一中间温度高出至少10K。温度差例如为90至30K,优选为70至50K。
[0018] 在本发明的第一改变方案中,这两个膨胀机与发电机或耗能制动器(dissipative Bremse)相连接。优选使用发电涡轮机。在此虽然没有将能量直接送回该过程中。为此,该改变方案对于不同的负载状况是特别灵活的。
[0019] 不太灵活而对此成本更加有利的是根据本发明的方法的第二改变方案。在此,这两个膨胀机各自驱动一个压缩级,工艺流依次先后在这两个压缩级中进行压缩。替代性地,可以将这两个涡轮机中的仅一个例如压缩氮涡轮机(“第二膨胀机”)与压缩级相连接,而另一个例如残余气体涡轮机(“第一膨胀机”)与发电机相连接。
[0020] 该工艺流例如可以通过以下的流之一形成:
[0021] -纯化的进料空气的至少一部分,然后将其在这两个压缩级的下游导[0022] 入主热交换器中;
[0023] -第一和/或第二压缩氮产品流的至少一部分,然后将其在这两个压缩[0024] 级的下游作为压缩氮产品排出。
[0025] 这两个冷凝蒸发器原则上可以被构造成传统的浴式蒸发器。
[0026] 但是低压塔-塔顶冷凝器在其蒸发侧优选被构造成强制流蒸发器。由此在蒸发侧不产生流体静力学压力损失,在液化侧也产生比较低的压力。
[0027] 替代性地或额外地,在主冷凝器上在其蒸发侧被构造成强制流蒸发器。由此,与浴式蒸发器相比,在蒸发侧产生更小的流体静力学压力损失,在液化侧也产生比较低的压力。
[0028] 在本发明的另一个实施方案中,在第一运行模式中,液化的氮的至少一部分在压力下蒸发,随后作为压缩氮产品获得。相应的蒸发装置是利用外部热量运行的,换而言之,热源尤其是并不是低温分离的工艺流。在第二运行模式中,没有使液化的氮或者仅使小于第一运行模式的量(例如小于50%)在该蒸发装置中蒸发。该蒸发装置尤其是具有空气加热的蒸发器、浴式蒸发器和/或固体冷量存储器(Feststoffkaltespeicher)。
[0029] 此外,本发明涉及通过低温分离空气产生压缩氮和液氮的设备。根据本发明的设备可以通过与单个、多个或全部的本发明方法的特征相对应的设备特征加以补充。
[0030] 在根据本发明的方法中,例如采用以下的压力和温度:
[0031] 运行压力(均在塔的塔顶):
[0032] 高压塔:例如12至17巴,优选13至15巴
[0033] 低压塔:例如6至10巴,优选7至9巴
[0034] 低压塔-塔顶冷凝器:
[0035] 蒸发空间:例如2至5巴,优选3至4巴
[0036] 空气压力:
[0037] 这两个涡轮机(膨胀机)的入口温度:
[0038] “第一中间温度”(残余气体涡轮机):例如160至120K,优选150至130K[0039] “第二中间温度”(氮涡轮机):例如220至180K,优选210至190K[0040] 下面依照在附图中示意性显示的实施例更详细地阐述本发明以及本发明的其他细节。

附图说明

[0041] 图1所示为具有发电涡轮机的第一实施例;
[0042] 图2所示为具有串联连接并压缩空气的涡轮增压机的第二实施例;
[0043] 图3所示为具有串联连接并压缩氮的涡轮增压机的第三实施例;
[0044] 图4所示为图1的第一改变方案,其中使液氮产品过冷
[0045] 图5所示为图1的第二改变方案,其中获得纯氧;
[0046] 图6所示为图1的第三改变方案,其具有用于来自高压塔的冲洗液体的附加塔;
[0047] 图7所示为图6的系统的改变方案;及
[0048] 图8所示为其中暂时地外部蒸发液氮的系统。

具体实施方式

[0049] 在图1中,全部的进料空气(AIR)经由过滤器1由具有后期冷却3(及未示出的中间冷却)的主空气压缩机2压缩至约14.6巴的压力。紧接着的预冷却系统具有直接接触冷却器4。将预冷却的进料空气5送入纯化装置6,优选为可切换的分子筛吸收器。
[0050] 全部经纯化的进料空气(除了较小的分岔,例如用于仪表空气)经由管道7流入主热交换器8。其在此直至冷端进行冷却。将冷的完全或几乎完全呈气态的空气8导入高压塔9中。高压塔9是蒸馏塔系统的一部分,其此外具有低压塔10、主冷凝器11和低压塔-塔顶冷凝器12。这两个冷凝蒸发器11,12在蒸发侧被构造成强制流蒸发器。
[0051] 来 自 高 压 塔 9 的 塔 底 的 液 态 粗 氧 1 3 在 过 冷 逆 流 热 交 换 器14中冷却,并经由管道15于中间位置导入低压塔。高压
塔9的气态塔顶氮16的第一部分17作为第一压缩氮流排出并送至主热交换器8。气态塔顶氮
16的第二部分20在主冷凝器11的液化空间中至少部分地液化。在此产生的液态氮21的第一部分在高压塔9中用作回流。剩余部分22/23在过冷逆流热交换器14中冷却,并送至低压塔
10的塔顶。
[0052] 来自低压塔的塔底或者来自主冷凝器11的蒸发空间的富含氧的液态馏份24在过冷逆流热交换器14中冷却,并经由管道25作为制冷剂流导入低压塔-塔顶冷凝器12的蒸发空间中,并在此至少部分地蒸发。将在低压塔-塔顶冷凝器12的蒸发空间中产生的蒸汽作为残余气流26排出,并在主热交换器8中加热至例如为142K的第一中间温度。将残余气流27于第一中间温度导入在此被构造成发电涡轮机的第一膨胀机28中,并在此做功减压至稍稍超过大气压。做功减压的残余气流29在主热交换器8中完全加热,换而言之加热至约为环境温度
[0053] 热的残余气体30可以经由管道31直接排放至大气(ATM)。替代性地或部分地,其可以经由管道32,任选在再生气体加热器33中加热之后,在纯化装置6中用作再生气体。将消耗的再生气体经由管道34排放至大气。
[0054] 将低压塔10的气态塔顶氮的第一部分44作为第一压缩氮流提取出,在主热交换器8中加热,并作为第一压缩氮产品(PGAN)排出18,19。使低压塔10的气态塔顶氮的第二部分
45在低压塔-塔顶冷凝器12的液化空间中至少部分地液化。将在低压塔-塔顶冷凝器12中液化的氮46的一部分47作为液氮产品(PLIN)排出。
[0055] 来自高压塔9的第二压缩氮流17在主热交换器8中加热至207K的第二中间温度。将第二压缩氮流40在第二中间温度下导入第二膨胀机41中,并在此做功减压至约为低压塔10的塔顶处的工作压力。第二膨胀机41在此同样被构造成发电涡轮机。将做功减压的第二压缩氮流42在主热交换器中完全加热。将热的第二压缩氮流43与热的第一压缩氮流18合并,并经由管道19与第一压缩氮产品一起作为第二压缩氮产品(PGAN)排出。
[0056] 这两个图2和3的方法与图1的区别在于,将对涡轮机做的功用于压缩工艺流。这是通过两个压缩级(增压机)70,72实现的,它们与涡轮机28或41相连接,并且彼此串联连接,并且各自具有一个后期冷却器71,73。在此,压缩机和涡轮机也可以代替所示的布置方式相反地连接,换而言之,第一膨胀机41与第一压缩级70连接,第二膨胀机41与第二压缩级72连接。
[0057] 可选地,可以将来自高压塔9的第二压缩氮流17的一部分50引导至主热交换器8的热端,并作为高压产品HPGAN在13至14巴的压力下排出(未示出)。
[0058] 在此,在图2中,通过这些涡轮机驱动的压缩级70,72承担全部空气7A,7B的一部分压缩工作。主空气压缩机必须例如仅压缩至12.5巴。相应地可以在主空气压缩机处省略掉一级。
[0059] 与此不同,在图3中,输送全部的压缩氮产品19A,19B通过压缩级70,72。由此可以将约8巴的产品压力升高至约11巴,不必引入能量。因此,与使用外部驱动的氮压缩机的情况相比,同样节约了成本。
[0060] 图4除了额外的过冷逆流热交换器414以外与图1相同,其中由低压塔10排出的液氮47与蒸发的氮流415/416方向相反地进行过冷。为此,经由417分支出小部分的过冷的液氮。将蒸发的氮416混入残余气体涡轮机28的废气29,并与其一起在主热交换器8中加热。
[0061] 图5除了图1以外还包含纯氧塔550,在其塔底产生高纯液氧,经由管道551排出,并作为高纯液氧产品HLOX获得。由低压塔10经由管道552排出不含较难挥发的成分的氧馏份。将其在纯氧塔550的塔底蒸发器553中过冷,并经由管道554和节流阀555送至纯氧塔550的塔顶。在此分离出较易挥发的组分。此外,塔底蒸发器553由高压塔9的气态塔顶氮16的一部分556进行加热;将由此产生的液氮557送至低压塔10。将来自纯氧塔550的塔顶的不纯的气态氧558在残余气体涡轮机28的上游与残余气体26混合。
[0062] 在低压塔-塔顶冷凝器12的蒸发空间中的压力比较低(例如在3巴下)的情况下有利的是,采取额外的措施,例如在所述设备中的不令人担心的位置使丙烷富集及对该来自精馏系统的富集的液体实施废物处理(例如送至喷射器,排放至大气(ins Freie)或者送入不纯氮流然后吹入大气)。在此可以已知的方式直接在高压塔中通过使用阻挡塔板(Sperrboden)进行富集。
[0063] 由于比较高的液体生产,空气在进入高压塔时已经预先液化(例如至约1%或者更多)。由于该预先液化而存在的液体在此在塔底被分离,可以连同冲洗液体一起被丢弃。但是由此使该方法的效率显著降低,这是因为在此损失非常多的冷量以及氮分子。
[0064] 图6的方法给出所述问题的一个解决方案,其否则同样附加至图1的过程。通过针对来自高压塔9的高压塔冲洗液体661使用附加塔 660,可以大幅减少然后经由管道662排出的冲洗量。
[0065] 所述高压塔具有一至五个作为阻挡塔板663的实际塔板。液态粗氧13在阻挡塔板上方排出,而高压塔冲洗液体661则在下方即直接由塔底排出;其包含来自高压塔或阻挡塔板的回流液体,还包含经由管道8引入的预先液化的空气。该流661(任选在过冷之后)被送至附加塔660的塔顶,在该塔内在物料交换中使较难挥发的物质富集,最后以明显更少的量由附加塔660的塔底经由管道662排出。排出的量例如为约40至50Nm3/h;相对而言,在全部空气量为100,000Nm3/h的情况下,流量662与661的比例例如为1至10%。附加塔660的塔底蒸发器664利用来自高压塔9的气态空气665进行加热。将在塔底蒸发器664中冷凝的空气666导入低压塔10。将在附加塔660中产生的塔顶气体667同样在适当的位置送入低压塔10。
[0066] 由空气支流665送至附加塔660的冷凝器的C3H8留在系统中。但是与进料空气量相比,该空气量比较少(约1%),因而运行安全性不受其影响。通过现在由附加塔660提取出冲洗物662,至高压塔中的阻挡区段663的回流量可以升高。由此洗出更多的氙,且来自附加塔的实际的冲洗量662也可以作为氙浓缩物进一步使用及进一步加工处理;在根据图6的方法中氙产率可以超过50%。
[0067] 不同于图6中所示,高压塔冲洗液体661可以在过冷逆流热交换器14中进行过冷。来自塔底蒸发器664的液态流666也可以在过冷逆流热交换器14中进行过冷,然后将其送入低压塔10中。
[0068] 图7与图6的区别在于,冲洗流662不是以液态丢弃。而是将其经由管道762送入热的残余气体管道763中,在此突然蒸发,然后以大幅稀释的状态吹入大气。
[0069] 到目前为止所述的方法在液体生产比较小的运行状况下(即不同于设计状况(Auslegungsfall))仅具有受限的灵活性。在这些状况下,上冷凝器的蒸发空间中的压力下降,由此也使残余气体涡轮机的入口压力以及可能设置在下游的后期压缩机(增压机)处的吸入压力下降;这例如涉及搀混天然气以调节燃烧值的用途。但是后期压缩机处明显降低的吸入压力显著进入 (影响)机器尺寸,还意味着对通常的低负载特性(Unterlastverhalten)的限制。
[0070] 成本比较有利且在此仍然比较有效的由此状况的出路可以利用在图8中所示的连接方式得以实现。在液体产出减小的第一运行方式中,在所述设备中产生液体并没有明显地减少,而是由液体回收所耗费的分离能或液化能的一部分。这可以通过使用空气或蒸汽加热的紧急情况蒸发器(Notversorgungsverdampfer)或者通过装配(Einbindung)一个或多个冷量存储器而得以实现。在后一种情况下,例如在其他运行状况下为了增加液体生产,还部分地储存液化过程的冷量。在第一运行方式(排出阶段(Ausspeisephase))中,也可以使空气支流液化。
[0071] 在排出阶段(Ausspeisephase),减小主空气压缩机的功率或者一个或多个氮产品压缩机的功率,或者替代性地以不变的功率获得更多的气态产品。当然也可以结合地采用这些措施中的两个或三个。
[0072] 特别是在产品产出压力或中间压力比较高时,有意义的是可以采用该方案,这是因为在产品压缩机处节省的压缩机功率随着压力的升高而变得越来越高。
[0073] 在第二运行方式中,使较少的或者不使液态产品蒸发。例如将在第一运行方式中所采用的额外的方法步骤停止。
[0074] 不同于图1,在图8中将在残余气体涡轮机28中减压的流的一部分830分离地进行加热,然后将其吹入大气(ATM)。来自低压塔10的氮产品44,18以热的状态通过两个两级(820,821)氮产品压缩机进一步压缩,然后将其经由管道819作为压缩产品排出。因此,产品压缩机820,821作为整体具有四个级。(替代性地还可以使用一个或三个氮产品压缩机,其具有一个、三个或更多个级。)压缩的流可以完全施加至最终压力;替代性地,可以将一部分在这两个氮产品压缩机820和821之间以中间压力提取出(未示出)。
[0075] 将液氮47的至少一部分储存在液氮罐870中。优选也由该液氮罐870进行液体产品产出(在图8中未示出)。在第一运行模式中,借助872将液氮871施加至升高的压力(例如约为在这两个氮产品压缩机820,821之间的压力);替代性地,利用该泵施加至第一氮产品压缩机820上游的压力或者至第二氮产品压缩机821下游的压力(未示出)。高压氮在大气蒸发器873中蒸发;替代性地,也可以使用蒸汽加热的水浴式蒸发器。气态高压氮经由管道875a,875b,875c之一与来自低压塔10的热的气态氮18混合。
[0076] 在第二运行模式中,将大气蒸发器873停止,并将全部的液体生产PLIN作为最终产品排出或者储存在液氮罐870中。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈