首页 / 专利库 / 燃料种类 / 燃料 / 燃料電池発電システム

燃料電池発電システム

阅读:96发布:2024-01-03

专利汇可以提供燃料電池発電システム专利检索,专利查询,专利分析的服务。并且【課題】漏電発生時に両遮断リレー部を遮断させるという機能と他の 燃料 電池発電システム用の機能とを共存させることができ、かつ、コスト的に有利な構成を実現する。 【解決手段】 2入 力 アンド回路163は、入力部163Lおよび163Rにオン 信号 が入力されているという第3オン条件が成立している期間において電圧供給検知信号を制御装置180に送信する。第1〜第3出力条件が成立していることが、制御装置180が燃料電池ユニット150から第2接続経路142への電力供給を許可するための必要条件である。第1出力条件は、操作入力部162Mにオン信号が入力されているという条件である。第2出力条件は、燃料電池発電システム200が第1異常を検知していないという条件である。第3出力条件は、制御装置180が電圧供給検知信号を受信しているという条件である。 【選択図】図7,下面是燃料電池発電システム专利的具体信息内容。

第1接続経路を用いて第1系統電源に接続され第2接続経路を用いて第2系統電源に接続される燃料電池発電システムであって、 前記第1接続経路上に設けられた第1遮断リレー部と、 前記第2接続経路上に設けられた第2遮断リレー部と、 前記第1接続経路を用いて前記第1系統電源に接続され、前記第2接続経路を用いて前記第2系統電源に接続される、燃料電池ユニットと、 漏電入部、異常入力部および操作入力部の3つの入力部を有し、これら3つの入力部にオン信号が入力されているという第1オン条件が成立している期間において前記第1遮断リレー部をオン状態に維持し、前記第1オン条件が成立していない期間において前記第1遮断リレー部をオフ状態に維持する、第1の3入力アンド回路と、 漏電入力部、異常入力部および操作入力部の3つの入力部を有し、これら3つの入力部にオン信号が入力されているという第2オン条件が成立している期間において前記第2遮断リレー部をオン状態に維持し、前記第2オン条件が成立していない期間において前記第2遮断リレー部をオフ状態に維持する、第2の3入力アンド回路と、 前記第1の3入力アンド回路の操作入力部にオン信号が入力されている状態を得るための第1オン操作と、前記第1の3入力アンド回路の操作入力部にオン信号が入力されていない状態を得るための第1オフ操作と、前記第2の3入力アンド回路の操作入力部にオン信号が入力されている状態を得るための第2オン操作と、前記第2の3入力アンド回路の操作入力部にオン信号が入力されていない状態を得るための第2オフ操作と、を受け付ける操作部と、 前記操作部が受け付ける操作と、所定の第1異常の発生と、を認識する制御装置と、 漏電入力部および復電入力部の2つの入力部を有し、これら2つの入力部にオン信号が入力されているという第3オン条件が成立している期間において電圧供給検知信号を前記制御装置に送信し、前記第3オン条件が成立していない期間において前記電圧供給検知信号を前記制御装置に送信しない2入力アンド回路と、を備え、 前記燃料電池発電システムが漏電を検知すると、前記第1の3入力アンド回路の漏電入力部、前記第2の3入力アンド回路の漏電入力部および前記2入力アンド回路の漏電入力部へのオン信号の入力が停止され、 前記燃料電池発電システムが前記第1異常を検知すると、前記制御装置によって、前記第1の3入力アンド回路の異常入力部および前記第2の3入力アンド回路の異常入力部へのオン信号の入力が停止され、 前記燃料電池発電システムが前記第2系統電源から前記第2接続経路への電圧供給を検知すると、前記2入力アンド回路の復電入力部にオン信号が入力され、 第1出力条件、第2出力条件および第3出力条件が成立していることが、前記制御装置が前記燃料電池ユニットから前記第2接続経路への電力供給を許可するための必要条件であり、 前記第1出力条件は、前記第2の3入力アンド回路の操作入力部にオン信号が入力されているという条件であり、 前記第2出力条件は、前記燃料電池発電システムが前記第1異常を検知していないという条件であり、 前記第3出力条件は、前記制御装置が前記電圧供給検知信号を受信しているという条件である、燃料電池発電システム。前記第1系統電源および前記第2系統電源は、商用電源を電力供給源とする電源であり、 前記第1異常は、前記燃料電池発電システムにおける過電流、または、前記商用電源の電圧の異常である、請求項1に記載の燃料電池発電システム。前記燃料電池ユニットは、DCACインバータをさらに備え、 前記DCACインバータは、前記燃料電池ユニットから前記第2接続経路に電力を供給する場合、前記燃料電池ユニットで生成された直流電力を交流電力に変換する電力変換を行い、 前記第1出力条件、前記第2出力条件および前記第3出力条件が成立していることが、前記制御装置が前記DCACインバータに前記電力変換を行わせるための必要条件である、請求項1または2に記載の燃料電池発電システム。前記燃料電池発電システムは、電源回路と、プルアップ抵抗と、をさらに備え、 前記電源回路は、前記第1遮断リレー部および前記第2遮断リレー部がオフ状態であっても前記第1系統電源および/または前記第2系統電源から電力が供給される位置に設けられ、 前記電源回路から前記プルアップ抵抗を介して前記第1の3入力アンド回路の異常入力部に電圧が供給されることによって、前記第1の3入力アンド回路の異常入力部に入力される信号がオン信号である状態が実現される、請求項1〜3のいずれか一項に記載の燃料電池発電システム。前記第1接続経路は、前記第1遮断リレーと前記第1系統電源とを接続する系統側部分を有し、前記系統側部分から前記電源回路に電力が供給される、請求項4に記載の燃料電池発電システム。前記燃料電池ユニットは、制御電源を有し、 前記燃料電池発電システムの運転モードは、起動モードを有し、 前記起動モードにおいて、 前記電源回路から前記プルアップ抵抗を介して前記第1の3入力アンド回路の異常入力部に電圧が供給されることによって、前記第1の3入力アンド回路の異常入力部に入力される信号がオン信号に維持され、 前記第1の3入力アンド回路の異常入力部に入力される信号がオン信号に維持された状態で前記操作部が前記第1オン操作を受け付けると、前記第1遮断リレー部がオフ状態からオン状態に切り替わり、 前記第1遮断リレー部がオフ状態からオン状態に切り替わることによって、前記第1系統電源から前記第1遮断リレー部を介して前記制御電源に電力が供給され、 前記制御電源に電力が供給されることによって、前記制御電源が起動し、 前記制御電源が起動した後に、前記制御電源から前記制御装置に電力が供給され、 前記制御電源から前記制御装置に電力が供給されることによって、前記制御装置が起動し、 前記制御装置が起動した後に、前記制御装置が前記第2の3入力アンド回路の異常入力部に入力される信号をオン信号に維持する、請求項4または5に記載の燃料電池発電システム。前記燃料電池発電システムは、漏電検知位置に配置された漏電検知素子をさらに備え、 前記第1系統電源から前記第1遮断リレー部および前記漏電検知位置をこの順に介して第1負荷に電力を導くのに用いられる第1経路と、 前記第2系統電源から前記第2遮断リレー部および前記漏電検知位置をこの順に介して第2負荷に電力を導くのに用いられる第2経路と、が存在し、 前記漏電検知素子は、前記第1負荷の漏電検知および前記第2負荷の漏電検知に共用される、請求項1〜6のいずれか一項に記載の燃料電池発電システム。

说明书全文

本開示は、燃料電池発電システムに関する。

2つの接続経路を備え、各接続経路が遮断リレー部を有し、漏電発生時に両遮断リレー部を遮断させるシステムが知られている。そのようなシステムの一例が、特許文献1に記載されている。具体的には、特許文献1のシステムは、夜間電源から第1ヒータに電を導くのに用いられる第1接続経路と、昼間電源から第2ヒータに電力を導くのに用いられる第2接続経路と、を備えている。これらの接続経路の各々は、遮断リレー部を有している。

実開昭58−127824号公報

特許文献1では、上記のようなシステムを燃料電池発電システムに適用することは検討されていない。本開示は、漏電発生時に両遮断リレー部を遮断させるという機能と他の燃料電池発電システム用の機能とを共存させることができ、かつ、コスト的に有利な構成を検討した。

本開示は、 第1接続経路を用いて第1系統電源に接続され第2接続経路を用いて第2系統電源に接続される燃料電池発電システムであって、 前記第1接続経路上に設けられた第1遮断リレー部と、 前記第2接続経路上に設けられた第2遮断リレー部と、 前記第1接続経路を用いて前記第1系統電源に接続され、前記第2接続経路を用いて前記第2系統電源に接続される、燃料電池ユニットと、 漏電入力部、異常入力部および操作入力部の3つの入力部を有し、これら3つの入力部にオン信号が入力されているという第1オン条件が成立している期間において前記第1遮断リレー部をオン状態に維持し、前記第1オン条件が成立していない期間において前記第1遮断リレー部をオフ状態に維持する、第1の3入力アンド回路と、 漏電入力部、異常入力部および操作入力部の3つの入力部を有し、これら3つの入力部にオン信号が入力されているという第2オン条件が成立している期間において前記第2遮断リレー部をオン状態に維持し、前記第2オン条件が成立していない期間において前記第2遮断リレー部をオフ状態に維持する、第2の3入力アンド回路と、 前記第1の3入力アンド回路の操作入力部にオン信号が入力されている状態を得るための第1オン操作と、前記第1の3入力アンド回路の操作入力部にオン信号が入力されていない状態を得るための第1オフ操作と、前記第2の3入力アンド回路の操作入力部にオン信号が入力されている状態を得るための第2オン操作と、前記第2の3入力アンド回路の操作入力部にオン信号が入力されていない状態を得るための第2オフ操作と、を受け付ける操作部と、 前記操作部が受け付ける操作と、所定の第1異常の発生と、を認識する制御装置と、 漏電入力部および復電入力部の2つの入力部を有し、これら2つの入力部にオン信号が入力されているという第3オン条件が成立している期間において電圧供給検知信号を前記制御装置に送信し、前記第3オン条件が成立していない期間において前記電圧供給検知信号を前記制御装置に送信しない2入力アンド回路と、を備え、 前記燃料電池発電システムが漏電を検知すると、前記第1の3入力アンド回路の漏電入力部、前記第2の3入力アンド回路の漏電入力部および前記2入力アンド回路の漏電入力部へのオン信号の入力が停止され、 前記燃料電池発電システムが前記第1異常を検知すると、前記制御装置によって、前記第1の3入力アンド回路の異常入力部および前記第2の3入力アンド回路の異常入力部へのオン信号の入力が停止され、 前記燃料電池発電システムが前記第2系統電源から前記第2接続経路への電圧供給を検知すると、前記2入力アンド回路の復電入力部にオン信号が入力され、 第1出力条件、第2出力条件および第3出力条件が成立していることが、前記制御装置が前記燃料電池ユニットから前記第2接続経路への電力供給を許可するための必要条件であり、 前記第1出力条件は、前記第2の3入力アンド回路の操作入力部にオン信号が入力されているという条件であり、 前記第2出力条件は、前記燃料電池発電システムが前記第1異常を検知していないという条件であり、 前記第3出力条件は、前記制御装置が前記電圧供給検知信号を受信しているという条件である、燃料電池発電システムを提供する。

本開示に係る燃料電池発電システムは、漏電発生時に第1および第2遮断リレー部を遮断させるという機能を有している。この燃料電池発電システムは、さらに、所定の異常発生時および人による外部操作時にこれらのリレー部を遮断させるという、燃料電池発電システム用の他の機能も有している。また、本開示に係る燃料電池発電システムは、低コスト化の観点から有利である。

図1は、実施形態に係る燃料電池発電システムの回路図である。

図2は、図1の燃料電池発電システムの動作を説明するための図である。

図3は、図1の燃料電池発電システムの動作を説明するための図である。

図4は、図1の燃料電池発電システムの動作を説明するための図である。

図5は、図1の燃料電池発電システムの動作を説明するための図である。

図6は、図1の燃料電池発電システムの一部を詳細に示す回路図である。

図7は、実施形態に係る切替装置を説明するための回路図である。

(本開示の基礎となった知見) 特許文献1により、2つの接続経路を備え、各接続経路が遮断リレー部を有し、漏電発生時に両遮断リレー部を遮断させるシステムが知られている。しかし、特許文献1では、そのシステムを燃料電池発電システムに適用することは検討されていない。第1接続経路を用いて第1系統電源と燃料電池ユニットとが接続され、第2接続経路を用いて第2系統電源と燃料電池ユニットとが接続された燃料電池発電システムを構成すれば、系統電源から燃料電池ユニットに電力を供給できる。また、そのようなシステムを構成すれば、燃料電池ユニットの発電電力を系統電源に供給できる。

燃料電池発電システムにおいては、漏電発生時に加え、過電流などの所定の異常発生時および人による外部操作時のいずれにおいても第1接続経路の遮断リレー部および第2接続経路の遮断リレー部を遮断させることが考えられる。遮断リレー部に漏電ブレーカの機能とともに他の機能を持たせることは、システムの低コスト化に貢献する。

また、燃料電池発電システムにおいては、第2系統電源から燃料電池ユニットに電圧が供給されているときに、燃料電池ユニットの発電電力の第2接続経路への供給を開始することが考えられる。第2系統電源から第2接続経路に電圧が供給されているか否かを検知できるように燃料電池発電システムを構成することは可能である。しかし、第2遮断リレー部が遮断している可能性を考慮すると、第2系統電源から第2接続経路に電圧が供給されていることは、第2系統電源から燃料電池ユニットに電圧が供給されていることを直ちに意味するわけではない。

そこで、本開示は、遮断リレー部を上記のように多機能化するとともに、第2系統電源から燃料電池ユニットに電圧が供給されているときに燃料電池ユニットの発電電力の第2接続経路への供給を開始するのに適した技術を提供することを目的にする。

(本開示に係る一態様の概要) 本開示の第1態様に係る燃料電池発電システムは、 第1接続経路を用いて第1系統電源に接続され第2接続経路を用いて第2系統電源に接続される燃料電池発電システムであって、 前記第1接続経路上に設けられた第1遮断リレー部と、 前記第2接続経路上に設けられた第2遮断リレー部と、 前記第1接続経路を用いて前記第1系統電源に接続され、前記第2接続経路を用いて前記第2系統電源に接続される、燃料電池ユニットと、 漏電入力部、異常入力部および操作入力部の3つの入力部を有し、これら3つの入力部にオン信号が入力されているという第1オン条件が成立している期間において前記第1遮断リレー部をオン状態に維持し、前記第1オン条件が成立していない期間において前記第1遮断リレー部をオフ状態に維持する、第1の3入力アンド回路と、 漏電入力部、異常入力部および操作入力部の3つの入力部を有し、これら3つの入力部にオン信号が入力されているという第2オン条件が成立している期間において前記第2遮断リレー部をオン状態に維持し、前記第2オン条件が成立していない期間において前記第2遮断リレー部をオフ状態に維持する、第2の3入力アンド回路と、 前記第1の3入力アンド回路の操作入力部にオン信号が入力されている状態を得るための第1オン操作と、前記第1の3入力アンド回路の操作入力部にオン信号が入力されていない状態を得るための第1オフ操作と、前記第2の3入力アンド回路の操作入力部にオン信号が入力されている状態を得るための第2オン操作と、前記第2の3入力アンド回路の操作入力部にオン信号が入力されていない状態を得るための第2オフ操作と、を受け付ける操作部と、 前記操作部が受け付ける操作と、所定の第1異常の発生と、を認識する制御装置と、 漏電入力部および復電入力部の2つの入力部を有し、これら2つの入力部にオン信号が入力されているという第3オン条件が成立している期間において電圧供給検知信号を前記制御装置に送信し、前記第3オン条件が成立していない期間において前記電圧供給検知信号を前記制御装置に送信しない2入力アンド回路と、を備え、 前記燃料電池発電システムが漏電を検知すると、前記第1の3入力アンド回路の漏電入力部、前記第2の3入力アンド回路の漏電入力部および前記2入力アンド回路の漏電入力部へのオン信号の入力が停止され、 前記燃料電池発電システムが前記第1異常を検知すると、前記制御装置によって、前記第1の3入力アンド回路の異常入力部および前記第2の3入力アンド回路の異常入力部へのオン信号の入力が停止され、 前記燃料電池発電システムが前記第2系統電源から前記第2接続経路への電圧供給を検知すると、前記2入力アンド回路の復電入力部にオン信号が入力され、 第1出力条件、第2出力条件および第3出力条件が成立していることが、前記制御装置が前記燃料電池ユニットから前記第2接続経路への電力供給を許可するための必要条件であり、 前記第1出力条件は、前記第2の3入力アンド回路の操作入力部にオン信号が入力されているという条件であり、 前記第2出力条件は、前記燃料電池発電システムが前記第1異常を検知していないという条件であり、 前記第3出力条件は、前記制御装置が前記電圧供給検知信号を受信しているという条件である、燃料電池発電システム。

第1態様によれば、多機能化された遮断リレー部が実現される。具体的には、漏電発生時に、第1遮断リレー部および第2遮断リレー部を遮断させることができる。制御装置の寄与により、第1異常発生時に、これらのリレー部を遮断させることができる。操作部の寄与により、人による外部操作時に、これらの遮断リレー部を遮断させることができる。また、第1態様は、第2系統電源から燃料電池ユニットに電圧が供給されているときに、燃料電池ユニットの発電電力の第2接続経路への供給を開始するのに適している。

本開示の第2態様において、例えば、第1態様に係る燃料電池発電システムでは、前記第1系統電源および前記第2系統電源は、商用電源を電力供給源とする電源であり、前記第1異常は、前記燃料電池発電システムにおける過電流、または、前記商用電源の電圧の異常である。

第2態様によれば、燃料電池発電システムにおける過電流、または、商用電源の電圧の異常が発生したときに、第1遮断リレー部および第2遮断リレー部を遮断できる。

本開示の第3態様において、例えば、第1態様または第2態様に係る燃料電池発電システムでは、前記燃料電池ユニットは、DCACインバータをさらに備え、前記DCACインバータは、前記燃料電池ユニットから前記第2接続経路に電力を供給する場合、前記燃料電池ユニットで生成された直流電力を交流電力に変換する電力変換を行い、前記第1出力条件、前記第2出力条件および前記第3出力条件が成立していることが、前記制御装置が前記DCACインバータに前記電力変換を行わせるための必要条件である。

第3態様によれば、燃料電池ユニットから第2接続経路への電力供給の許可を適切に行うことができる。

本開示の第4態様において、例えば、第1〜第3態様のいずれか1つに係る燃料電池発電システムは、電源回路と、プルアップ抵抗と、をさらに備え、前記電源回路は、前記第1遮断リレー部および前記第2遮断リレー部がオフ状態であっても前記第1系統電源および/または前記第2系統電源から電力が供給される位置に設けられ、前記電源回路から前記プルアップ抵抗を介して前記第1の3入力アンド回路の異常入力部に電圧が供給されることによって、前記第1の3入力アンド回路の異常入力部に入力される信号がオン信号である状態が実現される。

燃料電池発電システムの起動直後などには、制御装置が起動していないことがある。しかし、第4態様によれば、制御装置が起動していなくても、第1の3入力アンド回路の異常入力部に入力される信号がオン信号である状態が実現される。これにより、制御装置が起動していないときであっても、第1遮断リレー部をオン状態にでき、第1遮断リレー部を介して燃料電池ユニットと第1系統電源との間を電力が流れることができる。

本開示の第5態様において、例えば、第4態様に係る燃料電池発電システムでは、前記第1接続経路は、前記第1遮断リレーと前記第1系統電源とを接続する系統側部分を有し、前記系統側部分から前記電源回路に電力が供給される。

第5態様における電源回路への電力供給の仕方は、電源回路への電力供給の仕方の具体例である。

本開示の第6態様において、例えば、第4態様または第5態様に係る燃料電池発電システムでは、前記燃料電池ユニットは、制御電源を有し、前記燃料電池発電システムの運転モードは、起動モードを有し、前記起動モードにおいて、前記電源回路から前記プルアップ抵抗を介して前記第1の3入力アンド回路の異常入力部に電圧が供給されることによって、前記第1の3入力アンド回路の異常入力部に入力される信号がオン信号に維持され、前記第1の3入力アンド回路の異常入力部に入力される信号がオン信号に維持された状態で前記操作部が前記第1オン操作を受け付けると、前記第1遮断リレー部がオフ状態からオン状態に切り替わり、前記第1遮断リレー部がオフ状態からオン状態に切り替わることによって、前記第1系統電源から前記第1遮断リレー部を介して前記制御電源に電力が供給され、前記制御電源に電力が供給されることによって、前記制御電源が起動し、前記制御電源が起動した後に、前記制御電源から前記制御装置に電力が供給され、前記制御電源から前記制御装置に電力が供給されることによって、前記制御装置が起動し、前記制御装置が起動した後に、前記制御装置が前記第2の3入力アンド回路の異常入力部に入力される信号をオン信号に維持する。

第6態様の起動モードによれば、制御装置を適切に起動させることができる。また、この起動後に制御装置が第2の3入力アンド回路の異常入力部に入力される信号をオン信号に維持することができる。この維持がなされた状態で操作部に対して第2オン操作がなされることにより、第2遮断リレー部をオフ状態からオン状態に切り替えることができる。これにより、第2系統電源から第2遮断リレー部を介して燃料電池ユニットに電圧を供給することが可能となる。

本開示の第7態様において、例えば、第1〜第6態様のいずれか1つに係る燃料電池発電システムは、漏電検知位置に配置された漏電検知素子をさらに備え、前記第1系統電源から前記第1遮断リレー部および前記漏電検知位置をこの順に介して第1負荷に電力を導くのに用いられる第1経路と、前記第2系統電源から前記第2遮断リレー部および前記漏電検知位置をこの順に介して第2負荷に電力を導くのに用いられる第2経路と、が存在し、前記漏電検知素子は、前記第1負荷の漏電検知および前記第2負荷の漏電検知に共用される。

第7態様では、漏電検知素子は、第1負荷の漏電および第2負荷の漏電の検知に共用される。この構成は、燃料電池発電システムの小型化に適している。

以下、本開示の実施形態について、図面を参照しながら説明する。本開示は、以下の実施形態に限定されない。

図1は、本実施形態に係る燃料電池発電システム200を示す。

燃料電池発電システム200は、第1系統電源11および第2系統電源12と連系され得る。燃料電池発電システム200には、第1系統電源11および第2系統電源12から電力が供給され得る。燃料電池発電システム200は、第2系統電源12に電力を供給し得る。

燃料電池発電システム200は、燃料電池41と、補機44と、改質器45と、燃焼器46と、余剰ヒータ25と、イグナイタ21aと、ヒータ21bと、制御電源47と、コンセント26と、バックアップボイラ27と、電力供給回路100と、を含む。燃料電池発電システム200では、燃料電池ユニット150が構成されている。

以下、燃料電池発電システム200の構成要素および該システム200に関連する要素について説明する。

(系統電源11および12) 第1系統電源11は、第1交流電圧VAC1を出力可能な電源である。第2系統電源12は、第2交流電圧VAC2を出力可能な電源である。第1交流電圧VAC1の実効値は、第2交流電圧VAC2の実効値よりも小さい。第1交流電圧VAC1の実効値は、例えば100Vである。第2交流電圧VAC2の実効値は、例えば200Vである。

図6に示すように、本実施形態では、第1系統電源11および第2系統電源12は、商用電源15を電力供給源とする電源である。ここで、商用電源15は、電気事業者(いわゆる10電力会社に限らない)によって供給される電源を指す。具体的には、第1系統電源11および第2系統電源12は、商用電源15と、分電盤17に引き込まれた単相3線式の3つの線路16U,16Oおよび16Wと、を用いて実現される。線路16UはU相線路であり、線路16OはO相線路であり、線路16WはW相線路である。線路16Uおよび16Wは非接地線路であり、O相線路は接地線路(中性線)である。線路16Uと線路16Oとの間には第1交流電圧VAC1が印加され、線路16Wと線路16Oとの間には第1交流電圧VAC1が印加され、線路16Uと線路16Wとの間には第2交流電圧VAC2が印加される。第1系統電源11は、商用電源15から線路16Uおよび16Oを介して電力を取り出すことによって実現される。ただし、第1系統電源11は、商用電源15から線路16Wおよび16Oを介して電力を取り出すことによって実現されてもよい。第2系統電源12は、商用電源15から線路16Uおよび16Wを介して電力を取り出すことによって実現される。

(補助電源装置19) 商用電源15が停電すると、第1系統電源11および第2系統電源12も停電する。第1系統電源11の停電時には、第1系統電源11に代えて補助電源装置19から燃料電池発電システム200に交流電力が供給され得る。具体的には、補助電源装置19は、燃料電池発電システム200に電圧VAC1の交流電力を供給できる。補助電源装置19は、例えば、発電機または蓄電池である。

(燃焼器46およびイグナイタ21a) 燃焼器46には、原料ガスが供給される。イグナイタ21aは、火花放電を生じさせ、燃焼器46の原料ガスに着火する。燃焼器46において、原料ガスが燃焼し、熱が発生する。この熱は、改質器45に与えられる。

(改質器45およびヒータ21b) 改質器45は、改質反応を進行させるための改質触媒を有する。改質器45には、および原料ガスが供給される。改質器45では、改質触媒、水および原料ガスを用いた改質反応が行われる。これにより、水素ガスが生成される。生成された水素ガスは、燃料電池41に供給される。一例では、改質反応は、水蒸気改質反応(CH4+H2O→CO+3H2)である。原料ガスは、例えば、都市ガス、LPガス(液化石油ガス)などの炭化水素ガスである。ヒータ21bは、改質器45を加熱する。

(燃料電池41) 燃料電池41は、酸化剤ガスと水素ガスとを用いて発電し、直流電力を生成する。この直流電力は、DCDCコンバータ42に供給される。また、燃料電池発電システム200は、この発電時の排熱を用いて湯を沸かす。沸かされた湯は、図示しない貯湯タンクに貯められる。貯湯タンクに貯められた湯は、給湯、暖房などに利用され得る。燃料電池41は、例えば、固体高分子形燃料電池または固体酸化物形燃料電池である。

(補機44) 補機44は、燃料電池41の運転に必要な動作を実行する機器類である。補機44としては、ブロア、ポンプ、弁、流量計、圧力計などが例示される。燃料電池41を起動させる必要があるとき、補機44は、第1系統電源11、第2系統電源12または補助電源装置19からの電力供給によって燃料電池41の運転に必要な動作を実行する。燃料電池41の起動後には、燃料電池41で生成された直流電力が補機44に供給される。図1〜5では、そのように電力を燃料電池41から補機44に供給する電路は省略されている。

(余剰ヒータ25) 燃料電池41の発電電力が燃料電池41の電力供給先の負荷の要求電力を上回る場合があり得る。余剰ヒータ25では、その上回る分の電力(以下、余剰電力と称することがある)が消費される。こうして、余剰ヒータ25は、燃料電池発電システム200から商用電源15への電力の逆潮流を防止する。本実施形態では、余剰ヒータ25で生じた熱は、水を温めるのに用いられる。得られた湯は、貯湯タンクに貯められる。

(コンセント26) コンセント26には、電圧VAC1の交流電力が供給され得る。コンセント26の接続先の電気機器は、特に限定されない。電気機器は、例えば、冷蔵庫、テレビなどである。具体的には、コンセント26は、燃料電池発電システム200の自立運転時に燃料電池41から交流電力が供給される自立コンセントである。

(バックアップボイラ27) バックアップボイラ27には、電圧VAC1の交流電力が供給され得る。具体的には、バックアップボイラ27には、燃料電池41、第1系統電源11または補助電源装置19から交流電力が供給され得る。バックアップボイラ27は、貯湯タンクから出力された水または湯の温度が低い場合に、水または湯を加熱する。

(電力供給回路100) 電力供給回路100は、第1系統電源11から第1負荷への電力供給および第2系統電源12から第2負荷への電力供給に用いられる。電力供給回路100は、第1遮断リレー部31と、第2遮断リレー部32と、第3遮断リレー部33と、解列リレー部34と、第1切替リレー部38と、第2切替リレー部39と、を有する。電力供給回路100は、漏電検知素子51と、電源回路52と、漏電検知回路58と、を有する。電力供給回路100は、ACDCコンバータ22と、DCDCコンバータ42と、DCACインバータ43と、を有する。電力供給回路100は、復電検知回路71を有する。電力供給回路100は、制御電源47を有する。電力供給回路100は、接続部61と、接続部62と、接続部63と、接続部64と、を有する。電力供給回路100は、少なくとも1つの基板80を備える。また、電力供給回路100には、第1給電経路91と、第2給電経路92と、第3給電経路93とが存在する。以下では、漏電検知素子51が配置された位置を、漏電検知位置51pと称することがある。当然ではあるが、電力供給回路100の構成要素は、燃料電池発電システム200の構成要素でもある。

本実施形態では、イグナイタ21aおよびヒータ21bのそれぞれが、第1負荷に該当する。ACDCコンバータ22が、第2負荷に該当する。第1負荷の数は、1つであってもよく、複数であってもよい。第1負荷の種類は、特に限定されない。これらの点は、第2負荷についても同様である。

(第1給電経路91) 第1給電経路91では、第1系統電源11から第1負荷に向かって順に、第1遮断リレー部31および漏電検知位置51pが現れる。第1給電経路91は、第1系統電源11から第1遮断リレー部31および漏電検知位置51pをこの順に介して第1負荷に電力を導くのに用いられる。図6に示すように、本実施形態では、第1給電経路91は、単相2線式の2本の線路によって構成されている。

(第2給電経路92) 第2給電経路92では、第2系統電源12から第2負荷に向かって順に、第2遮断リレー部32および漏電検知位置51pが現れる。第2給電経路92は、第2系統電源12から第2遮断リレー部32および漏電検知位置51pをこの順に介して第2負荷に電力を導くのに用いられる。図6に示すように、本実施形態では、第2給電経路92の一部は、単相3線式の3本の線路によって構成されている。具体的には、第2給電経路92における第1切替リレー部38よりも第2系統電源12側の部分は、単相3線式の3本の線路によって構成されている。第2給電経路92における第1切替リレー部38と第2負荷(本実施形態ではACDCコンバータ22)の間の部分は、単相3線式のうち中性線をのぞく2本の線路、すなわち2本の非接地線路によって構成されている。

(第3給電経路93) 第3給電経路93では、燃料電池41からコンセント26に向かって順に、漏電検知位置51pおよび第3遮断リレー部33が現れる。第3給電経路93は、燃料電池41から漏電検知位置51pおよび第3遮断リレー部33をこの順に介してコンセント26に電力を導くのに用いられる。第3給電経路93は、燃料電池41からDCDCコンバータ42を介してDCACインバータ43に至る直流部分を有する。第3給電経路93は、DCACインバータ43から解列リレー部34を介して第1切替リレー部38に至る第1交流部分を有する。第3給電経路93は、第1切替リレー部38から漏電検知位置51p、第2切替リレー部39および第3遮断リレー部33をこの順に介してコンセント26に至る第2交流部分を有する。第1交流部分は、単相3線式のうち中性線をのぞく2本の線路によって構成されている。第2交流部分は、単相2線式の2本の線路によって構成されている。

(DCDCコンバータ42) DCDCコンバータ42は、燃料電池41で生成された直流電力を、電圧の異なる直流電力に変換する。本実施形態では、DCDCコンバータ42は、燃料電池41で生成された直流電力を昇圧する。変換後の直流電力は、DCACインバータ43に供給される。

(DCACインバータ43) DCACインバータ43は、DCDCコンバータ42から入力された直流電力を、交流電力に変換する。具体的には、DCACインバータ43は、直流電力を、電圧VAC1の交流電力にも電圧VAC2の交流電力にも変換可能である。

(ACDCコンバータ22) ACDCコンバータ22は、第1系統電源11、第2系統電源12または補助電源装置19から供給された交流電力を、直流電力に変換する。得られた直流電力は、補機44および制御電源47に供給される。燃料電池発電システム200は、ACDCコンバータ22の遮断制御を行うことができる。遮断制御は、ACDCコンバータ22から補機44および制御電源47への直流電圧の出力を禁止する制御を指す。

(遮断リレー部31〜33および解列リレー部34) 第1遮断リレー部31、第2遮断リレー部32、第3遮断リレー部33および解列リレー部34は、オン状態またはオフ状態をとることができる。オン状態は、自身を電流が流れることを許可する状態を指す。オフ状態は、自身を電流が流れることを禁止する状態を指す。本明細書では、オン状態からオフ状態に切り替えることを、遮断すると表現することがある。

本実施形態では、第1遮断リレー部31は、第1給電経路91を構成する単相2線式の2本の線路上、この例ではU相線路上およびO相線路上に設けられている。具体的には、第1遮断リレー部31はU相リレーとO相リレーとを有する。U相リレーはU相線路上に設けられている。O相リレーはO相線路上に設けられている。

本実施形態では、第2遮断リレー部32は、第2給電経路92を構成する単相3線式の3本の線路上、すなわちU相線路上、W相線路上およびO相線路上に設けられている。具体的には、第2遮断リレー部32は、U相リレーとW相リレーとO相リレーとを有する。U相リレーはU相線路上に設けられている。W相リレーはW相線路上に設けられている。O相リレーはO相線路上に設けられている。

本実施形態では、第3遮断リレー部33は、該リレー部33の位置において第3給電経路93を構成する単相2線式の2本の線路上、具体的にはU相線路上およびO相線路上に設けられている。具体的には、第3遮断リレー部33はU相リレーとO相リレーとを有する。U相リレーはU相線路上に設けられている。O相リレーはO相線路上に設けられている。

本実施形態では、解列リレー部34は、単相3線式の3本のうち中性線をのぞく2本の線路上、すなわちU相線路上およびW相線路上に設けられている。具体的には、解列リレー部34はU相リレーとW相リレーを有する。U相リレーはU相線路上に設けられている。W相リレーはW相線路上に設けられている。

本実施形態では、第1遮断リレー部31、第2遮断リレー部32、第3遮断リレー部33および解列リレー部34の各相のリレーは、メカニカルリレーである。

なお、図6を用いて説明したように、第1系統電源11は、商用電源15から線路16Wおよび16Oを介して電力を取り出すことによっても実現され得る。この場合は、第1給電経路91は、W相線路およびO相線路によって構成される。第1遮断リレー部31はU相リレーに代えてW相リレーを有し、W相リレーはW相線路上に設けられる。この点は、第3遮断リレー部33についても同様である。

(切替リレー部38および39) 第1切替リレー部38および第2切替リレー部39は、どの電路とどの電路とを電気的に接続するのかを切り替える。

(漏電検知素子51) 漏電検知素子51は、第1負荷の漏電検知および第2負荷の漏電検知に共用される。具体的には、漏電検知素子51は、コンセント26の接続先の電気機器の漏電検知にも共用される。漏電検知素子51のこのような共用は、燃料電池発電システム200の小型化に適している。また、この共用は、コスト低減の観点からも有利である。

先に述べたように、本実施形態では、イグナイタ21aおよびヒータ21bのそれぞれが第1負荷に該当し、ACDCコンバータ22が第2負荷に該当する。よって、本実施形態では、漏電検知素子51は、イグナイタ21a、ヒータ21bおよびACDCコンバータ22の漏電に共用され、具体的にはコンセント26の接続先の電気機器の漏電にも共用される。

本実施形態では、漏電検知素子51は、単一素子である。漏電検知素子51は、漏電に反応した時に、漏電検知回路58に出力を供給する。

本実施形態では、漏電検知素子51を用いて漏電が検知されたときに、第1遮断リレー部31および第2遮断リレー部32が遮断される。具体的には、漏電検知素子51を用いて漏電が検知されたときに、第3遮断リレー部33も遮断される。この構成は、燃料電池発電システム200のユーザーの安全性確保の観点から有利である。

本実施形態では、漏電検知素子51は、零相変流器である。この零相変流器は、貫通孔を有するコアを含む。その貫通孔を、漏電検知位置51pにおいて第1給電経路91を構成する単相2線式の2本の線路と、漏電検知位置51pにおいて第2給電経路92を構成する単相3線式の3本の線路と、が貫通している。

(電源回路52) 電源回路52は、第1給電経路91における第1遮断リレー部31よりも第1系統電源11側の部分から、電力を取り出す。取り出された電力は、漏電検知回路58に供給される。このように、電源回路52は、漏電検知回路58用の電源として機能する。

本実施形態では、電源回路52は、絶縁電源を構成している。以下では、電源回路52を絶縁電源52と称することがある。図6に示すように、絶縁電源52は、1次側部分52aと、2次側部分52bと、を含む。1次側部分52aは、いわゆる充電部である。2次側部分52bは、いわゆる非充電部である。1次側部分52aおよび2次側部分52bは、互いに絶縁されている。

1次側部分52aは、第1給電経路91に接続されている。1次側部分52aには、第1給電経路91から第1交流電圧VAC1が印加される。

2次側部分52bは、DCACインバータ43の基準電位で動作する。なお、基準電位は接地電位でなくてもよい。

本実施形態では、絶縁電源52は、絶縁トランス53および整流回路54を含む。絶縁トランス53は、1次側巻線53aおよび2次側巻線53bを含む。1次側巻線53aには、第1交流電圧VAC1が印加される。絶縁トランス53は、第1交流電圧VAC1を第3交流電圧VAC3に降圧する。2次側巻線53bに、第3交流電圧VAC3が出力される。整流回路54は、第3交流電圧VAC3を、直流電圧VDC1に変換する。

本実施形態では、整流回路54は、ダイオード56およびコンデンサ55を含む。ダイオード56は、アノード56aおよびカソード56cを有する。2次側巻線53b、アノード56a、カソード56cおよびコンデンサ55は、この順に並んでいる。ダイオード56は、第3交流電圧VAC3を整流する。コンデンサ55は、ダイオード56からの出力電圧を平滑化する。これにより、コンデンサ55の一端55mと他端55nの間に直流電圧VDC1が現れる。要するに、ダイオード56およびコンデンサ55は、半波整流により直流電圧VDC1を生成する。

(漏電検知回路58) 漏電検知回路58は、漏電検知素子51と協働して、第1負荷および第2負荷の漏電を検知する。具体的には、漏電検知回路58は、漏電検知素子51と協働してコンセント26の接続先の電気機器の漏電も検知する。

漏電検知回路58の働きにより、漏電検知がなされた場合に、第1遮断リレー部31および第2遮断リレー部32が遮断される。具体的には、この場合に、第3遮断リレー部33も遮断される。

図6に示すように、本実施形態では、漏電検知回路58は、2次側部分52bに接続されている。漏電検知回路58には、2次側部分52bから電力および直流電圧VDC1が供給される。漏電検知回路58は、DCACインバータ43の基準電位で動作する。本実施形態では、漏電検知回路58は、漏電検知素子51の検出値を用いて、漏電を検知する。漏電検知回路58は、漏電を検知すると、リレー部31,32および33を遮断させる。

(復電検知回路71) 復電検知回路71は、第2給電経路92における第2遮断リレー部32よりも第2系統電源12側の部分から、定期的に検出信号を取得する。復電検知回路71は、取得した検出信号に基づいて、第2系統電源12の停電が解除されたか否か(復電したか否か)を判断する。また、復電検知回路71は、上記検出信号に基づいて、第2系統電源12が停電したか否かを判断する。

本実施形態では、復電検知回路71は、上記部分から、検出信号として電圧を取り出す。取り出された電圧が第2交流電圧VAC2であった場合、第2系統電源12の停電が解除されたものと判断する。なお、他の方法で第2系統電源12が復電したことを検知することもできる。電圧の大きさ以外では、例えば、電圧の周波数、ゼロクロスの周期などで、第2系統電源12が復電したか否かを判断することができる。例えば、復電検知回路71は、電圧センサとマイクロコンピュータとを用いて実現できる。

復電検知回路71は、復電検知時と同様、電圧の大きさ、電圧の周波数、ゼロクロスなどに基づいて停電検知を実行できる。一例では、復電検知回路71は、取り出された電圧の実効値が閾値以下であった場合(例えば略ゼロであった場合)に、第2系統電源12は停電していると判断する。別例では、系統電圧のゼロクロスの有無により、停電の有無が判断される。この別例の具体例では、復電検知回路71は、取り出された電圧のゼロクロスの有無により、停電の有無を判断する。

本実施形態では、商用電源15における停電発生のタイミングは、第1系統電源11および第2系統電源12における停電発生のタイミングと同じである。商用電源15における復電のタイミングは、第1系統電源11および第2系統電源12における復電のタイミングと同じである。本実施形態では、復電検知回路71によって停電が検知されたときに、燃料電池発電システム200は、第1系統電源11で停電が発生し、第2系統電源12で停電が発生し、商用電源15で停電が発生したと判断する。また、復電検知回路71によって復電が検知されたときに、第1系統電源11が復電し、第2系統電源12が復電し、商用電源15が復電したと判断する。

本実施形態の燃料電池発電システム200では、商用電源15の停電が発生したときに、第2遮断リレー部32が遮断される。具体的には、復電検知部71が停電を検知したときに、第2遮断リレー部32が遮断される。より具体的には、この遮断は、後述の制御装置180によって行われる。本実施形態の燃料電池発電システム200では、第2遮断リレー部32が、漏電検知時に動作するリレー部としてのみならず、停電検知時に動作するリレー部としても動作する。この構成は、燃料電池発電システム200の小型化に適している。

本実施形態の燃料電池発電システム200では、切替装置が構成されている。切替装置は、漏電検知回路58および復電検知回路71を含んでいる。漏電検知回路58が漏電を検知したとき、切替装置は、第1遮断リレー部31、第2遮断リレー部32および第3遮断リレー部33をオフ状態に切り替える。本実施形態では、復電検知回路71が停電を検知したとき、切替装置は、第2遮断リレー部32をオフ状態に切り替える。また、本実施形態では、停電検知後かつ自立運転開始前に、切替装置は、第1遮断リレー部31をオフ状態に切り替える。

(制御電源47) 制御電源47は、燃料電池ユニット150の内外の要素に制御用の電力を供給する。制御電源47は、第1系統電源11、第2系統電源12または補助電源装置19を電力供給源とする電源である。具体的には、制御電源47は、第1系統電源11、第2系統電源12または補助電源装置19からACDCコンバータ22を介して供給される電力によって実現される。この例では、この供給電力の電圧は、補機44への供給電力と同様、ACDCコンバータ22による変圧によって規定される。燃料電池41の起動後には、燃料電池41で生成された直流電力が制御電源47に供給される。図1〜5では、そのように電力を燃料電池41から制御電源47に供給する電路は省略されている。

(基板80) 少なくとも1つの基板80上には、第1遮断リレー部31と、第2遮断リレー部32と、第3遮断リレー部33と、解列リレー部34と、第1切替リレー部38と、第2切替リレー部39と、電源回路52と、漏電検知回路58と、ACDCコンバータ22と、DCDCコンバータ42と、DCACインバータ43と、復電検知回路71と、制御電源47と、が設けられている。

具体的には、本実施形態では、少なくとも1つの基板80は、第1基板81と、第2基板82と、を有する。第1基板81上には、第1遮断リレー部31と、第2遮断リレー部32と、第3遮断リレー部33と、第2切替リレー部39と、電源回路52と、漏電検知回路58と、復電検知回路71と、が設けられている。第2基板82上には、解列リレー部34と、第1切替リレー部38と、ACDCコンバータ22と、DCDCコンバータ42と、DCACインバータ43と、制御電源47と、が設けられている。

本実施形態では、第1給電経路91および第2給電経路92は、少なくとも1つの基板80上に存在する基板上部分を有する。漏電検知位置51pは、少なくとも1つの基板80の外の位置である。第1給電経路91の基板上部分は漏電検知位置51pによって分断されている。第2給電経路92の基板上部分は漏電検知位置51pによって分断されている。図示の例では、これらの経路91および92は、第1基板81上の領域と第2基板82上の領域とに分断されている。ただし、少なくとも1つの基板80として1つの基板を用い、その基板をくり抜くことによっても、同様の分断が実現される。

上記のようにすれば、基板上に漏電検知素子51を配置することが難しい場合であっても、漏電検知素子51を備えた燃料電池発電システム200を実現できる。例えば、漏電検知素子51が零相変流器である場合、このようにすれば漏電検知素子51を配置し易い。特に、本実施形態では、漏電検知素子51は零相変流器であり、5本の線路が零相変流器の貫通孔を貫通する。この場合、零相変流器を小型にするのは必ずしも容易ではなく、零相変流器を基板上に配置することは必ずしも容易ではない。しかし、基板外部分に漏電検知素子51を配置することにより、そのような配置の困難性が緩和される。

(接続部61) 接続部61は、第1基板81の端部に設けられている。第1給電経路91において、接続部61は、第1遮断リレー部31よりも第1系統電源11側に存在する。第2給電経路92において、接続部61は、第2遮断リレー部32よりも第2系統電源12側に存在する。

(接続部62) 接続部62は、第1基板81の端部に設けられている。第3給電経路93において、接続部62は、第3遮断リレー部33よりもコンセント26側に存在する。また、接続部62は、第2切替リレー部39とバックアップボイラ27とを接続する電路おいて、第2切替リレー部39よりもバックアップボイラ27側に存在する。

(接続部63および接続部64) 接続部63は、第1基板81の端部に設けられている。接続部64は、第2基板82の端部に設けられている。第1給電経路91において、漏電検知位置51pの部分は、接続部63と接続部64の間にある。第2給電経路92において、漏電検知位置51pの部分は、接続部63と接続部64の間にある。

以下、燃料電池発電システム200の運転モードの例を、図2〜図5を参照しながら説明する。これらの図において、太線は、電圧が印加されている箇所を示す。以下では、説明の便宜上、電圧の供給先の要素に電力が供給されるものとして説明する。事実、待機電力などを考慮すると、各要素がその目的とされる動作をしていないときも、各要素で電力が消費され得る。ただし、電力を必要としない要素に電力を供給することは必須ではない。例えば、待機モードおよび補助電源利用モードにおいては、余剰ヒータ25に電力を供給しなくてもよい。

(待機モード) 図2に示す待機モードは、商用電源15の非停電時に実行され得る。待機モードでは、第1遮断リレー部31は、オン状態にある。第2遮断リレー部32は、オン状態にある。第3遮断リレー部33は、オン状態にある。解列リレー部34は、オフ状態にある。第2切替リレー部39は、第1遮断リレー部31を、バックアップボイラ27、イグナイタ21a、ヒータ21bおよび第1切替リレー部38と電気的に接続させている。第1切替リレー部38は、第2遮断リレー部32を、ACDCコンバータ22、余剰ヒータ25および解列リレー部34と電気的に接続させている。

待機モードでは、第1系統電源11から燃料電池発電システム200に電圧VAC1の交流電力が供給される。一方、第2系統電源12から燃料電池発電システム200に電圧VAC2の交流電力が供給される。

具体的には、電圧VAC1の交流電力が、第1系統電源11から第1遮断リレー部31および第2切替リレー部39をこの順に通過する。第2切替リレー部39を通過した交流電力の一部は、バックアップボイラ27に導かれる。第2切替リレー部39を通過した交流電力の別の一部は、漏電検知位置51pを通過する。漏電検知位置51pを通過した交流電力の一部は、イグナイタ21aに導かれる。漏電検知位置51pを通過した交流電力の別の一部は、ヒータ21bに導かれる。

また、電圧VAC2の交流電力が、第2系統電源12から第2遮断リレー部32、漏電検知位置51pおよび第1切替リレー部38をこの順に通過する。第1切替リレー部38を通過した交流電力の一部は、余剰ヒータ25に導かれる。第1切替リレー部38を通過した交流電力の別の一部は、ACDCコンバータ22に導かれる。ACDCコンバータ22に導かれた交流電力は、直流電力に変換される。得られた直流電力は、補機44および制御電源47に導かれる。

(第1発電モード) 図3に示す第1発電モードは、商用電源15の非停電時に実行され得る。第1発電モードでは、第1遮断リレー部31は、オン状態にある。第2遮断リレー部32は、オン状態にある。第3遮断リレー部33は、オン状態にある。解列リレー部34は、オン状態にある。第2切替リレー部39は、第1遮断リレー部31を、バックアップボイラ27、イグナイタ21a、ヒータ21bおよび第1切替リレー部38と電気的に接続させている。第1切替リレー部38は、第2遮断リレー部32を、ACDCコンバータ22、余剰ヒータ25および解列リレー部34と電気的に接続させている。

第1発電モードでは、燃料電池41で発電が行われる。燃料電池41で生成された電力は、DCDCコンバータ42、DCACインバータ43、解列リレー部34、第1切替リレー部38、漏電検知位置51pおよび第2遮断リレー部32をこの順に介して図6に示す分電盤17に導かれる。この電力は、その後、待機モードと同様に、バックアップボイラ27、イグナイタ21aおよびヒータ21bに導かれる。分電盤17に導かれた電力は、分電盤17における図示しない分岐ブレーカーを介して、他の負荷にも導かれ得る。

具体的には、燃料電池41で、直流電力が生成される。DCDCコンバータ42は、この直流電力を、電圧の異なる直流電力に変換する。具体的には、DCDCコンバータ42は、この直流電力を昇圧する。DCACインバータ43は、この変換後の直流電力を、電圧VAC2の交流電力に変換する。得られた電圧VAC2の交流電力は、解列リレー部34、第1切替リレー部38、漏電検知位置51pおよび第2遮断リレー部32をこの順に介して、分電盤17に導かれる。図6から理解されるように、分電盤17に導かれた電圧VAC2の交流電力は、U相線路16UおよびW相線路16Wを流れる。この交流電力の一部は、U相線路16UおよびO相線路16Oから取り出される。取り出された電力は、待機モードにおいて第1系統電源11から燃料電池発電システム200に供給される電力と同様に、バックアップボイラ27、イグナイタ21aおよびヒータ21bに導かれる。分電盤17に導かれた電力は、分電盤17における図示しない分岐ブレーカーを介して、他の負荷にも導かれ得る。

第1発電モードでは、燃料電池41の発電電力が、バックアップボイラ27、イグナイタ21a、ヒータ21b、分岐ブレーカーの接続先の負荷の要求電力の合計よりも大きい場合があり得る。その場合は、余剰分の電力は、余剰ヒータ25で消費される。また、燃料電池41の発電電力だけではバックアップボイラ27、イグナイタ21a、ヒータ21bおよび分岐ブレーカーの接続先の負荷の要求電力を賄えない場合があり得る。その場合は、商用電源15由来の電力が、燃料電池41由来の電力とともに、これらに供給される。

また、第1発電モードでは、ACDCコンバータ22の遮断制御が行われる。このため、ACDCコンバータ22経由で補機44および制御電源47に電力が供給されることはない。先に述べたように、図示は省略しているが、燃料電池発電システム200には、燃料電池41から補機44および制御電源47に電力を供給するための電路が存在する。第1発電モードでは、その電路によって、燃料電池41から補機44および制御電源47に電力が供給される。この点は、後述する第2発電モードにおいても同様である。

(第2発電モード) 図4に示す第2発電モードは、商用電源15の停電時に実行され得る。第2発電モードでは、第1遮断リレー部31は、オフ状態にある。第2遮断リレー部32は、オフ状態にある。第3遮断リレー部33は、オン状態にある。解列リレー部34は、オン状態にある。第1切替リレー部38は、解列リレー部34、余剰ヒータ25およびACDCコンバータ22を、イグナイタ21a、ヒータ21b、第2切替リレー部39およびバックアップボイラ27と電気的に接続させている。第2切替リレー部39は、バックアップボイラ27、イグナイタ21a、ヒータ21bおよび第1切替リレー部38を、第3遮断リレー部33と電気的に接続させている。

第2発電モードでは、燃料電池41で発電が行われる。この発電は商用電源15の停電時に実行されるため、第2発電モードを自立運転モードと称することができる。燃料電池41で生成された電力は、第1発電モードとは異なり、分電盤17に導かれない。第2発電モードでは、燃料電池41で生成された電力は、バックアップボイラ27およびコンセント26に導かれる。

具体的には、燃料電池41で発電された電力は、第1発電モードと同様に、DCDCコンバータ42を介してDCACインバータ43に導かれる。第1発電モードとは異なり、DCACインバータ43は、DCDCコンバータ42での変換後の直流電力を、電圧VAC1の交流電力に変換する。得られた電圧VAC1の交流電力は、解列リレー部34、第1切替リレー部38および漏電検知位置51pをこの順に通過する。漏電検知位置51pを通過した交流電力の一部は、バックアップボイラ27に導かれる。漏電検知位置51pを通過した交流電力の別の一部は、第2切替リレー部39および第3遮断リレー部33をこの順に介して、コンセント26に導かれる。コンセント26に導かれた電力は、コンセント26の接続先の負荷に導かれる。

第2発電モードでは、電源回路52ではなく燃料電池41で生成された直流電力が、漏電検知回路58に供給される。燃料電池発電システム200は、この電力供給を行うための図示しない電路およびスイッチを有する。

図4から理解されるように、本実施形態では、燃料電池発電システム200は、商用電源15が停電している期間において、第3遮断リレー部33をオン状態に維持し、第3給電経路93を用いて燃料電池41からコンセント26に電力を供給する自立運転を行うことができる。なお、停電の発生は、先に説明したように、燃料電池発電システム200によって検知され得る。

本実施形態では、自立運転を行っている期間において、漏電検知素子51を用いて漏電が検知されると、第3遮断リレー部33が遮断され、第3遮断リレー部33がオフ状態にロックされる。このようなロックは、燃料電池発電システム200のユーザーの安全性確保に寄与し得る。また、このロックがなされていることから、燃料電池発電システム200のユーザーは、コンセント26の接続先の電気機器で漏電が発生したことを知ることができる。このロックは、例えば、第1系統電源11が復電したと燃料電池発電システム200が判断するまで継続される。ロックは、第3遮断リレー部33をオフ状態からオン状態に切り替えることを妨げるものであれば特に限定されない。本実施形態では、具体的には、ロックは、第3遮断リレー部33を電気的にラッチさせてオフ状態に維持することによって行われる。

(補助電源利用モード) 図5に示す補助電源利用モードは、商用電源15の停電時に実行され得る。補助電源利用モードでは、第1遮断リレー部31は、オン状態にある。第2遮断リレー部32は、オフ状態にある。第3遮断リレー部33は、オン状態にある。解列リレー部34は、オフ状態にある。第2切替リレー部39は、第1遮断リレー部31を、バックアップボイラ27、イグナイタ21a、ヒータ21bおよび第1切替リレー部38と電気的に接続させている。第1切替リレー部38は、第2切替リレー部39、バックアップボイラ27、イグナイタ21aおよびヒータ21bを、ACDCコンバータ22、余剰ヒータ25および解列リレー部34と電気的に接続させている。

補助電源利用モードでは、燃料電池発電システム200への電力供給元が、第1系統電源11から補助電源装置19に変更されている。補助電源利用モードでは、補助電源装置19から燃料電池発電システム200に電圧VAC1の交流電力が供給される。具体的には、補助電源利用モードでは、電圧VAC1の交流電力が、補助電源装置19から第1遮断リレー部31および第2切替リレー部39をこの順に通過する。第2切替リレー部39を通過した交流電力の一部は、バックアップボイラ27に導かれる。第2切替リレー部39を通過した交流電力の別の一部は、漏電検知位置51pを通過する。漏電検知位置51pを通過した交流電力の一部は、イグナイタ21aに導かれる。漏電検知位置51pを通過した交流電力の別の一部は、ヒータ21bに導かれる。漏電検知位置51pを通過した交流電力のさらに別の一部は、第1切替リレー部38を通過する。第1切替リレー部38を通過した交流電力の一部は、余剰ヒータ25に導かれる。第1切替リレー部38を通過した交流電力の別の一部は、ACDCコンバータ22に導かれる。ACDCコンバータ22に導かれた交流電力は、直流電力に変換される。得られた直流電力は、補機44および制御電源47に導かれる。

補助電源利用モードによれば、燃料電池41が発電していない場合において商用電源15の停電が発生した場合において、補助電源装置19から補機44に電力を供給できる。この電力供給により、燃料電池41の発電を開始することができ、第2発電モードを開始することができる。補助電源利用モードによれば、燃料電池41が発電しておらずかつ商用電源15が停電している場合であっても、補助電源装置19から制御電源47に電力を供給できる。また、補助電源利用モードによれば、燃料電池41が発電しておらずかつ商用電源15が停電している場合であっても、補助電源装置19からバックアップボイラ27に電力を供給でき、湯を沸かすことができる。

図2の待機モード、図3の第1発電モードおよび図5の補助電源利用モードにおいて、第1給電経路91を用いた第1負荷21a,21bへの電力供給がなされる。これらのモードにおいて、漏電検知素子51は、第1負荷21a,21bの漏電検知に用いられる。待機モードにおいて、第2給電経路92を用いた第2負荷22への電力供給がなされる。待機モードにおいて、漏電検知素子51は、第2負荷22の漏電検知に用いられる。図4の第2発電モードにおいて、第3給電経路93を用いたコンセント26への電力供給がなされる。第2発電モードにおいて、漏電検知素子51は、コンセント26の接続先の負荷の漏電検知に用いられる。

図1〜5から理解されるように、本実施形態では、第1遮断リレー部31、第1給電経路91における漏電検知位置51pの部分、第2給電経路92における漏電検知位置51pの部分および第2遮断リレー部32がこの順で電気的に接続されることがない。

仮に、第1遮断リレー部31、第1給電経路91における漏電検知位置51pの部分、第2給電経路92における漏電検知位置51pの部分および第2遮断リレー部32がこの順で電気的に接続される場合があるとする。そのような場合には、1つの負荷の漏電が、第1給電経路91における漏電検知位置51pの部分と第2給電経路92における漏電検知位置51pの部分の一方のみならず両方にアンバランス電流をもたらすおそれがある。このようにして両方の部分でアンバランス電流が生じると、これらのアンバランス電流が互いに他方のアンバランス電流に基づく漏電検知を妨げ、アンバランス電流が生じているにも関わらず漏電検知がなされないという事態を招き得る。例えば、漏電検知素子51が零相変流器である場合には、両アンバランス電流が生成する磁界が互いに打ち消し合って、漏電検知素子51による漏電検知がなされないという事態を招き得る。しかし、本実施形態によれば、そのような事態を回避できる。

[遮断リレー部31,32および33の制御について] 先に説明したように、遮断リレー部31,32および33の切り替えは、切替装置が担当する。以下、切替装置について、詳細に説明する。以下では、燃料電池ユニット150、第1接続経路141および第2接続経路142についても併せて説明する。

(燃料電池ユニット150) 図1に示すように、燃料電池ユニット150は、燃料電池41と、補機44と、改質器45と、燃焼器46と、余剰ヒータ25と、イグナイタ21aと、ヒータ21bと、制御電源47と、解列リレー部34と、第1切替リレー部38と、ACDCコンバータ22と、DCDCコンバータ42と、DCACインバータ43と、を備えている。燃料電池ユニット150は、発電を行う。具体的には、燃料電池ユニット150は、燃料電池41を用いて発電する。

(第1接続経路141および第2接続経路142) 燃料電池発電システム200には、第1接続経路141および第2接続経路142が存在する。本実施形態では、第1接続経路141は、第1給電経路91のうち燃料電池ユニット150よりも第1系統電源11側の部分に対応する。本実施形態では、第2接続経路142は、第2給電経路92のうち燃料電池ユニット150よりも第2系統電源12側の部分に対応する。

燃料電池発電システム200は、第1接続経路141を用いて第1系統電源11に接続され得る。燃料電池発電システム200は、第2接続経路142を用いて第2系統電源12に接続され得る。

第1接続経路141上に、第1遮断リレー部31が設けられている。第2接続経路142上に、第2遮断リレー部32が設けられている。

第1接続経路141を用いて、燃料電池ユニット150が第1系統電源11に接続され得る。第2接続経路142を用いて、燃料電池ユニット150が第2系統電源12に接続され得る。

本実施形態では、第1接続経路141は、単相2線式の2本の線路によって構成されている。第2接続経路142は、単相3線式の3本の線路によって構成されている。第1遮断リレー部31は、第1接続経路141を構成する単相2線式の2本の線路上に設けられている。この例では、第1遮断リレー部31は、第1接続経路141のU相線路上およびO相線路上に設けられている。

先に説明したとおり、第1系統電源11は、商用電源15から線路16Wおよび16Oを介して電力を取り出すことによっても実現され得る。この場合は、第1遮断リレー部31は、第1接続経路141のW相線路上およびO相線路上に設けられる。

本実施形態では、第1遮断リレー部31および第2遮断リレー部32がオフ状態であっても第1系統電源11および/または第2系統電源12から電力が供給される位置に、電源回路52が設けられている。具体的には、本実施形態では、第1接続経路141は、第1遮断リレー31と第1系統電源11とを接続する系統側部分を有し、その系統側部分から電源回路52に電力が供給される。より具体的には、本実施形態では、図6に示すように、第1接続経路141の系統側部分に、絶縁電源52の1次側部分52aが接続されている。

第2接続経路142における第2遮断リレー部32よりも第2系統電源12側の部分から、復電検知部71は定期的に検出信号を取得する。

(切替装置199) 本実施形態では、図7に示す切替装置199が構成されている。図7では、燃料電池発電システム200の構成要素の一部は省略されている。

切替装置199は、漏電検知回路58と、復電検知回路71と、第1の3入力アンド回路161と、第2の3入力アンド回路162と、2入力アンド回路163と、プルアップ抵抗171と、操作部190と、制御装置180と、を備えている。これらの要素は、燃料電池発電システム200の構成要素でもある。

第1の3入力アンド回路161は、漏電入力部161L、異常入力部161Xおよび操作入力部161Mの3つの入力部を有している。これら3つの入力部161L,161Xおよび161Mには、オン信号が入力され得る。第1の3入力アンド回路161は、第1オン条件が成立している期間において、第1遮断リレー部31をオン状態に維持する。一方、第1の3入力アンド回路161は、第1オン条件が成立していない期間において、第1遮断リレー部31をオフ状態に維持する。第1オン条件は、第1の3入力アンド回路161の3つの入力部161L,161Xおよび161Mにオン信号が入力されているという条件である。第1オン条件が成立していないとは、3つの入力部161L,161Xおよび161Mに、オン信号が入力されていない入力部が少なくとも1つ含まれているという意味である。

第2の3入力アンド回路162は、漏電入力部162L、異常入力部162Xおよび操作入力部162Mの3つの入力部を有している。これら3つの入力部162L,162Xおよび162Mには、オン信号が入力され得る。第2の3入力アンド回路162は、第2オン条件が成立している期間において、第2遮断リレー部32をオン状態に維持する。一方、第2の3入力アンド回路162は、第2オン条件が成立していない期間において、第2遮断リレー部32をオフ状態に維持する。第2オン条件は、第2の3入力アンド回路162の3つの入力部162L,162Xおよび162Mにオン信号が入力されているという条件である。第2オン条件が成立していないとは、3つの入力部162L,162Xおよび162Mに、オン信号が入力されていない入力部が少なくとも1つ含まれているという意味である。

2入力アンド回路163は、漏電入力部163Lおよび復電入力部163Rの2つの入力部を有している。これら2つの入力部163Lおよび163Rには、オン信号が入力され得る。2入力アンド回路163は、第3オン条件が成立している期間において、電圧供給検知信号を制御装置180に送信する。2入力アンド回路163は、第3オン条件が成立していない期間において、電圧供給検知信号を制御装置180に送信しない。第3オン条件は、2入力アンド回路163の2つの入力部163Lおよび163Rにオン信号が入力されているという条件である。第3オン条件が成立していないとは、2つの入力部163Lおよび163Rに、オン信号が入力されていない入力部が少なくとも1つ含まれているという意味である。

本実施形態では、第1の3入力アンド回路161、第2の3入力アンド回路162および2入力アンド回路163は、ディスクリート回路である。ただし、これらのアンド回路161,162および163は、IC(Integrated Circuit)などにより構成されていてもよい。

操作部190は、人が操作可能な操作部である。操作部190は、第1操作スイッチ191と、第2操作スイッチ192と、漏電テストスイッチ193と、を有している。第1操作スイッチ191、第2操作スイッチ192および漏電テストスイッチ193は、人が操作可能なスイッチである。

操作部190は、第1オン操作と、第1オフ操作と、第2オン操作と、第2オフ操作と、テスト操作と、解除操作と、を受け付ける。

第1オン操作は、第1の3入力アンド回路161の操作入力部161Mにオン信号が入力されている状態を得るための操作である。第1オフ操作は、第1の3入力アンド回路161の操作入力部161Mにオン信号が入力されていない状態を得るための操作である。第2オン操作は、第2の3入力アンド回路162の操作入力部162Mにオン信号が入力されている状態を得るための操作である。第2オフ操作は、第2の3入力アンド回路162の操作入力部162Mにオン信号が入力されていない状態を得るための操作である。

操作部190が第1オン操作を受け付けると、その後操作部190が第1オフ操作を受け付けるまでの期間において、第1の3入力アンド回路161の操作入力部161Mにオン信号が入力される。具体的には、この期間において、操作部190は、第1の3入力アンド回路161の操作入力部161Mにオン信号を継続して送信する。

操作部190が第1オフ操作を受け付けると、その後操作部190が第1オン操作を受け付けるまでの期間において、第1の3入力アンド回路161の操作入力部161Mにオン信号は入力されない。具体的には、この期間において、操作部190は、操作入力部161Mにオン信号を送信しない。

操作部190が第2オン操作を受け付けると、その後操作部190が第2オフ操作を受け付けるまでの期間において、第2の3入力アンド回路162の操作入力部162Mにオン信号が入力される。具体的には、この期間において、操作部190は、第2の3入力アンド回路162の操作入力部162Mにオン信号を継続して送信する。

操作部190が第2オフ操作を受け付けると、その後操作部190が第2オン操作を受け付けるまでの期間において、第2の3入力アンド回路162の操作入力部162Mにオン信号は入力されない。具体的には、この期間において、操作部190は、操作入力部162Mにオン信号を送信しない。

図7の例では、第1操作スイッチ191が、第1オン操作および第1オフ操作を受け付ける。第1操作スイッチ191が、第1の3入力アンド回路161の操作入力部161Mにオン信号を送信する。第2操作スイッチ192が、第2オン操作および第2オフ操作を受け付ける。第2操作スイッチ192が、第2の3入力アンド回路162の操作入力部162Mにオン信号を送信する。

本実施形態では、操作入力部161Mおよび162Mにオン信号が入力されている期間において、操作入力部161Mおよび162Mの電圧はハイレベル電圧である。つまり、操作入力部161Mおよび162Mに入力されるオン信号は、ハイレベル電圧の信号である。一方、操作入力部161Mおよび162Mにオン信号が入力されていない期間において、操作入力部161Mおよび162Mの電圧はローレベル電圧である。ハイレベル電圧は、ローレベル電圧よりも高い電圧である。

テスト操作は、漏電検知回路58に、漏電検知時と同じ動作を行わせるための操作である。操作部190がテスト操作を受け付け可能であることにより、燃料電池発電システム200が漏電発生時に正しい動作をするか否かをテストすることが可能となる。具体的には、操作部190は、テスト操作を受け付けると、漏電検知回路58にテスト信号を送信する。漏電検知回路58は、テスト信号を受信すると、自身が漏電を検知したときと同じ動作を行う。

漏電検知回路58が漏電を検知した後に操作部190が解除操作を受け付けると、漏電検知回路58の状態が、漏電検知回路58が漏電を検知していない期間の状態に戻る。具体的には、操作部190は、解除操作を受け付けると、漏電検知回路58に解除信号を送信する。漏電検知回路58が解除信号を受信すると、漏電検知回路58の状態は、漏電検知回路58の状態が漏電を検知していない期間の状態に戻る。

図7の例では、漏電テストスイッチ193が、テスト操作および解除操作を受け付ける。漏電テストスイッチ193が、テスト信号および解除信号を送信する。

操作部190は、テスト操作および解除操作を受け付けない操作部であってもよい。つまり、漏電テストスイッチ193は省略可能である。操作部190は、テスト操作および解除操作の一方のみを受け付ける操作部であってもよい。具体的には、漏電テストスイッチ193は、テスト操作および解除操作の一方のみを受け付けるスイッチであってもよい。

本実施形態では、操作部190は操作板を含み、その操作板上に第1操作スイッチ191、第2操作スイッチ192および漏電テストスイッチ193が設けられている。このことは、これらのスイッチ191、192および193を扱い易くする観点から有利である。

制御装置180は、所定の第1異常の発生を認識する。制御装置180は、操作部190が受け付ける操作を認識する。具体的には、制御装置180は、第1操作スイッチ191が受け付ける操作を認識する。制御装置180は、第2操作スイッチ192が受け付ける操作を認識する。制御装置180は、漏電テストスイッチ193が受け付ける操作を認識する。

本実施形態では、制御装置180は、マイクロコンピュータである。

本実施形態では、電源回路52から、漏電検知回路58、第1の3入力アンド回路161および第2の3入力アンド回路162に電力が供給され得る。漏電検知回路58、第1の3入力アンド回路161および第2の3入力アンド回路162は、この電力を用いて動作し得る。電源回路52は、第1の3入力アンド回路161の異常入力部161Xに入力されるオン信号の生成にも寄与し得る。

商用電源15が停電すると、第1系統電源11も停電し、電源回路52による上記電力供給ができなくなる。しかし、停電時においては、燃料電池41の発電電力が、漏電検知回路58、第1の3入力アンド回路161および第2の3入力アンド回路162に供給され得る。漏電検知回路58、第1の3入力アンド回路161および第2の3入力アンド回路162は、この電力を用いて動作し得る。この発電電力は、第1の3入力アンド回路161の異常入力部161Xに入力されるオン信号の生成にも寄与し得る。

本実施形態では、電源回路52からプルアップ抵抗171を介して第1の3入力アンド回路161の異常入力部161Xに電圧が供給されることによって、第1の3入力アンド回路161の異常入力部161Xに入力される信号がオン信号である状態が実現され得る。燃料電池発電システム200の起動直後などには、制御装置180が起動していないことがある。しかし、本実施形態によれば、制御装置180が起動していなくても、第1の3入力アンド回路161の異常入力部161Xに入力される信号がオン信号である状態が実現される。これにより、制御装置180が起動していないときであっても、第1遮断リレー部31をオン状態にでき、第1遮断リレー部31を介して燃料電池ユニット150と第1系統電源11との間を電力が流れることができる。例えば、第1の3入力アンド回路161の異常入力部161Xに入力される信号がオン信号であれば、第1オン操作を行うことにより、第1遮断リレー部31をオン状態にできる。

図7では、図面の簡略化の観点から、電源回路52を、漏電検知回路58、第1の3入力アンド回路161および第2の3入力アンド回路162に接続する線路が描かれていない。しかし、このことは、電源回路52からこれらへの電力供給がワイヤレス給電に限られることを表しているわけではない。事実、本実施形態では、電源回路52からこれらへの電力供給は、有線接続を介して行われている。異常入力部161Xにオン信号を入力するための電源回路52による電力供給についても同様である。電力供給を燃料電池41によって行う場合についても同様である。

(漏電検知時の挙動) 燃料電池発電システム200が漏電を検知すると、第1の3入力アンド回路161の漏電入力部161L、第2の3入力アンド回路162の漏電入力部162Lおよび2入力アンド回路163の漏電入力部163Lへのオン信号の入力が停止される。具体的には、燃料電池発電システム200が漏電を検知すると、漏電入力部161L,162Lおよび163Lの電圧が、ハイレベル電圧からローレベル電圧に切り替わる。漏電入力部161L,162Lおよび163Lのハイレベル電圧およびローレベル電圧については、後述する。

本実施形態では、漏電検知回路58は、漏電を検知すると、第1の3入力アンド回路161の漏電入力部161L、第2の3入力アンド回路162の漏電入力部162Lおよび2入力アンド回路163の漏電入力部163Lへのオン信号の送信を停止する。具体的には、漏電検知回路58は、漏電を検知すると、漏電入力部161L,162Lおよび163Lの電圧を、ハイレベル電圧からローレベル電圧に切り替える。漏電検知回路58は、テスト信号を受信したときにも、これらへのオン信号の送信を停止する。具体的には、漏電検知回路58は、テスト信号を受信したときにも、漏電入力部161L,162Lおよび163Lの電圧を、ハイレベル電圧からローレベル電圧に切り替える。

本実施形態では、漏電入力部161L,162Lおよび163Lへのオン信号の送信は、漏電検知回路58の漏電信号出力部58Lが担う。

本実施形態では、漏電入力部161L,162Lおよび163Lにオン信号が入力されている期間において、漏電入力部161L,162Lおよび163Lの電圧はハイレベル電圧である。つまり、漏電入力部161L,162Lおよび163Lに入力されるオン信号は、ハイレベル電圧の信号である。一方、漏電入力部161L,162Lおよび163Lにオン信号が入力されていない期間において、漏電入力部161L,162Lおよび163Lの電圧はローレベル電圧である。ハイレベル電圧は、ローレベル電圧よりも高い電圧である。

本実施形態では、第3遮断リレー部33にも、漏電入力部161L,162Lおよび163Lに入力される信号と同じ信号が入力される。具体的には、漏電検知回路58は、漏電入力部161L,162Lおよび163Lに送信する信号と同じ信号を第3遮断リレー部33に送信する。より具体的には、第3遮断リレー部33の受信部の電圧は、漏電入力部161L,162Lおよび163Lと同じである。第3遮断リレー部33は、自身へのオン信号の入力が停止されたタイミングで、オン状態からオフ状態に切り替わる。具体的には、第3遮断リレー部33は、自身の受信部の電圧がハイレベル電圧からローレベル電圧に切り替わったタイミングで、オン状態からオフ状態に切り替わる。

なお、本実施形態では、第3遮断リレー部33は、操作部190が解除操作を受け付けると、オフ状態からオン状態に切り替わる。また、本実施形態の燃料電池発電システム200は、制御電源47の起動時に第3遮断リレー部33がオフ状態からオン状態に切り替わるように構成されている。

(異常発生時の挙動) 燃料電池発電システム200が所定の第1異常を検知すると、制御装置180によって、第1の3入力アンド回路161の異常入力部161Xおよび第2の3入力アンド回路162の異常入力部162Xへのオン信号の入力が停止される。具体的には、燃料電池発電システム200が所定の第1異常を検知すると、制御装置180によって、異常入力部161Xおよび162Xの電圧が、ハイレベル電圧からローレベル電圧に切り替わる。異常入力部161Xおよび162Xのハイレベル電圧およびローレベル電圧については、後述する。

本実施形態では、第1異常が検知されている期間において、制御装置180は、異常入力部161Xおよび162Xにオン信号が入力されないように動作する。

具体的には、本実施形態では、先に説明したように、電源回路52からプルアップ抵抗171を介して第1の3入力アンド回路161の異常入力部161Xに電圧が供給されることによって、第1の3入力アンド回路161の異常入力部161Xに入力される信号がオン信号である状態が実現され得る。しかし、第1異常が検知されると、制御装置180は、オフ信号を出力する。このオフ信号は、電源回路52由来の異常入力部161Xの電圧を打ち消す。具体的には、オフ信号は、異常入力部161Xの電圧を、ローレベル電圧に固定する。これにより、異常入力部161Xにオン信号が入力されている状態が解除される。このようにして、制御装置180は、第1の3入力アンド回路161の異常入力部161Xへのオン信号の入力を停止する。第1異常が検知されている期間において、制御装置180は、オフ信号を継続して出力する。これにより、電源回路52由来の異常入力部161Xの電圧が継続して打ち消され(具体的には異常入力部161Xの電圧がローレベル電圧に固定され)、異常入力部161Xにオン信号が入力されない状態が継続される。一方、制御装置180は、オフ信号を出力しないことにより、電源回路52由来の異常入力部161Xの電圧が継続して供給された状態を維持する。これにより、異常入力部161Xにオン信号が入力された状態が維持される。本実施形態では、オフ信号の出力は、制御装置180の第1オフ信号出力部181が担う。

本実施形態では、上記オフ信号は、電源回路52由来の異常入力部161Xの電気信号とは論理が反転した電気信号である。この電気信号の振幅は、電源回路52由来の異常入力部161Xの電気信号の振幅と同じにすることができる。

また、制御装置180は、第2の3入力アンド回路162の異常入力部162Xにオン信号を継続して送信することができる。第1異常が検知されると、制御装置180は、異常入力部162Xへのオン信号の送信を停止する。具体的には、第1異常が検知されると、制御装置180は、異常入力部162Xの電圧を、ハイレベル電圧からローレベル電圧に切り替える。本実施形態では、異常入力部162Xへのオン信号の送信は、制御装置180の第2オフ信号出力部182が担う。

本実施形態では、異常入力部161Xおよび162Xにオン信号が入力されている期間において、異常入力部161Xおよび162Xの電圧はハイレベル電圧である。つまり、異常入力部161Xおよび162Xに入力されるオン信号は、ハイレベル電圧の信号である。一方、異常入力部161Xおよび162Xにオン信号が入力されていない期間において、異常入力部161Xおよび162Xの電圧はローレベル電圧である。ハイレベル電圧は、ローレベル電圧よりも高い電圧である。

制御装置180は、所定の第1異常のみならず所定の第2異常の発生を認識し、第2異常発生時に第1異常発生時と同様の動作を行うように構成されていてもよい。一般化すると、制御装置180は、第1異常を含む複数の異常を認識し、該複数の異常の少なくとも1つの発生時に第1異常発生時と同様の動作を行うように構成されていてもよい。

第1異常は、燃料電池発電システム200における過電流、または、商用電源15の電圧の異常であり得る。電圧の異常は、電圧の周波数の異常、または、電圧の振幅の異常であり得る。電圧の周波数の異常は、例えば、電圧の周波数が下限閾値を下回っていること、または、電圧の周波数が上限閾値を上回っていることを指す。電圧の振幅の異常は、例えば、電圧の周波数が下限閾値を下回っていること、または、電圧の周波数が上限閾値を上回っていることを指す。第2異常についても同様である。上記複数の複数の異常についても同様である。

燃料電池発電システム200における過電流は、例えば、過電流継電器を燃料電池発電システム200に設けることによって検知できる。商用電源15の電圧の異常は、例えば、復電検知回路71によって検知できる。

(停電発生時の挙動) 本実施形態では、燃料電池発電システム200は、商用電源15が停電したことを検知できる。具体的には、燃料電池発電システム200は、第2系統電源12から第2接続経路142への電圧供給がなくなったことを検知できる。この検知がなされると、制御装置180によって、第2の3入力アンド回路162の異常入力部162Xへのオン信号の入力が停止される。具体的には、この検知がなされると、制御装置180によって、異常入力部162Xの電圧が、ハイレベル電圧からローレベル電圧に切り替わる。これにより、第2遮断リレー部32がオン状態からオフ状態に切り替わる。

具体的には、復電検知回路71は、第2系統電源12から第2接続経路142への電圧供給がなくなったことを検知できる。復電検知回路71は、この検知を行うと、2入力アンド回路163の復電入力部163Rへのオン信号の送信を停止する。具体的には、復電検知回路71は、この検知を行うと、復電入力部163Rの電圧を、ローレベル電圧に固定する。復電入力部163Rの電圧がローレベル電圧に固定されると、2入力アンド回路163は、制御装置180への電圧供給検知信号の送信を停止する。制御装置180は、電圧供給検知信号を受信していないことにより、第2系統電源12が停電したと判断できる。制御装置180は、この判断を行うと、第2の3入力アンド回路162の異常入力部162Xへのオン信号の入力が停止されるように動作する。具体的には、制御装置180は、この判断を行うと、異常入力部162Xへのオン信号の送信を停止する。より具体的には、制御装置180は、この判断を行うと、異常入力部162Xの電圧を、ローレベル電圧に固定する。これにより、第2遮断リレー部32がオン状態からオフ状態に切り替わる。

(自立運転開始時の挙動) 本実施形態の燃料電池発電システム200は、停電発生後に自立運転を開始するように構成されている。具体的には、停電の発生に伴って第2遮断リレー部32が遮断された後に、第1遮断リレー部31が遮断される。次に、第2切替リレー部39が、燃料電池41が第3遮断リレー部33と電気的に接続されるように、切り替えられる。こうして、図4に示す接続状態が得られる。その後、燃料電池41からバックアップボイラ27およびコンセント26への電力供給が開始される。第1遮断リレー部31の遮断のさせ方は、第1異常発生時の第1遮断リレー部31の遮断のさせ方と同様である。具体的には、第1異常発生時と同様に、制御装置180が、第1の3入力アンド回路161の異常入力部161Xにオン信号が入力されている状態を解除する。

(第2系統電源12から第2接続経路142への電圧供給時の挙動) 燃料電池発電システム200が第2系統電源12から第2接続経路142への電圧供給を検知すると、2入力アンド回路163の復電入力部163Rにオン信号が入力される。

本実施形態では、復電検知回路71は、第2系統電源12から第2経路92への電圧供給を検知すると、2入力アンド回路163の復電入力部163Rにオン信号を送信する。

具体的には、復電検知回路71は、自身が第2系統電源12から第2経路92への電圧供給を検知している期間において、復電入力部163Rにオン信号を継続して送信する。一方、復電検知回路71は、自身が上記電圧供給を検知していない期間において、復電入力部163Rにオン信号を送信しない。

本実施形態では、復電入力部163Rにオン信号が入力されている期間において、復電入力部163Rの電圧は、繰り返しパルス電圧である。つまり、復電入力部163Rに入力されるオン信号は、繰り返しパルス電圧の信号である。一方、復電入力部163Rにオン信号が入力されていない期間において、復電入力部163Rの電圧は、ローレベル電圧である。繰り返しパルス電圧は、繰り返しパルス波形を呈する電圧である。繰り返しパルス波形は、電圧がローレベルである期間と電圧がハイレベル電圧である期間が交互に現れる波形である。ハイレベル電圧は、ローレベル電圧よりも高い電圧である。

(アンド回路161,162および163から出力される信号) 先に説明したとおり、本実施形態では、漏電入力部161L,162Lおよび163Lと、操作入力部161Mおよび162Mと、異常入力部161Xおよび162Xと、復電入力部163Rの電圧は、ハイレベル電圧またはローレベル電圧であり得る。

漏電入力部161L、操作入力部161Mおよび異常入力部161Xの3つの入力部にハイレベル電圧が供給されている期間において、第1の3入力アンド回路161の出力部の電圧は、ハイレベル電圧である。出力部のハイレベル電圧が、第1遮断リレー部31に供給される。こうして第1遮断リレー部31に供給されるハイレベル電圧が、第1遮断リレー部31をオン状態にするための信号として機能する。一方、3つの入力部161L,161Xおよび161Mの少なくとも1つの電圧がローレベル電圧である期間において、第1の3入力アンド回路161の出力部の電圧は、ローレベル電圧である。このローレベル電圧は、第1遮断リレー部31をオン状態にできない。

漏電入力部162L、操作入力部162Mおよび異常入力部162Xの3つの入力部にハイレベル電圧が供給されている期間において、第2の3入力アンド回路162の出力部の電圧は、ハイレベル電圧である。出力部のハイレベル電圧が、第2遮断リレー部32に供給される。こうして第2遮断リレー部32に供給されるハイレベル電圧が、第2遮断リレー部32をオン状態にするための信号として機能する。一方、3つの入力部162L,162Xおよび162Mの少なくとも1つの電圧がローレベル電圧である期間において、第2の3入力アンド回路162の出力部の電圧は、ローレベル電圧である。このローレベル電圧は、第2遮断リレー部32をオン状態にできない。

漏電入力部163Lにハイレベル電圧が供給されかつ復電入力部163Rに繰り返しパルス電圧が供給されている期間において、2入力アンド回路163の出力部の電圧は、繰り返しパルス電圧である。出力部の繰り返しパルス電圧が、制御装置180に供給される。つまり、電圧供給検知信号は、繰り返しパルス電圧の信号である。一方、漏電入力部163Lおよび/または復電入力部163Rの電圧がローレベル電圧である期間において、2入力アンド回路163の出力部の電圧は、ローレベル電圧である。

(遮断リレー部31および32の機能) 上述の説明から理解されるように、本実施形態によれば、漏電発生時と、過電流などの所定の異常発生時と、人による外部操作時のいずれにおいても、第1遮断リレー部31および第2遮断リレー部32を遮断させることができる。このように、本実施形態によれば、多機能化された遮断リレー部31および32が実現される。具体的には、漏電検知回路58の寄与により、第1遮断リレー部31および第2遮断リレー部32を遮断させることができる。制御装置180の寄与により、第1異常発生時に、第1遮断リレー部31および第2遮断リレー部32を遮断させることができる。操作部190の寄与により、人による外部操作時に、第1遮断リレー部31および第2遮断リレー部32を遮断させることができる。

(燃料電池ユニット150からの電力の出力) 第1出力条件、第2出力条件および第3出力条件の3つの出力条件が成立していることが、制御装置180が燃料電池ユニット150から第2接続経路142への電力供給を許可するための必要条件である。つまり、少なくともこれら3つの出力条件が成立している期間において、制御装置180は、燃料電池ユニット150から第2接続経路142への電力供給を許可する。一方、これら3つの出力条件のうちの1つでも成立していない期間において、制御装置180は、燃料電池ユニット150から第2接続経路142への電力供給を禁止する。第1出力条件は、第2の3入力アンド回路162の操作入力部162Mにオン信号が入力されているという条件である。第2出力条件は、燃料電池発電システム200が第1異常を検知していないという条件である。第3出力条件は、制御装置180が電圧供給検知信号を受信しているという条件である。

仮に、第3出力条件が、燃料電池発電システム200が第2系統電源12から第2接続経路142への電圧供給を検知しているという条件であったとする。その場合、第1出力条件、第2出力条件および第3出力条件が成立しているときであっても、漏電により第2遮断リレー部32がオフ状態にあれば、第2系統電源12から燃料電池ユニット150への電圧供給はなされない。つまり、その場合には、第2系統電源12から燃料電池ユニット150に電圧が供給されていないにも関わらず、燃料電池ユニット150の発電電力が第2接続経路142に出力されるおそれがある。これに対し、本実施形態では、第3出力条件は、制御装置180が電圧供給検知信号を受信しているという条件である。第3出力条件に第1および第2出力条件を組み合わせることは、第2系統電源12から第2接続経路142への電圧供給がなされており、かつ、第2遮断リレー部32がオン状態にあるときに、燃料電池ユニット150の発電電力を第2接続経路142に出力する観点から有利である。本実施形態は、第2系統電源12から燃料電池ユニット150に電圧が供給されているときに燃料電池ユニット150の発電電力の第2接続経路142への供給を開始するのに適している。このようなときに発電電力の供給を開始できることは、第2系統電源12の電圧という基準が存在する状態で発電電力の供給を開始できることを意味する。これにより、燃料電池ユニット150がこの基準となる電圧と同相の電流を出力することが可能となり、燃料電池41が系統連系機器として適切に動作することが可能となる。また、系統連系規定では停電時に解列することが規定されており、その意味でも、燃料電池ユニット150に電圧が供給されているときに燃料電池ユニット150の発電電力の第2接続経路142への供給を開始することは適切である。

本実施形態では、制御装置180は、操作部190が受け付ける操作を認識できる。このため、制御装置180は、第1出力条件、すなわち、第2の3入力アンド回路162の操作入力部162Mにオン信号が入力されているという条件が成立しているか否かを把握できる。

燃料電池ユニット150から第2接続経路142への電力供給の許可および禁止は、DCACインバータ43を用いて行うことができる。本実施形態では、DCACインバータ43は、燃料電池ユニット150から第2接続経路142に電力を供給する場合、燃料電池ユニット150で生成された直流電力を交流電力に変換する電力変換を行う。第1出力条件、第2出力条件および第3出力条件の3つの出力条件が成立していることが、制御装置180がDCACインバータ43に上記電力変換を行わせるための必要条件である。つまり、少なくともこれら3つの出力条件が成立している期間において、制御装置180は、DCACインバータ43に、上記電力変換を行わせる。一方、これら3つの出力条件のうちの1つでも成立していない期間において、制御装置180は、DCACインバータ43に、上記電力変換を行わせない。このようにすれば、制御装置180は、DCACインバータ43の電力変換を許可または禁止することによって、DCACインバータ43からの電力の出力を許可または禁止できる。このため、燃料電池ユニット150から第2接続経路142への電力供給の許可を適切に行うことができる。

上記3つの出力条件が成立している期間において、燃料電池41が発電を行っている場合に、その発電電力が燃料電池ユニット150から第2接続経路142に出力される形態を採用することができる。その形態では、具体的には、上記3つの出力条件が成立している期間において、燃料電池41が発電を行っている場合には、その直流の発電電力は、DCACインバータ43によって交流電力に電力変換され、その後、第2接続経路142に出力される。

先に説明したように、制御装置180は、第1異常を含む複数の異常を認識し、該複数の異常の少なくとも1つの発生時に第1異常発生時と同様の動作を行うように構成されていてもよい。その場合には、第1〜第3条件に加え、燃料電池発電システム200が上記複数の異常における第1異常とは別の異常も検知していないという条件が成立していることが、上記必要条件である。もちろん、第1〜第3条件に加え他の条件が成立していることが上記必要条件であるという態様も採用され得る。具体的に、本実施形態では、当該他の条件は、燃料電池発電システム200が商用電源15が停電したことを検知していないという条件である。

(燃料電池発電システム200の起動モード) 燃料電池発電システム200が採り得る運転モードは、起動モードを有する。以下、燃料電池発電システム200の起動モードについて説明する。以下の例では、起動モード開始前には、遮断リレー部31,32および33はオフ状態にある。

起動モードにおいては、以下のようにして、第2の3入力アンド回路162の異常入力部162に入力される信号がオン信号である状態に至る。

電源回路52からプルアップ抵抗171を介して第1の3入力アンド回路161の異常入力部161Xに電圧が供給されることによって、第1の3入力アンド回路161の異常入力部161Xに入力される信号がオン信号に維持される。第1の3入力アンド回路161の異常入力部161Xに入力される信号がオン信号に維持された状態で操作部190が第1オン操作を受け付けると、第1遮断リレー部31がオフ状態からオン状態に切り替わる。第1遮断リレー部31がオフ状態からオン状態に切り替わることによって、第1系統電源11から第1遮断リレー部31を介して燃料電池ユニット150の制御電源47に電力が供給される。制御電源47に電力が供給されることによって、制御電源47が起動する。制御電源47が起動した後に、制御電源47から制御装置180に電力が供給される。制御電源47から制御装置180に電力が供給されることによって、制御装置180が起動する。制御装置180が起動した後に、制御装置180は、第2の3入力アンド回路162の異常入力部162Xに入力される信号をオン信号に維持する。

上記起動モードによれば、制御装置180を適切に起動させることができる。また、この起動後に制御装置180が第2の3入力アンド回路162の異常入力部162Xに入力される信号をオン信号に維持することができる。この維持がなされた状態で操作部190に対して第2オン操作がなされることにより、第2遮断リレー部182をオフ状態からオン状態に切り替えることができる。これにより、第2系統電源12から第2遮断リレー部182を介して燃料電池ユニット150に電圧を供給することが可能となる。

なお、本実施形態の起動モードでは、制御電源47の起動時に、第3遮断リレー部33がオフ状態からオン状態に切り替わる。

(遮断リレー部31,32および33の切り替わりの第1具体例) 以下、遮断リレー部31,32および33の切り替わりの第1具体例を説明する。

第1具体例では、初期状態において、遮断リレー部31,32および33がオフ状態にある。

初期状態にあるときに、操作部190が第1オン操作を受け付けると、第1遮断リレー部31がオフ状態からオン状態に切り替わる。また、第1遮断リレー部31がオン状態に切り替わることにより、燃料電池ユニット150の制御電源47に電力が供給され、制御電源47が起動し、制御電源47の起動時に第3遮断リレー部33がオン状態に切り替わる。これにより、状態A1が得られる。

状態A1にあるときに、操作部190が第2オン操作を受け付けると、第2遮断リレー部32がオフ状態からオン状態に切り替わる。これにより、状態B1が得られる。

状態B1にあるときに、漏電検知回路58が漏電を検知すると、第1遮断リレー部31、第2遮断リレー部32および第3遮断リレー部33がオン状態からオフ状態に切り替わる。これにより、状態C1が得られる。

状態C1にあるときに、操作部190を解除操作を受け付けると、第1遮断リレー部31、第2遮断リレー部32および第3遮断リレー部33がオフ状態からオン状態に切り替わる。これにより、状態D1が得られる。

状態D1にあるときに、操作部190が第2オフ操作を受け付けると、第2遮断リレー部32がオン状態からオフ状態に切り替わる。これにより、状態E1が得られる。

状態E1にあるときに、操作部190が第1オフ操作を受け付けると、第1遮断リレー部31がオン状態からオフ状態に切り替わる。これにより、状態F1が得られる。

初期状態〜状態F1に順次切り替わる様子を、表1にまとめる。表1の「ON」はオン状態に対応し、「OFF」はオフ状態に対応する。

(遮断リレー部31,32および33の切り替わりの第2具体例) 以下、遮断リレー部31,32および33の切り替わりの第2具体例を説明する。

第2具体例では、初期状態において、第1遮断リレー部31および第2遮断リレー部32がオフ状態にあり、第3遮断リレー部33がオン状態にあり、図4に示す自立運転が行われている。

初期状態にあるときに、漏電検知回路58が漏電を検知すると、第3遮断リレー部33がオン状態からオフ状態に切り替わる。これにより、状態A2が得られる。

状態A2にあるときに、操作部190を解除操作を受け付けると、第3遮断リレー部33がオフ状態からオン状態に切り替わる。これにより、状態B2が得られる。

初期状態〜状態B2に順次切り替わる様子を、表2にまとめる。表2の「ON」はオン状態に対応し、「OFF」はオフ状態に対応する。

本開示に係る技術によれば、漏電発生時に第1および第2遮断リレー部を遮断させるという機能と他の燃料電池発電システム用の機能とを共存させることができる。本開示に係る燃料電池発電システムは、コスト的に有利である。

11,12,15 電源 16U,16O,16W 線路 17 分電盤 19 補助電源装置 21a イグナイタ 21b,25 ヒータ 22 ACDCコンバータ 26 コンセント 27 バックアップボイラ 31,32,33,34,38,39 リレー部 41 燃料電池 42 DCDCコンバータ 43 DCACインバータ 44 補機 45 改質器 46 燃焼器 47 制御電源 51 漏電検知素子 51p 漏電検知位置 52 電源回路 52a 1次側部分 52b 2次側部分 53 絶縁トランス 53a 1次側巻線 53b 2次側巻線 54 整流回路 55 コンデンサ 55m,55n 端 56 ダイオード 56a アノード 56c カソード 58 漏電検知回路 58L 漏電信号出力部 61,62,63,64 接続部 71 復電検知回路 80,81,82 基板 91,92,93,141,142 経路 100 電力供給回路 150 燃料電池ユニット 161,162,163 アンド回路 161L,162L,163L 漏電入力部 161M,162M 操作入力部 161X,162X 異常入力部 163R 復電入力部 171 プルアップ抵抗 180 制御装置 181,182 オフ信号出力部 190 操作部 191,192,193 スイッチ 199 切替装置 200 燃料電池発電システム

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈