首页 / 专利库 / 燃料种类 / 燃料 / 燃料電池搭載ドローン

燃料電池搭載ドローン

阅读:114发布:2024-01-16

专利汇可以提供燃料電池搭載ドローン专利检索,专利查询,专利分析的服务。并且【課題】小型機から大型機までの機体を長距離飛行させることができ、小型機から大型機までの機体を長時間飛行させることができる 燃料 電池搭載ドローンを提供する。 【解決手段】燃料電池搭載ドローン10は、 水 素(負極活物質)を貯蔵して第1〜第3接続管によって各第1〜第3燃料電池14a〜14cに個別に接続された第1〜第3タンク15a〜15cと、第1〜第3接続管に接続された第1〜第3バイパス管とを含み、水素と酸素(正極活物質)とを電極に供給し、所定の化学反応によって発電する第1〜第3燃料電池14a〜14cを搭載し、その飛行およびホバリングにおいて第1〜第3タンク15a〜15cから第1〜第3燃料電池14a〜14cに個別に水素が供給され、第1〜第3燃料電池14a〜14cから各電動機に電 力 を給電することで電動機を駆動させる。 【選択図】図2,下面是燃料電池搭載ドローン专利的具体信息内容。

機体本体と電動機を駆動源として回転するローターとを備え、空中を飛行しつつ空中でホバリングする燃料電池搭載ドローンにおいて、 前記燃料電池搭載ドローンが、負極活物質と正極活物質とを電極に供給し、所定の化学反応によって発電する複数の第1〜第n燃料電池を搭載し、前記第1〜第n燃料電池から前記電動機に電を給電することで該電動機を駆動させることを特徴とする燃料電池搭載ドローン。前記燃料電池搭載ドローンが、前記負極活物質を貯蔵して第1〜第n接続管によって各第1〜第n燃料電池に個別に接続された第1〜第nタンクを含み、前記燃料電池搭載ドローンでは、その飛行およびホバリングにおいて各第1〜第nタンクから各第1〜第n燃料電池に個別に前記負極活物質が供給される請求項1に記載の燃料電池搭載ドローン。前記第1〜第n接続管各々または前記第1〜第nタンク各々が、第1〜第nバイパス管によって接続され、前記燃料電池搭載ドローンが、前記第1〜第n燃料電池の出力を監視する出力監視手段と、該燃料電池搭載ドローンの飛行中およびホバリング中において前記出力監視手段によって前記第1〜第n燃料電池の出力を監視しつつ、所定の原因によって前記第1〜第n燃料電池のうちの少なくとも1つの燃料電池の出力が低下した場合、出力が低下した燃料電池への負極活物質の供給を停止し、前記出力が低下した燃料電池に供給されていた負極活物質を前記バイパス管を利用して正常な出力の燃料電池に供給するフェールセーフ手段とを有する請求項1または請求項2に記載の燃料電池搭載ドローン。前記燃料電池搭載ドローンが、前記各第1〜第n接続管の流路を個別に開閉する接続管開閉電磁弁と、前記各第1〜第nバイパス管の流路を個別に開閉するバイパス管開閉電磁弁とを含み、前記燃料電池搭載ドローンでは、前記第1〜第n燃料電池の出力が正常な場合、前記バイパス管開閉電磁弁によって第1〜第nバイパス管の流路が閉鎖され、前記第1〜第n接続管によって接続された前記第1〜第nタンクから各第1〜第n燃料電池に個別に前記負極活物質が供給され、前記フェールセーフ手段では、前記出力が低下した燃料電池に接続された接続管の流路が前記接続管開閉電磁弁によって閉鎖され、前記出力が低下した燃料電池の接続管に接続されたバイパス管の流路または該出力が低下した燃料電池に前記負極活物質を供給するタンクに接続されたバイパス管の流路が前記バイパス管開閉電磁弁によって開放され、該出力が低下した燃料電池に接続されたタンクの負極活物質が前記バイパス管を通って出力が正常な燃料電池に供給される請求項3に記載の燃料電池搭載ドローン。前記燃料電池搭載ドローンが、その飛行中およびホバリング中に前記フェールセーフ手段が実施された場合、あらかじめ設定された着陸地点に向かって帰還する第1帰還手段を含む請求項3または請求項4に記載の燃料電池搭載ドローン。前記燃料電池搭載ドローンが、その飛行中およびホバリング中に前記第1〜第nタンクに貯蔵された負極活物質の残量が所定の割合未満になった場合、あらかじめ設定された着陸地点に向かって帰還する第2帰還手段を含む請求項2ないし請求項5いずれかに記載の燃料電池搭載ドローン。

说明书全文

本発明は、機体本体と電動機を駆動源として回転するローターとを備え、空中を飛行しつつ空中でホバリングする燃料電池搭載ドローンに関する。

モータ手段を駆動制御することによって飛行姿勢制御を行う制御手段を備えたドローンが開示されている(特許文献1参照)。このドローンは、それが現実に飛行する3次元の飛行空間においてあらかじめ規定される各座標軸と、ドローンから他のドローンへと吊り渡された有線ケーブルとのなすを検出する角度検出手段を有する。制御手段は、ドローンから他のドローンまでの既設の距離および既設の方角に基づいてあらかじめ算出されたドローンの飛行姿勢が安定した場合に、有線ケーブルの吊り渡しによってドローンに対して生じ得る理論上の外Ffixedと、角度検出手段により検出されたなす角に基づいて算出される有線ケーブルの吊り渡しによってドローンに対して生じる現実の外力c(t)との誤差e(t)に基づいて、PID制御により制御量u(t)を算出し、算出された制御量u(t)に基づいて、モータ手段を駆動制御する。

このドローンは、モータ手段を駆動制御することにより飛行姿勢制御を行うことが可能な複数のドローンと、複数のドローンの隣接するドローンどうしを接続して、複数のドローンをネットワーク状に接続する有線ケーブルと、複数のドローンの少なくとも1つのドローンに一端が接続される給電ケーブルと、給電ケーブルの他端側に接続されて地上に配置される電力供給手段とを有する。それらドローンでは、電力供給手段から給電ケーブルおよび有線ケーブルを通じて、複数のドローンを駆動するための電力が電力供給手段から各ドローンへと供給される。

特開2017−52389号公報

前記特許文献1に開示のドローンは、各ドローンに給電ケーブルや有線ケーブルから電力が供給されるから、編隊を組んだ状態でそれらドローンを長時間飛行させることができる。しかし、給電ケーブルや有線ケーブルの長さが有限なことから、その飛行距離を伸ばすことが難しく、長距離の飛行に適さない。それらケーブルを使用せずにリチウムイオンバッテリーを搭載し、リチウムイオンバッテリーから給電される電力によって電動機を駆動させるドローンが使用されている。リチウムイオンバッテリーを利用してドローンを飛行させる場合、ドローンを長距離飛行させることはできるが、リチウムイオンバッテリーの放電時間が短く、その飛行時間が7〜8分程度であり、ドローンを長時間飛行させることができない。また、リチウムイオンバッテリーは、その発電量が小さく、大出力の電動機に駆動させることができず、中型や大型のドローンの飛行には適さない。

本発明の目的は、小型機から大型機までの機体を長距離飛行させることができ、小型機から大型機までの機体を長時間飛行させることができる燃料電池搭載ドローンを提供することにある。本発明の他の目的は、飛行中またはホバリング中に何らかの原因で燃料電池の出力が低下したとしても、着陸地点まで無事に飛行することができ、着陸地点に着陸することができる燃料電池搭載ドローンを提供することにある。

前記課題を解決するための本発明の前提は、機体本体と電動機を駆動源として回転するローターとを備え、空中を飛行しつつ空中でホバリングする燃料電池搭載ドローンである。

前記前提における本発明の特徴は、燃料電池搭載ドローンが、負極活物質と正極活物質とを電極に供給し、所定の化学反応によって発電する複数の第1〜第n燃料電池を搭載し、第1〜第n燃料電池から電動機に電力を給電することで電動機を駆動させることにある。

本発明の一例としては、燃料電池搭載ドローンが、負極活物質を貯蔵して第1〜第n接続管によって各第1〜第n燃料電池に個別に接続された第1〜第nタンクを含み、燃料電池搭載ドローンでは、その飛行およびホバリングにおいて各第1〜第nタンクから各第1〜第n燃料電池に個別に負極活物質が供給される。

本発明の他の一例としては、第1〜第n接続管各々または第1〜第nタンク各々が、第1〜第nバイパス管によって接続され、燃料電池搭載ドローンが、第1〜第n燃料電池の出力を監視する出力監視手段と、燃料電池搭載ドローンの飛行中およびホバリング中において出力監視手段によって第1〜第n燃料電池の出力を監視しつつ、所定の原因によって第1〜第n燃料電池のうちの少なくとも1つの燃料電池の出力が低下した場合、出力が低下した燃料電池への負極活物質の供給を停止し、出力が低下した燃料電池に供給されていた負極活物質をバイパス管を利用して正常な出力の燃料電池に供給するフェールセーフ手段とを有する。

本発明の他の一例としては、燃料電池搭載ドローンが、各第1〜第n接続管の流路を個別に開閉する接続管開閉電磁弁と、各第1〜第nバイパス管の流路を個別に開閉するバイパス管開閉電磁弁とを含み、燃料電池搭載ドローンでは、第1〜第n燃料電池の出力が正常な場合、バイパス管開閉電磁弁によって第1〜第nバイパス管の流路が閉鎖され、第1〜第n接続管によって接続された第1〜第nタンクから各第1〜第n燃料電池に個別に負極活物質が供給され、フェールセーフ手段では、出力が低下した燃料電池に接続された接続管の流路が接続管開閉電磁弁によって閉鎖され、出力が低下した燃料電池の接続管に接続されたバイパス管の流路または出力が低下した燃料電池に負極活物質を供給するタンクに接続されたバイパス管の流路がバイパス管開閉電磁弁によって開放され、出力が低下した燃料電池に接続されたタンクの負極活物質がバイパス管を通って出力が正常な燃料電池に供給される。

本発明の他の一例としては、燃料電池搭載ドローンが、その飛行中およびホバリング中にフェールセーフ手段が実施された場合、あらかじめ設定された着陸地点に向かって帰還する第1帰還手段を含む。

本発明の他の一例としては、燃料電池搭載ドローンが、その飛行中およびホバリング中に第1〜第nタンクに貯蔵された負極活物質の残量が所定の割合未満になった場合、あらかじめ設定された着陸地点に向かって帰還する第2帰還手段を含む。

本発明に係る燃料電池搭載ドローンによれば、負極活物質と正極活物質とを電極に供給し、所定の化学反応によって発電する複数の第1〜第n燃料電池を搭載し、それら第1〜第n燃料電池を使用して電力を電動機に給電することで電動機を駆動させるから、それら第1〜第n燃料電池から電動機に所定の電力を長時間にわたって給電することができ、長時間の飛行を可能にすることができるとともに、長距離の飛行を可能にすることができる。燃料電池搭載ドローンは、第1〜第n燃料電池を利用して発電することで、それら第1〜第n燃料電池から大電力を電動機に給電することができ、出力の大きな電動機を駆動させることができるとともに、小型機から大型機までの機体を長距離かつ長時間飛行させることができる。燃料電池搭載ドローンは、所定の原因で第1〜第n燃料電池のうちののうちの少なくとも1つの燃料電池の出力が低下したとしても、他の燃料電池から給電される電力によって電動機を駆動させることができ、燃料電池の出力低下による飛行不能や墜落を防ぐことができる。

負極活物質を貯蔵して第1〜第n接続管によって各第1〜第n燃料電池に個別に接続された第1〜第nタンクを含み、飛行およびホバリングにおいて各第1〜第nタンクから各第1〜第n燃料電池に個別に負極活物質が供給される燃料電池搭載ドローンは、負極活物質を貯蔵した各第1〜第nタンクから各第1〜第n燃料電池に個別に負極活物質が供給されることで、それら第1〜第n燃料電池から電動機に所定の電力を長時間にわたって給電することができ、長時間の飛行を可能にすることができるとともに、長距離の飛行を可能にすることができる。燃料電池搭載ドローンは、第1〜第n燃料電池を利用して発電することで、それら第1〜第n燃料電池から大電力を電動機に給電することができ、出力の大きな電動機を駆動させることができるとともに、小型機から大型機までの機体を長距離かつ長時間飛行させることができる。燃料電池搭載ドローンは、所定の原因で第1〜第n燃料電池のうちののうちの少なくとも1つの燃料電池の出力が低下したとしても、他の燃料電池から給電される電力によって電動機を駆動させることができ、燃料電池の出力低下による飛行不能や墜落を防ぐことができる。

第1〜第n接続管各々または第1〜第nタンク各々が第1〜第nバイパス管によって接続され、第1〜第n燃料電池の出力を監視する出力監視手段と、燃料電池搭載ドローンの飛行中およびホバリング中において出力監視手段によって第1〜第n燃料電池の出力を監視しつつ、所定の原因によって第1〜第n燃料電池のうちの少なくとも1つの燃料電池の出力が低下した場合、出力が低下した燃料電池への負極活物質の供給を停止し、出力が低下した燃料電池に供給されていた負極活物質をバイパス管を利用して正常な出力の燃料電池に供給するフェールセーフ手段とを有する燃料電池搭載ドローンは、その飛行中およびホバリング中に所定の原因によって第1〜第n燃料電池のうちの少なくとも1つの燃料電池の出力が低下し、出力が低下した燃料電池に負極活物質を継続して供給すると、その負極活物質が無駄になり、燃料電池搭載ドローンの飛行距離や飛行時間が短くなるが、第1〜第n燃料電池のうちの少なくとも1つの燃料電池の出力が低下した場合、出力が低下した燃料電池に供給されていた負極活物質をバイパス管を利用して正常な出力の燃料電池に供給することで、出力が低下した燃料電池に供給されていた負極活物質を正常な出力の燃料電池の発電に使用することができ、その負極活物質を利用して燃料電池搭載ドローンの飛行距離および飛行時間を維持することができる。燃料電池搭載ドローンは、その飛行中またはホバリング中に何らかの原因で燃料電池の出力が低下したとしても、その飛行距離および飛行時間を維持することができるから、あらかじめ設定された着陸地点まで無事に飛行させることができ、着陸地点に着陸させることができる。

各第1〜第n接続管の流路を個別に開閉する接続管開閉電磁弁と、各第1〜第nバイパス管の流路を個別に開閉するバイパス管開閉電磁弁とを含み、第1〜第n燃料電池の出力が正常な場合、バイパス管開閉電磁弁によって第1〜第nバイパス管の流路が閉鎖され、第1〜第n接続管によって接続された第1〜第nタンクから各第1〜第n燃料電池に個別に負極活物質が供給され、所定の原因によって第1〜第n燃料電池のうちの少なくとも1つの燃料電池の出力が低下した場合、出力が低下した燃料電池に接続された接続管の流路が接続管開閉電磁弁によって閉鎖され、出力が低下した燃料電池の接続管に接続されたバイパス管の流路または出力が低下した燃料電池に負極活物質を供給するタンクに接続されたバイパス管の流路がバイパス管開閉電磁弁によって開放され、出力が低下した燃料電池に接続されたタンクの負極活物質がバイパス管を通って出力が正常な燃料電池に供給される燃料電池搭載ドローンは、その飛行中およびホバリング中に所定の原因によって第1〜第n燃料電池のうちの少なくとも1つの燃料電池の出力が低下し、出力が低下した燃料電池に負極活物質を継続して供給すると、その負極活物質が無駄になり、燃料電池搭載ドローンの飛行距離や飛行時間が短くなるが、第1〜第n燃料電池のうちの少なくとも1つの燃料電池の出力が低下した場合、出力が低下した燃料電池に接続された接続管の流路を接続管開閉電磁弁によって閉鎖しつつ、出力が低下した燃料電池の接続管に接続されたバイパス管の流路または出力が低下した燃料電池に負極活物質を供給するタンクに接続されたバイパス管の流路をバイパス管開閉電磁弁によって開放し、それによって出力が低下した燃料電池に接続されたタンクの負極活物質がバイパス管を通って出力が正常な燃料電池に供給されるから、出力が低下した燃料電池に供給されていた負極活物質を正常な出力の燃料電池の発電に使用することができ、その負極活物質を利用して燃料電池搭載ドローンの飛行距離および飛行時間を維持することができる。燃料電池搭載ドローンは、その飛行中またはホバリング中に何らかの原因で燃料電池の出力が低下したとしても、その飛行距離および飛行時間を維持することができるから、燃料電池搭載ドローンをあらかじめ設定された着陸地点まで無事に飛行させることができ、燃料電池搭載ドローンを着陸地点に着陸させることができる。

飛行中およびホバリング中にフェールセーフ手段が実施された場合、あらかじめ設定された着陸地点に向かって帰還する燃料電池搭載ドローンは、その飛行中およびホバリング中に所定の原因によって第1〜第n燃料電池のうちの少なくとも1つの燃料電池の出力が低下した場合、燃料電池搭載ドローンがあらかじめ設定された着陸地点に向かって帰還するから、燃料電池の出力低下による飛行不能や墜落を防ぎつつ、燃料電池搭載ドローンをあらかじめ設定された着陸地点まで無事に飛行させることができ、第1〜第n燃料電池のうちの少なくとも1つの燃料電池の出力が低下した燃料電池搭載ドローンを着陸地点に着陸させることができる。

飛行中およびホバリング中に第1〜第nタンクに貯蔵された負極活物質の残量が所定の割合未満になった場合、あらかじめ設定された着陸地点に向かって帰還する燃料電池搭載ドローンは、その飛行中およびホバリング中に第1〜第nタンクに貯蔵された負極活物質が消費され、第1〜第nタンクに貯蔵された負極活物質の残量が所定の割合未満になった場合、あらかじめ設定された着陸地点に向かって帰還するから、負極活物質の不足による飛行不能や墜落を防ぎつつ、燃料電池搭載ドローンをあらかじめ設定された着陸地点まで無事に飛行させることができ、負極活物質が減少した燃料電池搭載ドローンを着陸地点に着陸させることができる。

燃料電池搭載ドローンの一例を示す斜視図。

燃料電池搭載ドローンの内部構造に一例を示す斜視図。

第1〜第3接続管や第1〜第3バイパス管による第1〜第3燃料電池と第1〜第3タンクとの接続形態の一例を示す図。

第1〜第3接続管や第1〜第3バイパス管による第1〜第3燃料電池と第1〜第3タンクとの接続形態の他の一例を示す図。

燃料電池搭載ドローンの飛行およびホバリングの一例を示す図。

図3の正常飛行時における素の流動を示す図。

図4の正常飛行時における水素の流動を示す図。

図3のフェールセーフ手段における水素の流動の一例を示す図。

図4のフェールセーフ手段における水素の流動の一例を示す図。

燃料電池搭載ドローン10の一例を示す斜視図である図1等の添付の図面を参照し、本発明に係る燃料電池搭載ドローンの詳細を説明すると、以下のとおりである。なお、図2は、燃料電池搭載ドローン10の内部構造に一例を示す斜視図であり、図3は、第1〜第3接続管17a〜17cや第1〜第3バイパス管18a〜18cによる第1〜第3燃料電池14a〜14cと第1〜第3タンク15a〜15cとの接続形態の一例を示す図である。

燃料電池搭載ドローン10(無人飛行体)は、機体本体11と、機体本体11から延びる4本のローターアーム12と、それらローターアーム12に取り付けられた4つのローター13(回転翼)と、それらローター13を回転させる4つ電動機(モーター)(図示せず)と備えている。燃料電池搭載ドローン10は、電動機(モーター)(図示せず)を駆動源としてローター13が回転し、ローター13の回転による揚力によって空中を飛行しつつ空中にホバリングする。それら電動機は、各ローター13に個別に接続され、各電動機によって各ローター13が回転する。

燃料電池搭載ドローン10は、4つのローター12と4つの電動機とを有するクアッドコプターであるが、6つのローターと6つの電動機とを有するヘキサコプターや8つのローターと8つの電動機とを有するオクトコプターであってもよい。また、燃料電池搭載ドローン10を図示の形状に限定するものではなく、本発明の燃料電池搭載ドローンには他のあらゆる形状のそれが含まれる。

燃料電池搭載ドローン10には、図示はしていないが、飛行管制装置、GPS(GPS自律安定装置を含む)、カメラ搭載用ジンバル、姿勢制御装置、IOSD(オンスクリーンリアルタイムディスプレイ)、ハイビジョン画像伝送無線装置、高解像度カメラ、リアルタイムモニター、各種センサー等が搭載されている。燃料電池搭載ドローン10は、その飛行中(ホバリングを含む)に高解像度カメラによって静止画や動画を撮影することができ、各種センサーによって気象測定や環境測定を行うことができる。燃料電池搭載ドローン10には、あらかじめ飛行ミッション(飛行プラン)がインストールされた自律して飛行(自動自律飛行)する機種が使用されている。

燃料電池搭載ドローン10の機体本体の内部には、3つの第1燃料電池14a、第2燃料電池14b、第3燃料電池14c(第1〜第n燃料電池)と、3つの第1タンク15a、第2タンク15b、第3タンク15c(第1〜第nタンク)と、3つの第1水素量測定装置16a、第2水素量測定装置16b、第3水素量測定装置16c(第1〜第n水素量測定装置)と、3本の第1接続管17a、第2接続管17b、第3接続管17c(第1〜第n接続管)と、3本の第1バイパス管18a、第2バイパス管18b、第3バイパス管18c(第1〜第nバイパス管)と、3つの第1接続管開閉電磁弁19a、第2接続管開閉電磁弁19b、第3接続管開閉電磁弁19c(第1〜第n接続管開閉電磁弁)と、3つの第1バイパス管開閉電磁弁20a、第2バイパス管開閉電磁弁20b、第3バイパス管開閉電磁弁20c(第1〜第nバイパス管開閉電磁弁)と、コントローラ21とが設置されている。

第1燃料電池〜第3燃料電池14a〜14cは、電解質膜を挟んで電解質膜の両側に水素電極(負極)と空気電極(正極)とが配置された複数の単セルが一方向に並んでセル集合体を形成している。第1燃料電池〜第3燃料電池14a〜14cは、水素電極(負極)に水素(H2)が供給され、酸素電極(正極)に空気(酸素)が供給され、所定の化学反応によって発電し、所定の電力を発生する。第1燃料電池〜第3燃料電池14a〜14cによって発電された電力は電力線(図示せず)によって各電動機に給電される。各電動機は、第1燃料電池〜第3燃料電池14a〜14cから給電された電力によって駆動し、各ローター13を回転させる。水素電極や酸素電極には、白金電極や白金カーボン電極が使用されている。なお、3つの燃料電池14a〜14cを搭載した例を記載しているが、燃料電池の数に特に制限はなく、2つの燃料電池または4つ以上の燃料電池が搭載されていてもよい。

第1燃料電池14aは、その制御部が信号線22によってコントローラ21に接続され、第1燃料電池14aの出力をコントローラ21に送信する。第2燃料電池14bは、その制御部が信号線22によってコントローラ21に接続され、第2燃料電池14bの出力をコントローラ21に送信する。第3燃料電池14cは、その制御部が信号線22によってコントローラ21に接続され、第3燃料電池14cの出力をコントローラ21に送信する。

第1タンク〜第3タンク15a〜15c(燃料電池用水素タンク)は、その内部に高圧の水素を貯蔵している。第1タンク15aは、第1燃料電池14aに個別に接続され、第1燃料電池14aに水素を供給する。第1タンク15aには、その内部に貯蔵された水素の水素量を測定する水素量第1測定装置16aが設置されている。水素量第1測定装置16aは、信号線22によってコントローラ21に接続され、第1タンク15aに貯蔵された水素量(水素残量)を測定し、測定した水素量をコントローラ21に送信する。

第2タンク15bは、第2燃料電池14bに個別に接続され、第2燃料電池14bに水素を供給する。第2タンク15bには、その内部に貯蔵された水素の水素量を測定する水素量第2測定装置16bが設置されている。水素量第2測定装置16bは、信号線22によってコントローラ21に接続され、第2タンク15bに貯蔵された水素量(水素残量)を測定し、測定した水素量をコントローラ22に送信する。

第3タンク15cは、第3燃料電池14cに個別に接続され、第3燃料電池14cに水素を供給する。第3タンク15cには、その内部に貯蔵された水素の水素量を測定する水素量第3測定装置16cが設置されている。水素量第3測定装置16cは、信号線22によってコントローラ21に接続され、第3タンク15cに貯蔵された水素量(水素残量)を測定し、測定した水素量をコントローラ21に送信する。なお、4つ以上の燃料電池が搭載される場合、それら燃料電池各々に4つ以上のタンクが個別に接続される。

第1接続管17aは、第1燃料電池14aと第1タンク15aとに連結され、第1燃料電池14aと第1タンク15aとを接続する。第1接続管17aには、第1タンク15aから供給された水素が通流する。第1接続管17aには、その流路(水素流路)を開閉する第1接続管開閉電磁弁19a(第1開閉電磁バルブ)が設置されている。第1接続管開閉電磁弁19aは、第1バイパス管18aおよび第3バイパス管18cの後流側の第1接続管17aに設置されている。第1接続管開閉電磁弁19aは、その制御部が信号線22によってコントローラ21に接続されている。第1接続管開閉電磁弁19aは、コントローラ21からの開信号によって第1接続管17aの流路を開放し、コントローラ21からの閉信号によって第1接続管17aの流路を閉鎖する。

第2接続管17bは、第2燃料電池14bと第2タンク15bとに連結され、第2燃料電池14bと第2タンク15bとを接続する。第2接続管17bには、第2タンク15bから供給された水素が通流する。第2接続管17bには、その流路(水素流路)を開閉する第2接続管開閉電磁弁19b(第2開閉電磁バルブ)が設置されている。第2接続管開閉電磁弁19bは、第1バイパス管〜第3バイパス管18a〜18cの後流側の第2接続管17bに設置されている。第2接続管開閉電磁弁19bは、その制御部が信号線22によってコントローラ21に接続されている。第2接続管開閉電磁弁19bは、コントローラ21からの開信号によって第2接続管17bの流路を開放し、コントローラ21からの閉信号によって第2接続管17bの流路を閉鎖する。

第3接続管17cは、第3燃料電池14cと第3タンク15cとに連結され、第3燃料電池14cと第3タンク15cとを接続する。第3接続管17cには、第3タンク15cから供給された水素が通流する。第3接続管17cには、その流路(水素流路)を開閉する第3接続管開閉電磁弁19c(第3開閉電磁バルブ)が設置されている。第3接続管開閉電磁弁19cは、第2バイパス管18bおよび第3バイパス管18cの後流側の第3接続管17cに設置されている。第3接続管開閉電磁弁19cは、その制御部が信号線22によってコントローラ21に接続されている。第3接続管開閉電磁弁19cは、コントローラ21からの開信号によって第3接続管17cの流路を開放し、コントローラ21からの閉信号によって第3接続管17cの流路を閉鎖する。4つ以上の燃料電池と4つ以上のタンクが搭載される場合、それら燃料電池とそれらタンクとが4つ以上の接続管によって個別に接続される。

第1バイパス管18aは、第1接続管17aと第2接続管17bとに連結され、第1接続管17aと第2接続管17bとを接続する。第1バイパス管18aは、第1タンク15aおよび第2タンク15bから供給された水素を第1接続管17aと第2接続管17bとのうちのいずれか一方に流入させる。第1バイパス管18aには、その流路(水素流路)を開閉する第1バイパス管開閉電磁弁20a(第1開閉電磁バルブ)が設置されている。第1バイパス管開閉電磁弁20aは、その制御部が信号線22によってコントローラ21に接続されている。第1バイパス管開閉電磁弁20aは、コントローラ21からの開信号によって第1バイパス管18aの流路を開放し、コントローラ21からの閉信号によって第1バイパス管18aの流路を閉鎖する。

第2バイパス管18bは、第2接続管17bと第3接続管17cとに連結され、第2接続管17bと第3接続管17cとを接続する。第2バイパス管18bは、第2タンク15bおよび第3タンク15cから供給された水素を第2接続管17bと第3接続管17cとのうちのいずれか一方に流入させる。第2バイパス管18bには、その流路(水素流路)を開閉する第2バイパス管開閉電磁弁20b(第2開閉電磁バルブ)が設置されている。第2バイパス管開閉電磁弁20bは、その制御部が信号線22によってコントローラ21に接続されている。第2バイパス管開閉電磁弁20bは、コントローラ21からの開信号によって第2バイパス管18bの流路を開放し、コントローラ21からの閉信号によって第2バイパス管18bの流路を閉鎖する。

第3バイパス管18cは、第1接続管17aと第3接続管17cとに連結され、第1接続管17aと第3接続管17cとを接続する。第3バイパス管18cは、第1タンク15aおよび第3タンク15cから供給された水素を第1接続管17aと第3接続管17cとのうちのいずれか一方に流入させる。第3バイパス管18cには、その流路(水素流路)を開閉する第3バイパス管開閉電磁弁20c(第2開閉電磁バルブ)が設置されている。第3バイパス管開閉電磁弁20cは、その制御部が信号線22によってコントローラ21に接続されている。第3バイパス管開閉電磁弁20cは、コントローラ21からの開信号によって第3バイパス管18cの流路を開放し、コントローラ21からの閉信号によって第3バイパス管18cの流路を閉鎖する。なお、4つ以上の燃料電池と4つ以上のタンクが搭載される場合、それら燃料電池とそれらタンクとが4つ以上のバイパス管によって個別に接続される。

コントローラ21は、中央処理部(CPUまたはMPU)とメモリ(メインメモリおよびキャッシュメモリ)とを有して独立したオペレーティングシステム(OS)によって動作するコンピュータ(仮想マシンを含む)であり、大容量記憶領域(大容量ハードディスク等)を実装している。コントローラ21の記憶領域には、第1燃料電池〜第3燃料電池14a〜14cが稼働時の定格出力(発電電力量)、第1タンク〜第3タンク15a〜15cの水素貯蔵容量が格納(記憶)されている。

なお、燃料電池搭載ドローン10がプロポ(ラジオコントロール)による遠隔操作によって飛行(マニュアル飛行)する機種であってもよい。遠隔操作では、操作者がプロポによって燃料電池搭載ドローン10を操縦する。プロポは、コンピュータを備えたコントロールシステム(図示せず)に接続されている。プロポによる燃料電池搭載ドローン10の操縦時では、コントロールシステムのディスプレイに燃料電池搭載ドローン10の飛行速度、高度、地図情報、撮影映像表示、水素(負極活物質)残量等が表示される。飛行記録は、コントロールシステムに記憶される。

図4は、第1〜第3接続管17a〜17cや第1〜第3バイパス管18a〜18cによる第1〜第3燃料電池14a〜14cと第1〜第3タンク15a〜15cとの接続形態の他の一例を示す図である。図4に示す接続形態が図3に示すそれと異なるところは、第1バイパス管18aが第1タンク15aと第2タンク15bとに連結され、第2バイパス管18bが第2タンク15bと第3タンク15cとに連結され、第3バイパス管18cが第1タンク15aと第3タンク15cとに連結されている点にあり、その他の構成は図3のそれらと同一であるから、図3の説明を援用するとともに、図3と同一の符号を付すことで、図4の接続形態におけるその他の構成の説明は省略する。

第1バイパス管18aは、第1タンク15aと第2タンク15vとに連結され、第1タンク15aと第2タンク15bとを接続する。第1バイパス管18aは、第1タンク15aおよび第2タンク15bから供給される水素を第1タンク15aと第2タンク15bとのうちのいずれか一方に流入させる。第2バイパス管18bは、第2タンク15bと第3タンク15cとに連結され、第2タンク15bと第3タンク15cとを接続する。第2バイパス管18bは、第2タンク15bおよび第3タンク15cから供給される水素を第2タンク15bと第3タンク15cとのうちのいずれか一方に流入させる。第3バイパス管18cは、第1タンク15aと第3タンク15cとに連結され、第1タンク15aと第3タンク15cとを接続する。第3バイパス管18cは、第1タンク15aおよび第3タンク15bから供給される水素を第1タンク15aと第3タンク15cとのうちのいずれか一方に流入させる。

図5は、燃料電池搭載ドローン10の飛行およびホバリングの一例を示す図であり、図6は、図3の正常飛行時における水素の流動を示す図である。図7は、図4の正常飛行時における水素の流動を示す図である。燃料電池搭載ドローン10の自動自律飛行では、コンピュータを備えて燃料電池搭載ドローン10の離陸、飛行(飛行経路)、着陸を自動で行う自動航行システムが利用される。自動航行システムでは、マップ上に飛行経由地点(垂直方向の各地点、三次元方向の各地点、水平方向の各地点)、空中の複数の飛行目標箇所23a〜23c、着陸地点24を入力し、複数の高度、移動速度等の飛行ミッション(飛行プラン)を作成する。作成された飛行ミッションが自動航行システムから燃料電池搭載ドローン10のコントローラに送信され、燃料電池搭載ドローン10が自動航行システムからの飛行指示によって自動自律飛行を開始する。

自動自律飛行は、プロポによるマニュアル飛行では不可能な正確な位置と高度とを維持した飛行が可能になる。飛行記録は、燃料電池搭載ドローン10のコントローラ21に記憶されるとともに、自動航行システムに記憶される。燃料電池搭載ドローン10は、図5に示すように、離陸地点(着陸地点24)から離陸し、飛行経由地点に沿って飛行して空中のそれら飛行目標箇所23a〜23cに達する。飛行目的箇所では、燃料電池搭載ドローン10がホバリングしつつ所定のミッション(撮影や各種計測等)を行う。

離陸時および離陸後の正常飛行時では、コントローラ21が第1接続管開閉電磁弁〜第3接続管開閉電磁弁19a〜19cの制御部に開信号を送信し、第1バイパス管開閉電磁弁〜第3バイパス管開閉電磁弁20a〜20cの制御部に閉信号を送信する。さらに、第1燃料電池〜第3燃料電池14a〜14cに起動信号を送信する。第1接続管開閉電磁弁〜第3接続管開閉電磁弁19a〜19cの制御部は、コントローラ21からの開指令にしたがって第1接続管開閉電磁弁〜第3接続管開閉電磁弁19a〜19cの弁機構を開き、第1接続管〜第3接続管17a〜17cの流路を開放する。第1バイパス管開閉電磁弁〜第2バイパス管開閉電磁弁20a〜20cの制御部は、コントローラ21からの閉指令にしたがって第1バイパス管開閉電磁弁〜第3バイパス管開閉電磁弁20a〜20cの弁機構を閉じ、第1バイパス管〜第3バイパス管18a〜18cの流路を閉鎖する。

正常飛行時では、図6,7に矢印L1で示すように、第1タンク15aから水素(負極活物質)が第1接続管17aを通って第1燃料電池14aに流入し、水素が水素電極(負極)に供給されるとともに、酸素が空気電極(正極)に供給され、第1燃料電池14aにおいて発電が行われて第1燃料電池14aから所定(定格出力)の電力が各電動機に給電される。

第2タンク15bから水素(負極活物質)が第2接続管17bを通って第2燃料電池4bに流入し、水素が水素電極(負極)に供給されるとともに、酸素が空気電極(正極)に供給され、第2燃料電池14bにおいて発電が行われて第2燃料電池14bから所定(定格出力)の電力が各電動機に給電される。さらに、第3タンク15cから水素(負極活物質)が第3接続管17cを通って第3燃料電池14cに流入し、水素が水素電極(負極)に供給されるとともに、酸素が空気電極(正極)に供給され、第3燃料電池14cにおいて発電が行われて第3燃料電池14cから所定(定格出力)の電力が各電動機に給電される。なお、酸素は、外気から取り入れられている。

燃料電池搭載ドローン10は、水素(負極活物質)を貯蔵した各第1タンク〜第3タンク15a〜15c(各第1〜第nタンク)から各第1燃料電池〜第3燃料電池14a〜14c(各第1〜第n燃料電池)に個別に水素が供給されることで、それら第1燃料電池〜第3燃料電池14a〜14cから各電動機に所定の電力を長時間にわたって給電することができ、長時間の飛行を可能にすることができるとともに、長距離の飛行を可能にすることができる。

燃料電池搭載ドローン10は、第1燃料電池〜第3燃料電池14a〜14cを利用して発電することで、それら第1燃料電池〜第3燃料電池14a〜14cから大電力を各電動機に給電することができ、出力の大きな電動機を駆動させることができるとともに、小型機から大型機までの機体を長距離かつ長時間飛行させることができる。燃料電池搭載ドローン10は、所定の原因(電極の劣化やガス漏れ、燃料電池の圧力増加、水素漏れ等)で第1燃料電池〜第3燃料電池14a〜14cのうちののうちの少なくとも1つの燃料電池14a〜14cの出力が低下したとしても、他の燃料電池14a〜14cから給電される電力によって各電動機を駆動させることができ、燃料電池14a〜14cの出力低下による飛行不能や墜落を防ぐことができる。

正常飛行時では、第1燃料電池〜第3燃料電池14a〜14cにおいて定格出力の発電が行われ、第1燃料電池〜第3燃料電池14a〜14cにおいて発電された電力が各電動機に給電され、各電動機によって各ローター13が回転する。正常飛行時では、第1水素量測定装置16aから第1タンク15aに貯蔵された水素量(水素残量)がコントローラ21に送信され、第2水素量測定装置16bから第2タンク15bに貯蔵された水素量(水素残量)がコントローラ21に送信されているとともに、第3水素量測定装置16cから第3タンク15cに貯蔵された水素量(水素残量)がコントローラ21に送信されている。さらに、第1燃料電池14aの制御部から第1燃料電池14aの出力がコントローラ21に送信され、第2燃料電池14bの制御部から第2燃料電池14bの出力がコントローラ21に送信されているとともに、第3燃料電池14cの制御部から第3燃料電池14cの出力がコントローラに送信されている。

コントローラ21(燃料電池搭載ドローン10)は、第1燃料電池14aの制御部から送信された第1燃料電池14aの出力とあらかじめ設定された目標出力(定格出力)とを比較し、第1燃料電池14aの出力が目標出力以下になったかを監視し(出力監視手段)、第2燃料電池14bの制御部から送信された第2燃料電池14bの出力とあらかじめ設定された目標出力(定格出力)とを比較し、第2燃料電池14bの出力が目標出力以下になったかを監視するとともに(出力監視手段)、第3燃料電池14cの制御部から送信された第3燃料電池14cの出力とあらかじめ設定された目標出力(定格出力)とを比較し、第3燃料電池14cの出力が目標出力以下になったかを監視する(出力監視手段)。

コントローラ21は、燃料電池搭載ドローン10の飛行中およびホバリング中に第1水素量測定装置16aから送信された第1タンク15aの水素量(水素残量)(第1タンク15aに貯蔵された負極活物質の残量)や第2水素量測定装置16bから送信された第2タンク15bの水素量(水素残量)(第2タンク15bに貯蔵された負極活物質の残量)、第3水素量測定装置16cから送信された第3タンク15cの水素量(水素残量)(第3タンク15cに貯蔵された負極活物質の残量)が30%(所定の割合)未満になったかを判断する。

コントローラ21は、第1燃料電池〜第3燃料電池14a〜14cの出力が目標出力(定格出力)の範囲内であり、第1タンク14aの水素量(水素残量)や第2タンク15bの水素量(水素残量)、第3タンク15cの水素量(水素残量)が30%(所定の割合)以上の場合、燃料電池搭載ドローン10の飛行やホバリングを継続する。コントローラ21は、第1タンク15aの水素量(水素残量)や第2タンク15bの水素量(水素残量)、第3タンク15cの水素量(水素残量)が30%(所定の割合)未満になった場合、あらかじめ設定された着陸地点24に向かって燃料電池搭載ドローン10を帰還させる。燃料電池搭載ドローン10は、着陸地点24に向かって帰還する(第2帰還手段)。なお、燃料電池搭載ドローン10を着陸地点24に帰還させる水素量(水素残量)は任意に設定(たとえば、20%や25%等)することができる。

燃料電池搭載ドローン10は、その飛行中およびホバリング中に第1タンク〜第3タンク15a〜15c(第1〜第nタンク)に貯蔵された水素(負極活物質)が消費され、第1タンク〜第3タンク15a〜15cに貯蔵された水素の残量が30%(所定の割合)未満になった場合、あらかじめ設定された着陸地点24に向かって帰還するから、水素の不足による飛行不能や墜落を防ぎつつ、燃料電池搭載ドローン10を着陸地点24まで無事に飛行させることができ、水素が減少した燃料電池搭載ドローン10を着陸地点24に着陸させることができる。

図8は、図3のフェールセーフ手段における水素の流動の一例を示す図であり、図9は、図4のフェールセーフ手段における水素の流動の一例を示す図である。なお、第1燃料電池14aの出力が目標出力(定格出力)未満になった場合を例としてフェールセーフ手段を説明する。

コントローラ21(燃料電池搭載ドローン10)は、燃料電池搭載ドローン10の飛行中およびホバリング中において出力監視手段によって第1燃料電池〜第3燃料電池14a〜14cの出力を監視しつつ、所定の原因(電極の劣化やガス漏れ、燃料電池の圧力増加、水素漏れ等)によって第1燃料電池〜第3燃料電池14a〜14cのうちの少なくとも1つの燃料電池14a〜14cの出力が低下した場合、出力が低下した燃料電池14a〜14cへの水素(負極活物質)の供給を停止し、出力が低下した燃料電池14a〜14cに供給されていた水素をバイパス管18a〜18cを利用して正常な出力の燃料電池14a〜14cに供給する(フェールセーフ手段)。 コントローラ21(燃料電池搭載ドローン10)は、燃料電池搭載ドローン10がその飛行中およびホバリング中にフェールセーフ手段を実施した場合、あらかじめ設定された着陸地点24に向かって燃料電池搭載ドローン10を帰還させる。燃料電池搭載ドローン10は、着陸地点24に向かって帰還する(第1帰還手段)。

第1燃料電池14aの出力が目標出力(定格出力)未満になった場合、コントローラ21は、第1接続管開閉電磁弁19aの制御部に閉信号を送信し、第2バイパス管開閉電磁弁20bの制御部に閉信号を送信する。さらに、コントローラ21は、第2接続管開閉電磁弁19bおよび第3接続管開閉電磁弁19cの制御部に開信号を送信し、第1バイパス管開閉電磁弁20aおよび第3バイパス管開閉電磁弁20cの制御部に開信号を送信する。

第1接続管開閉電磁弁19aの制御部は、コントローラ21からの閉指令にしたがって第1接続管開閉電磁弁19aの弁機構を閉じ、第1接続管17aの流路を閉鎖する。第2バイパス管開閉電磁弁20bの制御部は、コントローラ21からの閉指令にしたがって第2バイパス管開閉電磁弁20bの弁機構の閉鎖を継続する。第2接続管開閉電磁弁19bの制御部は、コントローラ21からの開指令にしたがって第2接続管開閉電磁弁19bの弁機構の開放を継続し、第3接続管開閉電磁弁19cの制御部は、コントローラ21からの開指令にしたがって第3接続管開閉電磁弁19cの弁機構の開放を継続する。第1バイパス管開閉電磁弁20aの制御部は、コントローラ21からの開指令にしたがって第1バイパス管開閉電磁弁20aの弁機構を開け、第1バイパス管18aの流路を開放する。第3バイパス管開閉電磁弁20cの制御部は、コントローラ21からの開指令にしたがって第3バイパス管開閉電磁弁20cの弁機構を開け、第3バイパス管18cの流路を開放する。

フェールセーフ手段における図8の接続態様では、図8に矢印L2で示すように、第1タンク15aから供給された水素(負極活物質)が第1接続管17aを通って第1バイパス管18aに流入し、水素が第1バイパス管18aから第2接続管17bに流入するとともに、第2タンク15bから供給された水素と合流して第2接続管17bから第2燃料電池14bに流入し、水素が水素電極(負極)に供給されるとともに、酸素が空気電極(正極)に供給され、第2燃料電池14bにおいて発電が行われて第2燃料電池14bから所定(定格出力)の電力が各電動機に給電される。

さらに、第1タンク15aから供給された水素(負極活物質)が第1接続管17aを通って第3バイパス管18cに流入し、水素が第3バイパス管18cから第3接続管17cに流入するとともに、第3タンク15cから供給された水素と合流して第3接続管17cから第3燃料電池14cに流入し、水素が水素電極(負極)に供給されるとともに、酸素が空気電極(正極)に供給され、第3燃料電池14cにおいて発電が行われて第3燃料電池14cから所定(定格出力)の電力が各電動機に給電される。フェールセーフ手段における図8の接続態様では、第1タンク15aに貯蔵された水素(負極活物質)が第2燃料電池14bおよび第3燃料電池14cに均等に供給される。なお、第1燃料電池14aに水素は供給されず、第1燃料電池14aにおける発電が停止する。

フェールセーフ手段における図9の接続態様では、図9に矢印L2で示すように、第1タンク15aに貯蔵された水素(負極活物質)が第1バイパス管18aに流入し、水素が第1バイパス管18aから第2タンク15bに流入するとともに、第2タンク15bに貯蔵された水素と合流して第2接続管17bから第2燃料電池14bに流入し、水素が水素電極(負極)に供給されるとともに、酸素が空気電極(正極)に供給され、第2燃料電池14bにおいて発電が行われて第2燃料電池14bから所定(定格出力)の電力が各電動機に給電される。

さらに、第1タンク15aに貯蔵された水素(負極活物質)が第3バイパス管18cに流入し、水素が第3バイパス管18cから第3タンク15cに流入するとともに、第3タンク15cに貯蔵された水素と合流して第3接続管17cから第3燃料電池14cに流入し、水素が水素電極(負極)に供給されるとともに、酸素が空気電極(正極)に供給され、第3燃料電池14cにおいて発電が行われて第3燃料電池14cから所定(定格出力)の電力が各電動機に給電される。フェールセーフ手段における図9の接続態様では、第1タンク15aに貯蔵された水素(負極活物質)が第2燃料電池14bおよび第3燃料電池14cに均等に供給される。なお、第1燃料電池14aに水素は供給されず、第1燃料電池14aにおける発電が停止する。

燃料電池搭載ドローン10の飛行中およびホバリング中に所定の原因によって第1燃料電池〜第3燃料電池14a〜14c(第1〜第n燃料電池)のうちの少なくとも1つの燃料電池14a〜14cの出力が低下し、出力が低下した燃料電池14a〜14cに水素(負極活物質)を継続して供給すると、その水素が無駄になり、燃料電池搭載ドローン10の飛行距離や飛行時間が短くなる。しかし、燃料電池搭載ドローン10は、第1燃料電池〜第3燃料電池14a〜14cのうちの少なくとも1つの燃料電池14a〜14cの出力が低下した場合、出力が低下した燃料電池14a〜14cに接続された接続管17a〜17cの流路を接続管開閉電磁弁19a〜19cによって閉鎖しつつ、出力が低下した燃料電池14a〜14cの接続管17a〜17cに接続されたバイパス管18a〜18cの流路をバイパス管開閉電磁弁20a〜20cによって開放し、それによって出力が低下した燃料電池18a〜18cに接続されたタンク15a〜15cの水素がバイパス管18a〜18cを通って出力が正常な燃料電池14a〜14cに均等に供給されるから、出力が低下した燃料電池14a〜14cに供給されていた水素を正常な出力の燃料電池14a〜14cの発電に使用することができ、その水素を利用して燃料電池搭載ドローン10の飛行距離および飛行時間を維持することができる。燃料電池搭載ドローン10は、その飛行中またはホバリング中に何らかの原因で燃料電池14a〜14cの出力が低下したとしても、その飛行距離および飛行時間を維持することができるから、燃料電池搭載ドローン10をあらかじめ設定された着陸地点24まで無事に飛行させることができ、燃料電池搭載ドローン10を着陸地点に着陸させることができる。

燃料電池搭載ドローン10は、その飛行中およびホバリング中に所定の原因によって第1燃料電池〜第n燃料電池14a〜14c(第1〜第n燃料電池)のうちの少なくとも1つの燃料電池14a〜14cの出力が低下した場合、燃料電池搭載ドローン10があらかじめ設定された着陸地点24に向かって帰還するから、燃料電池14a〜14cの出力低下による飛行不能や墜落を防ぎつつ、燃料電池搭載ドローン10を着陸地点24まで無事に飛行させることができ、第1燃料電池〜第n燃料電池14a〜14cのうちの少なくとも1つの燃料電池14a〜14cの出力が低下した燃料電池搭載ドローン10を着陸地点24に着陸させることができる。

10 燃料電池搭載ドローン 11 機体本体 12 ローターアーム 13 ローター 14a 第1燃料電池 14b 第2燃料電池 14c 第3燃料電池 15a 第1タンク 15b 第2タンク 15c 第3タンク 16a 第1水素量測定装置 16b 第2水素量測定装置 16c 第3水素量測定装置 17a 第1接続管 17b 第2接続管 17c 第3接続管 18a 第1バイパス管 18b 第2バイパス管 18c 第3バイパス管 19a 第1接続管開閉電磁弁 19b 第2接続管開閉電磁弁 19c 第3接続管開閉電磁弁 20a 第1バイパス管開閉電磁弁 20b 第2バイパス管開閉電磁弁 20c 第3バイパス管開閉電磁弁 21 コントローラ 22 信号線 23a〜23c 飛行目標箇所 24 着陸地点

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈