首页 / 专利库 / 电池与电池 / 电化学发生器 / 燃料电池 / 高温燃料电池 / 一种半超支化半交联型磺化聚酰亚胺复合质子交换膜及其制备方法

一种半超支化半交联型磺化聚酰亚胺复合质子交换膜及其制备方法

阅读:1014发布:2020-10-30

专利汇可以提供一种半超支化半交联型磺化聚酰亚胺复合质子交换膜及其制备方法专利检索,专利查询,专利分析的服务。并且本 发明 属于 燃料 电池 领域,涉及一种半超支化半交联型磺化聚酰亚胺复合 质子交换膜 及其制备方法。该发明首先合成带有酸酐封端的磺化聚酰亚胺 聚合物 链,然后先将 二 氧 化 硅 表面进行活化,再进行 氨 化,最后在高温条件下 二氧化硅 表面的氨基与聚酰亚胺封端的酸酐发生缩合反应,得到半超支化半交联型复合质子交换膜。本发明制备的半超支化半交联型复合质子交换膜,含有大量的磺酸基团,可提高 质子传导率 ;半超支化结构的存在,使得链与链之间产生自由体积,吸收 水 分,保证了膜中所需的水分;半交联结构和二氧化硅的存在,增加了膜的机械性能和 水解 稳定性 能。因此,制备的膜具有优异的水解、机械稳定性和较高的质子传导率。,下面是一种半超支化半交联型磺化聚酰亚胺复合质子交换膜及其制备方法专利的具体信息内容。

1.一种半超支化半交联型磺化聚酰亚胺复合质子交换膜,其特征在于,复合质子交换膜是将酸酐封端磺化聚酰亚胺一端的酸酐与化的反应,形成半超支化结构,另一端的酸酐与其他氨化的二氧化硅反应,形成半交联结构,其中,表面氨化的二氧化硅作为“Bx型胺类单体”,x>3。
2.根据权利要求1所述的半超支化半交联型磺化聚酰亚胺复合质子交换膜,其特征在于,所述的半超支化结构为氨化的二氧化硅表面的一级胺、未反应的羟基、未反应醚键中的一种或几种。
3.根据权利要求1所述的半超支化半交联型磺化聚酰亚胺复合质子交换膜,其特征在于,所述的半交联结构为氨化的二氧化硅表面的一级胺、未反应的羟基、未反应醚键中的一种或几种。
4.权利要求1所述半超支化半交联型磺化聚酰亚胺复合质子交换膜的制备方法,其特征在于以下步骤:
(1)二氧化硅SiO2的活化与氨化:将二氧化硅用硝酸加热活化3-6小时后,再在盐酸中浸泡6-10小时,洗涤干燥;
在活化后的二氧化硅SiO2中加入γ-氨基三甲氧基硅烷APTS和重蒸甲苯,75℃下反应
8-10小时后过滤,沉淀用重蒸甲苯抽提6-8小时,干燥后得到氨化的二氧化硅;其中,SiO2:
APTS:重蒸甲苯的质量比为4.0:20-40:70;
(2)在氮气保护下二胺单体与二酸酐单体溶解在有机溶剂中,在80℃下反应3-6小时后,升温至180℃反应20-24小时,冷却到100℃,加入有机溶剂稀释,将所得的反应液倒入丙中沉淀,沉淀干燥后得到钠盐型酸酐封端的磺化聚酰亚胺;
(3)将步骤(2)所得钠盐型酸酐封端的磺化聚酰亚胺溶于有机溶剂中得到铸膜溶液;
(4)将步骤(1)所得氨化的二氧化硅加入到步骤(3)铸膜溶液中,超声处理后在玻璃板上铸膜,先在80℃条件下加热4-6小时,再升温至140℃加热6-10小时,得到钠盐型半超支化半交联型聚酰亚胺复合质子交换膜;其中,所述钠盐型酸酐封端的磺化聚酰亚胺与氨化的二氧化硅的质量比为50:1-5:1;
(5)将步骤(4)所得的钠盐型半超支化半交联型聚酰亚胺复合质子交换膜在盐酸中浸泡,用去离子洗涤,干燥得半超支化半交联型磺化聚酰亚胺复合质子交换膜。
5.根据权利要求4所述的半超支化半交联型磺化聚酰亚胺复合质子交换膜的制备方法,其特征在于,所述有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、1-甲基吡咯烷酮、间甲酚、二甲基亚砜中的一种。
6.根据权利要求4或5所述的半超支化半交联型磺化聚酰亚胺复合质子交换膜的制备方法,其特征在于,所述二胺单体为2,2′-二磺酸联苯胺BDSA、2,2′-二丙氧基磺酸联苯胺2,2′-BSPB、9,9′-二(4-氨基苯基)芴-2,7-二磺酸BAPFDS中的一种。
7.根据权利要求4或5所述的半超支化半交联型磺化聚酰亚胺复合质子交换膜的制备方法,其特征在于,所述二酸酐单体为1,4,5,8-四甲酸二酐NTDA。
8.根据权利要求6所述的半超支化半交联型磺化聚酰亚胺复合质子交换膜的制备方法,其特征在于,所述二酸酐单体为1,4,5,8-四萘甲酸二酐NTDA。
9.根据权利要求4、5或8所述的半超支化半交联型磺化聚酰亚胺复合质子交换膜的制备方法,其特征在于,所述制膜方法为浇铸成膜或流延成膜。
10.根据权利要求9所述的半超支化半交联型磺化聚酰亚胺复合质子交换膜的制备方法,其特征在于,所述制膜方法为浇铸成膜或流延成膜。

说明书全文

一种半超支化半交联型磺化聚酰亚胺复合质子交换膜及其

制备方法

技术领域

背景技术

[0002] 随着工业化进程的不断推进,能源短缺和浪费已经成为工业化进程中不可避免的问题。为了追求经济的高速发展,大量的、不计后果的开采,导致地球上能源不断地减少,甚至有些能源面临枯竭,并且工业生产过程中产生的“三废”无限制的排放,导致环境的污染日剧严重,影响到人们正常的生产和生活。迫切研发一种清洁高效、环境友好的能源来取而代之。燃料电池作为一种清洁高效的能源之一,有较广阔的应用前景。
[0003] 燃料电池Fuel Cell一般是将燃料的化学能通过电化学反应直接转化为电能的装置。其中,最大的特点是能量转化效率不受到卡诺循环的影响。主要的优点有:燃料多样性、噪音低、环境污染小、可靠性高、机动灵活和价格便宜等。质子交换膜燃料电池作为燃料电池的一种,除了具有燃料电池上述的优点外,还具有使用寿命长、比能量大、工作温度低、结构紧凑等优点。其中,质子交换膜是质子交换膜燃料电池的核心组件,在燃料电池中起到双重的作用:既作为电解质提供质子传递的通道,又作为隔离膜隔绝阴阳两极,防止两极直接接触而导致电池性能下降。目前,质子交换膜燃料电池中应用较多的质子交换膜主要是杜邦公司生产的全氟磺酸膜,即 膜。但是, 膜的燃料渗透率高、价格昂贵和高温度或者低湿度条件下质子传导率低等缺点限制了其广泛应用[Yina,Y.;Dua,Q.;Qina,Y.;Zhoua,Y.;Okamoto,K.-i.Journal of Membrane Science2011,367,211-219.],需要一种价格便宜、性能优异的 膜材料来代替 膜,非氟质子磺酸膜材料得到越来越多的重视。
[0004] 在众多的非氟质子磺酸膜材料中,磺化聚酰亚胺具有较好的质子传导能、机械性能和热稳定性,被看作是一种具有较广应用前景的质子交换膜材料。然而,与膜相比,单纯的磺化聚酰亚胺的解稳定性并不理想,水含量达到一定值时,磺化聚酰亚胺链中的亚胺环在水的作用下开环,主链发生降解。膜的质子传导率主要与膜的离子交换容量IEC和含水量的大小有关。而离子交换容量IEC和含水量均取决于膜材料中吸水性离子基团数目。在单纯的磺化聚酰亚胺膜中,磺酸基团作为吸水性离子基团,磺酸基团的数目影响着膜的水解稳定性。控制磺酸基团的数目能够提高膜的水解稳定性,但同时质子传导率将会降低。
[0005] 近年来,与磺化聚酰亚胺制备的复合膜得到了很大的发展。在磺化聚酰亚胺中掺杂二氧化硅可以保持膜中一定的水含量,同时通过交联结构增强膜的稳定性,延长了膜的使用寿命。中国专利CN102838764A采用倍半硅氧烷与磺化聚酰亚胺杂化交联的方法制备质子交换膜,具有较大的离子交换容量IEC值,并且有较好的尺寸稳定性和耐水性,且成本低廉。中国专利CN101921480A采用纳/微米孔结构的二氧化硅与聚酰亚胺进行杂化,得到杂化质子交换膜在机械性能、质子传导率和稳定性能较纯磺化聚酰亚胺有明显的改善。
[0006] 超支化的结构近年来越来越受到关注。在聚酰亚胺的分子链中引入了超支化,得到了可溶性的超支化聚酰亚胺HBPI,这种聚酰亚胺不仅具有超支化分子的特点和聚酰亚胺的优良的性能,而且具有大量的末端基团,成为一种新型的高分子材料。Suda等人合成了核-壳结构的超支化的聚酰亚胺。在80℃,98%RH条件下,测得的质子传-1导 率 为 0.51S·cm [Suda,T.;Yamazaki,K.;Kawakami,H.Journal of Power Sources
2010,195,4641-4646.]。
[0007] 本专利是对二氧化硅表面进行化,使其作为超支化中心,酸酐封端的聚酰亚胺作为支链,合成半超支化和半交联结构,大幅度地提高了复合膜的质子传导率、水解稳定性和机械性能。

发明内容

[0008] 本发明的目的是提供一种半超支化半交联型磺化聚酰亚胺复合质子交换膜及其制备方法,本方法制备的复合膜具有较好的热稳定性、机械稳定性、耐水解稳定性和良好的电池性能,膜制备过程简单,价格便宜。
[0009] 本发明提出的一种半超支化半交联型磺化聚酰亚胺复合质子交换膜,其特征在于,复合质子交换膜是将酸酐封端磺化聚酰亚胺一端的酸酐与氨化的二氧化硅反应,形成半超支化结构,另一端的酸酐与其他氨化的二氧化硅反应,形成半交联结构,其中,表面氨化的二氧化硅作为“Bx型胺类单体”,x>3。
[0010] 本发明中所提到的半超支化半交联型磺化聚酰亚胺复合质子交换膜,其特征在于,所述的半超支化结构为氨化的二氧化硅表面的一级胺、未反应的羟基、未反应醚键中的一种或几种。
[0011] 本发明中所提到的半超支化半交联型磺化聚酰亚胺复合质子交换膜,其特征在于,所述的半交联结构为氨化的二氧化硅表面的一级胺、未反应的羟基、未反应醚键中的一种或几种。
[0012] 本发明中所提到的半超支化半交联型磺化聚酰亚胺复合质子交换膜的制备方法,包括以下步骤:
[0013] (1)二氧化硅SiO2的活化与氨化:将二氧化硅用硝酸加热活化3-6小时后,再在盐酸中浸泡6-10小时,洗涤干燥;
[0014] 在活化后的二氧化硅SiO2中加入γ-氨基三甲氧基硅烷APTS和重蒸甲苯,75℃下反应8-10小时后过滤,沉淀用重蒸甲苯抽提6-8小时,干燥后得到氨化 的二氧化硅;其中,SiO2:APTS:重蒸甲苯的质量比为4.0:20-40:70;
[0015] (2)在氮气保护下二胺单体与二酸酐单体溶解在有机溶剂中,在80℃下反应3-6小时后,升温至180℃反应20-24小时,冷却到100℃,加入有机溶剂稀释,将所得的反应液倒入丙中沉淀,沉淀干燥后得到钠盐型酸酐封端的磺化聚酰亚胺;
[0016] (3)将步骤(2)所得钠盐型酸酐封端的磺化聚酰亚胺溶于有机溶剂中得到铸膜溶液;
[0017] (4)将步骤(1)所得氨化的二氧化硅加入到步骤(3)铸膜溶液中,超声处理后在玻璃板上铸膜,先在80℃条件下加热4-6小时,再升温至140℃加热6-10小时,得到钠盐型半超支化半交联型聚酰亚胺复合质子交换膜;其中,所述钠盐型酸酐封端的磺化聚酰亚胺与氨化的二氧化硅的质量比为50:1-5:1;
[0018] (5)将步骤(4)所得的钠盐型半超支化半交联型聚酰亚胺复合质子交换膜在盐酸中浸泡,用去离子水洗涤,干燥得半超支化半交联型磺化聚酰亚胺复合质子交换膜。
[0019] 本发明中所述的半超支化半交联型磺化聚酰亚胺复合质子交换膜的制备方法,其特征在于,所述有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、1-甲基吡咯烷酮、间甲酚、二甲基亚砜中的一种。
[0020] 本发明中所述的半超支化半交联型磺化聚酰亚胺复合质子交换膜的制备方法,其特征在于,所述二胺单体为2,2′-二磺酸联苯胺BDSA、2,2′-二丙氧基磺酸联苯胺2,2′-BSPB、9,9′-二(4-氨基苯基)芴-2,7-二磺酸BAPFDS中的一种,其结构式为:
[0021]
[0022] 本发明中所述的半超支化半交联型磺化聚酰亚胺复合质子交换膜的制备方法,其特征在于所述二酸酐单体为1,4,5,8-四甲酸二酐(NTDA),其使聚酰亚胺的抗水解性达到最大,同时保持分子链的刚性结构,结构式为:
[0023]
[0024] 本发明中所述的半超支化半交联型磺化聚酰亚胺复合质子交换膜的制备方法,其特征在于所述制膜方法为浇铸成膜或流延成膜。
[0025] 本发明中所述的半超支化半交联型磺化聚酰亚胺复合质子交换膜的制备方法,其特征在于,所述制膜方法为浇铸成膜或流延成膜。附图说明
[0026] 图1为半超支化半交联型质子交换膜目标结构图:“●”表示酸酐, 表示磺酸基, 表示酸酐封端聚酰亚胺, 表示聚砜。
[0027] 图2为酸酐封端的BDSA型聚酰亚胺的红外光谱图:红外谱图中1287cm-1处的吸收峰为C-O-C的吸收峰。

具体实施方式

[0028] 以下实施例是仅为更进一步具体说明本发明,在不违反本发明的主旨下,本发明应不限于以下实验例具体明示的内容。
[0029] 所需原料如下:
[0030] 9,9′-二(4-氨基苯基)芴-2,7-二磺酸,按照文献所述方法实验室自制[Guo,X.;Fang,J.;Watar,T.;Tanaka,K.;Kita,H.;Okamoto,a.K.-i.Macromolecules2002,35,6707-6713.];
[0031] 2,2′-二丙氧基磺酸联苯胺,按照文献所述方法实验室自制[Yin,Y.;Fang,J.;Watari,T.;Tanaka,K.;Kita,H.;Okamoto,K.-i.Journal of Materials Chemistry
2004,14,1062-1070.];
[0032] 氨化的二氧化硅,按照文献所述方法实验室自制[王,刚;颜,峰;滕兆刚;杨文胜.化学进展2006,18,239-245.];
[0033] 2,2′-二磺酸联苯胺,75%,溶解提纯;
[0034] 1,4,5,8-萘四甲酸二酐NTDA,96%,升华提纯;
[0035] N,N-二甲基甲酰胺,分析纯≥99%,天津市富宇精细化工有限公司;
[0036] N,N-二甲基乙酰胺,分析纯≥99%,天津市富宇精细化工有限公司;
[0037] N-甲基吡咯烷酮,分析纯≥99%,天津市富宇精细化工有限公司;
[0038] 间甲酚,化学纯≥98%,上海科丰化学试剂有限公司;
[0039] 二甲基亚砜,分析纯≥99%,天津市富宇精细化工有限公司;
[0040] 离子交换容量IEC的测定:将干膜浸泡在饱和的氯化钠溶液中24小时,之后将膜取出,溶液用0.005或0.01mol/L钠溶液滴定,酚酞作指示剂,离子交换容量的计算公式为:
[0041] IEC=(CNaOH×VNaOH)/Wdry
[0042] VNaOH为加入氢氧化钠的体积mL;
[0043] CNaOH为氢氧化钠的浓度mol/L;
[0044] Wdry为干状态下样品膜的质量g。
[0045] 尺寸形变的测定:将膜在120℃真空干燥箱中干燥12小时,之后将膜剪成特定尺寸,测定膜的厚度。将膜浸泡在去离子水中在25℃放置24小时,取出将表面的水擦净,迅速测定膜的长度和厚度,尺寸形变的计算公式为:
[0046] 厚度△T(%)=(Ts-Td)/Td×100%
[0047] 长度△L(%)=(Ls-Ld)/Ld×100%
[0048] Ts为湿状态下样品膜的厚度cm;
[0049] Td为干状态下膜的厚度cm;
[0050] Ls为湿状态下膜的长度cm;
[0051] Ld为干状态下膜的厚度cm。
[0052] 吸水率的测定:先将复合膜样品裁成1cm×3cm的规格,之后在120℃真空条件下干燥12小时,对其质量进行称量。然后将样品膜浸泡在25℃的去离子水中24小时,取出后迅速用滤纸吸去膜表面的去离子水,测量其质量。膜的吸水率的计算公式为:
[0053] WU(%)=(Wwet-Wdry)/Wdry×100%
[0054] Wwet为湿状态下样品膜的质量g;
[0055] Wdry为干状态下样品膜的质量g。
[0056] 耐水解稳定性测定:将质子交换膜浸泡于80℃的去离子水中,记录开始失去机械性能的时间。判断标准是膜自然破碎或轻微弯曲时断裂。
[0057] 制备例1二氧化硅表面的氨化
[0058] 用体积比为1:1的硝酸加热活化4小时后,在体积比为1:1的盐酸中浸泡8 小时,充分洗涤干燥后,冷却备用,活化后的二氧化硅SiO24.0g中加入γ-氨基三甲氧基硅烷APTS 30ml和重蒸甲苯80ml,75℃下反应10小时后过滤,沉淀用重蒸甲苯抽提8小时,充分干燥后得到氨化的二氧化硅。
[0059] 制备例2合成酸酐封端的磺化聚酰亚胺
[0060] 在N2保护的完全干燥的100ml三口烧瓶中加入0.3444gBDSA、10.0ml间甲酚和0.5ml三乙胺,在室温下搅拌至完全溶解。加入0.2685NTDA,在室温下反应30min。之后将混合液加热到80℃,反应4小时,再继续加热至180℃,反应24小时。冷却到100℃,加入
10.0ml间甲酚稀释粘稠的反应液。将溶液倒入到200mL的丙酮中有聚合物析出,过滤,用丙酮充分洗涤后,放在60℃真空干燥箱中干燥15小时,得到酸酐封端的BDSA型聚酰亚胺。
[0061] 实施例1半超支化半交联型磺化聚酰亚胺复合质子交换膜SPI-SiO2-5[0062] 将制备例2中所得聚酰亚胺0.3g溶于6.5mL的间甲酚中,室温下搅拌至完全溶解,向其溶液中加入制备例1所得氨化的二氧化硅0.009g,放在超声中超声3小时,浇铸在6ml×6ml的玻璃板上,在80℃的加热台上蒸发有机溶剂4小时,之后升温至140℃,加热10小时,得到钠盐型半超支化半交联型质子交换膜。所得到的复合质子交换膜浸泡在1mol/L的盐酸溶液中24小时后,取出用去离子水反复冲洗至中性,至120℃的真空干燥箱中干燥
24小时,得复合质子交换膜SPI-SiO2-5。
[0063] 所制备膜的厚度为90μm,离子交换容量IEC=1.856mmol/L,吸水率为45.0%,尺寸形变率为7.82%,膜在80℃的去离子水中保持的时间>1000h。
[0064] 实施例2半超支化半交联型磺化聚酰亚胺复合质子交换膜SPI-SiO2-7.5[0065] 将制备例2中所得聚酰亚胺0.3g溶于6.5mL的间甲酚中,室温下搅拌至完全溶解,向其溶液中加入制备例1所得二氧化硅0.015g,放在超声中超声3小 时,浇铸在6ml×6ml的玻璃板上,在80℃的加热台上蒸发有机溶剂4小时,之后升温至140℃,加热10小时,得到钠盐型半超支化半交联型质子交换膜。所得到的复合质子交换膜浸泡在1mol/L的盐酸溶液中24小时后,取出用去离子水反复冲洗至中性,至120℃的真空干燥箱中干燥
24小时,得复合质子交换膜SPI-SiO2-7.5。
[0066] 所制备膜的厚度为87μm,离子交换容量IEC=1.806mmol/L,吸水率为52.5%,尺寸形变率为7.48%,膜在80℃的去离子水中保持的时间>1000h。
[0067] 实施例3半超支化半交联型杂化磺化聚酰亚胺质子复合交换膜SPI-SiO2-10[0068] 将制备例2中所得聚酰亚胺0.3g溶于6.5mL的间甲酚中,室温下搅拌至完全溶解,向其溶液中加入制备例1所得二氧化硅0.030g,放在超声中超声3小时,浇铸在6ml×6ml的玻璃板上,在80℃的加热台上蒸发有机溶剂4小时,之后升温至140℃,加热10小时,得到钠盐型半超支化半交联型质子交换膜。所得到的复合质子交换膜浸泡在1mol/L的盐酸溶液中24小时后,取出用去离子水反复冲洗至中性,至120℃的真空干燥箱中干燥
24小时,得复合质子交换膜SPI-SiO2-10。
[0069] 所制备膜的厚度为95μm,离子交换容量IEC=1.752mmol/L,吸水率为56.5%,尺寸形变率为7.21%,膜在80℃的去离子水中保持的时间>1000h。
[0070] 实施例4半超支化半交联型杂化磺化聚酰亚胺复合质子交换膜SPI-SiO2-12.5[0071] 将制备例2中所得聚酰亚胺0.3g溶于6.5mL的间甲酚中,室温下搅拌至完全溶解,向其溶液中加入制备例1所得二氧化硅0.045g,放在超声中超声3小时,浇铸在6ml×6ml的玻璃板上,在80℃的加热台上蒸发有机溶剂4小时,之后升温至140℃,加热10小时,得到钠盐型半超支化半交联型质子交换膜。所 得到的复合质子交换膜浸泡在1mol/L的盐酸溶液中24小时后,取出用去离子水反复冲洗至中性,至120℃的真空干燥箱中干燥
24小时,得复合质子交换膜SPI-SiO2-12.5。
[0072] 所制备膜的厚度为93μm,离子交换容量IEC=1.704mmol/L,吸水率为58.8%,尺寸形变率为6.98%,膜在80℃的去离子水中保持的时间>1000h。
[0073] 对比例1不掺杂的磺化聚酰亚胺质子交换膜A
[0074] 将制备例1中所得聚酰亚胺0.3g溶于6.5mL的间甲酚中,室温下搅拌至完全溶解,浇铸在6ml×6ml的玻璃板上,在80℃的加热台上蒸发有机溶剂4小时,之后升温至140℃,加热10小时,得到钠盐型半超支化半交联型质子交换膜。所得到的质子交换膜浸泡在1mol/L的盐酸溶液中24小时后,取出用去离子水反复冲洗至中性,至120℃的真空干燥箱中干燥24小时,得磺化聚酰亚胺质子交换膜A。
[0075] 所制备膜的厚度为95μm,离子交换容量IEC=1.996mmol/L,吸水率为60.5%,尺寸形变率为8.31%,膜在80℃的去离子水中保持的时间>500h。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈