首页 / 专利库 / 植物油脂 / 桐油 / 一种利用干冰填充改性硅胶粉造孔剂制备的多孔陶瓷材料及其制备方法

一种利用填充改性胶粉造孔剂制备的多孔陶瓷材料及其制备方法

阅读:801发布:2020-05-12

专利汇可以提供一种利用填充改性胶粉造孔剂制备的多孔陶瓷材料及其制备方法专利检索,专利查询,专利分析的服务。并且本 发明 提供了一种改性 硅 胶粉造孔剂制备的多孔陶瓷材料及其制备方法,属于陶瓷材料领域。所述陶瓷材料所含原料及各原料重量份数为: 骨料 60-75份、 高岭土 5-10份、改性硅胶粉8-15份、 钛 白粉1-3份、 粘合剂 3-7份、分散剂0.5-2份、 润滑剂 1-3份、 水 15-18份。其中硅胶粉通过改性剂进行改性处理,得到具有特殊性能的改性硅胶粉,可以有效增强颗粒之间的结合 力 和相容性,最后达到改善陶瓷材料的性能。本发明工艺简单,低成本,制备得到的陶瓷材料具有高孔隙、 能量 高、 稳定性 好等特点。,下面是一种利用填充改性胶粉造孔剂制备的多孔陶瓷材料及其制备方法专利的具体信息内容。

1.一种利用填充改性胶粉造孔剂制备的多孔陶瓷材料,其特征在于,所述陶瓷材料所含原料及各原料重量份数为:骨料60-75份、高岭土5-10份、改性硅胶粉8-15份、白粉1-3份、粘合剂3-7份、分散剂0.5-2份、润滑剂1-3份、15-18份。
2.根据权利要求1所述的多孔陶瓷材料,其特征在于,所述骨料为α-化硅、莫来石尖晶石中的至少一种;平均粒径为5-15微米。
3.根据权利要求1所述的多孔陶瓷材料,其特征在于,所述陶瓷材料形状为片状、板状、管状或网状多孔陶瓷材料中的一种。
4.根据权利要求1所述的多孔陶瓷材料,其特征在于,所述高岭土为膨润土、红柱石或水洗高岭土中的至少一种,且平均粒度为3-5微米。
5.根据权利要求1所述的多孔陶瓷材料,其特征在于,所述钛白粉为锐钛型或金红石型中的至少一种,且纯度大于95%,平均粒度0.2-0.5微米。
6.根据权利要求1所述的多孔陶瓷材料,其特征在于,所述粘合剂为羟丙基甲基纤维素、羟乙基纤维素、黄原胶或淀粉醚中的至少一种;且粘度范围为4000-6000mPa·s。
7.根据权利要求1所述的多孔陶瓷材料,其特征在于,所述分散剂为油酸、硬脂酸钠、月桂酸皂、硬脂酸或月桂酸中的至少一种。
8.根据权利要求1所述的多孔陶瓷材料,其特征在于,所述润滑剂为菜籽油、色拉油、玉米油、桐油或烯油中的至少一种。
9.一种如权利要求1所述的多孔陶瓷材料的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)混合:将改性硅胶粉和高岭土依次放入混料机中并搅拌混合,之后加入骨料再次进行搅拌混合,接着加入钛白粉并搅拌混合,最后添加粘合剂,得到预混料;同时将润滑剂、分散剂和水预先搅拌混合5min-10min,得到混合溶液;
(2)捏合:将步骤(1)中所得预混料加入捏合机,边捏合边喷入步骤(1)中所得混合溶液,得到捏合泥料;
(3)练泥:将步骤(2)中所得捏合泥料进行真空练泥2遍,得到练泥浆料;
(4)陈腐:将步骤(3)中所得浆料放入温度为18-26℃陈腐室陈腐24h-48h,得到陈腐泥料;
(5)挤出成型:将步骤(4)中所得陈腐泥料经挤出机真空挤出陶瓷泥片。
(6)烘干:将步骤(5)中所得陶瓷泥片经微波干燥后含水率≤3%;
(7)烧成:将步骤(6)中所得烘干陶瓷泥片装入燃气式隧道窑,经过阶梯式加热方式:从室温加热到500℃,对应升温速率80℃/h-120℃/h之间,之后由500℃升高至1300-1350℃,对应升温速率120℃/h-140℃/h之间,最后经1300℃-1350℃保温烧结3-5小时后得到多孔陶瓷材料。
10.根据权利要求1所述的多孔陶瓷材料,其特征在于,所述改性硅胶粉的制备方法如下:
(1)将硅胶粉与去离子水配制质量分数为5-15%的悬浮液,接着加入质量分数为3%的改性剂并进行搅拌,得到硅胶混合悬浮液;
(2)将步骤(1)中所得硅胶混合悬浮液的pH值调节至3-5之间,之后搅拌加热至70-80℃,得到硅胶混合反应液;
(3)将步骤(2)所得硅胶混合反应液固液分离取固相,并用改性剂洗涤3-5次;
(4)将步骤(3)中所得洗涤后固相烘干,冷却至室温后粉碎过200-325目筛网,得到干粉硅胶粉;
(5)将步骤(4)中所得干粉硅胶粉放入反应釜中,同时加入干冰,并加压混合反应,即得改性硅胶粉。
11.根据权利要求10所述的多孔陶瓷材料,其特征在于,步骤(1)中所述改性剂为三乙醇胺、有机硅聚醚或硅烷偶联剂中的至少一种;所述三乙醇胺的质量浓度为≥85%。
12.根据权利要求10所述的多孔陶瓷材料,其特征在于,步骤(1)中所述硅胶粉为多孔硅酸镁、多孔硅石或气相二氧化硅中的至少一种,且粒径大小范围为300-500目,纯度≥
98%。
13.根据权利要求10所述的多孔陶瓷材料,其特征在于,步骤(5)中压为1-5MPa大气压,搅拌混合反应3-10min,干粉硅胶粉与干冰的质量比为1:3-5。

说明书全文

一种利用填充改性胶粉造孔剂制备的多孔陶瓷材料及

其制备方法

技术领域

背景技术

[0002] 多孔陶瓷材料大部分应用在过滤领域中,多孔陶瓷材料通常是用α-莫来石化硅等为主料,经过成型,烧结而成,现有技术中,为了提高多孔材料过滤性能,通常添加大量的有机造孔剂,来提高通量,这样会造成孔径大小和分布比较宽、强度不高、产品易开裂、合格率不高等缺陷。随着经济的高速发展,工业生产也随之发展,多孔陶瓷材料中平板陶瓷膜作为过滤的一种重要材料,在工业生产环保中担任重要色。面临的问题是废水、废气、固废三废等环保;急需要解决,由于工业上的废水大部分是酸性的,有机膜不耐腐蚀,无机多孔陶瓷膜具有耐腐蚀,耐温,强度高等优势。
[0003] 而平板陶瓷膜在多孔陶瓷领域里又具有低成本、高通量、低能耗、性能稳定、易清洗等特点,是当今工业水处理中首先的环保产品。
[0004] 且平板陶瓷膜具有热稳定性好,耐酸、耐碱、耐有机溶剂,PH值适用范围宽,机械强度大,易清洗、易再生,能耗低等特点。
[0005] 目前大部平板膜生产厂家,生产平板膜支撑体为了增加气孔率,使用有机造孔剂量大,造孔剂大多是淀粉石墨树脂粉、聚合物塑料球、木炭粉、石蜡等;一般添加量高达10%以上,但是有机物高温排焦会带来产品开裂比较多,合格率低,另一方面,由于使用的有机造孔剂,为了增加气孔隙,必须增加造孔剂添加量,这样会造成产品强度下降;同时还会排放大量有害气体,严重污染环境。且现有技术中多孔陶瓷材料的有机造孔剂与无机主料如α-氧化铝、莫来石、碳化硅等之间混合之间相容性差,结合差,易产生团聚现象,产品出现大孔,孔径分布不均等缺陷。本发明多孔材料中添加三乙醇胺改性硅胶粉作造孔剂易产生氢键,并与干冰加压混合,由于干冰升华进入多孔硅胶表面微孔内阻止水分子进入,解决了成形水分过高问题,产品一致性、稳定性提高。

发明内容

[0006] 本申请针对现有技术的不足,本发明提供了一种利用干冰填充改性硅胶粉造孔剂制备的多孔陶瓷材料及其制备方法。本发明工艺简单,低成本,制备得到的陶瓷材料具有高孔隙、能量高、稳定性好等特点。本发明的技术方案如下:
[0007] 一种利用干冰填充改性硅胶粉造孔剂制备的多孔陶瓷材料,所述陶瓷材料所含原料及各原料重量份数为:骨料60-75份、高岭土5-10份、改性硅胶粉8-15 份、白粉1-3份、粘合剂3-7份、分散剂0.5-2份、润滑剂1-3份、水15-18 份。
[0008] 所述骨料为α-氧化铝、碳化硅、莫来石或尖晶石中的至少一种;平均粒径为 5-15微米。
[0009] 所述陶瓷材料形状为片状、板状、管状或网状多孔陶瓷材料中的一种。
[0010] 所述高岭土为膨润土、红柱石或水洗高岭土中的至少一种,且平均粒度为3-5 微米。
[0011] 所述钛白粉为锐钛型或金红石型中的至少一种,且纯度大于95%,平均粒度 0.2-0.5微米。
[0012] 所述粘合剂为羟丙基甲基纤维素、羟乙基纤维素、黄原胶或淀粉醚中的至少一种;且粘度范围为4000-6000mPa·s。
[0013] 所述分散剂为油酸、硬脂酸钠、月桂酸皂、硬脂酸或月桂酸中的至少一种。
[0014] 所述润滑剂为菜籽油、色拉油、玉米油、桐油或烯油中的至少一种。
[0015] 所述的多孔陶瓷材料的制备方法包括如下步骤:
[0016] (1)混合:将改性硅胶粉和高岭土依次放入混料机中并搅拌混合,之后加入骨料再次进行搅拌混合,接着加入钛白粉并搅拌混合,最后添加粘合剂,得到预混料;同时将润滑剂、分散剂和水预先搅拌混合5min-10min,得到混合溶液;
[0017] (2)捏合:将步骤(1)中所得预混料加入捏合机,边捏合边喷入步骤(1) 中所得混合溶液,得到捏合泥料;
[0018] (3)练泥:将步骤(2)中所得捏合泥料进行真空练泥2遍,得到练泥浆料;
[0019] (4)陈腐:将步骤(3)中所得浆料放入温度为18-26℃陈腐室陈腐24h-48h,得到陈腐泥料;
[0020] (5)挤出成型:将步骤(4)中所得陈腐泥料经挤出机真空挤出陶瓷泥片。
[0021] (6)烘干:将步骤(5)中所得陶瓷泥片经微波干燥后含水率≤3%;
[0022] (7)烧成:将步骤(6)中所得烘干陶瓷泥片装入燃气式隧道窑,经过阶梯式加热方式:从室温加热到500℃,对应升温速率80℃/h-120℃/h之间,之后由 500℃升高至1300-1350℃,对应升温速率120℃/h-140℃/h之间,最后经1300℃ -1350℃保温烧结3-5小时后得到多孔陶瓷材料。
[0023] 所述改性硅胶粉的制备方法如下:
[0024] (1)将硅胶粉与去离子水配制质量分数为5-15%的悬浮液,接着加入质量分数为3%的改性剂并进行搅拌,得到硅胶混合悬浮液;
[0025] (2)将步骤(1)中所得硅胶混合悬浮液的pH值调节至3-5之间,之后搅拌加热至70-80℃,得到硅胶混合反应液;
[0026] (3)将步骤(2)所得硅胶混合反应液固液分离取固相,并用改性剂洗涤3-5 次;
[0027] (4)将步骤(3)中所得洗涤后固相烘干,冷却至室温后粉碎过200-325目筛网,得到干粉硅胶粉;
[0028] (5)将步骤(4)中所得干粉硅胶粉放入反应釜中,同时加入干冰,并加压混合反应,即得改性硅胶粉。
[0029] 步骤(1)中所述改性剂为三乙醇胺、有机硅聚醚或硅烷偶联剂中的至少一种;所述三乙醇胺的质量浓度为≥85%。
[0030] 步骤(1)中所述硅胶粉为多孔硅酸镁、多孔硅石或气相二氧化硅中的至少一种,且粒径大小范围为300-500目,纯度≥98%。
[0031] 步骤(5)中压力为1-5MPa大气压,搅拌混合反应3-10min,干粉硅胶粉与干冰的质量比为1:3-5。
[0032] 本发明有益的技术效果在于:
[0033] 本发明中硅胶粉是具有固体特性的胶态体系,由形成凝集结构的胶体粒子构成;胶体粒子是水合状态硅胶(多硅酸)的缩聚物,属非晶态物质。胶体粒子的集合体的间隙形成试剂柱层析硅胶颗粒内部的微孔结构,因此,它是一种具有丰富微孔结构,高比表面积、高纯度、高活性的优质材料。硅胶粉用三乙醇胺改性,改性后的硅胶粉与无机混合料之间产生氢键,增强硅胶粉与无机混合料之间的结合力和相容性,提高混合均匀性,[0034] 干冰是固态二氧化碳,由于硅胶粉是微孔结构,干冰升华进入硅胶粉微孔内,这样,硅胶粉在混合料中会阻止水分子进入,减少了混合工艺中水的加入量,保证泥料在成型过程中不会变软,产品稳定性、一致性、成品率得到提高。该技术特点体现在烧成时由于颗粒之间结合力和相容性增强,产品不易开裂,以改性硅胶粉为造孔剂,改性后的硅胶粉与无机混合料产生氢键,增强硅胶粉与无机混合料之间的结合力和相容性,提高混合均匀性。
[0035] 本发明利用改性硅胶粉作造孔剂,本身具有微孔效应,比表面积大,造孔效果好,自身二氧化硅与氧化铝在高温时形成莫来石相,提高陶瓷材料抗压强度,同时由于改性硅胶粉与无机料之间产生氢键,使颗粒之间结合力、相容性得到提高,也提高了混合料的均匀性,削除团聚体的发生,制备的陶瓷材料具有孔径分布均匀、大孔少、能量高、稳定性好、成本低、烧成合格率高、过效率高、环保等特点。

具体实施方式

[0036] 下面结合实施例,对本发明进行具体描述。
[0037] 实施例1
[0038] 原料名称 细度μm 粘度mpa.s 重量份数α-氧化铝 5 / 60
苏州高岭土 3 / 5
三乙醇胺改性多孔硅酸镁 12 / 15
锐钛型钛白粉 0.25 / 1
羟丙基甲基纤维素 / 6000 3
油酸 / / 0.5
菜籽油 / / 1
去离子水 / / 15
[0039] 将改性硅胶粉(三乙醇胺改性多孔硅酸镁)和苏州高岭土依次放入混料机中并搅拌混合,之后加入α-氧化铝再次进行搅拌混合,接着加入锐钛型钛白粉并搅拌混合,最后添加羟丙基甲基纤维素,得到预混料;同时将油酸、菜籽油和水预先搅拌混合5min,得到混合溶液,将所得预混料加入捏合机,边捏合边加混合溶液并捏合20分钟,得到捏合泥料,将捏合泥料真空练泥二遍,陈腐24小时,挤出成型,微波干燥,在隧道窑中烧成,以80℃/h速率从室温到500℃;再以 120℃/h升到1320℃,保温3小时。
[0040] 其中,三乙醇胺改性多孔硅酸镁的步骤为:(1)将多孔硅酸镁与去离子水配制质量分数为5%的悬浮液,接着加入质量分数为3%的三乙醇胺并进行搅拌,得到硅胶混合悬浮液;所得硅胶混合悬浮液的pH值调节至3之间,之后搅拌加热至70℃,得到硅胶混合反应液,固液分离取固相,并用改性剂洗涤3次;
[0041] (4)将步骤(3)中所得洗涤后固相烘干,冷却至室温后粉碎过200-325目筛网,得到干粉硅胶粉;
[0042] (5)将步骤(4)中所得干粉硅胶粉放入反应釜中搅拌反应3min,同时加入 45份干冰,并加压1MPa大气压混合反应,即得改性硅胶粉。
[0043] 经过上述步骤制备得到的产品孔隙率为38%,平均孔径为1.8微米,最大孔为2.29微米,抗折强度为18.6MPa,在0.02MPa下纯水通量为1.5m3/m2·h。
[0044] 实施例2
[0045]原料名称 细度μm 粘度mpa.s 重量份数
α-氧化铝 15 / 75
基膨润土粉 3 / 10
三乙醇胺多孔硅酸镁 12 / 15
锐钛型钛白粉 0.25 / 3
羟丙基甲基纤维素 / 6000 7
油酸 / / 1.5
菜籽油 / / 3
去离子水 / / 18
[0046] 将改性硅胶粉(三乙醇胺改性多孔硅酸镁)和钙基膨润土粉依次放入混料机中并搅拌混合,之后加入α-氧化铝再次进行搅拌混合,接着加入锐钛型钛白粉并搅拌混合,最后添加羟丙基甲基纤维素,得到预混料;同时将油酸、菜籽油和去离子水预先搅拌混合8min,得到混合溶液,将所得预混料加入捏合机,边捏合边加混合溶液并捏合20分钟,得到捏合泥料,将捏合泥料真空练泥二遍,陈腐30小时,挤出成型,微波干燥,在隧道窑中烧成,以100℃/h速率从室温到500℃;再以120℃/h升到1300℃,保温4小时。
[0047] 其中,三乙醇胺改性多孔硅酸镁的步骤为:(1)将多孔硅酸镁与去离子水配制质量分数为5%的悬浮液,接着加入质量分数为3%的三乙醇胺并进行搅拌,得到硅胶混合悬浮液;所得硅胶混合悬浮液的pH值调节至3之间,之后搅拌加热至70℃,得到硅胶混合反应液,固液分离取固相,并用改性剂洗涤3次;
[0048] (4)将步骤(3)中所得洗涤后固相烘干,冷却至室温后粉碎过200-325目筛网,得到干粉硅胶粉;
[0049] (5)将步骤(4)中所得干粉硅胶粉放入反应釜中中搅拌反应5min,同时加入45份干冰,并加压2MPa大气压混合反应,即得改性硅胶粉。
[0050] 根据上述工艺方法制备得到的产品孔隙率为42%,平均孔径为2.1微米,最大孔为2.89微米,抗折强度为20.4MPa,在0.02MPa下纯水通量为1.8m3/m2·h。
[0051] 实施例3
[0052]原料名称 细度μm 粘度mpa.s 重量份数
莫来石粉 8 / 65
红柱石 5 / 10
硅烷偶联剂改性气相二氧化硅 8 / 12
锐太型钛白粉 0.25 / 1.5
淀粉醚 / 4000 5
硬脂酸钠 / / 1
烯烃油 / / 1
去离子水 / / 16
[0053] 将改性硅胶粉(硅烷偶联剂改性气相二氧化硅)和红柱石依次放入混料机中并搅拌混合,之后加入莫来石粉再次进行搅拌混合,接着加入锐钛型钛白粉并搅拌混合,最后添加淀粉醚,得到预混料;同时将烯烃油、硬脂酸钠和去离子水预先搅拌混合10min,得到混合溶液,将所得预混料加入捏合机,边捏合边加混合溶液并捏合20分钟,得到捏合泥料,将捏合泥料真空练泥二遍,陈腐40 小时,挤出成型,微波干燥,在隧道窑中烧成,以100℃/h速率从室温到500℃;再以140℃/h升到1350℃,保温5小时。
[0054] 其中,硅烷偶联剂改性气相二氧化硅步骤为:(1)气相二氧化硅与去离子水配制质量分数为5%的悬浮液,接着加入质量分数为3%的硅烷偶联剂并进行搅拌,得到硅胶混合悬浮液;所得硅胶混合悬浮液的pH值调节至3.5之间,之后搅拌加热至70℃,得到硅胶混合反应液,固液分离取固相,并用改性剂洗涤 5次;
[0055] (4)将步骤(3)中所得洗涤后固相烘干,冷却至室温后粉碎过200-325目筛网,得到干粉硅胶粉;
[0056] (5)将步骤(4)中所得干粉硅胶粉放入反应釜中搅拌反应8min,同时加入 60份干冰,并加压3MPa大气压混合反应,即得改性硅胶粉。
[0057] 根据上述所制备得到的产品孔隙率为45%,平均孔径为2.4微米,最大孔为 2.97微米,抗折强度为23.8MPa,在0.02MPa下纯水通量为2.3m3/m2·h。
[0058] 实施例4
[0059] 原料名称 细度μm 粘度mpa.s 重量份数碳化硅粉 10 / 70
钙基膨润土粉 5 / 8
有机硅聚醚改性多孔硅石 15 / 8
金红石型钛白粉 0.5 / 3
黄原胶 / 5200 7
月桂酸 / / 2
桐油 / / 3
去离子水 / / 18
[0060] 将改性硅胶粉(有机硅聚醚改性多孔硅石)和钙基膨润土粉依次放入混料机中并搅拌混合,之后加入碳化硅粉再次进行搅拌混合,接着加入金红石型钛白粉并搅拌混合,最后添加黄原胶,得到预混料;同时将月桂酸、桐油和去离子水预先搅拌混合5min,得到混合溶液,将所得预混料加入捏合机,边捏合边加混合溶液并捏合20分钟,得到捏合泥料,将捏合泥料真空练泥二遍,陈腐48 小时,挤出成型,微波干燥,在隧道窑中烧成,以120℃/h速率从室温到500℃;再以140℃/h升到1300℃,保温3小时。
[0061] 其中,有机硅聚醚改性多孔硅石步骤为:(1)多孔硅石与去离子水配制质量分数为15%的悬浮液,接着加入质量分数为3%的有机硅聚醚并进行搅拌,得到硅胶混合悬浮液;
所得硅胶混合悬浮液的pH值调节至4之间,之后搅拌加热至70℃,得到硅胶混合反应液,固液分离取固相,并用改性剂洗涤3次;
[0062] (4)将步骤(3)中所得洗涤后固相烘干,冷却至室温后粉碎过200-325目筛网,得到干粉硅胶粉;
[0063] (5)将步骤(4)中所得干粉硅胶粉放入反应釜中中搅拌反应10min,同时加入24份干冰,并加压5MPa大气压混合反应,即得改性硅胶粉。
[0064] 产品孔隙率48%,平均孔径2.5微米,最大孔3.05微米,抗折强度24.3MPa,在0.02MPa下纯水通量2.5m3/m2·h。
[0065] 对比例1(与实施例1进行对比)
[0066]原料名称 细度μm 粘度mpa.s 重量份数
α-氧化铝 5 / 60
苏州高岭土 3 / 5
多孔硅酸镁 12 / 15
锐钛型钛白粉 0.25 / 1
羟丙基甲基纤维素 / 6000 3
油酸 / / 0.5
菜籽油 / / 1
去离子水 / / 15
[0067] 将未改性多孔硅酸镁和苏州高岭土粉依次放入混料机中并搅拌混合,之后加入α-氧化铝再次进行搅拌混合,接着加入锐钛型钛白粉并搅拌混合,最后添加羟丙基甲基纤维素,得到预混料;同时将油酸、菜籽油和水预先搅拌混合5min,得到混合溶液,将所得预混料加入捏合机,边捏合边加混合溶液并捏合20分钟,得到捏合泥料,将捏合泥料真空练泥二遍,陈腐24小时,挤出成型,微波干燥,在隧道窑中烧成,以80℃/h速率从室温到500℃;再以120℃/h升到1320℃,保温3小时。
[0068] 通过该工艺制备得到的产品孔隙率为36%,平均孔径为2.2微米,最大孔为 5.6微米,抗折强度为17.1MPa,在0.02MPa下纯水通量为1.7m3/m2·h。
[0069] 对比例2(与实施例3进行对比)
[0070] 原料名称 细度μm 粘度mpa.s 重量份数莫来石粉 8 / 65
红柱石 5 / 10
未改性气相二氧化硅 8 / 12
锐太型钛白粉 0.25 / 1.5
淀粉醚 / 4000 5
硬脂酸钠 / / 1
烯烃油 / / 1
去离子水 / / 16
[0071] 将未改性的气相二氧化硅和红柱石粉依次放入混料机中并搅拌混合,之后加入莫来石粉再次进行搅拌混合,接着加入锐钛型钛白粉并搅拌混合,最后添加淀粉醚,得到预混料;同时将烯烃油、硬脂酸钠和去离子水预先搅拌混合10min,得到混合溶液,将所得预混料加入捏合机,边捏合边加混合溶液并捏合20分钟,得到捏合泥料,将捏合泥料真空练泥二遍,陈腐40小时,挤出成型,微波干燥,在隧道窑中烧成,以100℃/h速率从室温到500℃;再以140℃/h升到1350℃,保温5小时。
[0072] 通过本工艺制备得到的产品孔隙率为43%,平均孔径为2.4微米,最大孔为 7.2微米,抗折强度为20.2MPa,在0.02MPa下纯水通量为1.9m3/m2·h。
[0073] 表1为产品的工艺关键点与性能参数
[0074]
[0075] 实施例1-4,使用的是改性硅胶粉,由三乙醇胺改性制得硅胶粉的无机混合料,颗粒之间形成氢键,产生较强相容性和结合力,削除颗粒团聚现象,测得的混合料D90值都小于30微米,从室温到500℃,升温速率由60℃/h加快到 120℃/h,500℃-1300℃升温速率由80℃/h加快到140℃/h,该技术特点体现在烧成时由于颗粒之间结合力和相容性增强,制品未出现开裂现象;干冰是固态二氧化碳,由于硅胶粉是微孔结构,干冰升华进入硅胶粉微孔内,这样,硅胶粉在混合料中会阻止水分子进入,减少了混合工艺中水的加入量,保证泥料在成型过程中不会变软,产品稳定性、一致性、成品率得到提高。随着改性硅胶粉增加,气孔率上升,强度增加,最大孔都小于3.05微米以下,实施例制品都表现出优良性能,由表1可知。而对比例1、2,直接用未改性硅胶粉生产的,混合料的D90值大,团聚现象严重,尽管以较低的升温速率升温,但制品都有开裂现象,且制品最大孔也大,表现出较差的性能。
[0076] 以上描述仅为申请的较佳实施例,以及对所运用的技术进行说明和论证,本领域技术人员应当理解,本申请所涉及的发明范围,并不限于以上述技术特征和组合。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈