首页 / 专利库 / 信号处理 / 滤波器 / 无源滤波器 / 微网光伏发电逆变并网和谐波治理混合系统及其复合控制方法

微网光伏发电逆变并网和谐波治理混合系统及其复合控制方法

阅读:1019发布:2020-10-30

专利汇可以提供微网光伏发电逆变并网和谐波治理混合系统及其复合控制方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种微网 光伏发电 逆变并网和谐波治理混合系统及基于其的复合控制方法,所述微网光伏发电逆变并网和谐波治理混合系统包括光伏阵列 电池 、光伏输出 滤波器 、三相 电压 型逆变器、输出滤波器和 无源滤波器 组。所述微网光伏发电逆变并网和谐波治理混合系统及其复合控制方法实现了微网有功和无功动态补偿、稳定系统电压及谐波的实时、动态治理。,下面是微网光伏发电逆变并网和谐波治理混合系统及其复合控制方法专利的具体信息内容。

1.一种微网光伏发电逆变并网和谐波治理混合系统,包括光伏阵列电池、光伏输出滤波器、三相电压型逆变器、输出滤波器和无源滤波器组,其特征是:光伏阵列电池依次通过二级管D1、二极管D2和光伏电池切换开关K1接入三相电压型逆变器的直流侧电容,且该光伏阵列电池并联有由电感Lf和电容Cf串联而成的光伏输出滤波器;所述三相电压型逆变器再经由电感L4、电容C4并联而成的输出滤波器并联接入电网;同时还有由电容C3、电感L3串接组成的5次单调谐无源滤波器和由电容C2、电感L2串联组成的7次单调谐无源滤波器构成的无源滤波器组并联接入电网中,且该无源滤波器组的接入点位于非线性负载和三相电压型逆变器接入电网的接入点之间,电网中设置有供电开关K2。
2.一种基于权利要求1所述微网光伏发电逆变并网和谐波治理混合系统的复合控制方法,其特征是,包括以下步骤:
(1)检测光伏阵列电池的输出电压upv、电流ipv;三相电压型逆变器的直流侧电容电压Udc;检测到的电网及三相电压型逆变器输出电流经DSP控制器依据ip-iq瞬时无功理论计算得出三相电压型逆变器输出三相基波电流Ica、icb、icc,三相电压型逆变器输出谐波电流idh和电网谐波电流ish;
(2)上述三相电压型逆变器输出三相基波电流ica、icb、icc,经过abc-dq变换得出d轴电流信号id和q轴电流信号iq;当负载由电网和光伏阵列电池同时供电时,依据光伏阵列电池输出电压upv、电流ipv信号,由最大功率跟踪点控制算法得出直流侧电压信号Ve,再经PI控制器1得出d轴的指令电流信号i*d1;当负载仅由电网供电时,三相电压型逆变器直流侧电容电压误差信号ΔUdc经PI控制器2得出d轴的指令电流信号i*d2;因此d轴指令电流信号id*的离散控制率为:
i d * ( k ) = i d 1 * ( k ) = i d 1 * ( k - 1 ) + k p 1 [ V e ( k ) - V e ( k - 1 ) ] + k i 1 [ V e ( k ) ] i d 2 * ( k ) = i d 2 * ( k - 1 ) + k p 2 [ Δ U dc ( k ) - Δ U dc ( k - 1 ) ] + k i 2 [ Δ U dc ( k ) ]
式中kp1、ki1分别为PI控制器1的比例、积分系数,kp2、ki2分别为PI控制器2的比例、积分系数,k表示第k个时刻;
(3)步骤2中得到的q轴电流信号iq与q轴指令电流信号iq*的差值Δiq经PI控制器输出信号iq1作为三相电压型逆变器所要发出的无功补偿电流指令信号;d轴电流信号id与d轴指令电流信号id*的差值Δid经PI控制器3输出信号id1作为三相电压型逆变器所要发出的有功电流指令信号;
(4)进行谐波控制:由电网谐波电流组成外环,三相电压型逆变器输出谐波电流组成内环进行双环控制,电网谐波电流iSh与给定电网谐波电流iSh*的差值ΔiSh作为递推积分控制器1的输入信号,其输出idh*作为内环的指令电流信号;三相电压型逆变器的输出谐波电流idh与内环的指令电流信号idh*的差值Δidh为内环谐波电流误差信号,经递推积分控制器2调节得出的输出信号in1作为三相电压型逆变器的控制参考信号;外环与内环的离散控制率分别为:
i dh * ( k ) = i dh * ( k - 1 ) + k p 10 [ Δ i sh ( k ) - Δ i sh ( k - N ) ] + k i 10 [ Δ i sh ( k ) ]
in1(k)=in1(k-1)+kp12[Δidh(k)-Δidh(k-N)]+ki12[Δidh(k)]
式中kp10、ki10分别为递推积分控制器1的比例、积分系数,kp12、ki12分别为递推积分控制器2的比例、积分系数,k表示第k个时刻,N表示第N个采样点;
(5)当负载由光伏阵列电池供电时,步骤(3)得到的有功电流信号id1、无功电流信号iq1经过dq-abc坐标变换得出三相电压型逆变器的三相有功、无功实时控制信号
当负载由光伏阵列电池和电网联合供电时,步骤(3)得到的无功电流信号iq1与步骤(4)得到的内环谐波电流误差信号Δidh相叠加后,经递推积分控制器2调节得出的信号in1,再与有功电流信号id1一并经过dq-abc坐标变换得出三相电压型逆变器的三相谐波、有功及无功实时控制信号;其中输出信号in1的离散控制率为:
in1(k)=in1(k-1)+kp12[iq1(k)+Δidh(k)-Δidh(k-N)-iq1(k-N)]+ki12[Δidh(k)+iq1(k)]
式中k表示第k个时刻,N表示第N个采样点;
(6)重复以上步骤,直到达到微网谐波治理、无功补偿、有功输出的目标。

说明书全文

技术领域

发明属于微网及含微网配电系统的电能质量及其控制技术领域,特别涉及一种微网光伏发电逆变并网和谐波治理混合系统及其复合控制方法,既可以补偿微网的有功、无功,还可以治理微网中非线性负载引起的谐波。

背景技术

能源是人类赖以生存和发展的基础,电作为最清洁便利的能源形式,是国民经济的命脉。采用分布式发电供能技术,有助于充分利用各地丰富的清洁和可再生能源。向用户提供“绿色电力”,是实现我国“节能减排”目标的重要举措,同时还是解决我国能源短缺和环境污染问题的重要途径。
把以分布式发电供能为基础的微网与大电网相结合,不仅有助于提高微网的供能质量,还有助于微网技术的大规模推广应用,也有助于防止大面积停电,提高电力系统的安全性和可靠性,增强电网抵御自然灾害的能力,对于电网乃至国家安全都有重大现实意义。
从微网能源供应的诸多因素考虑,太阳能无疑是符合我国可持续发展战略的理想绿色能源。同时,全球能源专家认定,太阳能将成为21世纪最重要的能源之一。光伏发电系统在微网及含微网配电系统中占有很大的比例,由于太阳能电板出来的是直流电需要通过逆变器变为工频交流电,才能接入系统中为负载供电。同时,随着科学技术的发展,各种精密电子仪器和数字化电器设备在微网及含微网的配电系统中大量装备,对微网的供电可靠性和电能质量提出了越来越高甚至苛刻的要求。在以光伏发电为微源的微网系统中,由于存在一些间歇式非线性负载,特别是以开关方式工作的静止变流器,以及电弧炉、电焊机、变压器、旋转电机等其他非线性负载,这些负荷在以光伏发电为微源的微网系统中,会消耗大量的无功功率,降低系统的功率因数,造成线路电压损失加大和电能损耗增加。同时还会在微网中产生不同频率和幅值的谐波,,导致分布发电设备的损毁,对微网及含微网配电系统安全、稳定、经济运行构成巨大的威胁。
目前,在以光伏发电为微源的微网及含微网配电系统中,光伏发电系统一般情况下只提供给电网有功电能,即把太阳能光伏阵列的直流电能转换为与电网同频率同相位的交流电能馈送给电网,并保证其有较高的功率因数。而负载的无功补偿一般采用专用的电容器进行补偿。对于微网中存在的谐波,通常是另外添加有源电力滤波器(APF-Active Power Filter)和无源滤波器(PF-Passive Filter)装置来治理谐波。这无疑增加了系统设备的投资,使系统的结构复杂化,增加额外的设备还会带来新的电能质量问题。

发明内容

本发明的目的是克服现有技术的不足和针对存在的问题,提出一种微网光伏发电逆变并网和谐波治理混合系统及其复合控制方法。该系统可以实现微网有功和无功动态补偿、稳定系统电压及谐波的实时、动态治理。
为实现上述目的,本发明所采用的技术方案是:
一种微网光伏发电逆变并网和谐波治理混合系统,包括光伏阵列电池、光伏输出滤波器、三相电压型逆变器、输出滤波器和无源滤波器组,其特征是:光伏阵列电池依次通过二级管D1、二极管D2和光伏电池切换开关K1接入三相电压型逆变器的直流侧电容,且该光伏阵列电池并联有由电感Lf和电容Cf串联而成的光伏输出滤波器;所述三相电压型逆变器再经由电感L4、电容C4并联而成的输出滤波器并联接入电网;同时还有由电容C3、电感L3串接组成的5次单调谐无源滤波器和由电容C2、电感L2串联组成的7次单调谐无源滤波器构成的无源滤波器组并联接入电网中,且该无源滤波器组的接入点位于非线性负载和三相电压型逆变器接入电网的接入点之间,电网中设置有供电开关K2。
相应的,本发明还提供一种基于上述微网光伏发电逆变并网和谐波治理混合系统的复合控制方法,包括以下步骤:
(1)检测光伏阵列电池的输出电压upv、电流ipv;三相电压型逆变器的直流侧电容电压Udc;检测到的电网及三相电压型逆变器输出电流经DSP控制器依据ip-iq瞬时无功理论计算得出三相电压型逆变器输出三相基波电流ica、icb、icc,三相电压型逆变器输出谐波电流idh和电网谐波电流ish;
(2)上述三相电压型逆变器输出三相基波电流ica、icb、icc,经过abc-dq变换得出d轴电流信号id和q轴电流信号iq;当负载由电网和光伏阵列电池同时供电时,依据光伏阵列电池输出电压upv、电流ipv信号,由最大功率跟踪点控制算法得出直流侧电压信号Ve,再经PI控制器1(其比例、积分系数分别为kp1、ki1)得出d轴的指令电流信号i*d1;当负载仅由电网供电时,三相电压型逆变器直流侧电容电压误差信号ΔUdc经PI控制器2(其比例、积分系数分别为kp2、ki2)得出d轴的指令电流信号i*d2;因此d轴指令电流信号id*的离散控制率为:
i d * ( k ) = i d 1 * ( k ) = i d 1 * ( k - 1 ) + k p 1 [ V e ( k ) - V e ( k - 1 ) ] + k i 1 [ V e ( k ) ] i d 2 * ( k ) = i d 2 * ( k - 1 ) + k p 2 [ ΔU dc ( k ) - ΔU dc ( k - 1 ) ] + k i 2 [ ΔU dc ( k ) ]
式中k表示第k个时刻。
(3)步骤2中得到的q轴电流信号iq与q轴指令电流信号iq*的差值Δiq经PI控制器输出信号iq1作为三相电压型逆变器所要发出的无功补偿电流指令信号;d轴电流信号id与d轴指令电流信号id*的差值Δid经PI控制器输出信号id1作为三相电压型逆变器所要发出的有功电流指令信号;
(4)进行谐波控制:由电网谐波电流组成外环,三相电压型逆变器输出谐波电流组成内环进行双环控制,电网谐波电流iSh与给定电网谐波电流iSh*的差值ΔiSh做为递推积分控制器1(其比例、积分系数分别为kp10、ki10)的输入信号,其输出idh*作为内环的指令电流信号;三相电压型逆变器的输出谐波电流idh与内环的指令电流信号idh*的差值Δidh为内环谐波电流误差信号,经递推积分控制器2(其比例、积分系数分别为kp12、ki12)调节得出的输出信号in1作为三相电压型逆变器的控制参考信号;外环与内环的离散控制率分别为:
i dh * ( k ) = i dh * ( k - 1 ) + k p 10 [ Δi sh ( k ) - Δi sh ( k - N ) ] + k i 10 [ Δi sh ( k ) ]
in1(k)=in1(k-1)+kp12[Δidh(k)-Δidh(k-N)]+ki12[Δidh(k)]
式中k表示第k个时刻,N表示第N个采样点。
(5)当负载由光伏阵列电池供电时,步骤(3)得到的电流信号id1(即为有功电流)、电流信号iq1(即为无功电流)经过dq-abc坐标变换得出三相电压型逆变器的三相有功、无功实时控制信号
当负载由光伏阵列电池和电网联合供电时,步骤(3)得到的电流信号iq1与步骤(4)得到的内环谐波电流误差信号Δidh相叠加后,经递推积分控制器2调节得出的信号in1,再与有功电流信号id1一并经过dq-abc坐标变换得出三相电压型逆变器的三相谐波、有功及无功实时控制信号;其中输出信号in1的离散控制率为:
in1(k)=in1(k-1)+kp12[iq1(k)+Δidh(k)-Δidh(k-N)-iq1(k-N)]+ki12[Δidh(k)+iq1(k)]式中k表示第k个时刻,N表示第N个采样点。
(6)重复以上步骤,直到完全达到微网谐波治理、无功补偿、有功输出的目标。
本发明的有益效果是:当微网处于孤岛运行状态时,所述微网光伏发电逆变并网和谐波治理混合系统及其复合控制方法控制光伏发电并网逆变器进行有功、无功补偿,只有无源滤波器组滤除5、7次特征谐波。当微网与公网相连接时,白天,由无源滤波器组来滤除5、7次特征谐波,同时由光伏发电并网逆变器来进行有功、无功的动态补偿及其它次谐波治理;晚上,三相电压型逆变器与无源滤波器组结合成混合型有源电力滤波器,通过实时检测电网谐波及负荷的无功,进行无功动态补偿及谐波实时治理。本发明提出的有功、无功、谐波复合控制方法简单易实现,具有很强的稳定性;同时对于以光伏阵列电池为微源的微网及含微网配电系统的谐波治理及无功补偿,无需增加额外的补偿器及治理设备,大大降低了整个系统的成本。
附图说明
图1是微网光伏发电逆变并网和谐波治理混合系统的结构示意图;
图2是微网光伏发电逆变并网和谐波治理混合系统的复合控制流程框图

具体实施方式

下面结合附图和实施例对本发明作进一步的说明。
如图1所示,微网光伏发电逆变并网和谐波治理混合系统包括:光伏阵列电池、光伏输出滤波器、三相电压型逆变器、输出滤波器和无源滤波器组。光伏阵列电池通过二级管D1、二极管D2与逆变器直流侧电容相连,电感Lf和电容Cf构成光伏输出滤波器使直流侧电压更加平稳。操作员可通过开关K1的闭合来接上或切除光伏阵列电池。三相电压型逆变器经电感L4、电容C4并联成的输出滤波器滤波后并联接入电网,电容C3、电感L3串接组成5次单调谐无源滤波器,电容C2、电感L2的串联组成7次单调谐无源滤波器,两组单调谐无源滤波器组成无源滤波器组并联接入电网,接入点位于负载和三相电压型逆变器之间。通过电网开关K2使光伏发电系统处于孤岛运行状态或与公网并网运行。当K2断开时,光伏发电系统处于孤岛运行状态,负载由光伏阵列电池供电,由光伏发电并网逆变系统来进行有功、无功补偿,无源滤波器组滤除5、7次特征谐波。当K2闭合,白天K1闭合,光伏发电系统与三相电压型逆变器直流侧电容相连,负载由公网和光伏阵列电池共同供电,由无源滤波器组来滤除5、7次特征谐波,同时由光伏发电并网逆变器来进行有功、无功的动态补偿及其它次谐波治理。晚上K1断开,即使光伏阵列电池与三相电压型逆变器断开,负载仅由公网供电,这样三相电压型逆变器与无源滤波器组就组成混合型有源电力滤波器,通过实时检测电网谐波及负荷的无功,进行无功动态补偿及谐波实时治理。
如图2所示,通过电压、电流互感器检测光伏阵列输出电压upv、电流ipv;三相电压型逆变器直流侧电容电压Udc;通过电压、电流传感器检测电网及三相电压型逆变器输出电流,经DSP控制器计算得出逆变器输出三相基波电流ica、icb、icc、逆变器输出谐波电流idh和电网谐波电流ish;再根据光伏阵列电池的输出电压upv、电流ipv信号采取最大功率跟踪点控制算法(MPPT)计算得出直流侧电压信号Ve,再经PI控制器1(其比例、积分系数分别为kp1、ki1)得出d轴的指令电流信号i*d。其离散控制率表达式为:
i d * ( k ) = i d * ( k - 1 ) + k p 1 [ V e ( k ) - V e ( k - 1 ) ] + k i 1 [ V e ( k ) ] - - - ( 1 )
式中k表示第k个时刻。
取d轴的反馈电流id与d轴的指令电流信号id*的差值Δid,作为PI控制器3的输入信号,PI控制器3的输出信号id1作为三相电压型逆变器所要发出的有功电流指令信号;取q轴的反馈电流iq与q轴的指令电流信号iq*的差值Δiq,作为PI控制器4的输入信号,PI控制器4的输出信号iq1作为三相电压型逆变器所要发出的无功补偿电流指令信号。此时,只有通过无源滤波器组滤除5、7次谐波,而没有有源滤波器。
当光伏发电系统与公网并网运行时:
白天,图2中开关1打向左边,同时开关2打向下边,即图1中K1、K2闭合时,有功、无功的控制与孤岛运行,即仅由光伏发电系统供电时一样,同时再在无功控制支路上叠加谐波双环控制支路。
由电网谐波电流组成外环、三相电压型逆变器输出谐波电流组成内环。计算电流iSh与给定电网谐波电流iSh*的差值ΔiSh,差值ΔiSh作为递推积分控制器1(其比例、积分系数分别为kp10、ki10)的输入信号,其输出信号idh*作为内环的指令电流信号。计算三相电压型逆变器输出谐波电流信号idh与给定谐波电流idh*(由外环得来)的差值Δidh,并把PI控制器4的输出信号iq1与Δidh相叠加作为递推积分控制器2(其比例、积分系数分别为kp12、ki12)的输入信号,其输出信号in1作为三相电压型逆变器的控制参考信号。外环与内环的离散控制率分别为:
i dh * ( k ) = i dh * ( k - 1 ) + k p 10 [ Δ i sh ( k ) - Δ i sh ( k - N ) ] + k i 10 [ Δ i sh ( k ) ] - - - ( 2 )
in1(k)=in1(k-1)+kp12[iq1(k)+Δidh(k)-Δidh(k-N)-iq1(k-N)]+ki12[Δidh(k)+iq1(k)]  (3)式中k表示第k个时刻,N表示第N个采样点。
此时,无源滤波器组滤除5、7次谐波,同时有源滤波器滤除其它次谐波。
晚天,仅由电网供电,图2中开关1打向右边,同时开关2打向下边,即图1中K1断开,K2闭合时,由三相电压型逆变器的直流侧电容电压误差信号ΔUdc经常规PI控制器2(其比例、积分系数分别为kp2、ki2)得出d轴的指令电流信号i*d,其离散控制率为:
i d * ( k ) = i d * ( k - 1 ) + k p 2 [ Δ U dc ( k ) - Δ U dc ( k - 1 ) ] + k i 2 [ Δ U dc ( k ) ] - - - ( 4 )
式中k表示第k个时刻。
此时,无功与谐波控制支路与白天并网运行时控制方法一样。
重复以上步骤,直到完全达到微网谐波电流总的畸变率小于5%、功率因数达到0.94、有功输出能够满足非线性负载的额定有功功率的目标。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈