首页 / 专利库 / 燃料电池 / 阴极室 / 一种反硝化燃料电池耦合IEM-UF氮富集组合膜硝化脱氮装置

一种反硝化燃料电池耦合IEM-UF氮富集组合膜硝化脱氮装置

阅读:0发布:2020-09-24

专利汇可以提供一种反硝化燃料电池耦合IEM-UF氮富集组合膜硝化脱氮装置专利检索,专利查询,专利分析的服务。并且一种反硝化 燃料 电池 耦合IEM‑UF氮富集组合膜硝化脱氮装置,属于污 水 处理 技术领域,处理 废水 方法按照如下工艺流程步骤进行:IEM‑UF膜组件对废水中NH4+富集及对有机物分离;富集液进行硝化反应,硝化出水进入反硝化 阴极 室 内,分离器内分离出来的有机物溶液进入反硝化 阳极 室 内,利用阳极室有机物作为 电子 供体经外 电路 传到到阴极室内,同时 硝酸 根作为主要电子受体被还原为N2。该方法及装置,具有较好的去除有机物和脱氮功能,尤其是处理低C/N污水及高 氨 氮废水提供一种处理方法,同时,该方法及装置能有效在反硝化脱氮过程的同时产生 电能 ,产生 能源 。,下面是一种反硝化燃料电池耦合IEM-UF氮富集组合膜硝化脱氮装置专利的具体信息内容。

1.一种反硝化燃料电池耦合IEM-UF氮富集组合膜硝化脱氮装置,其特征在于:该装置包括敞口的氮分离器(3)、硝化反应器(16)、密封的反硝化生物燃料电池反应器(25);
氨氮分离器(3)包括进水蠕动(1),进水管(2),电源(4),时间继电器(5),导线(6),电极(7),搅拌器(8),膜组件C(9),压表(10),氨氮富集液出水蠕动泵(11)和氨氮富集液出水管(12);原水经过进水蠕动泵进入氨氮分离器中,膜组件C(9)位于氨氮分离器内;
膜组件C(9)由超滤膜或者微滤膜之一(37)、阳离子交换膜(36)、以及带有导流槽(34)和孔洞(32)的支撑板(33)组成,阳离子交换膜、超滤膜或者微滤膜之一分别位于支撑板两侧;膜组件C出水口(35)与压力表(10)、出水蠕动泵(11)用氨氮富集液出水管(12)顺序相连,并受时间继电器(5)的控制,将出水排入左右两侧分隔开的氨氮富集箱(13)左侧中;电极(7)放置在氨氮分离器(3)内,搅拌器(8)叶片位于膜组件C(9)旁;电极阳极正对膜组件C(9)的阳离子交换膜,电极阴极正对超滤膜或微滤膜之一;
硝化反应器(16)包括硝化反应器进水管(14),硝化进水蠕动泵(15),曝气装置(17),气体流量计(18),气泵(19),时间控制开关(20);硝化反应器(16)中曝气装置(17)与气路管线、气体流量计(18)和气泵(19)依次相连;硝化出水管(21)与硝化出水蠕动泵(22)相连,硝化反应器(16)内的曝气头(17)位于反应器下部,硝化过程出水流入到氨氮富集液箱(13)右侧中,再由阴极室进水蠕动泵(24)引入到反硝化过程中;
反硝化微生物燃料电池反应器(25)包括反硝化微生物燃料电池反应器阳极室(27)与反硝化微生物燃料电池反应器阴极室(26),阳极室进水泵(23),氨氮富集箱(13)右侧内硝态氮富集液通过阴极室进水蠕动泵(24)将硝态氮富集液引入阴极室(26),阳极室与阴极室内放置电极材料(30),中间用质子交换膜(28)隔离,用导线(6)通过外置电阻箱(29)连接阳极与阴极上的电极材料,并在电阻箱(29)两侧接入电压监控设备(31),阳极出水管(39)与阴极出水管(38)共同接入到出水桶(40)中。
2.应用如权利要求1所述装置进行氨氮富集、硝化、反硝化微生物燃料电池产电的方法,其特征在于,包括如下步骤:
1)废水经进水泵增压后,经进水管以1-10mL/min流入氨氮分离器中;
2)氨氮分离器中膜组件C对废水中NH4+富集及有机物分离:膜组件C(9)对废水中NH4+和有机物分别进行富集和分离,打开出水蠕动泵(11),调整流量为1-9ml/min;同时,将搅拌器(8)放入氨氮分离器(3)中并运行,HRT为20h-2.5d;电极(7)的两极经导线(6)分别与电源(4)相连,并将阳极正对离子交换膜(33),阴极正对超滤膜(34),打开电源(4),调整到电流为0.05-0.3A,并保持不变;出水蠕动泵(11),在时间继电器(5)的控制下,出水为间歇性出水即出水蠕动泵抽停时间比为8分钟:5分钟,出水经氨氮富集出水管(12)到达氨氮富集液箱(13)左侧中,当压力表(10)指示数值超过15kpa时,需对膜组件C(9)进行清洗;
3)SBR硝化反应:将氨氮富集箱(13)左侧中的氨氮富集液经硝化进水管(14)由硝化进水蠕动泵(15)引入硝化反应器(16)中;硝化进水pH范围为7.5-8.2,硝化反应器中活性污泥MLSS为3000-3500mg/L,由气体流量计(18),控制DO在1.5-2.0mg/L;通过时间控制器(20)使硝化反应器采用SBR方式运行,其中一个周期中进水0.5h,曝气反应4-8h,静置0.5-1h,排水+
0.5h;NH4在硝化活性污泥和曝气条件下,形成硝化液,引入氨氮富集箱(13)右侧中;
4)反硝化燃料电池阳极室(27)与阴极室(26)反应:将氨氮分离器(3)中剩余的COD富集液体经蠕动泵(23)以3-6ml/L引入反硝化燃料电池中的阳极室(27)中,将右侧含有硝态氮溶液的氨氮富集箱(13)经蠕动泵(24)以3-6ml/L引入反硝化燃料电池的阴极室(26)中,反硝化燃料电池阳极室阴极室内活性污泥附着在电极材料(30)表面上,在阳极室与阴极室中用质子交换膜(28)进行隔离,将阳极室内与阴极室内的电极材料(30)接入导线引入电阻箱(29)中,从而进行反硝化产电过程,并在两端形成电势差,产生电压;
5)出水:反硝化燃料电池阳极出水与阴极分别单独出水最终进入到出水桶中。

说明书全文

一种反硝化燃料电池耦合IEM-UF氮富集组合膜硝化脱氮装置

技术领域

[0001] 本发明属于污处理技术领域,尤其涉及一种处理低C/N污水组合膜生物反应系统的氮富集及去除方法及装置。

背景技术

[0002] 低C/N是我国城市生活污水的典型水质特征。传统生物脱氮技术是通过硝化作用反硝化作用来实现氮的去除,充足的源是反硝化菌高效脱氮的关键。但在处理低C/N污水的过程中,由于有机物含量偏低,污水中所能提供的碳源不能满足反硝化要求,使得传统生物脱氮工艺处理低C/N比污水时遇到较大困难。
[0003] 针对传统脱氮工艺处理低C/N比污水的碳源不足及硝化菌硝化效率不高等问题,申请者发明了“一种利用组合膜生物反应系统的氮富集及去除方法及装置”(专利号:ZL201310270168.X)来解决这一问题。同时和传统的生物脱氮过程相比较,反硝化燃料电池在污水脱氮处理的过程中减少了对碳源的需求,有机碳源在反硝化阳极室内作为电子供体,电子在经过外电路循环之后到达反硝化阴极室内,硝酸根与亚硝酸根作为电子受体,和传统的反硝化过程相比,减少了反硝化过程其他异样微生物对有机碳源的消耗,使得有机碳源分解出来的电子充分被硝酸根与亚硝酸根利用。同时碳源的化、硝化过程、反硝化过程,三个菌群互相独立存在,这也为各阶段优势菌种的高效运行提供了基础。申请者将利用IEM-UF氮富集组合膜与反硝化燃料电池进行耦合,将IEM-UF氮富集组合膜截留下来有机碳源(COD)作为反硝化燃料电池阳极室内的电子供体与供养阳极室内微生物的有机碳源,NH4+-N富集液经过硝化过程之后作为反硝化燃料电池阴极室内的电子受体底物,接受阳极室内有机碳源供给的电子还原为N2,再处理低C/N比废水的同时实现废水脱氮并且回收电能
此耦合工艺可以有效的作为处理低C/N比污水的一种处理工艺,
[0004] 为了解决现有的低C/N生活污水脱氮效率较低,能耗较大、碳源不足等问题,申请者开发一种反硝化燃料电池耦合IEM-UF氮富集组合膜硝化脱氮装置,将进水中的氮和COD在氨氮分离器内进行富集分离,然后富集的氨氮进入硝化反应器进行硝化反应,将硝化反应液经蠕动抽到反硝化燃料电池的阴极室内,将氨氮分离器内的含有大量COD的溶液经蠕动泵抽到反硝化燃料电池的阳极室内,生物燃料电池阳极室内的COD为电子供体,阴极室内的硝酸根富集液为燃料电池的阴极电子受体,阳极室内COD失去电子产生H+并且透过质子交换膜产生电流回路,形成反硝化微生物燃料电池。两极室之间用质子交换膜分隔开来,阴阳极室内分别布置燃料电池电极,外部用导线连接电阻箱,其中反硝化燃料电池利用硝酸盐作为阴极电子受体,通过阴极反应完成电子的传递过程,同时实现废水脱氮同时产生电能。

发明内容

[0005] 本发明的目的是针对现有处理低C/N比废水处理效率不高及反硝化过程中碳源利用不充分的问题,提供一种利用组合膜生物反应系统的氨氮富集及去除方法及装置,该方法及装置具有较好的去除有机物和脱氮功能,并且实现了脱氮的同时回收电能。为处理低C/N比废水提供一种处理方法。
[0006] 本发明的目的通过下述技术方案实现:
[0007] 一种利用组合膜耦合反硝化燃料电池反应系统的启动、稳定运行及反硝化燃料电池同步脱碳除氮处理,其特征在于:该装置包括敞口的氨氮分离器(3)、硝化反应器(16)、密封的反硝化微生物燃料电池反应器(25);
[0008] 氨氮分离器(3)包括原水进水蠕动泵(1),进水管(2),电源(4),时间继电器(5),导线(6),电极(7),搅拌器(8),膜组件C(9),压表(10),氨氮富集液出水蠕动泵(11)和氨氮富集液出水管(12);原水经过进水蠕动泵进入氨氮分离器中,膜组件C(9)位于氨氮分离器内;膜组件C(9)由超滤膜或者微滤膜之一(37)、阳离子交换膜(36)、以及带有导流槽(34)和孔洞(32)的支撑板(33)组成,阳离子交换膜、超滤膜或者微滤膜之一分别位于支撑板两侧;膜组件C出水口(35)与压力表(10)、出水蠕动泵(11)用氨氮富集液出水管(12)顺序相连,并受时间继电器(5)的控制,将出水排入氨氮富集箱(13)左侧中;电极(7)放置在氨氮分离器(3)内,搅拌器(8)叶片位于膜组件C(9)旁;电极阳极正对膜组件C(9)的阳离子交换膜,电极阴极正对超滤膜或微滤膜之一;
[0009] 硝化反应器(16)包括硝化反应器进水管(14),硝化进水蠕动泵(15),曝气装置(17),气体流量计(18),气泵(19),时间控制开关(20);硝化反应器(16)中曝气装置(17)与气路管线、气体流量计(18)和气泵(19)依次相连;硝化出水管(21)与硝化出水蠕动泵(22)相连,硝化反应器(16)内的曝气头(17)位于反应器下部,硝化过程出水流入到氨氮富集液箱(13)右侧中,再由阴极室进水蠕动泵(24)引入到反硝化过程中;
[0010] 反硝化微生物燃料电池反应器(25)包括反硝化微生物燃料电池反应器阳极室(27)与反硝化微生物燃料电池反应器阴极室(26),阳极室进水泵(23),氨氮富集箱(13)右侧内硝态氮富集液通过阴极室进水蠕动泵(24)将硝态氮富集液引入阴极室(26),阳极室与阴极室内放置电极材料(30),中间用质子交换膜(28)隔离,用导线(6)通过外置电阻箱(29)连接阳极与阴极上的电极材料,并在电阻箱(29)两侧接入电压监控设备(31),阳极出水管(39)与阴极出水管(38)共同接入到出水桶(40)中。
[0011] 总流程:原水经进水蠕动泵进入氨氮分离器底部;NH4+在氨氮分离器中在电场力作用下选择性透过阳离子交换膜被富集,氨氮富集液蠕动泵抽入到氨氮富集液收集箱,氨氮富集液在蠕动泵的作用下抽入到硝化反应器中;氨氮富集液经过硝化反应后,由硝化出水蠕动泵抽出到硝化出水水箱收集;硝化出水再经蠕动泵作用下进入到反硝化燃料电池阴极室内进行脱氮;氨氮分离器中截留下来含有大量COD的废水进入反硝化阳极室内进行除碳。
[0012] 本发明提供了一种利用上述装置进行氨氮富集、硝化、反硝化脱碳除氮的方法,其特征在于:它具有如下工艺流程步骤:
[0013] (1)废水:废水经进水泵增压后,经进水管流入氨氮分离器中;
[0014] (2)膜组件C对废水中NH4+富集及有机物分离:氨氮分离器中在电场力作用下,经过膜组件中阳离子交换膜将进水氨氮富集,出水氨氮浓度提高;通过超滤膜将进水COD截留在氨氮分离器中,使进入硝化反应器的膜组件出水中COD减小;
[0015] (3)SBR硝化反应:将收集的氨氮富集液经蠕动泵引入硝化反应器中,NH4+在曝气条件下通过硝化菌转化为NO3-,形成硝化液并对硝化液进行收集;
[0016] (4)反硝化燃料电池反应器:将截留下来含有大量COD的废水经蠕动泵进入到反硝化燃料电池阳极室内,将收集的硝化液经蠕动泵通过反硝化进水管进入反硝化燃料电池阴极室内,通过反硝化燃料电池利用有机物在缺氧条件下提供电子,NO3-在阴极室内作为主要的电子受体将NO3-转化为N2,完成脱氮和有机物的去除;
[0017] (5)出水:经过第四步处理后阴极阳极单独出水,统一进入出水桶。
[0018] 本发明提供了一种利用组合膜耦合反硝化燃料电池的方法及装置,其特征在于:氨氮分离器将氨氮富集,在硝化阶段由于氨氮分离器将硝化进水中COD截留,可以避免硝化过程中异养菌与自养菌的竞争,保证硝化的高效运行。反硝化过程进入到反硝化燃料电池反应器内进行,充分利用COD有机物提供的电子进行反硝化,减少其他异养微生物对碳源的消耗;同时碳源的氧化、硝化过程、反硝化过程,三个菌群互相独立存在,这也为各自优势细菌的高效运行提供了基础。本发明与现有技术相比,具有以下优点及突出效果:
[0019] 1、针对生活污水中C/N低、反硝化过程碳源不足造成总氮去除率较低。利用反硝化燃料电池过程替代传统反硝化过程,充分利用截留下来的COD作为电子供体,减少其他异养微生物消耗碳源,为反硝化过程降低碳源需求提供了基础。2、需要外加碳源进行反硝化使得成本提高、造成能源浪费。反硝化燃料电池是利用废水中的COD作为反硝化过程中的电子供体,充分利用污水中的资源,减少反硝化过程中外加碳源的投入,造成脱氮成本提高。
[0020] 3、利用污水中的资源进行电能回收。污水中含有有着大量的能源,此耦合工艺可以将低C/N比废水中的能源进行回收。
[0021] 4、碳源氧化、氮源的硝化与反硝化在各自适宜环境下运行,容易控制反应条件,稳定性强,运行效率更高。附图说明
[0022] 图1为本发明提供的种反硝化燃料电池耦合IEM-UF氮富集组合膜硝化脱氮装置方法运行示意图。
[0023] 图中:1-原水进水泵2-原水进水管3-氨氮分离器4-电源5-时间继电器6-导线7-电极8-搅拌器9-膜组件C 10-压力表11-氨氮富集液出水蠕动泵12-氨氮收集液出水管13-氨氮富集箱14-硝化反应器进水管15-硝化进水蠕动泵16-硝化反应器17-曝气装置18-气体流量计19-气泵20-时间控制开关21-硝化出水管22-硝化出水蠕动泵23-反硝化阳极室进水蠕动泵24-反硝化阴极室进水蠕动泵25-反硝化燃料电池反应器26-反硝化阴极室电极材料27-反硝化阳极室电极材料28-质子交换膜29-电阻箱30-电极材料31-电压监控设备38-阴极出水管39-阳极室出水管40-出水桶
[0024] 图2为膜组件的平面示意图,图3为膜组件的剖面示意图。
[0025] 图中:35-膜组件C出水口36-阳离子交换膜37-超滤膜(或者微滤膜)33-支撑板34-导流槽32-孔洞

具体实施方式

[0026] 下面结合附图1及实施例详细加以说明,以进一步理解本发明。
[0027] 本发明利用组合膜处理生活污水一种装置其中包括:氨氮分离器、硝化反应器、反硝化燃料电池反应器。氨氮分离器为长方体形有机玻璃,有效体积为20L。其中膜组件C(图2、图3),是由阳离子交换膜36、超滤膜或者微滤膜37和带有导流槽34和孔洞32的支撑板33组成;阳离子交换膜36和超滤膜或者微滤膜37分别固定在支撑板33的两面,电极板为电极。硝化反应器为圆柱形有机玻璃制成,有效容积为2.0L。反硝化燃料电池反应器阴(阳)极室有效容积3.0L,为密闭容器,电极材料30为载铂碳纸,。
[0028] 本发明所采用的阳离子交换膜36为来自日本astom提供的型号为CMS的阳离子交换膜,超滤膜37为国内某厂家提供的孔径为0.1μm、膜通量为18.75-20.83L/m2.h的超滤膜。
[0029] 具体运行步骤如下:
[0030] 1)废水经进水泵增压后,经进水管以1-10mL/min流入氨氮分离器中;
[0031] 2)氨氮分离器中膜组件C对废水中NH4+富集及有机物分离:膜组件C(9)对废水中NH4+和有机物分别进行富集和分离,打开出水蠕动泵(11),调整流量为1-9ml/min;同时,将搅拌器(8)放入氨氮分离器(3)中并运行,HRT为20h-2.5d;电极(7)的两极经导线(6)分别与电源(4)相连,并将阳极正对离子交换膜(33),阴极正对超滤膜(34),打开电源(4),调整到电流为0.05-0.3A,并保持不变;出水蠕动泵(11),在时间继电器(5)的控制下,出水为间歇性出水即出水蠕动泵抽停时间比为8分钟:5分钟,出水经氨氮富集出水管(12)到达氨氮富集液箱(13)左侧中,当压力表(10)指示数值超过15kpa时,需对膜组件C(9)进行清洗;
[0032] 3)SBR硝化反应:将氨氮富集箱(13)左侧中的氨氮富集液经硝化进水管(14)由硝化进水蠕动泵(15)引入硝化反应器(16)中;硝化进水pH范围为7.5-8.2,硝化反应器中活性污泥MLSS为3000-3500mg/L,由气体流量计(18),控制DO在1.5-2.0mg/L;通过时间控制器(20)使硝化反应器采用SBR方式运行,其中一个周期中进水0.5h,曝气反应4-8h,静置0.5-1h,排水0.5h;NH4+在硝化活性污泥和曝气条件下,形成硝化液,引入氨氮富集箱(13)右侧中;
[0033] 4)反硝化燃料电池阳极室(27)与阴极室(26)反应:将氨氮分离器(3)中剩余的COD富集液体经蠕动泵(23)以3-6ml/L引入反硝化燃料电池中的阳极室(27)中,反硝化阳极室进水pH范围为7.0-7.4,反硝化阳极室中活性污泥MLSS为3000-3500mg/L,阳极室内水力停留时间为15-25h。将右侧含有硝态氮溶液的氨氮富集箱(13)经蠕动泵(24)以3-6ml/L引入反硝化燃料电池的阴极室(26)中,反硝化阴极室进水pH范围为7.0-7.8。反硝化阴极室中活性污泥MLSS为3000-3500mg/L,阴极室内水力停留时间为15-25h。反硝化燃料电池阳极室阴极室内活性污泥附着在电极材料表面上,电极材料为载铂碳纸电极。反应器为封闭缺氧环境,进而完成脱碳除氮以及产电。
[0034] 5)出水:反硝化燃料电池阳极出水与阴极分别单独出水最终进入到出水桶中。
[0035] 结果:
[0036] 当原水为配水时,其主要水质指标平均值为:NH4+-N=60-80mg/L、COD=180-200mg/L;操作条件为:控制膜组件C出水的蠕动泵抽停时间比均为8分钟:5分钟,进水流量为5mL/min,膜组件C出水流量均为4.8mL/min,反硝化阳极室进水流量3.2mL/min,反硝化阴极室进水流量2.95mL/min,膜组件C电流为0.2A,硝化反应器活性污泥MLSS=3200mg/L,反应6h。反硝化阴极室阳极室反应器活性污泥MLSS=3100mg/L,均反应16h。外置电阻为50Ω时,稳定时反硝化燃料电池平均电流0.6mA。阴阳极总出水主要指标平均值可以达到:COD=
20.29mg/L,NH4+-N=26.89mg/L,NO3--N=18.35mg/L,NO2--N=0.35mg/L;去除率平均值分别为:COD=90.53%,NH4+-N=62.80%,TN=41.53%。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈