首页 / 专利库 / 燃料电池 / 质子传导率 / CNT@Fe3O4@C改性的聚合物杂化质子交换膜及其制备方法

CNT@Fe3O4@C改性的聚合物杂化质子交换膜及其制备方法

阅读:559发布:2020-05-08

专利汇可以提供CNT@Fe3O4@C改性的聚合物杂化质子交换膜及其制备方法专利检索,专利查询,专利分析的服务。并且本 发明 属于膜技术领域,具体为一种CNT@Fe3O4@C改性的 聚合物 杂化 质子交换膜 及其制备方法。本发明利用 磁场 将一维(1D)状CNT@Fe3O4@C均匀地、取向地分散于聚合物基体中,制备得到取向CNT@Fe3O4@C改性聚合物杂化质子交换膜,该质子交换膜的 质子传导率 ,不仅较纯聚合物质子交换膜有明显提高,而且还高于非取向的CNT@Fe3O4@C改性聚合物杂化质子交换膜的质子传导率。同时,CNT@Fe3O4@C的取向排列还进一步提高了杂化质子交换膜的 燃料 阻隔能 力 。因此,取向CNT@Fe3O4@改性的聚合物杂化质子交换膜具有更加优越的选择性。本发明方法操作过程简单,制备条件温和,生产成本较低,易于批量化、规模化生产,具有广阔的应用前景。,下面是CNT@Fe3O4@C改性的聚合物杂化质子交换膜及其制备方法专利的具体信息内容。

1.一种CNT@Fe3O4@C改性的聚合物杂化质子交换膜的制备方法,其特征在于,具体步骤为:
(1)配置0.01 500 mg/mL羧基化纳米管/丙分散液;随后,加入相当于羧基化碳纳~
米管质量1 2000 wt%的二茂,分散均匀;接着,按体积-质量比加入相当于二茂铁质量~
(mg) 0.1 100 v/wt%的双溶液(mL),混合均匀;将上述体系置于170 250℃环境中6~ ~ ~
240 h,然后,待其自然冷却;最后通过洗涤、离心步骤,得到取向碳纳米管@Fe3O4@C复合物,记为CNT@Fe3O4@C;
(2)往聚合物溶液中加入所需量的CNT@Fe3O4@C,分散均匀后得到铸膜液;将该铸膜液涂覆成膜后置于60 70℃烘箱中,在膜厚度方向上施加一定的磁场,随后缓慢升温至100 150~ ~
℃,然后再抽真空,保持6~48 h;最后,将该杂化膜经双氧水溶液和酸浸泡,得到CNT@Fe3O4@C改性的聚合物杂化质子交换膜;
步骤(2)中所述的聚合物溶液为全氟磺酸树脂、磺化聚芳醚、磺化聚芳醚砜、磺化聚硫醚砜、聚苯并咪唑、磺化聚苯并咪唑及其衍生物的均相溶液中的一种,或者其中几种的混合物;所述的聚合物溶液的浓度为1 40wt%,所述的聚合物溶液的溶剂为使得上述聚合物形成~
均相溶液的溶剂。
2. 根据权利要求1所述的制备方法,其特征在于步骤(1)中所述双氧水溶液的浓度为1
30 wt%。
~
3.根据权利要求1所述的制备方法,其特征在于步骤(2)中所述的磁场强度为0.01 0.7~
特斯拉。
4. 根据权利要求1所述的制备方法,其特征在于步骤(2)中所述缓慢升温的升温速率小于1℃ /min。
5. 根据权利要求1所述的制备方法,其特征在于步骤(2)中所述的经双氧水溶液和酸浸泡,双氧水的浓度为1 10 wt%,酸为1 4 mol/L的盐酸硫酸磷酸的一种,或其中几种的~ ~
混合物。

说明书全文

CNT@Fe3O4@C改性的聚合物杂化质子交换膜及其制备方法

技术领域

[0001] 本发明属于膜技术领域,具体涉及一种取向纳米管@Fe3O4@C复合物(CNT@Fe3O4@C)改性的聚合物杂化质子交换膜及其制备方法。

背景技术

[0002] 燃料电池(FC)拥有高能量转换率、无污染、燃料来源广泛、噪音低等优异性能,如今已逐步成为内燃机最具竞争的取代动力源之一。直接甲醇燃料电池(DMFC)是第六代FC,具有操作条件温和、能量密度高、使用寿命长和无需燃料预处理装置等额外的优势,现已吸引了广泛的学术界和工业界的关注。质子交换膜(PEM)是DMFC的核心部件之一,优化它的性能对于开发高性能的DMFC起着至关重要的作用。一方面,PEM将燃料(甲醇,MeOH)与化剂(常为氧气)阻隔开开;另一方面,PEM为质子和/或合质子的迁移提供通道。一张高性能的PEM,应同时具有高质子传导率和燃料阻隔能力,即使是在高温低湿和/或高燃料浓度的苛刻条件下。事实上,质子/水合质子与MeOH在PEM中迁移的路径几乎是重合的,即离子簇彼此贯穿形成的离子通道。因此,要获得一张质子传导率高、燃料渗透率又低的PEM,始终是一个极大的挑战,这极大地限制了DMFC的实际应用。现有的PEM还远未达到理想DMFC的实际应用要求。
[0003] PEM的质子传导率与其燃料渗透率之间的比值,称为PEM的选择性。迄今为止,研究者们已开发出多种手段来制备高选择性的PEM,比如:1)开发具有更小MeOH渗透逾渗值的PEM基体材料,比如磺化聚醚醚(《电化学通讯》,2007,9,905-910)、磺化聚(亚芳基醚砜)(《膜科学》,2002,197,231-242)等;2)通过表面修饰设计具有双/三层等多层结构的PEM(《国际氢能源》,2011,36,6105-6111;《膜科学》,2015,474,140-147),这种手段重点关注PEM燃料渗透率的下降情况;3)向PEM中引入(复合)无机纳米粒子。第三种途径最为简便、有效、廉价。至今已有多种无机材料被成功用来制备高性能有机-无机杂化质子交换膜,比如三维(3D)状SiO(2《国际氢能源》2011,36,9831-9841)、锂藻土(《膜科学》,2006, 278,35-42)、ZrO(2《电化学》,2011,158,B690-B697)、蒙脱土(《能源》,2010,195,4653-4659)和(《电化学学报》,2013,89,35-44)等;2D状的氧化石墨烯(《ACS应用材料与表面》,2013,5,
1481-1488;《碳》,2012,50,5395-5402;《RSC先进》,2012,2,8777-8782)、MoS(2《ACS应用材料与表面》,2013,5,13042-13049)、BN(《ACS应用材料与表面》,2014,6,7751-7758)以及它们的衍生物(《物理化学C》,2011,115,20774-20781;《材料化学》,2014,2,16083-16092;《国际氢能源》,2013,38,13792-13801)等;1D状的碳纳米管(《朗格缪尔》,2009,25,8299-
8305)、TiO2纳米管(《国际氢能源》,2011,36,6073-6081)、纤维纳米晶须(《材料化学A》,
2014,2,11334-11340)、金属有机框架(《科学报道》,2014,4,4334)以及它们的衍生物(《材料化学A》,2011,21,18467-18474;《材料化学》,2008,20,5756-5767;《ACS应用材料与表面》,2014,6,15291-15301)。其中,1D材料是一种较为经典的PEM改性材料,一方面它可以有效阻隔MeOH在杂化膜中的渗透,另一方面它还可以优化质子的迁移通道,提升杂化膜的质子传导率(《材料化学A》,2014,2,11334-11340;《科学报道》,2014,4,4334)。然而,传统的负载手段只能使得1D材料无定向、随机地分散在杂化膜基体中,杂化膜中的很多质子传导路径事实上是无效或者有效性很低的,因此杂化膜的质子传导率提升较为有限。
[0004] 本发明首先制备了1D状碳纳米管@Fe3O4@C复合物(CNT@Fe3O4@C),随后,通过在共混-成膜过程中施加一定的磁场,使得CNT@Fe3O4@C取向分散在聚合物基体中,进而制备得到了高选择性的CNT@Fe3O4@C/聚合物杂化质子交换膜。CNT@Fe3O4@C外部的无定形碳拥有诸如羧基、羟基等丰富的含氧官能团,它们与聚合物膜中的亲水性官能团(常为磺酸基团)之间可形成较强的氢键相互作用力。因此,CNT@Fe3O4@C和聚合物膜基体之间具有较好的相容性,CNT@Fe3O4@C在杂化膜中的分散良好;另外,由此形成的良好的氢键网络还可为质子在杂化膜中的传导提供了全新的通道。更为重要的是,1D状CNT@Fe3O4@C在杂化膜厚度方向上的取向排列,还会大幅提高质子在膜厚方向上传导的概率,进一步提升了杂化质子交换膜的质子传导率。因此,通过本工艺制备得到的取向CNT@Fe3O4@C/聚合物杂化质子交换膜的质子传导率不仅高于纯聚合物质子交换膜,与非取向的CNT@Fe3O4@C改性聚合物杂化质子交换膜相比同样拥有一定的优势。此外,1D状CNT@Fe3O4@C复合纳米粒子的引入,一定程度上增加了杂化膜内燃料渗透通道的曲折度。即使是在高温和/或高甲醇浓度的苛刻条件下,杂化膜的燃料渗透性也得到了有效的抑制。

发明内容

[0005] 本发明的目的在于提供一种性能优异的取向碳纳米管@Fe3O4@C复合物(记为CNT@Fe3O4@C)改性的聚合物杂化质子交换膜及其制备方法。
[0006] 本发明提供的CNT@Fe3O4@C改性的聚合物杂化质子交换膜,在共混-成膜过程中通过磁场将一维(1D)状CNT@Fe3O4@C沿膜厚方向取向排列在聚合物膜基体中,可极大地提高杂化质子交换膜的选择性。
[0007] 本发明提供的取向CNT@Fe3O4@C改性的聚合物杂化质子交换膜的制备方法,具体步骤为:
[0008] (1)配置0.01 500 mg/mL羧基化碳纳米管(记为CNT-COOH)/丙酮分散液;随后,加~入相当于CNT-COOH质量1 2000 wt%的二茂,分散均匀;接着,按体积-质量比加入相当于~
二茂铁质量(mg) 0.1 100 v/wt%的双氧水溶液(mL),混合均匀;将上述体系置于170 250℃~ ~
环境中6 240 h,然后,待其自然冷却;最后通过洗涤、离心等步骤,得到取向碳纳米管@~
Fe3O4@C复合物,记为CNT@Fe3O4@C;
[0009] (2)往聚合物溶液中加入所需量的CNT@Fe3O4@C,分散均匀后得到铸膜液;将该铸膜液涂覆成膜后置于60 70℃烘箱中,在膜厚度方向上施加一定的磁场,随后缓慢升温至100~ ~150℃,然后再抽真空,保持6 48 h;最后,将该杂化膜经双氧水溶液和酸浸泡,得到取向~
CNT@Fe3O4@C改性的聚合物杂化质子交换膜。
[0010] 本发明中,步骤(1)中所述双氧水溶液的浓度为1 30 wt%。~
[0011] 本发明中,步骤(2)中所述的聚合物溶液为全氟磺酸树脂、磺化聚芳醚、磺化聚芳(硫)醚砜、磺化聚芳(硫)醚酮、磺化聚醚砜酮、磺化聚酰亚胺、磺化聚硅氧烷、磺化聚芳(硫)醚氧膦、磺化聚膦腈、磺化聚芳(硫)醚砜腈、磺化聚苯基喹喔啉、聚乙烯基膦酸、(磺化)聚苯并咪唑及其衍生物的均相溶液中的一种,或者几种的混合物;所述的聚合物溶液的浓度为140wt%,所述的聚合物溶液的溶剂为使得上述聚合物形成均相溶液的溶剂。
~
[0012] 本发明中,步骤(2)中所述的磁场强度为0.01 0.7特斯拉。~
[0013] 本发明中,步骤(2)中所述缓慢升温的升温速率小于1℃/min。例如0.1-1.0℃/min。
[0014] 本发明中,步骤(2)中所述的经双氧水溶液和酸浸泡,双氧水的浓度为1 10 wt%,~酸为1 4 mol/L的盐酸硫酸磷酸的一种,或其中几种的混合物。
~
[0015] 与传统工艺相比,本发明首先制备了1D状CNT@Fe3O4@C,随后通过成膜过程中在膜厚方向上附加一定的磁场将其取向负载到聚合物膜基体中。CNT@Fe3O4@C外部的无定形碳拥有丰富的含氧官能团(例如羧基、羟基),它和聚合物膜中的亲水性官能团(常见为磺酸基团)之间存在着较强的氢键相互作用力。一方面,这有效提升了CNT@Fe3O4@C与聚合物膜基体之间的相容性及其在杂化质子交换膜中的分散性;另一方面,由此形成的良好的氢键网络还可以为质子的传导提供全新的通道。此外,1D状CNT@Fe3O4@C在聚合物膜基体中的取向排列,大幅提高了质子在膜厚方向上传导的概率,进一步提高了杂化质子交换膜的质子传导率。因此,通过本工艺得到的取向CNT@Fe3O4@C/聚合物杂化质子交换膜的质子传导率不仅较纯聚合物质子交换膜有明显提高,而且还高于非取向的CNT@Fe3O4@C改性聚合物杂化质子交换膜。此外,1D状CNT@Fe3O4@C复合纳米粒子的引入,一定程度上增加了杂化膜内部燃料渗透通道的曲折度。即使是在高温和/或高甲醇浓度的苛刻条件下,杂化膜的燃料渗透性也得到了有效抑制。
[0016] 本发明操作过程简单,制备条件温和,生产成本低,易于批量化、规模化生产,具有良好的工业化生产基础和广阔的应用前景。附图说明
[0017] 图1为CNT@Fe3O4@C复合纳米粒子的TEM图(A)、磁场不存在(B)和存在(C)情况下CNT@Fe3O4@C水相分散液的照片。
[0018] 图2为CNT@Fe3O4@C+Nafion膜的照片(A)和断面SEM图(B);CNT@Fe3O4@C+Nafion(M)膜的照片(C)和断面SEM图(D)。
[0019] 图3为100%RH条件下,纯Nafion膜、CNT@Fe3O4@C+Nafion和CNT@Fe3O4@C+Nafion(M)杂化质子交换膜温度分辨的质子传导率。
[0020] 图4为50℃、80 v/v% MeOH/H2O条件下,纯Nafion膜、CNT@Fe3O4@C+Nafion和CNT@Fe3O4@C+Nafion(M)杂化质子交换膜的甲醇渗透率。

具体实施方式

[0021] 以下通过实施例进一步详细说明本发明取向碳纳米管@Fe3O4@C复合物/聚合物杂化质子交换膜的制备及其质子传导性能。然而,该实施例仅仅是作为提供说明而不是限定本发明。
[0022] 实施例 1
[0023] 配置10 mg/mL CNT-COOH/丙酮分散液10 mL;随后,加入100 mg二茂铁,分散均匀;接着,加入30 wt%双氧水溶液1 mL,混合均匀;将上述体系置于210℃环境中24 h之后,待其自然冷却,最后通过无水乙醇洗涤-离心等步骤,收集产物CNT@Fe3O4@C。图1(A)为CNT@Fe3O4@C的TEM图,可以看到,Fe3O4@C随机地、均匀地吸附在CNT上、进而形成整体为1D状的复合纳米粒子。CNT@Fe3O4@C具有良好的磁响应性(图1(B/C))。
[0024] 取5 mL市售的Nafion溶液,经旋蒸除去约一半溶剂后加入2.5 mL N,N-二甲基甲酰胺,继续旋蒸10 min;往上述Nafion溶液中加入相当于Nafion聚合物质量0.5 wt%的CNT@Fe3O4@C,超声1 h而使其分散均匀;将该分散液小心倾倒于模具中并快速置于70℃烘箱中,在膜厚度方向上施加均匀的0.3 T磁场后,从70℃开始经2 h后缓慢升温至120℃以除去溶剂;抽真空、并将该真空烘箱温度定在120℃保持16 h;最后,将该杂化膜先用3 wt%H2O2溶液于70℃浸泡2 h,随后用1 M H2SO4在80℃下经1 h将膜转化为H+型,最后得到取向CNT@Fe3O4@C/Nafion杂化质子交换膜,标记为CNT@Fe3O4@C+Nafion(M)。成膜过程中不附加磁场、同法制备得到的非取向的CNT@Fe3O4@C改性Nafion杂化质子交换膜,标记为CNT@Fe3O4@C+Nafion。
[0025] 图2展示了CNT@Fe3O4@C+Nafion和CNT@Fe3O4@C+Nafion(M)膜的照片和断面SEM图。通过图2(D)可以看到,在磁场辅助下,CNT@Fe3O4@C确实是沿膜厚方向上取向排列在CNT@Fe3O4@C+Nafion(M)杂化膜基体中的。
[0026] 在100%RH情况下,纯Nafion膜、CNT@Fe3O4@C+Nafion和CNT@Fe3O4@C+Nafion(M)杂化质子交换膜的质子传导性能测试结果如图3所示。可以看到,CNT@Fe3O4@C+Nafion(M)杂化膜的质子传导率不仅高于纯Nafion膜,相比于CNT@Fe3O4@C+Nafion杂化膜同样拥有明显的优势。此外,即使是在高温和/或高甲醇浓度的苛刻条件下, CNT@Fe3O4@C+Nafion(M)杂化质子交换膜的甲醇渗透性也大大下降(图4)。因此,通过本工艺可制备得到高选择性的杂化质子交换膜。
[0027] 实施例2
[0028] 配置10 mg/mL CNT-COOH/丙酮分散液10 mL;随后,加入75mg二茂铁,分散均匀;接着,加入30 wt%双氧水溶液1 mL,混合均匀;将上述体系置于210℃环境中24 h之后,待其自然冷却,最后通过无水乙醇洗涤-离心等步骤,收集产物CNT@Fe3O4@C。
[0029] 取5 mL市售的Nafion溶液,经旋蒸除去约一半溶剂后加入2.5 mL N,N-二甲基甲酰胺,继续旋蒸10 min;往上述Nafion溶液中加入相当于Nafion聚合物质量0.5 wt%的CNT@Fe3O4@C,超声1 h而使其分散均匀;将该分散液小心倾倒于模具中并快速置于70℃烘箱中,在膜厚度方向上施加均匀的0.3 T磁场后,从70℃开始经2 h后缓慢升温至120℃以除去溶剂;抽真空、并将该真空烘箱温度定在120℃保持16 h;最后,将该杂化膜先用3 wt%H2O2溶液于70℃浸泡2 h,随后用1 M H2SO4在80℃下经1 h将膜转化为H+型,最后得到取向CNT@Fe3O4@C/Nafion杂化质子交换膜。
[0030] 实施例3
[0031] 配置10 mg/mL CNT-COOH/丙酮分散液10 mL;随后,加入50mg二茂铁,分散均匀;接着,加入30 wt%双氧水溶液1 mL,混合均匀;将上述体系置于210℃环境中24 h之后,待其自然冷却,最后通过无水乙醇洗涤-离心等步骤,收集产物CNT@Fe3O4@C。
[0032] 取5 mL市售的Nafion溶液,经旋蒸除去约一半溶剂后加入2.5 mL N,N-二甲基甲酰胺,继续旋蒸10 min;往上述Nafion溶液中加入相当于Nafion聚合物质量0.5 wt%的CNT@Fe3O4@C,超声1 h而使其分散均匀;将该分散液小心倾倒于模具中并快速置于70℃烘箱中,在膜厚度方向上施加均匀的0.3 T磁场后,从70℃开始经2 h后缓慢升温至120℃以除去溶剂;抽真空、并将该真空烘箱温度定在120℃保持16 h;最后,将该杂化膜先用3 wt%H2O2溶液于70℃浸泡2 h,随后用1 M H2SO4在80℃下经1 h将膜转化为H+型,最后得到取向CNT@Fe3O4@C/Nafion杂化质子交换膜。
[0033] 实施例4
[0034] 配置10 mg/mL CNT-COOH/丙酮分散液10 mL;随后,加入100mg二茂铁,分散均匀;接着,加入30 wt%双氧水溶液1 mL,混合均匀;将上述体系置于210℃环境中24 h之后,待其自然冷却,最后通过无水乙醇洗涤-离心等步骤,收集产物CNT@Fe3O4@C。
[0035] 取5 mL市售的Nafion溶液,经旋蒸除去约一半溶剂后加入2.5 mL N,N-二甲基甲酰胺,继续旋蒸10 min;往上述Nafion溶液中加入相当于Nafion聚合物质量0.25 wt%的CNT@Fe3O4@C,超声1 h而使其分散均匀;将该分散液小心倾倒于模具中并快速置于70℃烘箱中,在膜厚度方向上施加均匀的0.3 T磁场后,从70℃开始经2 h后缓慢升温至120℃以除去溶剂;抽真空、并将该真空烘箱温度定在120℃保持16 h;最后,将该杂化膜先用3 wt%H2O2溶液于70℃浸泡2 h,随后用1 M H2SO4在80℃下经1 h将膜转化为H+型,最后得到取向CNT@Fe3O4@C/Nafion杂化质子交换膜。
[0036] 实施例5
[0037] 配置10 mg/mL CNT-COOH/丙酮分散液10 mL;随后,加入100mg二茂铁,分散均匀;接着,加入30 wt%双氧水溶液1 mL,混合均匀;将上述体系置于210℃环境中24 h之后,待其自然冷却,最后通过无水乙醇洗涤-离心等步骤,收集产物CNT@Fe3O4@C。
[0038] 取5 mL市售的Nafion溶液,经旋蒸除去约一半溶剂后加入2.5 mL N,N-二甲基甲酰胺,继续旋蒸10 min;往上述Nafion溶液中加入相当于Nafion聚合物质量0.1 wt%的CNT@Fe3O4@C,超声1 h而使其分散均匀;将该分散液小心倾倒于模具中并快速置于70℃烘箱中,在膜厚度方向上施加均匀的0.3 T磁场后,从70℃开始经2 h后缓慢升温至120℃以除去溶剂;抽真空、并将该真空烘箱温度定在120℃保持16 h;最后,将该杂化膜先用3 wt%H2O2溶液于70℃浸泡2 h,随后用1 M H2SO4在80℃下经1 h将膜转化为H+型,最后得到取向CNT@Fe3O4@C/Nafion杂化质子交换膜。
[0039] 实施例6
[0040] 配置10 mg/mL CNT-COOH/丙酮分散液10 mL;随后,加入75mg二茂铁,分散均匀;接着,加入30 wt%双氧水溶液1 mL,混合均匀;将上述体系置于210℃环境中24 h之后,待其自然冷却,最后通过无水乙醇洗涤-离心等步骤,收集产物CNT@Fe3O4@C。
[0041] 取5 mL市售的Nafion溶液,经旋蒸除去约一半溶剂后加入2.5 mL N,N-二甲基甲酰胺,继续旋蒸10 min;往上述Nafion溶液中加入相当于Nafion聚合物质量0.5 wt%的CNT@Fe3O4@C,超声1 h而使其分散均匀;将该分散液小心倾倒于模具中并快速置于70℃烘箱中,在膜厚度方向上施加均匀的0.3 T磁场后,从70℃开始经2 h后缓慢升温至120℃以除去溶剂;抽真空、并将该真空烘箱温度定在120℃保持16 h;最后,将该杂化膜先用3 wt%H2O2溶液+于70℃浸泡2 h,随后用1 M H2SO4在80℃下经1 h将膜转化为H型,最后得到取向CNT@Fe3O4@C/Nafion杂化质子交换膜。
[0042] 实施例7
[0043] 配置10 mg/mL CNT-COOH/丙酮分散液10 mL;随后,加入75mg二茂铁,分散均匀;接着,加入30 wt%双氧水溶液1 mL,混合均匀;将上述体系置于210℃环境中24 h之后,待其自然冷却,最后通过无水乙醇洗涤-离心等步骤,收集产物CNT@Fe3O4@C。
[0044] 取5 mL市售的Nafion溶液,经旋蒸除去约一半溶剂后加入2.5 mL N,N-二甲基甲酰胺,继续旋蒸10 min;往上述Nafion溶液中加入相当于Nafion聚合物质量0.25 wt%的CNT@Fe3O4@C,超声1 h而使其分散均匀;将该分散液小心倾倒于模具中并快速置于70℃烘箱中,在膜厚度方向上施加均匀的0.3 T磁场后,从70℃开始经2 h后缓慢升温至120℃以除去溶剂;抽真空、并将该真空烘箱温度定在120℃保持16 h;最后,将该杂化膜先用3 wt%H2O2溶液于70℃浸泡2 h,随后用1 M H2SO4在80℃下经1 h将膜转化为H+型,最后得到取向CNT@Fe3O4@C/Nafion杂化质子交换膜。
[0045] 实施例8
[0046] 配置10 mg/mL CNT-COOH/丙酮分散液10 mL;随后,加入75mg二茂铁,分散均匀;接着,加入30 wt%双氧水溶液1 mL,混合均匀;将上述体系置于210℃环境中24 h之后,待其自然冷却,最后通过无水乙醇洗涤-离心等步骤,收集产物CNT@Fe3O4@C。
[0047] 取5 mL市售的Nafion溶液,经旋蒸除去约一半溶剂后加入2.5 mL N,N-二甲基甲酰胺,继续旋蒸10 min;往上述Nafion溶液中加入相当于Nafion聚合物质量0.1 wt%的CNT@Fe3O4@C,超声1 h而使其分散均匀;将该分散液小心倾倒于模具中并快速置于70℃烘箱中,在膜厚度方向上施加均匀的0.3 T磁场后,从70℃开始经2 h后缓慢升温至120℃以除去溶剂;抽真空、并将该真空烘箱温度定在120℃保持16 h;最后,将该杂化膜先用3 wt%H2O2溶液+于70℃浸泡2 h,随后用1 M H2SO4在80℃下经1 h将膜转化为H型,最后得到取向CNT@Fe3O4@C/Nafion杂化质子交换膜。
[0048] 实施例9
[0049] 配置10 mg/mL CNT-COOH/丙酮分散液10 mL;随后,加入50mg二茂铁,分散均匀;接着,加入30 wt%双氧水溶液1 mL,混合均匀;将上述体系置于210℃环境中24 h之后,待其自然冷却,最后通过无水乙醇洗涤-离心等步骤,收集产物CNT@Fe3O4@C。
[0050] 取5 mL市售的Nafion溶液,经旋蒸除去约一半溶剂后加入2.5 mL N,N-二甲基甲酰胺,继续旋蒸10 min;往上述Nafion溶液中加入相当于Nafion聚合物质量0.5 wt%的CNT@Fe3O4@C,超声1 h而使其分散均匀;将该分散液小心倾倒于模具中并快速置于70℃烘箱中,在膜厚度方向上施加均匀的0.3 T磁场后,从70℃开始经2 h后缓慢升温至120℃以除去溶剂;抽真空、并将该真空烘箱温度定在120℃保持16 h;最后,将该杂化膜先用3 wt%H2O2溶液于70℃浸泡2 h,随后用1 M H2SO4在80℃下经1 h将膜转化为H+型,最后得到取向CNT@Fe3O4@C/Nafion杂化质子交换膜。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈